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ABSTRACT. The ground-state magnetic phase diagram of a two-leg spin ladder with trimerized
modulated rung exchange is studied using the continuum-limit bosonization approach. In the limit where
the rung exchange is dominant, the model is mapped onto the effective quantum sine-Gordon model with
topological term. Six quantum phase transitions at different critical magnetic fields are identified. We
have shown that the magnetization curve of the system exhibits two plateaus at magnetization equal to the
1/3 and 2/3 of the saturation value. The width of the plateaus is proportional to the excitation gap at given

magnetization and scales as  , where   is the amplitude of rung-exchange modulation and the critical
exponent is obtained as 1.13   in the case of a ladder with antiferromagnetic legs and 1.50   in the
case of ladder with ferromagnetic legs. © 2012 Bull. Georg. Natl. Acad. Sci.
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Introduction. Low-dimensional quantum magnetism has been the subject of intense research for decades.
Perpetual interest in the study of these systems is determined by their rather unconventional low-energy
properties (see for a review [1]). An increased current activity in this field is connected with the large number
of qualitatively new and phenomena dominated by the quantum effects recently discovered in these systems
[2,3] as well as with the opened wide prospects for use of low-dimensional magnetic materials in modern
nanoscale technologies.

The spin S=1/2 two-leg ladders represent one, particular subclass of low-dimensional quantum magnets
which also has attracted much interest for a number of reasons. On the one hand, there was remarkable
progress in recent years in the fabrication of such ladder compounds [4]. On the other hand, spin-ladder
models pose interesting theoretical problems, since the excitation spectrum of a two-leg antiferromagnetic
ladder is gapped and therefore, in the presence of a magnetic field these systems reveal an extremely complex
behavior, dominated by quantum effects. The magnetic field driven quantum phase transitions in ladder
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systems were intensively investigated both theoretically [5-11] and experimentally [12-17]. Usually, these
most exciting properties of low-dimensional quantum spin systems exhibit strongly correlated effects driving
them toward regimes with no classical analog. Properties of the low-dimentional systems in these regimes or
“quantum phases” depend in turn on the properties of their ground state and low-lying energy excitations.
Therefore search for the gapped phases emerging from different sources and study of ordered phases and
quantum phase transitions associated with the dynamical generation of new gaps is an important direction in
theoretical studies of quantum spin systems. Particular realization of such scenario appears in the case where
the spin-exchange coupling constants are spatially modulated. The spin-Peierls effect in spin chains repre-
sents a prototype example of such behavior [18]. The first studies of spin chains with trimerized exchange
modulation were performed by Hida [19] and Okamoto [20] in an attempt to describe some organic com-
pounds with periodic couplings. Later, Oshikawa and collaborators [21] undertook the first systematic study
of this problem and they provided a necessary condition for the appearance of magnetization plateau in 1D
spin systems. Magnetic properties of the spin S=1/2 ladders with alternating rung exchange has been first
studied in [22, 23].

The model. In this paper we study the spin S=1/2 two-leg ladder with modulated rung exchange given by
the Hamiltonian

|| , 1, ,1 ,2
, , ,

( )z
n n n n n

n n n
H J S S H S J n S S 

  
      

   
, (1)

where ,nS 


 is the spin S=1/2 operator on rung n (n=1,...,N) and leg    1,2  . The interleg coupling is

antiferromagnetic, ( ) 0J n   and fulfils the condition ( 3) ( )J n J n   . We restrict our consideration by
the following two types of rung exchange modulation: the “saw tooth” (or the “A”) type:

0 2( ) 1 sin
33

AJ n J n 
 

        
, (2a)

 

Fig. 1. Schematic representation of spin ladder with period three modulation of the rung exchange. Different width and
color of vertical links corresponds to different values of the rung exchange, indicated in the figure by arrows. Yellow
blocks mark unit cells of the ladder in the case of the “saw tooth” (a) and “domain” type (b) modulation of rung
exchange. The horizontal axis marks rung numbers.
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which corresponds to the case   03 ,J m J     03 1 (1 /2)J m J      (see Fig. 2.1a) and the “domain”

(or the “B”) type

0 1 4 2( ) 1 cos
2 3 3 3

BJ n J n 
 

        
   

, (2b)

which corresponds to the case   03 (1 / 2),J m J       03 1 (1 /2)J m J      (see Fig. 2.1b).

Derivation of the effective model. We restrict our consideration to the limit of strong rung exchange and
magnetic field 0

||, ,H J J J
     and follow the route already used to study the standard ladder models

in the same limit [7,8]. We start from the case || 0J  , where an eigenstate of Ĥ can be written as a product of
on-rung states. At each rung two spins form either a singlet state 0| ns   or one of the triplet states: 0| nt  , | nt

 

and | nt
  with energies 3 / 4n

SE J  , 0 / 4n
tE J , and / 4n

tE J H
  , respectively. When the magnetic

field, H, is small, the ground state consists of a product of rung singlet states, while at nH J  the | nt


becomes almost degenerate with 0| ns  , while other states have much higher energy. Integrating out the high
energy states and introducing the effective pseudo-spin 1/ 2   operators, n

  which acts on these states as

0 0 0 01
2| | , | | , | 0;z

n n n n n n n ns s s t s            

01
2| | , | | , | 0,z

n n n n n n n nt t t s t               

we obtain the following effective Hamiltonian of the anisotropic Heisenberg chain with anisotropy parameter
1/2 in the uniform and spatially modulated longitudinal magnetic fields

1
|| 1 1 0 11 2{ ( ) [ ( )] } ,yi x x y z z i i z

eff n n n n n nn
n

H J h h n i A B                 , (3)

where

0 0 0
0 || 0 ||/ 2 / 6, / 2A Bh H J J J h H J J         , (4a)

and

0 0
1 1

1 2 2 2( ) sin , ( ) cos
3 3 33

A Bh n J n h n J n 
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. (4b)

Thus, the effective Hamiltonian is nothing but the anisotropic XXZ Heisenberg chain in uniform and
spatially trimer modulated magnetic fields. The exchange anisotropy parameter of the effective model 1/ 2  ,
( 1/ 2   ) for ladder with antiferromagnetic (ferromagnetic) legs || 0J  , ( || 0J  ). It is worth noting that a
similar problem has been studied intensively in past years [24-26]. At 0  , the effective Hamiltonian
reduces to the XXZ Heisenberg chain in a uniform longitudinal magnetic field. The magnetization curve of
this model has only saturation plateau corresponding to the fully polarized chain. At H=0 and 0

||J J  ,
spins coupled by strong rung exchange form singlet pairs and the nonmagnetic and gapped ground state of
the ladder system is well described by superposition of on-rung singlets. In terms of effective  - spin model,
the ground state corresponds to the ferromagnetic order with magnetization per site 1/ 2m   . In the
opposite limit of very strong magnetic field 0H J , fully polarized state of the ladder with magnetization
per rung M=1, is represented in terms of effective  -spin chain as the fully polarized state with magnetization
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per site 1/ 2m  . This gives the following relation between the magnetization per rung of the ladder system
and the magnetization per site of the effective chain 1/ 2m M  .

The performed mapping allows to estimate the critical field onH  corresponding to the transition from a

gapped rung-singlet phase to a gapless paramagnetic phase, the saturation field satH  corresponding to the

transition onto the fully polarized phase as well as the critical fields 1cH   and 2cH   which mark borders of the

magnetization plateaus at / 3satM M  and 2 / 3satM M . The direct way to express onH  and satH  in

terms of ladder parameters is to perform the Jordan-Wigner transformation which maps the problem onto a
system of interacting spinless fermions [27]:

1 1 1 0 1
ˆ [ ( . .) ( ( )) ], ,i i i

sf n n n n n n n n
n

H t a a h c V a a a a n a a i A B    
          (5)

where 1
|| 0 || 0 1 12/ 2, , ( ) ( )i i i it V J J h n h n      .

The onset and saturation critical magnetic fields. The lowest onset ( onH ) and highest saturation ( satH )

critical field corresponds to that value of the chemical potential 0  for which the band of fermions (or holes,

after the corresponding particle-hole transformation) starts to fill up. In this limit we can neglect the interac-
tion term in (5) and obtain the model of free particles with three band spectrum. Below, in this subsection we
consider only the case of “B” type of exchange modulation. Generalization of these results for the case “A”
is straightforward. In this case three bands of the single particle spectrum are given by

0 2
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and / 3 / 3k    . This gives

 0 2
|| 1 cos ( / 3) 4 / 3

6onH J J         , (8a)

in the case of antiferromagnetic legs ( || 0J  ) and

0 2
|| 1 cos (0)

6onH J J      , (8b)

in the case of ferromagnetic legs ( || 0).J 

To estimate the critical magnetic field satH , which marks the transition into the phase with saturated
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magnetization, it is useful to make a site-dependent particle-hole transformation on the

Hamiltonian of Eq.(5): n na d  . Up to constant the new Hamiltonian reads

1 1 1 0 1
ˆ [ ( . .) ( ( )) ]d

sf n n n n n n n n
n

H t d d h c V d d d d n d d    
          , (9)

where the hole chemical potential 0 0 || / 2d J    . In terms of holes, satH  corresponds to the chemical

potential where the band starts to fill up, and one can neglect again the interaction term. However, the effect
of interaction is now included in the shifted value of the chemical potential for holes. After simple transforma-
tions, we obtain

 

0 2
|| || ||

0 2
|| || ||

 J /2 J 1 cos (0), at J 0,

 J /2 J 1 cos ( /3) 4 /3 , at  J 0.

sat

sat

H J

H J

 

   





    

      (10)

The spectrum of the system in the free fermion limit (6) allows also to determine two other important
parameters which characterize the values of magnetization in the magnetization curve of the system in which
the additional plateaus appear and the values of magnetic field which correspond to the center of each

plateau. Below we consider only the case || 0J  , however extension to the case || 0J   is straightforward. AtAt

1/3-rd band-filling, all states in the lower band 3 ( )E k  are filled and separated from the empty at 2 ( )E k  band

by the energy gap 0
1 2 32 (0) (0)E E   . Therefore, the first magnetization plateau will appear at magnetiza-

tion equal to 1/3 of the saturation value. The magnetic field at the center of the plateau is given by
0 0

1 3 1(0)cH J E    . Analogously at 2/3-rd band-filling, all states in the lower bands 3 ( )E k  and 2 ( )E k  are

filled and separated from the empty 1( )E k  band by the energy 0
2 1 22 ( / 3) ( / 3)E E    . Therefore, the

second magnetization plateau appears at magnetization equal to 2/3 of the saturation value and the magnetic

field at the center of plateau is given by 0 0
2 3 2(0)cH J E    . Since at finite band-filling the effect of

interaction between spinless fermions cannot be ignored the width of the plateau differs from its bare value
02 , 1, 2j j  . In the forthcoming section we use the continuum limit bosonization treatment of the effective

spin-chain model (5) to determine parameters characterizing the appearance and scale of the magnetization
plateaus.

Critical magnetic fields characterizing magnetization plateaus 1cH   and 2cH  . To determine the critical
fields which mark borders of the magnetization plateaus we use the continuum-limit bosonization approach.
Following the usual procedure in the low energy limit, we bosonize the spin degrees of freedom at fixed
magnetization per site m as follows [28]

 ( ) sin 4 ( ) (2 1)z
n x

K Am x K x m n    
 

      , (11a)

 / 1 sin 4 ( ) (2 1) ,i K
n

Be K x m n    


         
(11b)

where A and B are non-universal real constants of the order of unity [29], ( )x  and ( )x  are dual bosonic
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fields x t     and ( , )K m  is the spin stiffness parameter for spin chain with anisotropy  and magneti-

zation m. At zero magnetization ( ,0) / 2(1 arccos )K      and therefore for a ladder with isotropic

antiferromagnetic legs (1/ 2,0) 0.75K  , while for a ladder with ferromagnetic legs ( 1/ 2,0) 1.5K   . At the

transition line into the ferromagnetic phase, where the magnetization reaches its saturation value 0.5satm  ,

the spin stiffness parameter takes the universal value (0.5, ) 1K    [28]. Respectively for finite magnetiza-

tion, at 0 satm m   and || 0J   ||( 0)J   the function ( , )K m   monotonically increases (decreases) with

increasing m and reaches its maximum (minimum) value at saturation magnetization ( , ) 1satK m   .

Using (11) we obtain the following continuum-limit bosonized Hamiltonian to describe infrared properties

of the system at magnetization m, 0 ,i i
Bos mH H H   where

2 21 1
0 02 2( ) ( ) , ,i i

x x x
KH dx h i A B  


 
       

 
 (12a)

1 51
6 6

0

cos( 4 2 ( ) ) cos( 4 2 ( ) )
2

A
A

m
hH dx K m x K m x

a
     


        , (12b)

1 51
6 6

0

sin( 4 2 ( ) ) sin( 4 2 ( ) )
2

B
B
m

hH dx K m x K m x
a

     


        . (12c)

Away from the commensurate values of effective chain magnetization 1/ 6m    and 1/ 6m   corre-

sponding to the ladder magnetizations / 3satM M  and 2 / 3satM M , respectively the sine terms in (12)
are strongly oscillating and have to be neglected. In this case the system is described by the gapless
Gaussian bose-field and the spin system is in the gapless paramagnetic phase with finite magnetization,
which continuously increases with increasing magnetic field, till it reaches the commensurate values 1/ 6m   .

At 1/ 6m    ( 1/ 6m  ) the first (second) sine term in Eqs. (12.b-c) is non-oscillating and has to be
retained. Up to an irrelevant shift on constant of the bosonic field, the general bosonic Hamiltonoian which
describes infrared properties of the ladder for both “A” and “B” type of trimer rung exchange modulation is
given by

2 2 01 1
0 02 2

0

( ) ( ) cos 4 , ,
2

i
i i

x x x
KH dx h K i A B

a
    

 
 

        
 

 (13)

where 0
0 / 3A J    and 0

0 2 / 3B J   . The Hamiltonian (13) can be easily recognized as the standard

Hamiltonian for the commensurate-incommensurate [30] transition which has been intensively studied using
bosonization approach [31] and the Bethe ansatz technique [32]. Below we use the results obtained in [31, 32]
to describe the magnetization plateau and the transitions from a gapped (plateau) to gapless paramagnetic
phases.

Let us first consider 0 0ih  . In this case the continuum theory of the initial ladder model in the magnetic

field || / 2H J J   is given by the quantum sine-Gordon (SG) model with a massive term 1 sin( 4 )effh K  .

From the exact solution of the SG model [33] it is known that the excitation spectrum of the model (13) is
gapped and the value of the renormalized spin gap solM  scales with its bare value as [34]
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1/(2 )
|| ||( / ) K

solM J J   . Thus for 0 0effh   the low-energy behavior of the system is determined by the strongly

relevant modulated magnetic field (i.e. modulated part of the rung exchange), represented by the term

1 sin( 4 )ih K  . In the ground state the field   is pinned in one of the minima of the potential

sin( 4 ) | 1K    . In view of (7a) we conclude that this state corresponds to a long-range-ordered
antiferromagnetic phase of the effective Heisenberg chain (2), i.e. to a phase of the initial ladder system,
where spins on weak rungs which have a dominant triplet character and spins on strong rungs with ( 3 1n m  )

predominantly singlets. At 0 0effh   the very presence of the gradient term in the Hamiltonian (12) makes it

necessary to consider the ground state of the SG model in sectors with nonzero topological charge. The

effective chemical potential 0
eff xh    tends to change the number of particles in the ground state i.e. to

create finite and uniform density solitons. However, this implies that the vacuum distribution of the field 
will be shifted with respect to the corresponding minima. This competition between contributions of the
smooth and staggered components of the magnetic field is resolved as a continuous phase transition from a

gapped state at 0
eff solh M  to a gapless (paramagnetic) phase at 0

eff solh M  [25]. The condition 0
eff solh M

gives two additional critical values of the magnetic field  1/(2 )0 01
1 || || ||2 /

K

cH J J J J J


    . Correspond-

ingly the width of each magnetization plateau is given by  1/(2 )0
1 1 0 || ||2 /

K

c cH H C J J J
 

  .  To estimate the

numerical value of the spin stiffness parameter K at magnetization m and anisotropy  , we use the following
ansatz [35]

| |( , ) (0, ) [1 (0, )]
sat

mK m K K
m

     . (13)

This ansatz gives that 0.87K   at || 0J   and 1.335K   at || 0J  . It is straightforward to get that in the

antiferromagnetic case the width of the magnetization plateau scales as 1.13 , while in the case of a chain with

ferromagnetic legs it scales as 3/ 2 .
Conclusions. We have studied the effect of period three modulation of the strong antiferromagnetic rung

exchange on the ground state magnetic phase diagram of a spin-1/2 ladder.
In the limit commensurate with rung exchange uniform magnetic field, we map the model to an effective

XXZ Heisenberg chain in the presence of uniform and spatially modulated longitudinal magnetic fields. The
anisotropy parameter of the effective chain 0.5   ( 0.5   ) for a ladder with isotropic antiferromagnetic
(ferromagnetic) legs, while the amplitude of the effective magnetic field modulation is proportional to the
amplitude of the rung-exchange modulation .  Using the continuum-limit bosonization treatment of the
effective spin-chain model, we have shown that modulation of rung exchange leads to generation of two gaps
in the excitation spectrum of the system at magnetization equal to the 1/3 and 2/3 of its saturation value. As

a result, the magnetization curve of the system ( )M H  exhibits two plateaus at / 3satM M  and

2 / 3satM M . The width of the plateaus, is proportional to the excitation gap and scales as  , where the
critical exponent 1.13   in the case of a AF legs and 1.50   in the case of ladder with ferromagnetic legs.
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fizika

damagnitebulobis platoebi kibis struqturis
mqone S=1/2 spinur jaWvSi “safexuris” gaswvriv
gacvlis trimeruli modulaciis SemTxvevaSi

n. avaliSvili*, g. jafariZe**, d. nozaZe†, s. mahdavifari††

* ilias saxelmwifo universitetis sainJinro fakulteti, Tbilisi
** akademiis wevri, ilias saxelmwifo universiteti; andronikaSvilis sax. fizikis instituti,
Tbilisi
† misuris mecnierebisa da teqnologiis universiteti, fizikis departamenti, misuri, rola, aSS
†† gilanis universitetis fizikis fakulteti, reSTi, irani.

Seswavlilia spini 1/ 2S   orjaWviani, “kibis” struqturis mqone, izotropuli
sistemis magnituri fazuri diagrama kibis Semadgenel jaWvebs Sorisi „safexuris” gaswvrivi
gacvliTi urTierTqmedebis trimeruli modulaciis SemTxvevaSi. modeli ganxilulia
Zlieri „safexurovani” gacvlisa da (erTgvarovani) magnituri velis zRvarSi, romelSic
sawyisi orjaWviani amocana efeqturi Tavisuflebis xarisxebis terminebSi daiyvaneba
spini 1/ 2   anizotropuli haizenbergis jaWvis amocanaze gare araerTgvarovan magnitur

velSi. efeqturi spinuri jaWvis anizotropiis parametri 0.5   ( 0.5   ) kibis
Semadgeneli izotropuli antiferomagnituri (feromagnituri) jaWvebis SemTxvevaSi, xolo
efeqturi magnituri velis modulacia ganisazRvreba kibis „safexuris” gaswvrivi gacvlis
modulaciiT. naCvenebia, rom gacvlis modulacia ganapirobebs sistemis aRgznebaTa speqtrSi
RreWoebis gaCenas da amis Sedegad e.w. damagnitebulobis platos warmoqmnas magnituri
velis im mniSvnelobisas, rodesac sistemis damagnitebuloba Tavisi najeri mniSvnelobis
1/3 da 2/3 aRwevs. damagnitebulobis platoTa sigane Sesabamisi speqtraluri RreWos

proporciulia, xolo misi modulaciis amplitudaze ( )  damokidebuleba moicema

xarisxobrivi kanoniT  , sadac 1.13   ( 1.50  ) antiferomagnituli (feromagnituli)
jaWvebis SemTxvevaSi.
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