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We study the effect of leg dimerization on the ground-state magnetic phase diagram of a 

two-leg spin 2/1=S  ladder with alternating rung exchange. We consider two possible patterns 

for dimmers distribution along the legs corresponding to the checkerboard and columnar 

structure. We study the system in the limit of strong rung exchange and magnetic field and. 

map the model onto the effective spin 2/1=τ  chain model and study the latter using the 

continuum-limit bosonization approach. We identified four quantum phase transitions and 

corresponding critical magnetic fields, which mark transitions from the spin gapped regimes 

into the gapless quantum spin-liquid regimes. In the gapped phases the magnetization curve of 

the system shows plateaus at magnetizations equal to zero, its saturation value satMM =  and at 

satMM 5.0= . We show that in the case of checkerboard structure the intra-leg dimerization has 

no effect on the ground state properties of the system, while the columnar pattern leads to 

renormalization of the critical fields, in particular to extension of the gapped phases and 

respectively of the magnetization plateaus.   

 

IntroductionIntroductionIntroductionIntroduction    

 

Low-dimensional quantum magnetism has been the subject of intense research during 

decades. Perpetual interest in study of these systems is determined by their rather 

unconventional low-energy properties (see for a review Ref. [1]). An increased current activity 

in this field is connected with the large number of qualitatively new and dominated by the 

quantum effects phenomena recently discovered in these systems [2, 3] as well as with the 

opened wide perspectives for use of low-dimensional magnetic materials in modern nanoscale 

technologies. 

The spin 2/1=S  two-leg ladders represent one, particular subclass of low-dimensional 

quantum magnets which also has attracted a lot of interest for a number of reasons. On the one 

hand, there was remarkable progress in recent years in the fabrication of such ladder 

compounds [4]. On the other hand, spin-ladder models pose interesting theoretical problems 

since the excitation spectrum of a two-leg antiferromagnetic ladder is gapped and therefore, in 

the presence of a magnetic field, these systems reveal an extremely complex behavior, 

dominated by quantum effects. The magnetic field driven quantum phase transitions in ladder 
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systems were intensively investigated both theoretically [5 – 15] and experimentally [16]. 

Usually, these most exciting properties of low dimensional quantum spin systems exhibit 

strongly correlated effects driving them toward regimes with no classical analog. Properties of 

the systems in these regimes or “quantum phases” depend in turn on the properties of their 

ground state and low-lying energy excitations. Therefore search for the gapped phases emerging 

from different sources and study of ordered phases and quantum phase transitions associated 

with the dynamical generation of new gaps is an important direction in theoretical studies of 

quantum spin systems. 

A particular realization of such scenario appears in the case where the spin-exchange 

coupling constants are spatially modulated. The spin-Peierls effect in spin chains represent 

prototype example of such behavior [17].  After the seminal paper by Martin–Delgado, Shankar 

and Sierra [18], where extremely rich phase diagram of a ladder with dimerized legs has been 

shown, there is continuous interest in studies of ladders with dimerized legs [19 – 25]. 

Recently the new type of spin-Peirels distortion in ladder systems, connected with 

spontaneous dimerization of the system during the magnetization process via alternation of 

rung exchange (see Fig.Fig.Fig.Fig.    1111) has been proposed [26]. It has been shown that the ladder with rung-

exchange modulation exhibits the very rich ground state magnetic phase diagram and a new 

mechanism for magnetization plateau formation. 
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FigureFigureFigureFigure    1.1.1.1. Schematic plot of a ladder with alternating rung exchange 

and “checkerboard” (a) and “columnar” (b) dimerization of legs. 

 

In this paper we consider the effect of leg dimerization on the infrared properties of the 

ladder with rung alternation. In particular we consider two different types of leg dimerization, 

the “checkerboard” (Fig.Fig.Fig.Fig.    1a1a1a1a) given by the Hamiltonian 
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and the “columnar” (see (Fig. 1.b),  given  by the Hamiltonian 
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Here α,nS
r

 is a spin 2/1=S  operator of rung n  ( Nn ,...,2,1= ) and leg α  ( 2,1=α ). The intraleg 

and interleg spin exchange couplings are antiferromagnetic, 0]1[ 0|| >± δJ , 0]1[ 1 >±= ⊥
±
⊥ δJJ . 
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Below we restrict our consideration by the limit of strong rung exchange and magnetic 

field ||01|| ,,, JJJJH δδ ⊥
±
⊥ >>  and follow the route already used to study the standard  ladder 

models in the same limit [7, 8]. 

In absence of leg dimerization, at 00 =δ  the model (1) has been studied for analytically 

in the limit of strong rung exchange and magnetic field 0

||,, ⊥
±
⊥ >> JJHJ δ  using the effective 

field-theory approach in [26]. In this limit, the model (1) is mapped onto the spin 2/1=S  XXZ 

Heisenberg chain in the presence of both longitudinal uniform and staggered magnetic fields, 

with the amplitude of the staggered component of the magnetic field proportional to ⊥J1δ . The 

continuum-limit bosonization analysis of the effective spin-chain Hamiltonian show, that the 

alternation of the rung-exchange leads to the dynamical generation of a new energy scale in the 

system and to the appearance of a magnetization plateau at magnetization equal to one half of 

its saturation value. It was shown that the width of magnetization plateau scales as νδ , with 

9/8=ν . In this paper we continue our studies of the model (1) and investigate the effect of 

intraleg dimerization on the ground state magnetic phase diagram of the system. 

 

Derivation of the effectDerivation of the effectDerivation of the effectDerivation of the effective modelive modelive modelive model    

 

We start from the case 0|| =J , where an eigenstate of Ĥ can written as a product of  on-

rung states. At each rung two spins form either a singlet state 〉0
| ns  or one of the triplet states: 

〉0
| nt  , 〉+

nt|  and 〉−
nt|  with energies 4/3

n

S JE ⊥−= , 4/
0 n

t JE ⊥= , and HJE
n

t ±= ⊥
±

4/ , respectively, 

where nJ ⊥  denotes the spin exchange on the n th rung. When H  is small, the ground state 

consists of a product of rung singlet states, while at nJH ⊥≈  the 〉−
nt|  becomes almost degenerate 

with 〉0
| ns , while other states have much higher energy. Integrating out the high energy states 

and introducing the effective pseudo-spin 2/1=τ operators, nτ
r

which act on these states as 
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In the case of “checkerboard” type dimerization of legs, contributions to the effective 

Hamiltonian from two legs with opposite dimerization compensate each. As the result the 

obtained effective Hamiltonian 
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where 

2/||0 JJHh −−= ⊥  and ⊥= Jh 11 δ ,       (3) 

is the Hamiltonian of the Heisenberg chain with anisotropy parameter 2/1=γ  in the uniform 

and staggered magnetic fields, studied in [26]. Therefore, in the limit of strong on-rung coupling 

the effect of “checkerboard” dimerization of legs on the ground state magnetic properties of the 

system is absent. 

In the marked contrast with the “checkerboard” case, in the case of “columnar” 

dimerization of legs, the effective Hamiltonian explicitly shows dependence on the leg 

dimerization parameter 0δ  and is given by 
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with 0h  and 
1h  given by Eq. (3). Thus the effective Hamiltonian describes a dimerized 

anisotropic XXZ Heisenbeg chain with the anisotropy parameter 2/1=γ  in the uniform and 

staggered magnetic fields. 

At 010 == δδ , the effective Hamiltonian reduces to the XXZ Heisenberg chain in an 

uniform longitudinal magnetic field. The magnetization curve of this model has only saturation 

plateau corresponding to the fully polarized chain. At 0=H  and ||

0
JJ >>⊥ , spins coupled by 

strong rung exchange form singlet pairs and the nonmagnetic and gapped ground state of the 

ladder system is well described by superposition of on-rung singlets. In terms of effective 

τ -spin model, the ground state corresponds to the ferromagnetic order with magnetization per 

site 2/1−=m . In the opposite limit of very strong magnetic field 0

⊥>> JH , fully polarized state 

of the ladder with magnetization per rung 1=M , is represented in terms of effective τ -spin 

chain as the fully polarized  state with magnetization per site 2/1=m . This gives the following 

relation between the magnetization per rung of the ladder system and the magnetization per 

site of the effective chain 2/1+= mM . 

The performed mapping allows to estimate the critical field onH corresponding to the 

transition from a gapped rung-singlet phase to a gapless paramagnetic phase, the saturation field 

satH  corresponding to the transition onto the fully polarized phase as well as the critical fields 
±
cH  which mark borders of the magnetization plateaus at satMM 5.0= . The direct way to 

express onH  and satH  in terms of ladder parameters is to perform the Jordan–Wigner 

transformation which maps the problem onto a system of interacting spinless fermions [27]: 
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1
0 hJ +=µ , 11 h=µ . 

 

The critical magnetic fieldsThe critical magnetic fieldsThe critical magnetic fieldsThe critical magnetic fields    

 

The lowest onset ( onH ) and highest saturation ( satH ) critical field corresponds to that 

value of the chemical potential 0µ  for which the band of fermions (or holes, after the 

corresponding particle-hole transformation) starts to fill up. In this limit we can neglect the 

interaction term in (5) and obtain that 2
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To determine the critical fields ±
cH  we use the continuum-limit bosonization approach. 

Using the standard bosonized expressions for the spin operators [28] 
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Where )(xφ  and )(xθ  are dual bosonic fields θφ tx ∂=∂ , which satisfy the commutation 

relation )()]();([ xxixx step
′−−=′ ϑθφ  and A  and B  are non-universal real constants of the order 
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of unity [29], we obtain the bosonized expressions for the smooth  and staggered parts of the 

relevant spin operators 
2
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Using (7a – d), after rescaling the field we get the following bosonized Hamiltonian 
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The parameter ),( ηγK  is the spin stiffness parameter for spin chain with anisotropy γ  

and magnetization satmm /=λ . At zero magnetization the spin stiffness parameter can be 

exactly evaluated from Bethe ansatz )arccos1(2/)0,( γπγ −=K [29] and thus, in the considered 

case of a ladder with isotropic antiferromagnetic legs 75.0)0,2/1( =K . At the transition line 

into the ferromagnetic phase, the spin stiffness parameter takes the universal value 1)1,( =γK  

[6]. Therefore at 0|| >J  and for finite magnetization satmm <<0  the function ),( λγK  

monotonically increases with increasing m  and reaches its maximum value at saturation 

magnetization 1),1( =γK . To evaluate the numerical value of the parameter ),( λγK  in this 

paper we use the following ansatz [30] 

),0()1(),( γλλλγ KK −+= .         (10) 

The coefficients zd  and xyd  are functions of the parameter K  and can be calculated 

numerically [31]. 

The Hamiltonian (5) is the standard Hamiltonian for the commensurate–

incommensurate [32] transition which has been intensively studied in the past using 

bosonization approach [33] and the Bethe ansatz technique [34]. We use the results obtained in 

Refs. [33, 34] to describe magnetization plateau and the transitions from a gapped (plateau) to 

gapless paramagnetic phases. 

Let us first consider 00 =h . In this case the continuum theory of the initial ladder model 

in the magnetic field 2/||JJH += ⊥  is given by the quantum sine-Gordon (SG) model with a 

massive term )4sin(0 φπK∆≈ . From the exact solution of the SG model [35] it is known that 

the excitation spectrum of the model (7) is gapped and the value of the renormalized spin gap 

solM  scales with its bare value as [36] )2/(1

||0|| )/(
K

sol JJM
−∆≈ . Thus for 00 =h  the low-energy 

behavior of the system is determined by the composite effect of the rung and leg modulation 

represented in the effective continuum limit theory by the term )4sin(0 φπK∆ . 
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In the ground state the field ϕ  is pinned in one of the minima of  the  potential 

0)( ∆−≈φV )4sin( 0ϕφπ −K  given by the condition 10|)4sin(|0 0 =>−< ϕφπK . Using 

Eqs. (6a – d) we obtain that in the ordered state, the ground-state average value of the on-site 

magnetization 0cos)1( ϕτ nz

n −>≈<  and of the on-link dimerization operator 

01 sin)()1( ϕττ zxy

n

nn dd +−≈>⋅< +

rr
. Thus in the case of “columnar” type of  leg dimerization, the 

state corresponding to the magnetization plateau at gnetization equal to half of the saturation 

value, rather unconventional gapped and long-range ordered (LRO) phase with coexisting of 

Néel antiferromagnetic and Peierls type dimerized order is realized. The ratio of amplitudes of  

these coexisting ordered state is determined by the parameter 0ϕ , which interpolates between 

the values 00 =ϕ  at 01 =δ  where the LRO Néel antiferromagnetic is realized, to 2/0 πϕ =  at 

01 δδ >>  where only the Peierls dimerized phase is present in the ground state. In terms of the 

initial ladder system this corresponds to the phase, where spins on weak odd rungs with have a 

dominant triplet character and spins on strong even rungs are predominantly coupled into 

singlets. 

At 0
0 ≠effh  the very presence of the gradient term in the Hamiltonian (12) makes it 

necessary to consider the ground state of the SG model in sectors with nonzero topological 

charge. The effective chemical potential φxh ∂≈ 0  tends to change the number of particles in the 

ground state i.e. to create a finite and uniform density solitons. However this implies that the 

vacuum distribution of the field ϕ  will be shifted with respect of the corresponding minima. 

This competition between contributions of the smooth and staggered components of magnetic 

field is resolved as a continuous phase transition from a gapped state at solMh <0  to a gapless 

(paramagnetic) phase at solMh >0  [32]. The condition soleff Mh =0  gives two additional critical 

values of the magnetic field ( ) )2/(1

||0||||2
10

1 /
K

c JJJJH
−

⊥
± ∆±+= . Correspondingly the width of 

each magnetization plateaus is given by ( ) )2/(1

||0||011 /2
K

cc JJCHH
−−+ ∆=− . Using Eq. (10) we 

obtain  875.0)5.0,5.0( ≅K  what gives that the width of the magnetization plateau scales as 9/8δ . 

As usual in the case of C – IC transition, the magnetic susceptibility of the system shows 

a square-root divergence at the transition points: 2/1
)()(

−− −≈ HHH cχ  for −< cHH  and 
2/1

)()(
−+−≈ cHHHχ  for +> cHH . Thus from analytical studies we obtain the following 

magnetic phase diagram for a ladder with alternating rung exchange. For onHH < , the system 

is in a rung-singlet phase with zero magnetization and vanishing magnetic susceptibility. For 

onHH >  some of singlet rungs melt and the magnetization increase as onHH − . With further 

increase of the magnetic field the system gradually crosses to a regime with linearly increasing 

magnetization. However, in the vicinity of the magnetization plateau, for  −< cHH  this linear 

dependence changes again into a square-root behavior HHMM csat −−≈ −
5.0 . For fields in the 

interval between +− << cc HHH  the magnetization is constant satMM 5.0= . At +> cHH the 

magnetization increases as +−+≈ csat HHMM 5.0 , then passes again through a linear regime 

until, in the vicinity of the saturation field satH , it becomes HHMM satsat −−≈ .  The width 

of the magnetization plateau is given by ( ) 9/8

||0||012 /2 JJCHH cc ∆=− +− .   
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 ConclusionConclusionConclusionConclusion    

 

We have studied the ground state magnetic phase diagram of a spin 2/1=S  two-leg 

ladder with alternating rung-exchange and dimerized legs in the limit of strong rung exchange 

and magnetic field.  We have considered two possible leg dimerization patterns – checkerboard 

and columnar. We have shown, that in the case of checkerboard pattern, dimerization of the 

legs does not effect the ground state phase diagram, while in the case of columnar pattern 

dimerization of legs leads to renormalization of the critical fields, in particular to extension of 

the gapped phases  and respectively of the magnetization plateaus.  We have also shown, that 

columnar leg dimerization leads to appearance of composite order in the ground state in the 

gapped phase corresponding to the plateau at magnetization satMM 5.0= . In particular, in this 

phase the system is characterized by the coexistence of long-range-ordered Néel 

antiferromagnetic state with the “rung-rung” dimer phase. The former state corresponds to the 

magnetic order where all spins on weak (odd) rungs are aligned along the field and form a 

1=zS  triplet state, while spins on strong (even) rungs form a singlet pairs. The latter, “rung-

rung” dimer order corresponds to the phase, where these on-rung triplet and singlet states, 

coupled via the strong intraleg exchanges (even links) form an entangled (singlet) state.  In the 

composite phase, which is realized along the magnetization plateau at magnetization equal to 

the half of the saturation value, both these phases are present and their weight is controlled by 

the mixing angle 0ϕ . In absence of the leg dimerization ( 00 =ϕ ) only the Néel 

antiferromagnetic phase is present, while in absence of the rung-exchange modulation 

( 2/0 πϕ = ) only the “rung-rung” dimmer phase is realized. 
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