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We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an

external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small

voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single

parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided

repulsive interaction between electrons is not too strong.
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Introduction.—Control and manipulation of spin degrees
of freedom in nanoscale electronic devices is an active new
field of research [1,2]. In quantum wires spin-selective
transmission of electrons was considered in the past in a
number of publications [3–7]. In [3] a strong asymmetry of
the spin dependent conductances in a Luttinger liquid (LL)
with a magnetic impurity was observed, which is related to
the Zeeman energy splitting � of the impurity states. In [4]
the authors consider the spin dependent backscattering of
repulsive electrons from a single weak impurity in the
presence of a strong magnetic field �> �C � 0:2EF

where EF denotes the Fermi energy. Contrary to weak
fields, the backscattering of electrons having spin parallel
to the field may be suppressed making the impurity trans-
parent, whereas electrons antiparallel to the field are still
reflected.

In the present Letter we report on spin-selective trans-
mission of electrons in a quantum wire through a quantum
dot formed by two impurities. The mechanism consists in
lifting the degeneracy of the condition for resonant tunnel-
ing of up and down electrons through the quantum dot [8,9]
by an external magnetic field H. Whereas the transmission
for the spin direction which fulfills the resonance condition
is finite for repulsive interaction, it vanishes for the other
spin direction due to the Coulomb blockade in the quantum
dot. The mechanism requires sufficiently low temperatures
such that the Zeeman splitting, � ¼ g�BH, and the
Coulomb energy of the quantum dot, �EF=n, are large
compared to T. Here n denotes the number of electrons in
the quantum dot.

For weak impurities we find a resonance in the region of
repulsive electron interaction where the transmission for
one spin direction is perfect, provided the impurity is
weaker than a critical value, whereas the other spin direc-
tion is completely blocked. For strong impurities trans-
mission is found to change smoothly from perfect to zero
when the interaction strength is increased. As a difference
to the case H ¼ 0 considered in [8], we find that the
resonance condition for H � 0 is not same in the two

limiting cases of strong and weak impurities and leads to
two scenarios shown in Fig. 2.
A similar setup, but under very different conditions, has

been considered recently in [6]. There, the Coulomb block-
ade effect was ignored and the magnetic field was assumed
to be unrealistically strong, � ¼ OðEFÞ.
Model.—We consider electrons in a one dimensional

wire along the x axis exposed to an external magnetic field.
Since electrons are confined in the directions transverse
to x, orbital effects are suppressed and the only field ef-
fect of the magnetic field is to polarize the electrons. In
the noninteracting case the Zeeman energy splits the Fermi
momentum kFs (s ¼" , #) of the up and down spin
electrons by jkF" � kF#j=ðkF" þ kF#Þ � �=EF � 1. The

Hamiltonian for electrons in the external impurity potential
VðxÞ can be described by the Tomonaga-Luttinger model
[10]

H¼X
s

Z
dxf�i@vF½c y

Rs@xc Rs�c y
Ls@xc Ls�þVðxÞ�sðxÞg

þ1

2

X
s;s0

Z
dxdx0Wðx�x0Þ�sðxÞ�s0 ðx0Þ; (1)

where c RsðxÞ, c LsðxÞ are the annihilation operators for
right- and left-moving spin-s electrons, c s ¼ c Rs þ c Ls

is the annihilation operator for spin-s electrons, �s ¼
c y

s c s is the spin-s electron density, and Wðx� x0Þ is the
screened Coulomb interaction between electrons [11].
We first consider the system without impurities. Then

the model (1) describes an interacting quantum wire with
four Fermi points [13]. In that situation it is useful to split
terms arising from the interaction into intersubband and
intrasubband terms [14]. For repulsive and spin indepen-
dent interaction electrons stay in their bands during scat-
tering processes and the only allowed intersubband process
is the forward scattering [15]. While mutually noninteract-
ing subsystems consisting of spin up and spin down elec-
trons are described in the bosonized representation by the
standard LL Euclidean action [10] in terms of bosonic
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fields ’", ’# with the Luttinger parameter (LP) K ¼ ð1þ
~Wð0Þ� ~Wð2kFÞ

�@vF
Þ�1=2, the intersubband interaction is diagonal-

ized in symmetric ’� ¼ ð’" þ ’#Þ=
ffiffiffi
2

p
and antisymmetric

’� ¼ ð’" � ’#Þ=
ffiffiffi
2

p
combinations. ’� describe charge

and ’� spin degrees of freedom. The action of the system
in the absence of impurities is then given by (for details see
[16,17])

S0
@

¼ X
‘¼�;�

1

2�K‘

Z
dxd�

�
1

v‘

ð@�’‘Þ2þv‘ð@x’‘Þ2
�
; (2)

whereK‘ ¼ Kð1� K2 ~Wð0Þ
�@vF

Þ�1=2 with the convention that the

upper (lower) sign corresponds to ‘ ¼ �ð�Þ. The velocities
of excitations are v‘ ¼ vF=K‘, where vF is the Fermi
velocity.

Nontrivial effects come from impurities. We consider
two pointlike impurities, modeled as � functions of the
strength V and placed at �a=2. Introducing the displace-
ment fields at the impurity positions �1sð�Þ ¼
’sð�a=2; �Þ and �2sð�Þ ¼ ’sða=2; �Þ, the bosonized
form of electron-impurity interaction reads [8,16] S1 ¼P

sðVkFs=�Þ
R
d�½cosð2�s þ kFsaÞ þ cosð2�s � kFsaÞ�.

To analyze the full action S0 þ S1 it is useful to integrate
out degrees of freedom outside the impurities. In that way
one gets an action in terms of four fluctuating fields in
imaginary time. For low frequencies, j!j � v‘=a, the
effective action reads

Seff ¼
X

‘¼�;�

X
k¼�

Z d!

16�2

@j!j
K‘

j�‘kð!Þj2 þ
Z

d�Veff ;

(3)

where effective potential energy Veff reads

Veffð�1"; �2"; �1#; �2#Þ ¼
X
‘

1

2
U‘�‘�ð�Þ2

þX
s

Vs½cosð2�1s þ kFsaÞ

þ cosð2�2s � kFsaÞ�: (4)

Here we have introduced U‘ ¼ @v‘

2�aK‘
, Vs ¼ VkFs=�, and

the fields �‘k ¼ �2" þ k�1" � ð�2# þ k�1#Þ, where k ¼
� and our sign convention for ‘ ¼ �, � applies. ��� and

��� determine the total charge and spin, respectively,
between the impurities.

The effective potential energy (4) consists of two types
of terms: the charging energy EC ¼ P

‘U‘�
2
‘�=2 sup-

presses the accumulation of charge and spin on the island
between impurities, while the Vs term tends to pin the
displacement fields at the impurity positions. The part
j!jj�‘�j2 of the action (3) is a fluctuation correction to
EC and is important at resonance points for strong impu-
rities, when �‘� are undetermined; see below.

In the following we will examine the system described
by (3) in two limiting cases, for strong and weak impurity

strengths. In the realistic case of repulsive interaction, we
haveK� < 1,K� > 1 andU� <U�. We study the model at

zero temperature, while influence of temperature is briefly
considered at the end. Our strategy is to first determine the
ground state from Veff without fluctuations, see Eq. (3), and
then to include fluctuations in order to check the stability of
that ground state.
Strong impurities.—In the limit of very strong barriers,

V", V# � U�, U�, EF, the ground state of the system is

defined by subsequent minimization of the pinning and the
charging energy, see Eq. (4). The pinning energy terms are
minimal for 2�ps ¼ ð�1ÞpkFsaþ �ð1� 2npsÞ, p ¼ 1, 2

where nps are integers. The high degeneracy of the pinning

energy is broken by the charging energy. Plugging�ps into

EC and defining ns ¼ n2s � n1s one gets

ECðn"; n#Þ ¼
U�

2
ðkF"aþ kF#a� �ðn" þ n#ÞÞ2

þU�

2
ðkF"a� kF#a� �ðn" � n#ÞÞ2: (5)

To characterize different nonequivalent minima of (5) it is
useful to restrict the Fermi momenta to satisfy n < kF"a=�,
kF#a=� � nþ 1, where n 	 0 is an integer. This implies

n � n", n# � nþ 1. The particle number on the island is

n" þ n#. The ground states resulting from the minimization

of the charging energy (5) are shown in Fig. 1. For generic
values of kFsa, the ground state is uniquely determined.
However, at special lines different ground states meet.
These lines define the resonance conditions: while the
number of particles on the island with one spin direction
is fixed at the same value on both sides of the boundary, the
number of electrons with the opposite spins changes by
�1. ECðn"; n#Þ ¼ ECðn" � 1; n#Þ and ECðn"; n#Þ ¼
ECðn"; n# � 1Þ are the resonance conditions for the up

and down spin electrons, respectively. As a result a par-
ticle having the degenerate spin can tunnel through the
quantum dot in a sequential tunneling process without
changing its energy. Hence we have a spin-selective barrier
transparency.
We further solve the model along the boundary line

where ECðnþ 1; nÞ ¼ ECðnþ 1; nþ 1Þ. Similar results
hold for other cases. The fields �p", p ¼ 1, 2 are locked

by the strong impurity pinning and have fixed values of n".
Approximating the nonlinear cosine term by a quadratic
term for the�p" one can integrate out them from the action

(3) [19]. The resulting effective action then reads

S0eff ¼
Z d!

4�2

@j!j
Keff

ðj�1#ð!Þj2þj�2#ð!Þj2Þ

þ
Z
d�Veff

�
�kF"aþ�

2
;
kF"aþ�

2
;�1#;�2#

�
; (6)

with Keff ¼ 2K�K�

K�þK�
. It describes the resonant tunneling of

spin down electrons and is analogous to the case of spinless
electrons [8]. The partition function is dominated by tun-
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neling events connecting degenerate minima of the strong
impurity potential. Using the Coulomb gas representation
[8,20,21] one can produce the renormalization group equa-
tions for the tunneling transparency t# of barriers for spin- #
electrons. For strong impurity potential V# it reads dlt# ¼
t#ð1� 1=ð2KeffÞÞ, from which we get that for Keff >

1
2 the

transparency t# increases, or equivalently, the strength of V#
flows to smaller values at low energies. Outside the reso-
nance lines, ts flows to zero for any repulsion, similar to the
single impurity case.

Weak impurities.—In the limit of weak impurities, V",
V# � U�, U�, the action (3) is minimized for �‘� ¼ 0.

This corresponds to fixed charge and spin on the island.
Integrating out the �‘� fluctuations from (3), new scatter-

ing processes of the form
P

s2Vs cosðkFsaÞ

cosð�1s þ�2sÞ þ Vð2Þ sinðkF"aÞ sinðkF#aÞ cos��þ are

generated, where Vð2Þ ¼ V"V#
U��U�

2U�U�
. Other generated

higher order processes are irrelevant for repulsive interac-
tion. The resonance condition for the spin-s particles is
now given by cosðkFsaÞ ¼ 0.

For the generic situation cosðkFsaÞ � 0, the single elec-
tron backscattering processes are the most important ones.
To leading order in the impurity potential, the renormal-
ization group (RG) flow equations is dlVs ¼ Vs½1�
ðK� þ K�Þ=2�, from which we conclude that backward

scattering terms Vs are relevant for K� þ K� < 2. Since

the point impurity is a local quantity it cannot renormalize
bulk quantities such as K�, K�, and the flow of Vs is ver-

tical [8,22]. The flow diagram for V# is shown in Fig. 2(a).

Since the two limiting cases have opposite flow, it is
plausible to expect a line of attractive fixed points some-
where in between, corresponding to a new phase, where

spins of one direction (here down spins) have nonzero
transmission at zero temperature, while the other spin
direction is blocked [23].
In the resonance case cosðkF#aÞ ¼ 0 and j cosðkF"aÞj =2

f0; 1g, the two-particle scattering processes should be taken
into account (only for spin- # electrons since spin- " already
have backscattering in the lowest nonvanishing order).

From the RG flow equation dlV
ð2Þ ¼ Vð2Þð1� 2K�Þ, we

conclude that spin- # electrons are effectively free at low
energies for K� > 1=2. In Fig. 2(b) we show the flow of V#.
Again the flows of two limiting cases are opposite, result-
ing in a separatrix in between the two resulting phases:
perfectly conducting for spin down for small enough V#
and insulating for larger V#. Spin up electrons are always in
the insulating phase in that case. Outside the middle region,
the flow of V# is as in the single impurity case: toward zero

for attractive interaction and toward infinity for very re-
pulsive interaction.
In order to check the correctness of the assumption of

massive fluctuations for the �p" fields made when we

derived (6), we will examine (3) in cases when the �p#
fields are either freely fluctuating or completely frozen,
limits that are appropriate close to the noninteracting
point and in the strongly repulsive region, respectively,
see Fig. 2(a). Integrating out �p# one gets an action that

matches the action of a single impurity in LL. In the former
case with the LP ðK� þ K�Þ=2, and in the latter with Keff .

In both cases any repulsion ultimately renormalizes V" to
infinity, which justifies massive fluctuations of �p".
Transport.—Now we will consider the conductance of

our system using the anticipated flow diagram, see Fig. 2.
Assuming the applied voltage across the dot is VG and
at the ends of the wire is VL, an additional term should
be included in the action (3), which reads
�eVG

R
d����=�� eVL

R
d���þ=ð2�Þ. The voltage VL

pushes the electrons to advance in one direction along the
wire, while the gate voltage VG serves as a single tuning
parameter. Because of nonzero VG, the shifted Fermi mo-

FIG. 1. Ground state energy configurations of the charging
ECðn"; n#Þ for repulsive interaction U� <U�. Points at bounda-

ries between different ground state configurations correspond to
the resonance points, special points where the ground state
degeneracy is present. Boundaries with solid lines describe
resonances for either up or down spins, while the dotted line is
the Kondo resonance for spin exchange process at the island
which exists without magnetic field, when kF" ¼ kF#.

FIG. 2 (color online). The renormalization group flow diagram
for V# as a function of interaction for parameters when the

resonance is achieved for strong but not for weak impurities
(a) and for weak but not for strong impurities (b). The middle
region contains a line of fixed points in case (a), and a phase
transition line in case (b), precise form of which is unknown. The
noninteracting point is K� ¼ K� ¼ Keff ¼ 1.
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menta k0Fs ¼ kFs � eVGK
2
�

@vF
should be taken in the above

results, e.g., for the resonance conditions. This means the
latter can be achieved by adjusting VG for fixed both
magnetic field and distance between impurities.

Without impurities or for attractive interaction in the low
energy limit the system is described by Eq. (2) and has the
perfect non-spin-polarized conductance G" ¼ G# ¼ e2=h
[27–29]. The situation drastically changes when impurities
are present. In the nonresonant case, our model translates
into the single impurity problem with the LP Keff .
Therefore, the conductance is suppressed at low VL for

repulsive interaction for both spin directions as�V2=Keff�2
L .

On the resonance that corresponds to Fig. 2(a), i.e., for
strong impurities when the charge state for spin- # electrons
is degenerate on the island, one gets spin-polarized con-
ductance. Inside the region where the new line of fixed
points appears, different scattering is experienced by two
spin orientations. While G" is suppressed at low voltages

as �V2=Keff�2
L near the point Keff ¼1=2, and as

�V
4=ðK�þK�Þ�2
L for K� þ K� ! 2�, G# is not suppressed

even at very low voltages. It is controlled by the fixed point
value V�

# ðKeffÞ which determines the effective strength of

impurity scattering for a given Keff . We can estimate the

conductance as G#ðKeffÞ � e2

h
1

1þ½�V�
# ðKeff Þ=EF�2 . Within our

approach we are not able to determine V�
# ðKeffÞ. We expect

that the fermionic method used in Ref. [30], which is
beyond the scope of the present Letter, could give more
results.

On the resonance that corresponds to weak impurities,
Fig. 2(b), the system again has spin-polarized conductance
which is controlled by the fixed points. In the lowest non-

trivial order we have G# ¼ e2=h for K� > 1=2 and G" �
V
4=ðK�þK�Þ�2

L , for not too big initial values of impurity
strengths. Otherwise the spin polarization is destroyed
and the conductance behaves as in the nonresonant case.

So far we considered zero temperatures. At finite tem-
perature the picture will be qualitatively unchanged until
the electron thermal energy is much smaller than the
charging and Zeeman energy. In the opposite case, which
is the high frequency limit j!j � v‘=a, or T � K‘U‘, for
the starting action one would get Eqs. (3) and (4) with the
replacements K‘ ! K‘=2, U‘ ! 0. Then the coherent ef-
fects of impurities are missing and our system effectively
has the single impurity behavior [8,21].

Conclusions.—We have shown that a quantum wire with
two impurities in an external magnetic field may have spin-
filter properties for repulsive interaction. Our study is
based on the resonance tunneling phenomenon which
may be tuned by a single parameter for only one spin
polarization.
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