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Quantum criticality of vanadium chains with strong relativistic spin-orbit interaction
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We study quantum phase transitions induced by the on-site spin-orbit interaction AL-S in a toy model of
vanadium chains. In the N — 0 limit, the decoupled spin and orbital sectors are described by a Haldane and an
Ising chain, respectively. The gapped ground state is composed of a ferro-orbital order and a spin liquid with
finite correlation lengths. In the opposite limit, strong spin-orbital entanglement results in a simultaneous spin
and orbital-moment ordering, which can be viewed as an orbital liquid. Using a combination of analytical
arguments and density-matrix renormalization-group calculation, we show that an intermediate phase, where
the ferro-orbital state is accompanied by a spin Néel order, is bounded on both sides by Ising transition lines.
Implications for vanadium compounds CaV,0,4 and ZnV,0, are also discussed.
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Quasi-one-dimensional (1D) Mott insulators with strongly
coupled spin and orbital degrees of freedom have attracted
considerable attention recently. A well-studied case is the
Kugel-Khomskii Hamiltonian with an SU(2) symmetry in
both spin and orbital sectors.' This model is believed to de-
scribe the essential physics of quasi-1D compounds
Na,Ti,Sb,0O and NaV,0s.23 Extensive numerical and ana-
lytical studies have revealed a rich phase diagram.*> Of par-
ticular interest is a SU(4) symmetric point of the Hamil-
tonian where the low-energy physics is described by a
conformal field theory with a central charge ¢=3, equivalent
to a model of three free bosons.

In this paper, we investigate a 1D spin-orbital system
which in many aspects is different from the above SU(2)
X SU(2) model. The interest is partly motivated by recent
experimental progresses on several vanadates including spi-
nel ZnV,0, (Refs. 6 and 7) and quasi-1D CaV,0,.5° The
vanadium chains in these compounds are characterized by
frustrated magnetic interactions, Ising-type orbital ex-
changes, and a large relativistic spin-orbit (SO) interaction.
The origin of the first two features can be traced to the lattice
geometry of these compounds: vanadium ions in spinel form
a three-dimensional (3D) pyrochlore lattice and in CaV,0,
they are arranged in weakly coupled zigzag chains (Fig. 1).
In both structures the 90° angle between vanadium-oxygen
bonds in a network of edge-sharing VOg octahedra makes
direct exchange the primary mechanism for intersite spin-
orbital interaction. An important consequence is that the
spin-orbital Hamiltonian only depends on orbitals through
the corresponding projection operators. For example, direct
ddo exchange takes place along a [110] bond only when one
or both of the d,, orbitals are occupied, giving rise to an
Ising-type orbital interaction.!%!!

Contrary to the anisotropic orbital exchange, magnetic in-
teraction governed by the Heisenberg Hamiltonian preserves
the spin-rotational symmetry. The spin exchange constant,
however, depends on the underlying orbital occupations.
Combined with geometrical frustration, the orbital-
dependent spin exchange renders these vanadates essentially
quasi-1D spin systems. To see this, we note that the local d,,
orbitals are always occupied due to distorted VOg4 octahedron
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in both compounds. As a result, the largest spin-spin interac-

tion takes place on bonds parallel to [110] and [110] direc-
tions in spinels [Fig. 1(b)], whereas for CaV,0, the domi-
nant spin exchange occurs along the two rails of a zigzag
chain [Fig. 1(a)]. Furthermore, couplings between these spin
chains are not only weak but also geometrically
frustrated.'>!® Since V3* ions in both compounds have spin
S=1, their magnetic properties thus can be understood from
the viewpoint of weakly coupled spin-1 chains (solid lines in
Fig. 2).

In both vanadates, one of the two electrons of the V3* ion
always occupies the low-energy d,, state, the other one oc-
cupies either d,, or d,, orbitals. We introduce a pseudospin-
1/2 operator 7 to describe this doublet orbital degeneracy,
where 7 are the Pauli matrices. We choose a basis such that
7= =1 corresponds to states |yz) and i|zx), respectively. The
dominant pseudospin interaction is governed by an antiferro-
magnetic Ising-type Hamiltonian on nearest-neighbor bonds
connecting different spin-1 chains'®!! (dashed lines in Fig.
2); the relevant orbitals on these bonds are d,. and d.,. Due
to the static and three-dimensional nature of the orbital Ising
Hamiltonian, the system tends to first develop a long-range
orbital order upon lowering the temperature. Figure 2 shows

(a)

FIG. 1. (Color online) Vanadium chains in (a) CaV,0, and (b)
ZnV,0,. The black and white circles denote vanadium and oxygen
ions, respectively. The V3* ions are arranged in a zigzag chain of
edge-sharing VOg octahedra in CaV,0,. On the other hand, V3*
ions in spinel form a pyrochlore lattice, which can be viewed as a
cross-linking network of vanadium chains. The quasi-1D spin-1
chains are highlighted by solid blue (gray) lines.
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FIG. 2. (Color online) Schematic of antiferro-orbital orders in
(a) CaV,04 and (b) ZnV,04. In both cases, the d,, orbital is occu-
pied at all sites. The interaction between the remaining d, and d,,
orbitals (indicated by red and green symbols, respectively) is gov-
erned by an antiferromagnetic Ising-type interaction on the dashed
bonds. Also note the ferro-orbital order along the quasi-1D spin-1
chains [solid blue (gray) lines].

a schematic of the 3D antiferro-orbital order for the two
compounds. It is important to note that orbitals on individual
spin-1 chains (solid lines in Fig. 2) are ferromagnetically
ordered.

The antiferro-orbital order shown in Fig. 2(b), however, is
incompatible with the observed crystal symmetry 14,/amd of
tetragonal ZnV,0,.%7 The discrepancy can be attributed to a
large SO interaction AL -S of vanadium ions. Indeed, the SO
term is minimized by a state with simultaneous Néel order-
ing of spins and orbital angular momenta.'*~!> The corre-

sponding orbital order consisting of complex d,, * id,, orbit-

als preserves both the mirror inversion m and diamond glide
d, and is consistent with the experimental data.

In the absence of SO interaction, the ground state of the
spin-1 chain is a nondegenerate spin singlet. This spin liquid
phase, also known as the Haldane phase, must be separated
from the Néel state favored by a large SO coupling by quan-
tum phase transitions. Since a nonzero L* requires the elec-
tron be in a complex orbital state %(|zx>ii|xy)), a fully
occupied d,, orbital thus results in the vanishing of L* and
L1913 The nonzero z component of the orbital angular mo-
mentum is given by L°=—7" in our representation. To under-
stand the critical behavior of vanadium chains due to the LS
coupling, we consider the following spin-orbital Hamil-
tonian:

H=J2 Sn'Sn+l_KE 7‘517fl+1_)\2 T;;Si (1)

This simple model describes two well-studied 1D systems,
i.e., an S=1 Haldane chain and a ferromagnetic Ising chain
(both J, K>0), coupled together by an on-site SO interaction
AL-S. Note that the eigenstates of 7%, |yz) = i|zx), carry an
angular momentum L*= = 1, respectively. The Hamiltonian
[Eq. (1)] has a U(1) XZ,XZ, symmetry: the spin SU(2)
symmetry is reduced to U(1) X Z, by the SO term, whereas
an additional Z, symmetry comes from the orbital Ising
Hamiltonian.

It should be noted that the ferro-orbital order along the
quasi-1D chains is stabilized by the interchain antiferro-
orbital coupling in real compounds. The ferromagnetic ex-
change —K in Eq. (1) thus should be regarded as an effective
coupling in the mean-field sense.
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FIG. 3. One-loop corrections to self-energy of (a) magnon and
(b) kink. The solid and wavy lines denote the kink and magnon
propagators, respectively.

Despite its simplicity, the model contains rather rich phys-
ics. It is easy to see that the first-order correction vanishes
identically in the ground state of decoupled Haldane and
Ising chains. To have a glimpse of the effects of the SO
interaction, one needs to go to higher orders and examine the
elementary excitations of model [Eq. (1)]. We start with the
kink excitations of the Ising chain. Kinks, or domain walls,
are topological defects separating the two degenerate ground
states of perfectly aligned pseudospins. For classical Ising
chains, kinks are static quasiparticles with a constant energy
2K. To obtain the quasiparticle operators, we first fermionize
the Ising chain using Jordan-Wigner transformation'®

7= H (2chm (P ci), m=1- 2cj,cn. (2)

m<n

The kink operator 7, is obtained after subsequent Fourier
and Bogoliubov transformations yq:uch—ivqc’_q, where u,
=cos(g/2) and v,=sin(g/2).'®

For spin-1 chain, the lowest excitation above the
singlet ground state is a triplet with a dispersion wkx[A(Z)
+02(k=)%]"? near the energy minimum. Here v=2.56J is
the spin-wave velocity and Ay=0.4J is the Haldane gap.'’
To model the low-energy physics of spin-1 chain, we follow
Ref. 18 and introduce three massive magnons a; and
carrying quantum number S°=*1 and 0, respectively. The
spin operator is Sizli+%2k¢keik"/ VL, where

2v

WOk

(@it ay) 3)

&=

and the uniform part [ is quadratic in transverse magnons
a;. In terms of magnons and kinks, Hamiltonian (1) be-
comes

. 4 A y

H= E wka]‘:'al(cr'*' 2K2 Y(Lyq + T 2 ,|:Mq+q/¢k7;yq

k,o q VLk,q,q’

i i

* V0 P VgV vquq)] . 4)
The prime on the summation indicates conservation of mo-
mentum k=g =*¢g’. In obtaining the above expression, we
have neglected the interaction between kinks and transverse
magnons a; .

Assuming A <<J,K, we employ a perturbation theory to

examine the properties of quasiparticles in the presence of

SO coupling. We first evaluate the two-kink bubbles shown
in Fig. 3(a),
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)= ek

(5)
It is interesting to note that the particle-hole bubble does not
contribute to IT;. The above expression for I1;(w) diverges
as the magnon energy approaches that of a pair of kinks, i.e.,
w=4K. In this regime magnons strongly interact with the
kinks, and higher order corrections to the interaction vertex
have to be taken into account. Assuming w<<K and using
random-phase approximation to compute the magnon self-
energy, we obtain a renormalized spin gap

N?

Ay=~Ag———,
ST Ak

(6)
which decreases with increasing N. At large A, closing of the
spin gap indicates a phase transition into a spin-ordered
phase characterized by (a,) # 0.

Figure 3(b) shows the one-loop contribution to the self-
energy of magnons. In the K> A limit, the second term in
Fig. 3(b) is negligible compared with the first one, we obtain
a self-energy

2
(g =- )\—(1 + 7207 cos 2g). (7)
A
The energy of the kink excitation given by &,~2K-3(q)
shows that the kinks become mobile through the mediation
of virtual magnons.

The perturbative calculation gives important insight to the
elementary excitations in the small A regime of the spin-
orbital model [Eq. (1)]. In particular, the reduced spin and
orbital gaps indicate quantum phase transitions at finite A. To
investigate the nature of the phase transitions and the prop-
erties of possible new phases, we numerically investigate the
spin-orbital model [Eq. (1)] using the infinite-system
density-matrix renormalization-group (DMRG) method."”
The DMRG calculation is known to give a rather accurate
description of the ground-state properties for 1D systems. In
our calculation we have employed periodic boundary condi-
tions in order to accommodate the staggered ordering of
spins and orbital angular momenta.

Noting that L*=—7" in our representation, we define the
following order parameters:

(y=1 (SP=N-1", (L)=-{-D". (¥

The numerical results of a spin-orbital chain with exchange
constants K=0.5J are shown in Fig. 4. At small A, the ground
state is characterized by a nonzero ferro-orbital order 7# 0
while the spin sector is in the disordered Haldane phase with
N=0. At critical point \,;=0.491J, the linear chain under-
goes a quantum phase transition into a state with simulta-
neous ordering of staggered spin and orbital moment, char-
acterized by nonzero order parameters A and ¢, respectively.
The ferro-orbital order 7 remains finite in the intermediate
phase. As we further increase A, the system undergoes yet
another quantum phase transition at \.,=0.657J. This criti-
cal point is marked by the melting of the ferro-orbital order
7. In the A — o limit, both order parameters N, { approach 1.
The ground state of the spin-orbital chain consists of alter-
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FIG. 4. (Color online) (a) Order parameters as a function of \/J
for a chain with K=0.5J. The dashed lines are fittings to 2D Ising
transition m ~ |[\=\|"/®, where m is the corresponding order param-
eter. (b) The same plot in log-log scale.

natively occupied states |S°= + 1)® |yz) ¥ i|zx). The orbital
occupation numbers n,,=n,=1/2 are uniform along the
chain. “

Since the order parameters N and 7 describe, respectively,
the broken Z, symmetry of the spin and orbital sectors, both
critical points A.; and A, are expected to be in the two-
dimensional (2D) Ising universality class. Indeed, by fitting
the corresponding order parameter m to the Ising scaling
relation m~ |N=\ ", we find agreeable result as shown by
the dashed lines in Fig. 4. The Ising nature of the spin Néel
transition can be understood in the limit of large orbital gap
K>J. By integrating out orbitals, one obtains an easy-axis
spin anisotropy: —DS?, where D=\?/4K; the resultant spin
gap is reduced in accordance with Eq. (6). As demonstrated
numerically in Ref. 20, the spin-1 chain undergoes an Ising
transition into a Néel state when D> D...

Above \.;, a nonzero N exerts an effective (staggered)
transverse field on the orbitals. By rotating pseudospins an
angle 7 about 7 axis on odd-numbered sites, the orbital
sector is described by a quantum Ising Hamiltonian,

Homia =~ K> 77, -T2 7, )

where the transverse field I'=AN. It is known that the Ising
chain reaches a critical state at '.=K.'® Numerically, we
obtain an Néel order N'=0.659 at critical point \.. The
corresponding critical field T' .=\, /N'=0.52J is indeed close
to the orbital exchange K=0.5J used in the DMRG calcula-
tion.

Our main results are summarized in the phase diagram,
Fig. 5, which contains three massive phases separated by two
Ising transition lines. The spin sector in the J=0 limit is
extensively degenerate as each spin could be in either [$°=
+1) or |§?=—1) states, independently; the total degeneracy is
2L, After applying a 7 rotation about 7° axis to those pseu-
dospins at sites where S5=-1, the orbital sector is again
mapped to a quantum Ising chain Eq. (9) with the transverse
field I'=N\. Since the orbital Ising transition occurs at I'.=K,
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FIG. 5. (Color online) Phase diagram of spin-orbital model [Eq.
(1)]. The lines are guide for the eyes. In phase I, the spin sector is in
the disordered Haldane phase, N'=¢=0, while the orbitals are fer-
romagnetically ordered 7# 0. The ground state of phase III is com-
posed of Neel spin order and orbital-moment order, which can be
viewed as an orbital liquid, i.e., N'# 0 and 7=0. In the intermediate
phase II, a spin Néel order coexists with the ferro-orbital Ising
order.

the phase boundary A, hence ends at K on the J=0 axis. In
the small J limit, one can estimate \.; for the spin Néel
transition using the critical condition D=D_ =~ 0.05J,%° which
gives JK=\?,. The region of intermediate phase enclosed by
boundaries A\, and A, shrinks with increasing spin exchange
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J. At very large J, the two Ising lines could merge to form a
Gaussian criticality or a first-order transition.

We now discuss implications of our findings to vanadium
compounds. As discussed before, the ferro-Ising order pa-
rameter 7 can also serve as the 3D antiferro-orbital order
parameter for both vanadates (see Fig. 2). A nonzero 7 thus
creates two different orbital chains, hence further lowering
the crystal symmetry. However, experiments on both com-
pounds observed a higher symmetry®? indicating that vana-
dium chains in both vanadates are likely in the 7=0 orbital
liquid state (phase III). Furthermore, the appearance of finite
orbital moment L*={ antiparallel to spin S* at N>\, also
explains the reduced vanadium moment w=(2S5%+L%) wp
~1 up observed experimentally.”® On a final note, we cau-
tion that the fermionic description of orbital excitations as
kinks in an Ising chain is the consequence of using 1D ap-
proximation for the orbital system. Furthermore, the Kugel-
Khomskii-type spin-orbital terms (7;7)(S;-S;) introduce cor-
relations between orbital and spin excitations. A detailed
description of these 3D spin-orbital excitations will be dis-
cussed in future publications.
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