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In this paper, the boundary value problems of the linear theory of thermoelasticity of binary mixtures are 
investigated by means of the potential method (boundary integral method). The basic properties of 
thermoelastopotentials are treaded. The uniqueness and existence theorems of solutions of the interior and 
exterior boundary value problems by means potential method and multidimensional singular integral 
equations are proved. The Sommerfeld-Kupradze type radiation conditions are established. The existence 
of eigenfrequencies of the interior homogeneous boundary value problems of steady oscillations is 
studied.  
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1  Introduction 

       A general thermodynamic theory of two interacting 
continua was constructed by Green and Naghdi [1], 
while the nonlinear theory of mixtures of two- or many-
component elastic solids was developed by Green and 
Steel [2]. A linear variant of the latter theory was 
proposed by Steel [3]. In [2,3], the interaction force of 
two components depends on a difference in partial 
displacement velocities (the diffusion model). The 
theory of binary mixtures of thermoelastic solids, in 
which the 
component interaction force depends on a difference of 
partial displacements (the shift model), was constructed 
by Iesan [4]. The same author proved uniqueness 
theorems of the solutions for initial boundary value  
problems  of  the  linear  version  of   
semigroup theory in [5]. In [2-5], the mixture 
components   are    assumed    to    have    the    same  
temperature value. In [6], fundamental solutions of 
steady oscillation equations of the diffusion and shift 
models of the linear theory of two thermoelastic solids 
are constructed in terms of elementary functions, and 
some  basis properties of these solutions are established. 
The linear and nonlinear theory of two thermoelastic 
solids with components having different temperature 
values were respectively constructed by Khoroshun and 
Soltanov [7] and Iesan [8]. An extensive review of the 
results of the mixture theory can be found in books [9,10] 
and papers [11-13]. 
       The investigation of boundary value problems of 
mathematical physics by the classical potential method 
has a hundred year history. The application of this 
method to the basic spatial boundary value problems of  
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the elasticity theory reduces these problems to 
multidimensional singular integral equations [14]. In [15, 
16], Muskhelishvili developed the theory of one-
dimensional singular integral equations and, using this 
theory, studied plane boundary-value problems of the 
elasticity theory. Owing to the works of Mikhlin [17], 
Kupradze and his pupils [14, 18, 19], the theory of 
multidimensional singular integral equations has 
presently been worked out with sufficient completeness. 
This theory makes it possible to investigate three-
dimensional problems  not  only  of  
classical elasticity theory, but also problems of elasticity 
theory with conjugated fields. Two- and three-
dimensional problems of the linear theory of binary 
mixtures are studied by means of the potential method in 
[20-23]. 
       In this paper, the boundary value problems of the 
linear theory of thermoelasticity of binary mixtures are 
investigated by means of the potential method. The 
uniqueness and existence theorems of solutions of the 
interior and exterior boundary value problems by means 
potential method and multidimensional singular integral  
equations are proved. The Sommerfeld-Kupradze type 
radiation conditions are established. The existence of 
eigenfrequencies of the interior homogeneous boundary 
value problems of steady oscillations is studied.  

2  Basic Equations 

      Let 1 2 3( , , )x x x x=  be the point of the Euclidean three-
dimensional space 3E ,  The system of equations of 
steady oscillations in the shift model of the linear theory 
of thermoelasticity of binary mixture is written as [8] 
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,0 div  div )( 020130 =+++Δ wTiuTii ωαωαθωαα whe

re ),,( 321 uuuu =  and ),,( 321 wwww =  are the 

partial displacements, θ is the temperature measured 
from the constant absolute temperature 0T ; 

32102121 ,,,,,,,,, ααααdcbbaa  are constitutive 

coefficients; 21  and  ρρ  are partial density constants; 
ω  is the oscillation frequency, 0>ω , Δ  is the 
Laplacian, α is the shift coefficient. The system (1) may 
be written as    

( ) ( ) 0,xA D U x =                      (2) 
where ( )xA D  is the matrix differential operator 
corresponding left-hand side of (1), ( , , )U u w θ=   

1 2 7( , , , )U U U= L . 

3  Basic Boundary Value Problems 

        
    Let S  be  the  closed  surface  surrounding  the  

finite domain +Ω  in 3E .  ,,2 νCS ∈  0 1,ν< ≤   
,S+ +Ω = Ω U  3 \ .E− +Ω = Ω   

       A vector function U  is called regular in −Ω  (or 
+Ω ) if  

1. 2 1( ) ( )lU C C− −∈ Ω ΩI       
        (or  2 1( ) ( )lU C C+ +∈ Ω ΩI   ); 

2. 
5

1
( ) ( )l lj

j
U x U x

=

= ∑ , 

       2 1( ) ( )ljU C C− −∈ Ω ΩI ; 

3. 2( ) ( ) 0j ljk U xΔ + = , 

       | | 1( ) ( ) (| | )
| |

jik x
j ljik U x e o x

x
−∂

− =
∂

,                         (3) 

for | | 1x >> , where jk  is the wave number, 

1, 2, ..., 7,l = 1, 2, ..., 5j = , 212
3

2
2

2
1 )(|| xxxx ++= . 

Equalities in (3) is a Sommerfeld-Kupradze type 
radiation conditions in the linear theory of binary 
mixtures of thermoelastic solids. The basic boundary 
value problems of steady oscillations of linear theory of 
thermoelasticity of binary mixture are formulated as 
follows. 
       Problem ( ) fI + : Find a regular solution to system (2) 

for x +∈Ω  that satisfies the boundary condition 
            lim ( ) { ( )} ( )

x z S
U x U z f z

+

+

Ω ∋ → ∈
≡ = . 

       Problem ( ) fI − : Find a regular solution to system (2) 

for x −∈Ω  that satisfies the boundary condition 

          lim ( ) { ( )} ( )
x z S

U x U z f z
−

−

Ω ∋ → ∈
≡ = ,                        (4) 

where f  is the known vector function on S . 

4  Uniqueness Theorems 

 
       We have the following results. 
       Theorem 1. Exterior boundary value problem  −

fI )(  
admits at most one regular solution. 
       Theorem 2. Interior homogeneous boundary value 
problem 0( )I +  has a non-trivial solution ( , ,0)U u w=   in 
the class of regular vectors, where the vector  ( , )V u w=  
is a solution to the system 
 2

1 1 1 grad div   grad div a u b u c w d w uω ρΔ + + Δ + +   
                                                        ( ) 0,u wα− − =  

2
2 2 2  grad div   grad div c u d u a w b w wω ρΔ + + Δ + +                        

( ) 0,u wα+ − =                  (5) 

1 2div  div 0,u wα α+ =        for    x +∈Ω                
satisfying the boundary condition 
                      { ( )} 0V z + = ;                                          (6) 
the problems 0( )I +  and (5), (6) have the same 
eigenfrequencies. 

5  Existence Theorem 

       In this section, the existence theorem of regular 
solution of the problem  ( ) fI −  is proved by means of the 
potential method and theory of multidimensional 
singular integral equations. For the definitions a normal-
type singular integral operator and index of operators see 
Ref. [17]. The basic theory of one and multidimensional 
singular integral equations is given in Ref. [14, 15]. 
       In the sequel we use the following notation: 
1. (1) ( , ) ( ) ( ) y

S

Z x g x y g y d S= Γ −∫   

is a single-layer potential; 
2.   (2) ( , ) [ ( , ( )) ( )] ( )y y

S

Z x g P D n y x y g y d S∗ ∗= Γ −∫   

is a double-layer potential, where  Γ  is the fundamental 
matrix of the operator ( )xA D ; g  is seven-component 
vectors, P  is a generalized stress operator, ( )n y  is the 
external unit vector to S  at y , and the superscript ∗  
denotes transposition. 
       Remark.  The matrix Γ is constructed in Ref. [6].  
       We seek a regular solution to problem ( ) fI −  in the 
form   

(2) (1)( ) ( , ) ' ( , )U x Z x g a Z x g= + , x −∈Ω ,   (7) where 
' '
1 2'a a ia= + ;  '

1a and '
2a  are the real numbers, '

1 0a > , 
'
2 0a < , and g  is the required seven-component vector. 

       Obviously, the vector  U  is solution of equation  
               ( ) ( ) 0xA D U x =       for x −∈Ω .         
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 Keeping in mind the boundary condition (4), from  (7)  
we obtain singular integral equation 

      (2) (1)1( ) ( ) ( , ) ' ( , )
2

Kg z g z Z z g a Z z g≡ − + +  

                     
 ( )f z=       for   z S∈ ,                   (8) 

where singular integral operator K  is of the normal type 
and  ind 0K = . 
       Now we prove that the equation  
                                ( ) 0Kg z =                                       (9)  
 has only a trivial solution. 
       Indeed, let g  a solution of Eq. (9) and 1, ( ).g C Sν∈  
The vector U  defined by Eq. (7) is a regular solution of 
problem 0( )I − . Using Theorem 1, we have  
                ( ) 0U x =     for     x −∈Ω .                           (10) 
       On the other hand from Eq. (7) we get 
               { ( )} { ( )} ( ),U z U z g z− ++ = −                          (11) 
{ ( , ) ( )} { ( , ) ( )} ' ( )z zP D n U z P D n U z a g z− +− = ,                       (12) 
where z S∈ . Therefore, by (10), from Eqs. (11), (12) 
we obtain  
{ ( , ) ( ) ' ( )} 0zP D n U z a U z ++ =  for z S∈ . (13) 
       Hence, the vector U  is a solution of equation 
            ( ) ( ) 0xA D U x =       for x +∈Ω ,       (14) 
satisfying the boundary condition (13). From  Eqs. (13), 
(14) we obtain (for details see Ref. [23]) 
                           { ( )} 0U z + = .                                    (15) 
       Finally, using Eqs. (10) and (15), from (11) we have 

( ) 0g z =  for z S∈ . 
       Thus, the homogeneous Eq. (9) has only a trivial 
solution, and therefore Eq. (8) is always solvable for an 
arbitrary vector f . 
       We have thereby proved the following theorem. 
       Theorem 3.  If 2,S C ν∈ , 1, ' ( )f C Sν∈ , 
0 ' 1ν ν< ≤ ≤ , then  a regular solution of the problem 
( ) fI −  exists, is unique, and is represented by sum  (7), 
where g  is a solution of the singular integral equation 
(8), which is always solvable for an arbitrary vector f . 
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