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Abstract

The standard Lambda Cold Dark Matter (ACDM) cosmological model assumes that the
General Relativity is a correct theory of gravity on the cosmological spatial and temporal
scales, and the acceleration of the universe is due to dark energy or the cosmological con-
stant A. Dark energy exerts the negative pressure on space, i.e., it has the property of
"antigravity" and, thus, causes the accelerated expansion of the universe. The energy den-
sity of the cosmological constant does not depend on time and has recently become dominant
(in particular, the energy density associated with the cosmological constant is about 69%
of the total energy density of the universe today). In addition, around 26% of the total
energy density in the universe is presented in the form of cold dark matter. Thereby, within
the framework of the standard ACDM model, about 95% of the universe energy density
content today is presented in the dark (invisible) form (dark energy and dark matter) with
unknown nature, and only 5% is presented in the form of the radiation and the ordinary
matter (baryons, leptons). The theoretical predictions of the ACDM model are in a good
agreement with the current observations, but there are several unresolved problems asso-
ciated with this model. The so-called cosmological constant problem (an extremely small
value of the cosmological constant when compared to the theoretical estimate of the vacuum
energy density), and the so-called problem of the coincidence (order of) of the dark energy
density and the dark matter energy density. To overcome these difficulties, the dynamical
dark energy models have been proposed. In these models, dark energy is presented in the
form of the dynamical scalar field, in which the density of dark energy varies over time. In
this thesis, we studied the various scalar field models. In particular, we investigated the
evolution of the background expansion and the growth rate of the matter density fluctua-
tions in the scalar field pCDM Ratra-Peebles model. We constrained the model parameter
« and the matter density parameter 2, using the recent measurements of the growth rate
of the matter density fluctuations and the baryon acoustic oscillation peak positions. In
addition, we studied a number of the pCDM scalar field models in order to distinguish these
models from each other and from the baseline ACDM model, using the predicted data for
the future Dark Energy Spectroscopic Instrument (DESI) observations. For this purpose, we
carried out the statistical Bayesian analysis, such as Bayes coefficients, as well as Akaike and
Bayesian information criteria. We found that the results of the Bayesian analysis provide

the compelling evidence in favor of the ACDM model. We also conducted the MCMC anal-

v



ysis and obtained the constraints on the parameters of the scalar field models, comparing
the observational data for: the universe expansion rate, the angular diameter distance and
the growth rate function, with the corresponding data generated for the ACDM model. We
investigated how well the Chevallier-Polarsky-Linder (CPL) parametrization approximates
the various scalar field models. We determined the location of scalar field model in the
phase space of the CPL parameters. In the Mass Varying Neutrino model, we investigated
the interaction of the fermion field and the scalar field with the Ratra-Peebles potential. We
obtained the equations describing the dynamics of the universe: up to the moment of the
neutrinos interaction with the scalar field (up to the so-called ecritical point) and from the
critical point up to the present epoch. We calculated the value of the scale factor and the
value of the sum of neutrino masses at the critical point, as well as the value of the sum of
neutrino masses at the present epoch depending on the value of the model parameter o of
the Ratra-Peebles potential.

Key words: dark energy, cosmological constant, scalar field, large-scale structure, growth
rate of the matter density fluctuations, neutrinos, Bayesian statistics, Monte Carlo Markov

Chains (MCMC) analysis.
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Chapter 1

Introduction

In 1998, the accelerated expansion of our universe was discovered on the basis of the mea-
surements of the Supernovae type Ia magnitudes, Refs. (Riess et al. (1998), Perlmutter
et al. (1999), Riess et al. (2007)). In 2011, Saul Perlmutter, Brian Schmidt and Adam
Riess were awarded the Nobel Prize in Physics for this discovery. The accelerated expansion
of the universe is confirmed by the other cosmological observations, in particular: by the
measurements of the temperature anisotropy and the polarization in the cosmic microwave
background radiation, Refs. (Hinshaw et al. (2009), Nolta et al. (2009), Komatsu et al.
(2011), Ade et al. (2014¢), Ade et al. (2016)); by the studies of the large-scale structure of
the universe, Refs. (2dFGRS (2002), Eisenstein et al. (2005), Percival et al. (2007), SDSS
(2017)).

There are numerous models explaining the current accelerated expansion of the universe,
Refs. (Frieman et al. (2008), Caldwell & Kamionkowski (2009), Yoo & Watanabe (2012)).
The most popular model suggests that a significant part of the universe is in the form of dark
energy or dark fluid, for a review Refs. (Peebles & Ratra (2003), Copeland et al. (2006a),
Tsujikawa (2010), Tsujikawa (2011)). The unusual property of dark energy is that it exerts
a negative pressure on space, i.e., dark energy has the property of "antigravity". For the
time being, the nature and the origin of dark energy is one of the most important and still
unresolved issues of modern cosmology.

The simplest description of dark energy is the concept of the vacuum energy or the
cosmological constant A, first introduced by Albert Einstein, Refs. (Einstein (1915a), Ein-
stein (1915b)). The cosmological model based on such a description of dark energy is called
the Lambda Cold Dark Matter (ACDM) model, which has been the standard model of the
universe since 2003, Refs. (Zeldovich (1968), Blumenthal et al. (1984)); the monographs:



Refs. (Peebles (1994), Dodelson (2003), Weinberg (2008)); for the reviews: Refs. (Carroll
et al. (1992), Carroll (2001), Peebles & Ratra (2003), Copeland et al. (2006b), Martin (2012),
Padilla (2015)). This model is based on the General Theory of Relativity (GTR), which was
developed by Albert Einstein in order to describe the gravity in the universe on the cosmo-
logical length scales.

In addition, there is still an unresolved problem of dark matter in the universe, which, in
particular, manifests itself in the anomalously high velocity of rotation of the outer regions
of the galaxies, Ref. (Rubin et al. (1980)). The dark matter particles do not interact with
the electromagnetic radiation and weakly gravitationally interact with the ordinary baryonic
matter.

Based on GTR, about 95% of the energy in the universe is in the "dark" form, i.e., in
the form of dark energy and dark matter. Recent observations of the Planck space telescope
show that the universe consists of 4, 8% of ordinary matter, 26% of dark matter and 69, 2%
of dark energy, Ref. (Ade et al. (2016)).

The ACDM model is a concordance model of the universe, since this model is in a good
agreement with the currently available cosmological observations. However, the ACDM
model still has unsolved problems: the cosmological constant problem or, in other words,
the fine turning problem and the coincidence problem, Refs. (Weinberg (1989), Weinberg
(2000), Padmanabhan (2003), Padilla (2015)). The cosmological constant problem is that
the observed value of the cosmological constant is 120 values less than its theoretically
predicted value, Ref. (Weinberg (2000)). The coincidence problem is that, based on the
precise cosmological observations, the density of dark energy is comparable to the energy of
dark matter at the present epoch: ppy/ppe = 1/3, ppr and ppy are the dark energy density
and the dark matter energy density, respectively. This fact is a mystery, because according
to the standard ACDM model, the energy of the cosmological constant does not depend on
time, ppg = pa—const, while the energy of dark matter varies over time as ppy ~ a (), see
Fig. (6.2). Therefore, the ratio of these quantities should be time-dependent: ppy/ppE X
1/a®(t), a(t) and t are the scale factor and physical time, respectively.

In order to solve the problems of the ACDM model, many alternative models have been
elaborated. These models are divided into two types: the models based on the gravity of
the GTR and the models with the different gravity from the GTR on the cosmological scales
in the universe (i.e., on the scales comparable to the current size of the universe). The
first type of the models includes the dynamical scalar fields models of dark energy: the
quintessence models, Refs. (Ratra & Peebles (1988b), Ratra & Peebles (1988a), Wetterich



(19884a)), the k-essence models, Refs. (Armendariz-Picon et al. (1999), Armendariz-Picon
et al. (2000), Armendariz-Picon et al. (2001)), the phantom scalar field models, (Caldwell
(2002)); the coupled dark energy and matter models, Refs. (Amendola (2000), Zimdahl &
Pavon (2001)), in particular, the mass varying neutrino model, Refs. (Farrar & Peebles
(2004), Fardon et al. (2004)); the unified model of dark energy and matter, the so-called
Chaplygin gas model, Refs. (Kamenshchik et al. (2001), Bento et al. (2002)) and the k-
essence model, as an unified model of dark energy and matter, Ref. (Scherrer (2004)); the
heterogeneous model of Lemaitre-Tolman-Bondi, Refs. (Lemaitre (1933), Tolman (1934),
Bondi (1947), Tomita (2001)), and etc. The second type of the models are: the models
with Lagrangian densities that are more complex functions of spacetime curvature, the so-
called f(R) models, Refs. (Capozziello et al. (2003), Carroll et al. (2004), Mukhanov (2005),
Nojiri & Odintsov (2006)); the warped brane world scenarios, the so-called the model of
Dvali-Gabadadze-Poratti, Refs. (Dvali et al. (2001)), Gabadadze (2007)); the massive gravity
models, Refs. (Fierz & Pauli (1939), de Rham & Gabadadze (2010), de Rham et al. (2011),
Hassan & Rosen (2012)); quantum gravity and string-motivated modifications of gravity,
Refs. (Polchinski (2007a), Polchinski (2007b), Mercuri (2009)); the Galilean gravity models,
Ref. (Nicolis et al. (2009)); the scalar-tensor gravity models, Refs. (Brans & Dicke (1961),
Moffat (2006), Mishra & Singh (2013)); degravitation and cascading gravity, Refs. (Arkani-
Hamed et al. (1998), Khoury & Wyman (2009), Dvali et al. (2003), de Rham et al. (2008),
Nojiri & Odintsov (2003)), the models with large extra spatial dimensions, Refs. (Shifman
(2010)) and etc.

The main alternative to the ACDM model is the dynamical dark energy scalar field CDM
models, Refs. (Ratra & Peebles (1988a), Ratra & Peebles (1988b), Wetterich (1988a), Brax
& Martin (2002), Linder (2008), Cai et al. (2010), Bahamonde et al. (2017), Ryan et al.
(2019)). The scalar field models avoid the cosmological constant problem of the ACDM
model. In the scalar field models, the equation of state (EoS) parameter, w, depends on time:
w = ppe/ppE, PoE - a dark energy pressure, whereas in the ACDM model the EoS parameter
is a constant, w = —1. Depending on the value of the EoS parameter, the ¢CDM scalar
field models are divided into: the quintessence models, with —1 < w < —1/3, Refs. (Peebles
& Ratra (2003), Caldwell & Linder (2005), Schimd et al. (2007)), and the phantom models,
with w < —1, Refs. (Caldwell (2002), Elizalde et al. (2004), Scherrer & Sen (2008a), Dutta
& Scherrer (2009), Frampton et al. (2012), Frampton et al. (2011), Ludwick (2017)). The
quintessence models are divided into two classes: the tracker (freezing) models, in which the

scalar field evolves more slowly than the Hubble expansion rate, and the thawing models, in



which the scalar field evolves faster than the Hubble expansion rate, Refs. (Steinhardt et al.
(1999), Caldwell & Linder (2005), Dutta & Scherrer (2009), Chiba et al. (2013), Lima et al.
(2015)).

In the quintessence tracker models, the energy density of the scalar field first tracks the
radiation energy density and then the matter energy density, while it remains a subdominant,
Ref. (Zlatev et al. (1999)). Only recently the scalar field becomes dominant and begins to
behave as a component with the negative pressure, which leads to the accelerated expansion
of the universe, Refs. (Schimd et al. (2007), Linder (2015), Bag et al. (2017)). For the certain
shape of the potential, the quintessence tracker models have an attractor solution that is
insensitive to the initial conditions, Ref. (Zlatev et al. (1999)). The simplest example of
the tracker scalar field models with an attractor solution is the scalar field model with the
inverse-power-law Ratra-Peebles potential. This model was for the first time proposed by
Bharat Ratra and Jim Peebles in 1988, Refs. (Ratra & Peebles (1988a), Ratra & Peebles
(1988b)).

The study of the quintessence pCDM scalar field model with the Ratra-Peebles potential
is one of the main objectives of this thesis. In particular, we investigated the dynamics of
the scalar field with this potential, the influence of the scalar field with the Ratra-Peebles
potential on the dynamics of the universe and its energy components. We also studied the
influence of the dark energy scalar field Ratra-Peebles model on the large-scale structure
evolution of the universe.

The interest to the dark energy phantom models among the cosmologists has increased
recently, due to the fact that some modern observations are consistent with these models,
Refs. (Hinshaw et al. (2013), Ade et al. (2016)). The dark energy phantom models have
a negative non-canonical kinetic component in the action, as a result of which the energy
density in these models increases over time, Refs. (Caldwell (2002), Scherrer & Sen (2008b),
Scherrer & Sen (2008a), Ludwick (2017)). During the accelerated expansion of the universe,
driven by the phantom scalar field, the rip can occur between all gravitationally bound struc-
tures (from the disruption of superclusters and clusters of galaxies to the disruption of atomic
nuclei), Refs. (Caldwell et al. (2003), Nojiri et al. (2005), Frampton et al. (2011), Frampton
et al. (2012)). To study the history of the universe expansion, the large-scale structure of
the universe, the nature of dark energy and dark matter, the Wide-Field Infrared Telescope
(WFIRST), the Dark Energy Spectroscopic Instrument (DESI) and the Euclidean Space
Telescope (Euclid) will be launched in the next decade, Refs. (Amendola et al. (2013), Levi
et al. (2013), Font-Ribera et al. (2014), Spergel et al. (2015), Aghamousa et al. (2016)).
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After completing these missions, very precise measurements of the expansion rate of the
universe, the angular diameter distances and the growth rate of the matter density fluctua-
tions in the universe will be performed to redshifts z ~ 2. These precise measurements can
constrain the numerous dark energy models and some of them can be discarded. We studied
10 quintessence and 7 phantom ¢CDM scalar field models, which were first presented in the
papers: Refs. (Frieman et al. (1995), Ferreira & Joyce (1998), Zlatev et al. (1999), Brax
& Martin (1999), Sahni & Wang (2000), Barreiro et al. (2000), Albrecht & Skordis (2000),
Urena-Lopez & Matos (2000), Caldwell & Linder (2005), Scherrer & Sen (2008a), Dutta &
Scherrer (2009), Rakhi & Indulekha (2009), Chang & Scherrer (2016), Bag et al. (2017)).
We proposed a phenomenological method for studying the potentials in these models. As a
result, for each potential the following ranges were found: the model parameters, the EoS
parameters, the initial conditions for differential equations describing the dynamics of the
universe. We also investigated how the various scalar field models can be approximated by
the Chevallier-Polarsky-Linder (CPL) parametrization. We determined the location of each
model in the phase space of the CPL parameters. One of the objectives of this study is to
answer the question: "Is it possible to distinguish these models from the standard ACDM
model at the present epoch using the predicted data from the future DESI observations?"
For this purpose the expansion rate, the angular diameter distance and the measurements
of the matter density fluctuations growth rate were calculated both for each pCDM model
under investigation and the ACDM model. We also applied the comparison criteria in the
Bayesian statistics, such as Bayes coefficients, as well as Akaike and Bayesian information
criteria.

The coupled models of matter and dark energy were developed to resolve the problems in
the standard ACDM model, Refs. (Amendola (2000), Zimdahl & Pavon (2001)). In the Mass
Varying Neutrino model, the interaction of the bosonic scalar field with the fermionic field
(massless neutrino) is considered. As a consequence of this interaction, the neutrino acquires
a mass that varies over time, Ref. (Fardon et al. (2004)). In the Mass Varying Neutrino
model, we investigated the interaction of the fermionic field and the bosonic scalar field
with the Ratra-Peebles potential. The equations describing the dynamics of the universe are
obtained: before the moment of neutrinos interaction with the scalar field (before a critical
point) and after the critical point to the present epoch. We calculated the value of the scale
factor and the value of the sum of neutrino masses at the critical point, as well as the value
of the sum of neutrino masses at the present epoch depending on the value of the model

parameter « of the Ratra-Peebles potential.
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This thesis is organized as follows: the theoretical foundations of cosmology are dis-
cussed in Chapter II; the various types of distances used in cosmology are described in
Chapter III; the different cosmological observations are presented in Chapter IV; Chapter V
is devoted to the basics of the statistical analysis; the various dark energy models are con-
sidered in Chapter VI; the investigations of the Ratra-Peebles ¢CDM scalar field model
are described in Chapter VII; the observational constraints on the model parameters in the
Ratra-Peebles pCDM model are considered in Chapter VIII; the observational constraints
in the flat quintessence and in the phantom scalar field ¢CDM models are discussed in
Chapter IX; the Mass Varying Neutrino model is described in Chapter X; the conclusion is
contained in Chapter XI; a plan for the future research is presented in Chapter XII.

In this thesis, we used the natural system of units: ¢ = h = kg = 1.
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Chapter 2

Cosmology as a Science

Since ancient times, people have always been interested in the structure of the world in
which they live. Staring into the night sky, they asked themselves the questions: "How did
the universe originate and how is it arranged? Will the universe exist forever, and if not,
how will it cease its existence? Is the universe finite and what is its size or is it infinite?"
Namely, the curiosity of people to learn more about the universe caused the emergence and
development of the science cosmology.

Cosmology studies the universe as a whole (as a single system), explores its origin, evolu-
tion, dynamics, structure and ultimate fate. The peculiarity of this science is that the object
of research is exclusive and, apparently, exists in a single instance. The study of the universe
also presents a considerable difficulty, since it is very difficult for the researcher to draw the
objective conclusions about the universe (about the system) part of which he is. While the
empirical foundation of cosmology is an extragalactic astronomy, the theoretical foundation
is the basic physical theories, such as the general theory of relativity, field theory, etc.

Cosmology is based on the results of a study of the most common properties such as the
homogeneity, the isotropy' and the expansion of the part of the universe that is available
for the astronomical observations. Due to the fact that the speed of light has a finite value,
we can observe only a certain part of the expanding universe, whose radius is approximately
14.25 Gpe. On the cosmological length scale, the average value of which is more than
100 Mpec, the large-scale structures such as galaxies, clusters and super clusters are not

observable in the universe. The principle of relativity or the so-called Copernicus’s principle

'The concept of the homogeneity implies that the universe looks the same at every point in space; the
concept, of the isotropy means that the universe looks the same in all directions. The fulfillment of the
isotropy condition does not automatically follow from the fulfillment of the homogeneity condition and vice
versa. The homogeneity condition follows only from the requirement that the isotropy condition is satisfied
with respect to each point in space.
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is applicable on these length scales. According to this principle, the privileged points do not
exist in the universe, and the human beings are not privileged observers in it. Thus, our
universe can be considered as isotropic and homogeneous on the cosmological length scales.

The spatial distribution of the nearby galaxies according to the Two-degree-Field (2dF)
Galaxy Redshift Survey is presented in Fig. (2.1). Our Milky Way galaxy is located at
the center. With an increase of the distance (or redshift respectively) from our galaxy, the
distribution structure of the galaxies becomes less clear. At the large distances (or large
redshifts respectively), the galaxies are randomly arranged, i.e., the isotropic and uniform

distribution of the galaxies is observed on these length scales. Based on the theoretical

< .
S 2dF Galaxy Redshift Survey 0@0

Figure 2.1: The spatial distribution of the galaxies in the Two-degree-Field (2dF) Galaxy
Redshift Survey. The escape velocities (redshifts) are plotted in the radial direction, the
polar angle is a right ascension. This distribution is obtained for 200 000 galaxies using 350
000 spectra. (Figure from Ref. (Colless et al. (2003)))

and experimental results, Vesto Slipher, George Lemaitre, and Edwin Hubble discovered
that the universe is expanding, and this expansion is an essential feature of our universe.
According to the model of the hot universe, that is the most common in modern cosmology,
the universe began its evolution or, in other words, expansion about 13.7 billion years ago
as a result of the Big Bang. At early stages of the universe development the matter and the
radiation had a very high temperature and density. The expansion of the universe led to
its gradual cooling, the formation of the atoms, and, an consequence, stars, protogalaxies,

galaxies, clusters of galaxies, superclusters and other cosmic bodies that exist today.
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2.1 Expansion of the Universe

In 1917, while the American astronomer Vesto Slipher was studying the spectra of the
galaxies, he discovered a shift in the spectral lines of these galaxies to the red end of the
spectrum?. Based on these data, Vesto Slipher concluded that the galaxies are moving away
from us.

In 1929, the American scientist Edwin Hubble discovered that the radial velocities of the
galaxies, v, measured by the Doppler shift of the spectral lines, proportionally increase with
the physical distances to them, d = |d|, Ref. (Hubble (1929)). Hubble identified a linear
relationship between the radial velocities and the physical distances® between the galaxies,
v o d, called the Hubble’s law.

The mathematical form of this law is:
7= Hyd, (2.1)

where Hj is a coefficient of the proportionality, called the Hubble constant*. The values
of the radial velocities as a function of the physical distances, d, are shown in the Hubble
diagram, see Fig. (2.2). In this figure, the points are approximated by a straight line, whose
slope is determined by the value of the Hubble constant, Hy. The linear increase in the
value of the radial velocities of the galaxies with an increase in the value of the physical
distances to them can be interpreted as the moving away of the galaxies from each other as
a result of the expansion of the universe. With such an interpretation, the radial velocities
are the recessional velocities of the galaxies from each other (the explanation of this logical
conclusion is given below). The expansion of the universe, called the Hubble expansion, is
one of the main features of our universe.

Let’s introduce the following terminology®:

2Redshift occurs due to the Doppler effect. This effect is associated with a change in the frequency and,
accordingly, in the wavelength of the radiation, perceived by the observer, due to the motion of the source of
radiation. When the source of radiation moves away from the observer, the wavelength increases. Conversely,
when the source of radiation moves towards the observer, the wavelength decreases.

3The definition of the notion of the physical distance is given below.

4The coefficient of the proportionality in the Hubble’s law, Hy, is a constant at the present epoch. In the
general case, this coefficient is a function depending on time (a more detailed description of this function is
presented below).

5The detailed information about the different types of the distances, used in cosmology, is contained in
Chapter III.

15



Hubble Diagram for Cepheids (flow—corrected)
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Figure 2.2: The Hubble diagram, which is based on the observations of the remote Cepheids
from Hubble Space Telescope. The solid line corresponds to the Hubble’s law with Hy =
75 km ¢ Mpc . (Figure from Ref. (Freedman et al. (2001)))

Proper (physical) distance

—

The physical distance, d(t), is a real, measured distance between two objects in space, where

t is cosmological or physical time.

Comoving Distance

Let’s consider a radially expanding or contracting homogeneous sphere®. We choose a mo-
ment of time, t = ¢y, which corresponds to the present moment of time, and we introduce a
reference frame, o, with the origin that coincides with the center of this sphere. As a result
of the expansion or contraction of the sphere, at the present moment of time, ¢y, a particle

—

will be in the position, d(tp). At the arbitrary moment of time, ¢, the particle will be in the
position, cf(t) Due to the fact that the expansion or contraction is radial, the direction, cf(t),
will remain the constant.

-

Since d(ty) = Z, this means that:
d(t) = a()z. (22)

where a function a(t) is called a scale factor. This function depends only on time. The

scale factor describes the change in the spatial separation between the objects over time and

6The expansion or contraction of a homogeneous sphere can serve as a model of an expanding (or con-
tracting) universe.
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characterizes the expansion or the contraction of the universe. At the present moment of
time, the value of the scale factor is usually represented in the normalized form. In this
thesis, we chose the normalization in which the value of the scale factor is equal to unity,
a(ty) = ag = 1.

The observers who move in accordance with the equation, Eq. (2.2), are referred to the
comoving observers, where ¥ are the comoving coordinates that form the comoving reference
frame.

In the expanding or contracting universe, the physical distance between two comoving
objects increases or decreases over time, while the comoving distance between objects does

not change over time.

Conformal Time

Conformal (comoving) time is time elapsed since the Big Bang in accordance with the clock of
the comoving observer. The differential of physical time, ¢, and the differential of conformal

time, 7, are interrelated as follows:

dt = a(t)dn. (2.3)

The value of conformal time, 7, can be obtained from Eq. (2.3):
t dtl
= . 2.4
0= | 25 (2.9

@1 dd
77:/0 dH(d) o (25)

Eq. (2.4) can be rewritten as:

2.2 Hubble’s Law

The velocity of the comoving observer can be found as a time derivative from the comoving

distance:

- —

(t) = Hd(1), (2.6)

| &

o(d,t) = —d(t) = —&

Il
2|

a
SIS

t

where the function H is called the Hubble parameter or the expansion rate of the universe’:

=2 (2.7)

a

"Georges Lemaitre, based on the results of Vesto Slipher’s research, suggested that the universe is expand-
ing and first introduced the concept of the expansion rate of the universe, H. The results of his theoretical
studies were presented in the paper, Ref. (Lemaitre (1927)). This paper was published in 1927, two years
before the Edwin Hubble’s publication.
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The Hubble’s law can be written in the general form for an arbitrary moment of time.
Consider the relative velocity of two comoving objects located in the positions, d and d+ dd_:
respectively:

d(t) = 5(d + dd(t)) — #(d. t) = Hdd(t). (2.8)
Consequently, the relative velocity is proportional to the spatial separation of the comov-
ing objects. The coefficient of proportionality, H, does not depend on the position of the
observers but depends only on time.

The Hubble parameter for the present moment of time, ¢ = %y, is called the Hubble
constant, H(ty) = Hy. The Hubble constant is usually represented in the parametrized
form, Hy = 100h km ~! Mpc™!, where h is a dimensionless parameter.

At the present time, the universe is expanding with an acceleration, and the gravitation-
ally uncoupled astronomical objects are moving away from each other, therefore, a(ty) > 0,
i.e., the scale factor is an increasing time-dependent function.

The value of the Hubble constant, Hy, is very important in cosmology, as it determines
the age and the expansion rate of the universe at the present epoch. The Hubble constant is
determined by the so-called Hubble distance or by the radius of the Hubble sphere, rs. The
radius of the Hubble sphere is the distance to the objects moving away from the observer
at the speed of light. This radius determines the boundary between the objects that move
slower and faster than the motion of the objects at the speed of light relative to the observer
at the present time. In the general case, the radius of the Hubble sphere, ryg, is calculated
as®, rus(t) = ¢/H. Consequently, at the present time, the radius of the Hubble sphere is
defined as: rps(to) = ¢/Hp and its value is 4.1 Gpc.

According to the Hubble’s law, Eq. (2.8), there are no privileged points in the homoge-
neous and isotropic universe, and the expansion will be the same at any point in space, see
Fig. (2.3). This assumption is consistent with the Copernican’s principle. Therefore, being a
generalized characteristic of the universe, the value of the Hubble constant, H, is the same
for all the galaxies and does not depend on the direction to the galaxy in the sky or the

distance to it.

We find the time derivative of the physical distance to a galaxy, d. represented in Eq. (2.2):

—

d(t) = Ldit) +a,(7,0), (2.9)

Q|2

here u,(Z,t) is a peculiar velocity, determining the random motions of the galaxy in space.

8Here the speed of light, ¢, reintroduced for clarity.
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Figure 2.3: Hubble expansion. (Figure from https://www.nature.com)

The peculiar velocity characterizes the deviation of the motion of the nearby galaxy from the
homogeneous Hubble expansion. On the length scales that are smaller than the cosmological
scales, the value of the peculiar velocity, u,(Z,t) in Eq. (2.9), exceeds the value of the galaxy
velocity under the influence of the Hubble expansion, v = ng On these length scales, the
motion of the galaxies are determined to a greater extent by their random motion than by
the influence of the Hubble expansion, therefore, this definition is not exact on these length
scales. On the other hand, the motion of the distant galaxies is completely determined by the
Hubble expansion on the cosmological scales, since the peculiar velocities of the galaxies are
negligible in the comparison with the Hubble expansion rate. The motion of the astronomical
objects, solely due to this expansion, is called the motion in accordance with the Hubble flow.

The discoveries of Vesto Slipher, George Lemaitre, and Edwin Hubble are the foundation
on which modern physical cosmology is built. These discoveries are marked by the beginning

of the transition of cosmology from the descriptive philosophical science to the exact science,

in which each proposed theory is verified by the results of the observational experiments.

2.3 Short Review of the General Theory of Relativity

2.3.1 Spacetime Metric for Curvilinear Coordinates

The GTR is the theoretical basis of modern cosmology, Refs. (Einstein (1915a), Einstein
(1915b); the monographs: Refs. (Landau & Lifshitz (1971), Weinberg (1972), Misner et al.
(1973), Carroll (2004)). In GTR, spacetime with the four-dimensional curvilinear coordinates

0 1 2 2 .3

is considered as, o = (2°, 2, 2%, 2%). The spatial part of spacetime is denoted as, x!, 22, 23,

while the temporary part as, 2° = ¢. The distance between two nearby points with the
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coordinates, x* and z* + dx*, is given by a linear element, whose square in the curvilinear

coordinates is a quadratic form of the differentials, dz*, or by a metric:
ds* = g, dxdz, (2.10)

where g, is a covariant spacetime metric tensor, which is a function of the coordinates. The
value of the metric is an invariant during the transition from one reference frame to another.
The covariant metric tensor, g,,, is symmetrical in the indexes y and v, g,, = g,,. The

covariant metric tensor is inverse to the contravariant metric tensor, g"":

Impg"" = Oy (2.11)
where 0, is a Kronecker delta function.

Kronecker Delta Function

The Kronecker delta function is a single four-dimensional tensor, which is defined as:

orax™ =", (2.12)

m

In the matrix form this expression can be represented as:

5 = (2.13)

A trace? of the Kronecker delta function is equal to Y, 8! = 4. The Kronecker delta function
has the following property: the components of this function are the same in any reference

frame.

2.3.2 Transformation of Curvilinear Coordinates

Consider the scalar, vector and tensor transformation from one curvilinear reference frame,

0

!
20, 2t 22, 23, to another, 2'°

/1 /2 /3
R A A

%A trace (or Spur-Germ.) of the matrix is a sum of the elements on the main diagonal. If b;; are the
elements of the matrix B, then the trace of this matrix will be defined as, tr(B) =", bi;.
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Scalar (Zero Rank Tensor)

A scalar is a value that in any reference frame is completely determined by a single number

(or a function). The value of the scalar does not change during the transition from one

reference frame to another. If ¢ is a scalar value in one reference frame, 2°, !, 22, 23, and
. . ’ ! ! !
¢’ is a scalar value in another reference frame, 2%, 21, 22, 23, then:
170 1 72 '3\ 0 01 .2 3
90(1‘ y LT, T )—(,D(I’,ZL',ZL‘,I‘). (214)

Usually a scalar has one component. Examples of the scalars: pressure, density, temperature,

volume, length, area, etc.

Vector (First Rank Tensor)

A four-dimensional vector is defined in the four-dimensional curvilinear reference frame by
four numbers in the case of a contravariant vector as: A° = A%, A', A%, A3; in the case of a
covariant vector as: A; = Ag, A1, As, As.

For example, during a Lorentz transformation from a four-dimensional reference frame
to another, the contravariant components of the four-dimensional vectors, A?, are converted

as follows!:

0 1 1 0
A0 — A+ (V/C)A Al = A7+ (V/C)A A2 = A’Z’ A3 = A’?/’ (215)

where V' is a speed of motion of one inertial reference frame relative to another.

The covariant vector, A;, is the covector of the contravariant vector, A’. The elements

of the covariant vector, A;, and the contravariant vector, A?, are interrelated as follows:
Ag=A" A =—A' A,=—A% A3=-A% (2.16)
The components of the four-dimensional vector can be written as:
Al = (A% A), A= (A% —A), (2.17)

where A is a temporal coordinate which is a scalar; A is a three-dimensional vector, which

10Here the speed of light, ¢, reintroduced for clarity.
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contains the spatial coordinates. The square of the four-dimensional vector is defined as'':
3

> = AA = AAg + ATAy + AP Ay + APA. (2.18)
i=0

The connection between the covariant vector and the contravariant one is carried out through
the metric tensor, g,,, which is used to increase or decrease the indices of both the vectors
and the tensors'?:

g A, =AY, g AR = A, (2.19)

In general, in the curvilinear coordinates, a contravariant four-dimensional vector, A?, and

a covariant one, A;, are transformed as follows:

'k
A = aafci A, (2.20)

. afL‘z ’
Al = A"
8Ilk )

Tensors (Second and Higher Rank Tensors)

A four-dimensional second-rank tensor is called a set of the 42 = 16 components of this tensor.
In the transition from one reference frame to another, these components are transformed as
a product of the components of two four-dimensional vectors. Similarly, one can define the
four-dimensional tensors of the third rank (with 43 = 64 components) and the tensors of the
higher N-th rank, constituting 4V components.
The components of the four-dimensional tensor can be represented as: contravariant, A,
covariant, A, and mixed, A%.
A contravariant second-rank tensor, A% , is formed as a result of the product of two four-
dimensional contravariant vectors, A* = 61’/’ Al and, AF = 8:6/"“
ox't ox'm
one reference frame to another, the components of the second-rank contravariant tensor are

A'™_ In the transition from

transformed as:
i k
aSL’ 837 "Im

AR = AL AP = 2.21
ox't 9z'm (221)
A covariant second-rank tensor, A;;, is formed as a result of the product of two four-
_ , _ oxr't or'm ..
dimensional covariant vectors, A; = —A,, and, A, = ——A,,. In the transition from
oxt oxk ™

one reference frame to another, the components of the second-rank covariant tensor are

"Tn the tensor analysis, the Einstein rule is applied, according to which: the repeating indices twice in
the expression (one of them is at the top and the other is at the bottom) means summation, and the sign of
the sum is omitted.

12Tn the particular case, considering the Minkowski space, a Kronecker symbol, §%,, is used for raising or
lowering the indices.
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transformed as:
1 !
ox'tor™

37 o A (2.22)

Ag = A Ay =

A mixed second-rank tensor, A% is formed as a result of the product of the four-dimensional
oz’ or'™

’ . . .
5 A ! and the four-dimensional covariant vector, A;, = A
x

: i
contravariant vector, A* = o Aim-

In the transition from one reference frame to another, the components of the second-rank
mixed tensor are transformed as'?:

. /
axl afL‘ m "

@W m* (2.23)

Al = A" Ay =
The four-dimensional tensors (contravariant, covariant, mixed) of the N-th rank are trans-
formed as a result of the product of N four-dimensional (contravariant, covariant, mixed)
vectors, respectively. In the transition from one reference frame to another, the components

of the tensors (contravariant, covariant, mixed) of N-th rank are transformed, respectively,

as:

ox'n " ox'
ax/’)/l ax/'yN
Aﬁl---ﬁN - b "'MA/’YI---,’YN7

APr-Pn —

AN (2.24)

9

(2.25)

’ /
B1...B; oxPr 0z ox' e 9w o
Bit1-BN T Gp'n T Gr'm Grbier P BN T M AN

(2.26)

Tensors Operations
o Addition: A% + BY = C2

Subtraction: A:{? — B;Yf = F%B

[

e Product: A,‘:?Bzg = f}f‘f%”

e Contraction of the tensors as a result of summing over the identical indices: B;? =H g‘
. B rrop _ oy _ By

e Inner product: Fj K78 = Mg "% = N

2.3.3 Covariant Derivatives

Consider a vector, A;, in the curvilinear coordinates. The differential, dA;, of this vector is
not a vector and the derivative, 9A;/0x*, is not a tensor too. This is due to the fact that

the differential, dA;, is the difference of the vectors located at the different points of curved

13Here and above the following notations are used: A" = ATA™ A, = A/A, AL = ATA,
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space. The vectors in curved space at the different points are transformed according to the
different laws, so a special type of the derivatives is used for the curvilinear coordinates -
the covariant or contravariant derivatives.
The covariant derivatives for the contravariant and covariant vectors are defined as:
OA

A 7 k

A
Y O

— Il Ay, (2.27)

A

o> are called the Christoffel symbols or the affine connection. They

where the functions, I'

are expressed in the terms of the derivatives of the metric tensor as follows:

A 1 AR agﬁu agl'il/ aguy
Fav = 29 oxV + ot Oxm ) (2.28)

The covariant derivatives for the second-rank tensors: contravariant, A%, covariant, A;;, and

mixed type, A%, are defined as:

) OA* ) )
ik 7 mk k im
A = 9 [ A™ + T A™, (2.29)
Aik;j = @ - Fz‘jAkm - ij ims (2-30)
i OA;, m Ai i aom

The contravariant derivatives can be formed from the covariant ones by the raising the index,

which means the differentiation. This can be done using a contravariant metric tensor:

Ak — gij

7

ik ki At
AR = ghi Al (2.32)

R

2.4 Riemann-Christoffel Tensor, Ricci Tensor, Einstein
Tensor. Ricci Scalar.

Riemann-Christoffel Tensor

The combination of the Christoffel symbols and their derivatives form the curvature tensor,

or the so-called fourth-rank Riemann-Christoffel tensor, R},

kim = Gyl ox™
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The Riemann-Christoffel tensor has the following properties:
e Cyclicality: R}, + R\, + Rj. =0
e Antisymmetry of [ and m indices: R, = —R. .
e Symmetry: R = Rimik
e Asymmetry: Rirm = —Rpiim = — Rikmi
e First Bianchi identity: Rixin + Rimi + Ritmr = 0
e Second Bianchi identity: Ry, ., + Rjx; + Rimp =0
The equality or non-equality to zero of the curvature Riemann — Christoffel tensor, R}, |
is a criterion for determining, whether four-dimensional spacetime is flat or curved. At the
same time, the direct theorem is true: four-dimensional spacetime will be flat (curved) if
the curvature tensor is zero (non-zero) and the inverse theorem is also true: if the curvature

tensor is zero (non-zero), then four-dimensional spacetime will be flat (curved).

Ricci Tensor

The second-rank Ricci tensor, R;;, is obtained by the contraction of the Riemann-Christoffel

tensor:

Rix = ¢"" Riji, = Rl (2.34)
The Ricci tensor is defined as:

_oort,ory
k00l T Oxk

RED I L N (2.35)

The symmetry of the Ricci tensor is obvious from Eq. (2.35): Ry, = Ry;.

Ricci Scalar

Contracting the Ricci tensor, R;;, we get a scalar value, R, which is called a Ricci scalar or

the scalar curvature:

R=g"Rit = 9" 9" Riim- (2.36)

The Ricci scalar is a trace of the Ricci tensor, R;,: R =), R;.
In the GTR, the action for the gravitational field, Sg, is expressed through the integral

over the four-dimensional volume, df2, from the scalar curvature density, R/—g, as follows:

Se = 87TG/ Ry/—gd<2, (2.37)
M
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where ¢ is a determinant, which composed from the matrix elements of the metric tensor,

Juv-

Einstein Tensor

The combination of the Ricci tensor, R, the Ricci scalar, R, and the metric tensor, g,

ma
defines the Einstein tensor:

1
G = Ry = 59 R. (2.38)

The Einstein tensor, G, is a second-rank tensor in N-dimensional spacetime. The Einstein
tensor contains N (NN + 1)/2 independent components. This tensor can be constructed only
from the quadratic (in the first derivatives from the metric) or the linear (in the second
derivative from the metric) terms.

The Einstein tensor is symmetric due to the symmetry of the Ricci tensor, R,,, and the

)
metric tensor, g,,, that form it:

G;w = GV;L- (239)

The Einstein tensor is an invariant under the covariant differentiation, i.e., the covariant

divergence of the Einstein tensor identically equals to zero:

G = 0. (2.40)

2.4.1 Energy-Momentum Tensor

In the GTR, the notion of an energy-momentum tensor or a stress-energy tensor, 7}, in-

cludes all the possible forms of matter and energy'*, that can distort spacetime. The energy-
momentum tensor characterizes everything that can be contained in a specific region of
spacetime: the energy fluid and the momentum fluid, the energy density and the momentum
density, as well as energy and mass. The energy-momentum tensor is defined as the flux
of a four-dimensional momentum, which passes through a three-dimensional surface of the
constant coordinates.

The energy-momentum tensor, 7,

wv» 18 a second-rank tensor. Its properties are identical to

the properties of the Einstein tensor, GG,,,, such as, the symmetry of the energy-momentum

VL

tensor:

T, =T, (2.41)

3

14Tn accordance with the principle of the equivalence of mass and energy in the GTR.
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and the equality to zero of the covariant divergence of the energy-momentum tensor or the

fulfillment of the conservation law for the energy-momentum tensor:
T\ = 0. (2.42)
In the limiting case of the Minkowski metric (that is described below in Eq. (2.71)), the

covariant derivative is transformed into the ordinary derivative:

T,
= 0. 2.43
B (2.43)

In the presence of the gravitational field, the conservation law takes the form:

OT,,
i = %, T + 1§, Ty = 0. (2.44)

Consider the different forms of the energy-momentum tensor, 7,

w, for the following cases:

perfect fluid, vacuum and dust.

Perfect Fluid

The perfect fluid is isotropic with respect to the reference frame in which it is at rest. The
perfect fluid can be completely characterized by its energy density, p, and the isotropic
pressure, p, that are connected by the equation of state (EoS), p = f(p). This fluid has no
viscosity or heat conduction. In cosmology, the perfect fluid model is used to describe the
early universe at the radiation dominated epoch.

For any reference frame the energy-momentum, tensor for the perfect fluid has the form:

T,uu - (p + p)uuuu — PYuv; (245)

here u,, is a four-dimensional velocity.

The four-dimensional velocity is determined as:

u, ‘. (2.46)

The four-dimensional velocity is normalized as, u/u, = 1.'" Hence, for the observer in

the comoving reference frame, relative to which the perfect fluid is at the rest, the four-

5In the geometric representation, u,, is an unit four-dimensional vector, that is a tangent to the world
line of the particle.
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dimensional velocity, u,,, has the form, @ = (1,0, 0,0).
In the comoving reference frame, the energy-momentum tensor for the perfect fluid can

be written as:

p 000
0p 00

T,=| " . (2.47)
00 p o0

000 p

From the energy-momentum conservation equation, Eq. (2.42), the continuity equation fol-
lows:

0 .
8_/; + V(pvt) =0, (2.48)

where v¢ is the three-dimension velocity of the fluid.
This equation describes the behavior of the perfect fluid and expresses the fact of the
matter conservation. Indeed, the converging velocity field leads to an increase of the density.

Conversely, the diverging velocity field leads to the decrease of the density.

Vacuum

There are no fields, energy, matter in a certain region of spacetime in this case. The com-

ponents of the energy-momentum tensor, 7}, for this region are equal to zero:
T =0. (2.49)

Dust

In cosmology, the matter in the universe is approximated by a dust fluid model or a dust
matter model'®, consisting of the identical, electrically neutral, non-interacting massive par-
ticles. These particles move with the identical velocities, which are much smaller than the
speed of light, u < ¢. The dust fluid is characterized by the zero pressure, the rest density,
p, and the four-dimensional velocity, u(7,t)'".

In this case, the energy-momentum tensor for any reference frame is defined as:

Ty = puyty. (2.50)

16The validity of this approximation is related to the fact that in the astrophysical and cosmological
gravitational issues, matter undergoes very high stresses, so it becomes the fluid.
ITThe real universe contains the multicomponent flows of the dust matter.

28



In the comoving reference frame, the energy-momentum tensor for the dust fluid takes the

form:
p 0 0 0
00 00
T, = (2.51)
00 00
00 00

In the limiting case of the low velocity and zero pressure, a perfect fluid model is reduced
to a dust fluid model. The dust fluid model is used for description of the universe at the

matter dominated epoch.

2.4.2 Matter in the Universe

The nonrelativistic particles consisting of the baryons, the massive neutrinos and dark matter
form matter in the universe. A general property of these particles is that they can accumulate
under the action of the gravitational forces.

The observable universe contains 26% of dark matter; 4.8% of the ordinary baryonic
matter; 0.1% of neutrino, according to Planck 2015 data, Ref. (Ade et al. (2016)).

The number density of these particles, n(t), and the energy density of the matter, p(t),

change over time in the same way as'®: p(t) ~ n(t) oc a=3(t).

Baryonic Matter

The baryonic matter consists of the baryons. According to the Standard Model of particle
physics, the baryons belong to the family of the hadrons. The baryons are formed from
the odd number of the quarks. At the same time, the baryons are the fermions, due to the
fact that they have a half-integer spin. The lightest baryons are the nucleons: protons and
neutrons. The protons consist of one down (or d) quark and two up (or u) quarks, p = uud,
and the neutrons consist of one u quark and two d quarks, n = ddu, Ref. (Okun (1988)).
The baryons are the components of the atomic nuclei of the ordinary matter, they consti-
tute most of the visible matter in the universe and can also form the invisible baryonic dark
matter. The energy density of the baryons at the present epoch is ppg ~ 2.4-1077 GeV /cm?.
At the late stage of the evolution of the universe, which is characterized by the average
temperature (7') < 100 KeV, the ratio of the number density of the baryons to the number
density of the photons remains constant, m, = ny,/n, ~ 6.1 - 107, Ref. (Rubakov (2014)).

18This result is valid only for cold dark matter.
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Massive Neutrino

The neutrinos belong to the leptons family. The neutrinos, being leptons, can participate
only in the weak gravitational interactions. The leptons are the fermions, their spin is 1/2.
The leptons have no structure, so they are really the elementary particles. Being the neutral
elementary particles, the neutrinos have three flavors: the electron neutrinos, v,, the muon
neutrinos, v,, and the tau neutrinos, v;. If the neutrinos are the Dirac fermions, then
there will be the anti-neutrinos, respectively: 7., 7,,7;. If the neutrinos are the Majorana
fermions, then they will not have their antiparticle and, like the photons, they will be the
really neutral particles.

The present number density for each type of the neutrinos is n,. o = 110 cm ™3, where

Ny, = Ve, Vy, V7. The energy density for all the types of neutrinos is p,, tota1 ~ 6-1077 GeV/cm?®.

@

The total mass of all the types of neutrinos is Y m,, sota1 < 0.23 €V, Ref. (Ade et al. (2016)).

Dark Matter

Presumably, dark matter consists of the stable massive particles, the nature of which is not
known yet. The dark matter particles do not interact with the observed electromagnetic
radiation and weakly gravitationally interact with the ordinary baryonic matter.

Dark matter is located in the galaxies, as well as in the clusters of galaxies. The term
"dark matter" was first introduced by Fritz Zwicky in 1933. He measured the radial velocity
for eight galaxies in the constellation Coma, v(R), which depends on the distance from the
center of the galaxy, R. Zwicky concluded that for maintaining the stability of the galaxy,
its total mass must be ten times more than the mass of the stars included in it.

Vera Rubin and Kent Ford were the first who presented the accurate calculations indicat-
ing the dark matter existence in the galaxies, Ref. (Rubin et al. (1980)). They found that in
the spiral galaxies most of the stars, that are not too close to the center of the galaxies, move
in the orbits with the same radial velocity, v(R) =const, see Fig. (2.4) (left panel). For the
regions, which contain the visible matter (considering only the visible matter), v(R) o VR,
see Fig. (2.4) (left panel). For the large distances from the center of the galaxies, i.e., for the
peripheral regions of the galaxies, v(R) o 1/v/R, see Fig. (2.4) (left panel). This discrepancy
in the radial velocities of the stars can be explained by assuming that the visible matter of
the galaxies is immersed in a much larger cloud — in the galactic halo. The galactic halo
contains the significant mass of the invisible matter, the particles of which do not interact

with the photons.
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In the early stages of the evolution of the universe, the dark matter particles were in the
thermodynamic equilibrium with the particles of the primordial plasma. During the universe
expansion, at a certain moment of time, the temperature of the primordial plasma decreased
so much that the interaction of the dark matter particles with the baryonic matter ceased,
and the dark matter particles decoupled from the primordial plasma, see Fig. (2.4) (right
panel).

Depending on the temperature at which this decoupling occurred (or depending on the
mass of the dark matter particles at that moment), dark matter is subdivided on Cold Dark
Matter (CDM), Warm Dark Matter (WDM) and Hot Dark Matter (HDM).

CDM consists of the heavy particles with the mass, mcpy > 100 KeV. The candidates for
CDM are the slowly moving hypothetical particles, the so-called weakly interacting massive
particles (WIMPs). The particles that form WDM have the mass, mwpu =~ 3 — 30 KeV.
At the time of going out of the equilibrium with the primordial plasma, these particles were
relativistic. During the decoupling of the HDM particles from the primordial plasma, their
energy far exceeded their mass, i.e., these particles were ultrarelativistic. Consequently,

HDM may consist of the light particles such as the neutrinos.
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Figure 2.4: Left panel: the flat curve of the spiral galaxy NGC 3198 rotation (upper curve),
which is a combination of the visible matter rotation (curve "disk") and dark matter (curve
"halo"). (Figure from Ref. (Begeman et al. (1991))) Right panel: the evolution of the
Newton’s potential, ®, and the relative density contrast for: dark matter, dpy, the baryons,
0p, and the photons, d,. teq is the transition from the radiation domination epoch to the
matter domination epoch; ... is the beginning of the recombination epoch; ¢, is the transition
from the decelerated to accelerated expansion of the universe. (Figure from Ref. (Rubakov
(2014)))

Dark matter plays a very important role in the large-scale structures formation of the
universe. The formation of the galaxies happened in the regions with over density of dark

matter. The decoupling of the dark matter particles from the primordial plasma occurred
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much earlier than the decoupling of the baryons. As a consequence of this, the growth of
the dark matter density fluctuations happened much earlier than the growth of the baryonic
matter density fluctuations, see Fig. (2.4) (right panel). The baryons fell into a potential
well formed by dark matter, consequently, after recombination, the dark matter density
fluctuations and the baryons density fluctuations developed together, inseparable from each
other, see Fig. (2.4) (right panel).

There are numerous possible candidates for the role of dark matter. Dark matter can
have of the baryonic or non-baryonic origin. Baryonic dark matter, the so-called Massive
Compact Halo Objects (MACHOs), have low luminosity. Baryonic dark matter can be the
brown dwarfs, the dark galactic halos, the massive planets, the compact objects at the final
stages of the evolution: the neutron stars, the white and black dwarfs, the black holes. Non-
barionic dark matter can be light or heavy neutrinos, axions, the supersymmetric particles.
In addition, dark matter can be the primordial black holes and the topological defects of

spacetime.

2.4.3 Einstein’s Field Equations

The basic equations of the GTR are the gravitation field equations, which are called the
FEinstein’s field equations:

1
Guw =R, — §gWR =81GT),. (2.52)

The Einstein’s field equations connect the metric of curved spacetime, g,,, the Ricci curva-

ture tensor, R,,, the Ricci scalar, R, with the properties of the matter that fills this space,

e
which is characterized by an energy-momentum tensor, 7),,. These equations establish the
interrelation between the curvature (geometry) of spacetime (left side of the equation) and
matter, as well as its motion (right side of the equation). Thus, the Einstein’s field equations
describe how the curvature of spacetime affects matter in the universe, and vice versa, how
matter in the universe affects the curvature (geometry) of spacetime.

The gravitational field equations are the nonlinear second-order partial differential equa-
tions. This nonlinearity is associated with the effect of the gravity on itself, since the gravi-
tational field carries the energy and the momentum. Due to the fact that the Einstein’s field
equations are nonlinear, the superposition principle is not valid for the gravitational fields.
Linearization of the Einstein’s field equations is possible in the case of the consideration of

the gravitational waves with low amplitude or for the weak gravitational fields (for exam-

ple, for the gravitational fields in the Newtonian limit). For such fields the deviations of
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the metric components of the equation from their values for flat spacetime are insignificant
and, accordingly, the spacetime curvature generated by them is also small. In this case, the
superposition principle of the fields can be applied.

In the case of the weak gravitational fields created by a nonrelativistic moving substance,

the zero component of the Einstein tensor, GGog, is defined as:
Goo = V00, (2.53)
for the Newtonian limit, the Einstein’s field equations take the form:
Goo = —81GThp. (2.54)

We obtain an alternative form of the Einstein’s field equations, Eq. (2.52), contracting both

sides by the contravariant metric tensor, g"":
R = —8rGT. (2.55)
Substituting Eq. (2.52) into Eq. (2.55), we get another form of the Einstein’s field equations:
1
Ry, = 81G(T,, — §gWT). (2.56)

The value of the energy-momentum tensor is equal to zero for vacuum, Eq. (2.49). From

Eq. (2.56) it follows that the following equation is fulfilled for vacuum:
R, = 0. (2.57)

The result obtained in Eq. (2.57) does not mean that empty space is flat, and
there are no gravitational fields in it. This statement requires the additional
condition: the Riemann-Christoffel tensor must be equal to zero, R}, = 0. In
spacetime with two or three dimensions, the condition R,, = 0 means that the Riemann-
Christoffel tensor is zero and, accordingly, it means the absence of the gravitational fields
there.

The full Riemann-Christoffel tensor can be non-zero under the fulfillment of the condition,
R,, = 0, in vacuum spacetime with four and higher dimensions. Therefore, in this case, the

gravitational fields can exist.
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2.5 Spatial Metrics

2.5.1 Flat Euclidean Space

The Euclidean geometry is based on five axioms:
1. Axiom of belonging

2. Axiom of order

3. Axiom of equality of segments and angles

4. Axiom of the parallel lines

5. Axiom of the continuity (Archimedes’ axiom)

Figure 2.5: Left panel: the three-dimensional Cartesian coordinates. Right panel: the
spherical coordinates. (Figure from Ref. (Dubrovin et al. (1979)))

From the "Axiom of the parallel lines" it follows the statement "The sum of the interior
angles of the triangle is equal to 180°", which is very important feature of Euclidean space.
Euclidian space is three-dimensional flat space. Each point in this space is defined by the
orthogonal Cartesian coordinates, (z!, 22, 2% = v, 2), see Fig. (2.5) (left panel).

The invariant metric in the Cartesian coordinates is defined as:

ds? = Z dr' = (21)? + (22)? + ()2 (2.58)
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The compact form of this metric is:
ds® = g, datda”, (2.59)

where g, = 0,

The metric tensor for Euclidean space in the Cartesian coordinates has the form!?:

1 00
G = 5#1/ = 010 . (260)
0 01

The invariant metric in the Cartesian coordinates, (dz*,dz"), can be expressed in the arbi-

trary coordinates, (dz™,dz™), as:

ox!
oxr

ds* = dpdatdr” = 5W(8—xidxml) (

oxrm

dx”) = G dz™ da*’, (2.61)

here ¢g,,/1 is the spatial metric tensor in an arbitrary reference frame.

Consider the Euclidean metric in the polar, cylindrical and spherical coordinates:

The polar coordinates

The Cartesian coordinates, (x', z?), on the plane are expressed through the polar coor-

dinates, (y! =r, y*> = ), as:

vt =rcosp, 1’ =rsing (2.62)
and
1 0
Im'k’ = 5uu = . (263)
0 r?

The metric in the polar coordinates is given by:

ds® = (dr)* + r*(dyp)*. (2.64)

The cylindrical coordinates

9The isotropy and the homogeneity of space is expressed in the diagonal form of the metric tensor and
vice versa, the metric tensor for isotropic and homogeneous space must be diagonal.
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The Cartesian coordinates, (x!, 22, 2%), are expressed through the cylindrical coordinates,

=1 y*=p, y°=2) as
vt =rcosp, ¥=rsing, 2°=2 (2.65)
and
1 0 0
G =1 0 72 0 (2.66)
0 0 1

The metric in the cylindrical coordinates is given by:

ds* = (dr)* + r*(dp)? + sin®(dyp)>. (2.67)

The spherical coordinates
The Cartesian coordinates, (z!, 22, 2%), are expressed through the spherical coordinates,

(y* =r,y* =0,y = ¢), see Fig. (2.5) (right panel) as:

vt =rcospsinf, 2* =rsingsing, 2° =rcosf (2.68)
and
1 0 0
Gww =1 0 r? 0 : (2.69)
0 0 7r2sin®¢

The metric in the spherical coordinates is given by:

ds® = dr* + r*[(df)? + r* sin® 0(dy)?]. (2.70)

2.5.2 Minkowski Spacetime

In 1908, Hermann Minkovski first introduced four coordinates for description of four-dimensional

vector space or the spacetime continuum. The points of this spacetime are called the events

0

or the world points. Each event corresponds to a set of four numbers (2%, 2!, 22, 2%), where

2% = t is a moment of time when the event occurred and (z!, 2% 23) is the location of the
event. In four-dimensional space, the process of life for each object is identified by the line

2'(t) (i = 1,2,3), which is called the world line. The values of (t,z', 2 %) can be regarded
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Future

Figure 2.6: Left panel: two-dimensional Minkovski diagram. Right panel: three-dimensional
light cone.

as the Cartesian coordinates in the spacetime continuum. Thereby, the spacetime continuum
can be considered as four-dimensional Cartesian space. On the contrary, three-dimensional
space, in which the classical geometry unfolds, will be a surface of the constant level (where
t—=const).

The metric tensor of Minkowski spacetime is defined as?’:

10 0 O
0O -1 0 0
N = 5;w - (271)
0O 0 -1 0
0 0 0 -1

This metric tensor describes flat four-dimensional isotropic and homogeneous spacetime.

The metric for the Minkovski metric tensor is represented as:
ds® = n,,datdz”. (2.72)

The metric, ds?, can take the following values in four-dimensional spacetime: to be equal
to zero, to be positive or negative. The metric, ds?> = 0, corresponds to the propagation

of a signal with the speed of light or a motion of the massless particles in four-dimensional

20Hereinafter, the metric signature is used, (1, —1,—1,—1).
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spacetime. The zero metric, ds? = 0, describes the lightlike events. The positive metric,
ds® > 0, describes the timelike events. For the timelike events, there is a frame of reference in
which these events can occur in the same place. In this case, the linear interval between two
events, ds, is a real number. A negative metric, ds?> < 0, describes the spacelike events.
There is a frame of reference for the spacelike events, in which these events can occur
simultaneously. In this case, the linear interval between two events, ds, is an imaginary
number.

The above-mentioned types of the events are presented on the two-dimensional, (z°, x!),
Minkovski diagram, see Fig. (2.6) (left panel). The origin of the coordinate, O, corresponds
to the present point in time. The lines ab and cd are consistent with two different signals,
which propagate at the speed of light, so ds? = 0 for them. The spacelike events are contained
in the dOa and cOb regions with ds? < 0, while the regions aOc and dOb correspond to the
timelike events with ds? > 0.

Since the time from the aOc region has a positive value, ¢t > 0, the events from this region
will happen in the future with respect to the present moment of time, O. The time from the
dOb region has a negative value, ¢t < 0, consequently, the events from this region happened
in the past with respect to the present point in time, O. In other words, the events from
the aOc region can be called the "absolutely future", consequently, the events from the dOb
region can be called the "absolutely past" with respect to the present point in time, O. Since
it can be unambiguously determined which of the events with a timelike interval occurred
earlier and which later, these events can be causally-related to each other.

The metric for the Minkowski spacetime, Eq. (2.72), is timelike, so it can be located in
the aOc and dOb regions on the Minkowski diagram. This metric can be written in the

extended form:

ds* = (2)? — (z")? — (2?)* — (2%)2. (2.73)

Eq. (2.73) describes a so-called light cone or, in other words, a cone of the causal events.

0

The three-dimensional Minkowski coordinates, (2%, 2!, 2?), can be expressed in the terms of

the pseudospherical coordinates, (g, s, ¢):

2% = pcoshg
x(r) =1{ z' = psinhg (2.74)

x? = psinh ¢ sin ¢
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From Eq. (2.74) it follows:
(2°)% = (2")? — (2%)* = ¢* > 0. (2.75)

Therefore, the coordinates, (o, ¢, ), are defined only in the region, (2°)? — (z!)? — (2%)? > 0.
This region is located inside of the light cone in three-dimensional spacetime, (z°)% = (21)?+

(2?)%, see Fig. (2.6) (right panel). The metric for this region has the form:

ds® = do® — 0*[(dx)* + sinh® x(dy)?]. (2.76)

2.5.3 Geodesic Equation

Suppose that a point with the coordinates 2° moves along a certain trajectory with the
four-dimensional velocity, u’ = 2°/ds. According to the GTR, a free material point moves
in the gravitational field in four-dimensional spacetime, so its world line is extremal. This
extremal world line is called the geodesic line between two given world points.

The motion of the particle in the gravitational field is determined by the principle of

least action, according to which the action functional takes the minimum value:
08 = 5/ds =0, (2.77)

where ds?> = g;pdxz'dz” is a metric in four-dimensional curved spacetime.
Applying the principle of least action, we obtain the equation of motion of the particle
in the gravitational field.

Due to the fact that:
6ds? = 2dsods = &(gda’dz’) = dxid:ck%éxl + 2gida’ dox”. (2.78)
X

Substituting this result into Eq. (2.77), we get:

dx dx* dglk . dx’ déxk)ds _ (2.79)

ds ds dx! ox +gik$ ds

While we integrate Eq. (2.79) by parts and take into account that in the second term at the

boundaries of integration dz* = 0, we obtain:

lda' dz¥dgy ., d dz'y .
_ (1 _al ds = 0. 2.
o /(2 s ds dat " ds(g’k ds)5x> s=0 (2.80)
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Replacing the index k& with the index [, in the second term of Eq. (2.80):

oyt — 2 (dgau’) = gy —0. 2.81
2 ds< gut') 2t T I gy T Gk 0 (2.81)
We represent the third term in Eq. (2.81) as:
wdga 1 o rdga dgkl)
k=2 = ik ~ ). 2.82
g Tt (dazk + dz’ (282)
Multiplying the left and right sides of Eq. (2.81) by ¢g™™:
m A’ 1 rdga | dg dgik)
im o — im0 - = 0. 2.83
L i pd (dazk + drt  da! 0 (2.83)

Considering that ¢g"™g; = 07, we replace the index [ with the index m in the expression

located in the parentheses, Eq. (2.83):

du' 1 (dgil Agim dgik)

- im, i,k _
tog v dxk dx? dx™

=0. 2.84
ds 2 0 (2.84)

As a result of replacing the index 7 to the index [ in the expression located in the parentheses,

Eq. (2.84), and introducing the Christoffel symbols, I}, = 1gim (Zme 4 %t S9u) - e
obtain the equation of motion of a material point in the gravitational field along the geodesic

line:
d*x’ - da dat
— —— = 0. 2.85
ds? Mds ds ( )
The geodesic line has a curved shape in four-dimensional spacetime, (2%, 2!, 2%, 2%), and the

motion of the particle is not uniform and rectilinear.

2.5.4 Isotropic Four-Dimensional Spacetime Metric

The metric tensor for four-dimensional homogeneous and isotropic spacetime, which is spa-

tially expanding or contracting with dependence on the scale factor, a(t)?', is defined as
follows:
1 0 0 0
0 —a?(t) 0 0
Juv = . (2.86)
0 0 —a’(t) 0
0 0 0 —a*(t)

21 This metric tensor describes the expanding spacetime, since a scale factor is the time-dependent increas-

ing function, a(t) > 0.
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The metric for this spacetime is:
ds® = g, datda” = dt* — a*(t)y;da'da? (2.87)

where 7;; is a metric of three-dimensional space.

The function 7;; in the spherical coordinates, (7,0, ¢), Eq. (2.87), is represented as:
Yij = dr* + x(r)*(d6* + sin® 0dp?), (2.88)

here x(r) is a space curvature function, which is defined as:

ﬁ sin(\/ﬁ r) for K >0
x(r) = r for K=0, (2.89)
ﬁ sinh(\/ —-K 7“) for K <0

here K is a curvature parameter.
Replacing the variable z = ¢ in Eq. (2.89) and expressing the variable r through z, we
find the square of the differential dr?:

L2 for K> 0

1-Kz?
dr® = dx? for K=0 . (2.90)
ﬁdﬂ? fOI' K <0

Substituting Eq. (2.89) and Eq. (2.90) into Eq. (2.87), we get the expression for the Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime metric:

dr?
1 —Kr?

ds® = dt* — a*(t) + r2(d6? + sin? dp?) | . (2.91)

This metric describes the homogeneous and isotropic expanding space. The coordinates,
(r, 6, @), are the comoving coordinates, i.e., the moving object is at rest relative to these
coordinates.

The FLRW metric in the Cartesian coordinates can be written as:

ds® = dt* — a*(t) 25ijd:cid:cj. (2.92)

1
(14 5r2)

Depending on the sign of the curvature parameter, K, Eq. (2.91) describes the geometrically
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Spherical space

atb+c =180
curvature = positive

Flat Space
atb+c=180

curvature = 0

a+b+c=<180
Hyperbolic space curvature = negative
i

Figure 2.7: The examples of closed, flat and open two-dimensional spaces. (Figure from
http://www.astro.cornell.edu/academics/courses/astro201/)

different types of the universe. The case K > 0 corresponds to the so-called closed universe
(to spherical three-dimensional space). The two-dimensional analogue of this universe is
the surface of a sphere, see Fig. (2.7), and the function, 1/\/K can be interpreted as its
curvature radius. The case K = 0 corresponds to the so-called flat universe (to Euclidean
three-dimensional space), see Fig. (2.7). The case K < 0 corresponds to the so-called open
universe (to three-dimensional hyperbolic space). The two-dimensional analogue of this
universe is the surface of a saddle, see Fig. (2.7).

The curvature of the universe can be neglected in the study of the certain processes.
For example, when a photon moves freely in the homogeneous and isotropic universe, the
wavelength of the photon will be much smaller than the radius of the spatial curvature of
the universe (in the case of an open or closed universe). In this case, the universe can be
considered as spatially flat and the metric presented in Eq. (2.87) can be used.

In the terms of conformal time, which is defined in Eq. (2.4), the Eq. (2.87) takes the
form:

ds® = a*(n)dn* — a*(n)vyyda'de’ = a*(n)[n* — ~yda’da’]. (2.93)

From Eq. (2.93), it follows the relation between the Minkowski metric tensor 7, and the

metric tensor g,,:

v = az(n>7],uu- (294)

Hence, the metric tensor, g,,, has a conformally flat form in the coordinates, (1, z*).
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For the different types of the curvature, Eq. (2.93) has the form:
ds* = a*(n)(dn? — d&* — @?(df* + sin”® Odp?)), (2.95)

where the variable w is defined as:

sin{ for K>0, r=a(n)sing, &€ [0,7]
w = 3 for K=0, r=a(n), €0, (2.96)
sinh¢ for K <0, r=a(n)sinhé, € € [0, 00

2.5.5 Friedmann’s Equations

Substituting the FLRW metric, Eq. (2.91), and the energy-momentum tensor, Eq. (2.45),
into the Einstein’s equations, Eq. (2.52), the first and the second Friedmann’s equations can

be derived:

a? 871G K
2 3V g (2.97)
and
a e
- _ = ) 2.
- 3 (p+ 3p) (2.98)

If we know the evolution of the scale factor, a(t), which characterizes the expansion history
of the universe, we will be able to determine the value of the curvature parameter and the
mass-energy composition of the universe using the Friedmann’s equations. Conversely, if we
know the value of the curvature parameter and the matter-energy content of the universe, we
will be able to calculate the evolution of the scale factor, a(t). For example: the expansion
history of the universe depends on the value of the curvature parameter, K: for K < 0 (the
open universe), the universe will expand forever, see Fig. (2.8); for K = 0 (the flat universe),
the universe will expand forever either, but for ¢ — oo, the expansion will occur with the
constant, velocity, i.e., @ — 0, see Fig. (2.8); for K > 0 (the close universe), the universe will
expand till certain moment, after that the expansion will turn into a contraction and the
universe will re-collapse, see Fig. (2.8).

As mentioned previously, all the matter-energy components of the universe on the cosmo-
logical scales can be modeled as the perfect fluid. The relation between the energy density

and the pressure for the perfect fluid is defined by the EoS:

p=wp, (2.99)
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Figure 2.8: The evolution of the scale factor, a(t), for the different signs of the curvature
parameter, K. (Figure from https://wmap.gsfc.nasa.gov/universe/)

where w is an EoS parameter, the value of which is different for each matter-energy compo-
nent in the universe.
If we solve the continuity equation, Eq. (2.48), and the Friedmann’s equation, Eq. (2.97),

for a flat universe, K = 0, we will get the following equations:

2

ST o)t (2.100)

poca 0 a(t) o e = H =

where the value of the EoS parameter, w, is time-independent and w # 1.

The equations, which are determined in Eq. (2.100), describe the evolution of the energy
density, p, the scale factor, a, and the Hubble parameter, H, in dependence on the value of
the EoS parameter, w, and the physical time, ¢. Let’s analyze Eq. (2.100) for the different
values of the EoS parameter, w. We suppose that only one matter-energy component is
contained in the universe, which is described by the given EoS parameter.

The EoS parameter, w = 1/3, corresponds to the perfect fluid of the relativistic particles
(the photons and the neutrinos), which is called the radiation. For this case Eq. (2.100)
takes the form:

1
proxat a(t) o t2 = H= % (2.101)

The EoS parameter, w = 0, corresponds to the perfect fluid of the non-relativistic particles

or the dust (matter), which consists of CDM and the baryons. Accordingly, in this case,
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Eq. (2.100) takes the form:

2
pmoxa”, alt)oxcts = H= 3 (2.102)
The EoS parameter, w = —1/3, corresponds to the universe with the nonzero spatial curva-

ture, i.e., for the close or open universe. In this case, Eq. (2.100) takes the form:
9 1
pk xa °, a(t)xt = H= . (2.103)

If we substitute the EoS, which is defined in Eq. (2.99), in the second Friedmann’s equation,

Eq. (2.98), we will get:

__—
g S W?)Gpu + 3w). (2.104)

If the value of the EoS parameter, w, satisfies the condition, —1 < w < —%, thena < —1, i.e.,
the universe will expand with an acceleration. The accelerated expansion of the universe is
explained by the presence of dark energy in it. The case w = —1 corresponds to the simplest
model of dark energy, the so-called vacuum energy or the cosmological constant A. In this
case, the universe is accelerating with a constant energy density, p,, and with a constant

Hubble parameter, whereas the scale factor changes exponentially over time:
At =  H = const. (2.105)

pa = const, a(t) xe

The total energy density of the universe includes the following components: the radiation,

the matter, the curvature and dark energy:

p = pr+ pm + px + pa. (2.106)

If we consider the dependence of the energy density components on the scale factor, which

is presented in the equations, Eq. (2.101)- Eq. (2.105), we will get:
p = proa” "+ pmoa”® + proa” + pa, (2.107)

where py0, pmo, pxo = —K/HZ, and py are the values for the energy densities at the present

epoch: for the radiation, the matter, the curvature and dark energy, respectively.
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The equation for the total energy density, pg, at the present epoch, a = ay = 1:

Po = P10 + Pmo + PKo + PA- (2.108)

Eq. (2.107) can be represented in more convenient form through the dimensionless density
parameters. The dimensionless density parameters are usually applied for the description of

the matter-energy content in the universe:
Q= p/per = Qoa™* + Quoa™2 + Qoa 2 + Qn, (2.109)

where €2 is a total energy density parameter, which is defined for an arbitrary moment
of time; €2,y is an energy density parameter for the i’ component at the present epoch,
which is characterized by the corresponding energy density, p;o; per is a critical density in
the universe at the present epoch??. The value of the critical energy today is equal to
P = 3HZ/87G = 1.8791h% - 107% g cm ™

At the present epoch, Eq. (2.109) has the form:

Qo = pio/per = Z Qo = Z Qo = Qo + Qo + Qo + Qi (2.110)

where () is a total energy density parameter at the present epoch. This parameter is one of
the most important cosmological parameters.
The first Friedmann’s equation, which is defined in Eq. (2.97), can be expressed in the

terms of the current energy density parameters, (2, as:
H(a) = Ho(Qoa™* + Qumoa™ + Qroa 2 + Q) Y2 (2.111)
Eq. (2.111) can be represented as:
E(a) = (Qa™* + Qmoa > + Qroa 2 + Q)2 (2.112)

where E(a) = H(a)/H, is a dimensionless Hubble parameter.
If we rewrite Eq. (2.111) at the present epoch, we will get:

K
Qp—1=—. 2.113

22The critical density is a total energy density in the universe which is necessary for the universe to be
spatially flat.
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From Eq. (2.113) it follows that the value of the total density parameter, {2y > 1, corresponds
to the closed universe with the positive curvature parameter, K > 0, see Fig. (2.8). The
value of the total density parameter, {29 < 1, corresponds to the open universe, where the
curvature parameter is negative, K < 0, see Fig. (2.8). The value of the total density
parameter, )y = 1, corresponds to the flat universe with the zero curvature parameter,
K = 0, see Fig. (2.8). According to Planck 2015, Ref. (Ade et al. (2016)), the current
curvature density parameter is Qo = 0.006 (at the 68% confidence level). Thus, the critical
density in the universe corresponds to the average energy density in the universe, (p), i.e.,

per = {p), with an accuracy of the order of 1%.

2.5.6 Acceleration Parameter

Take a time derivative from the Hubble parameter which is defined in Eq. (2.7):

. ai—a? i i
ji — —:—H2<1——> — 21— 2.114
" + T2 (1-1q), ( )
and
;
. 2.115

where a dimensionless parameter, ¢, is called an acceleration parameter®3. The current value

of the acceleration parameter, qq, is defined as:

1 ra
= —(-) . 2.116
0 Hg( >0 ( )

The acceleration parameter characterizes the state of the acceleration or deceleration of the
universe. A positive value of this parameter, ¢ > 0, corresponds to the acceleration expansion
of the universe, for which @ > 0, and a negative value, ¢ < 0, corresponds to the deceleration
expansion of the universe, for which a < 0.

The acceleration parameter can be expressed in terms of the values of the EoS parameter,

w;, and the energy density parameter, §2;:

ot) = —% SO+ 3un) (), (2.117)

1

here, the index "¢" indicates a certain component of the energy density in the universe and

23Tn the literature, the so-called deceleration parameter is the most commonly mentioned, which is defined
as, ¢ = —i/aH?. Here we use the designation "acceleration parameter" because this designation better
describes the current state of the universe.
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the corresponding EoS parameter. If we use the values of the EoS parameter for the matter,

the radiation and vacuum, respectively: wy,, = 0,w, = 1/3,wy = —1, we will get:

a(t) = —(Qn/2 + Q2 — Q). (2.118)

By applying the data from Planck 2015, Ref. (Ade et al. (2016)), we can calculate the value

of the current acceleration parameter of the universe:

[q0] Pranck = 0.54. (2.119)

A positive sign of the current acceleration parameter, ¢y, indicates that our universe is in
the accelerated state nowadays. This state began at the value of the scale factor, a ~ 0.60,

or at redshift, z ~ 0.65, according to Planck 2015 data, Ref. (Ade et al. (2016)).
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Chapter 3

Distance in Cosmology

3.1 Concept of Distance in Cosmology

The definition of the distances between the astronomical objects in the expanding universe
is one of the main and most difficult problems in cosmology.

There is no concept of a single distance in cosmology. The different types of the cos-
mological distances are used, such as: the physical distance, the comoving distance!, the
luminosity distance, the angular diameter distance, etc. These distances differ from each
other in the methods of their determination and measurement.

In cosmology, the concept of the "exact distance” to a remote object is vague. The
values of the cosmological distances depend on the chosen cosmological model and, therefore,
they are the functions of the model parameters. Thus, the accuracy in the determining
the distances depends on the correctness of the considering cosmological model and on the
accuracy of determining the model parameters?.

The above-mentioned cosmological distances are united by the fact that these distances
are a measure of the separation of two objects located on a radial trajectory from each other.

A vivid example of the importance of the exact cosmological distances definition is the
evidence of the existence of dark energy in the universe. This definition is largely based on
the measured luminosity distances to the type Ia supernovae. The position of an object on
a sphere gives us the two-dimensional picture. To obtain the three-dimensional information,

very precise distance measurements are required. In addition, the knowledge of the distances

!The definition of the physical distance and the comoving distance (length scales) was given in Chapter II.

2In cosmology, all the values obtained from the observations (the distances, the model parameters, etc.)
are found using the statistical methods or the probability theory (for more information, see Chapter V).
Therefore, when a calculated value is mentioned, it is always necessary to indicate the accuracy with which
it was obtained. Usually the confidence level are indicated, 1o, 20, 30, or the corresponding accuracy levels,
68.27%, 95.45%, 99.73%, where ¢ is a standard deviation in the Gaussian distribution.
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to the remote astronomical objects is necessary to determine the physical parameters of the

universe.

3.2 Trigonometric Parallax

The trigonometric parallax is one of the most important distance measurement methods
used in astronomy. This method is based on a geometrical effect. Due to the rotation of
the Earth around the Sun, for an observer located on the surface of the Earth, the positions
of the nearby stars change against the background of the distant objects, see Fig. (3.1).

During the year, the visible position of the nearby star follows an ellipse on the sphere, see

Figure 3.1: Tllustration of the parallax effect. (Figure from Ref. (Schneider (2006)))

Fig. (3.1). The semimajor axis of this ellipse is called a parallaz, p. The value of the parallax,
p, depends on the physical distance to the star, d, and the radius of the Earth’s orbit, rg,
which is equal to one astronomical unit (AU)?, see Fig. (3.1). The value of the parallax is
defined as:

—Z = tanp ~ p, (3.1)

where p < 1 and p are measured in the radians.

3More precisely, 1AU = 1.496 - 10'3 c¢m is a semimajor axis of the Earth’s ellipsoidal orbit.
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The physical distance to the object corresponding to the measured parallax, p, can be

i (12) e (3.2)

The trigonometric parallax is also applied to determine one of the basic units of the distance

found as:

in astronomy, the parsec. The parsec (pc)* is the distance to the object for which the parallax

is one second, p = 1”, where 1” & 4.8484 - 107 radian and p/1” = 206265 pc, so:
1 pc = 206265 AU = 3.086 - 10'® cm. (3.3)

The trigonometric parallax is a very accurate method for determining distances, but it can
be used only for the nearby stars. Using this method, the distances to the stars can be

defined only within a distance ~ 5 Kpc, Refs. (Gaia (2013), Brown et al. (2018)).

3.3 Cosmological Redshift

Relativistic Doppler Shift®

Consider a distant source of light that emits the consequent light signals at the time
moments, tey, and fe, + Aten, respectively. The measurements were carried out according
to the clock, which was at rest relative to the source. This source of light moves relative to
the observer with the velocity, u, see Fig. (2.8). The time interval between two consequent
light signals, which were emitted by the source, At.,s, will be affected: by the relativistic
effect of time dilation associated with the motion of the source, Atqp,/ m, and by
the effect associated with the difference of the distances traveled by two signals from the
moving source of light to the observer, Ad = u cos 0Atyy, /+/1 — u2/c2, see Fig. (3.2).

Thus, the time interval between two signals registered by the observer is:

At u/cAtem cos At

\/1—u2/c2+ V1—u?/c? B V1—u?/c?

Suppose that a photon with the wavelength, A\, (or the frequency, ve,)%, was emitted at

Atops = (1 +u/ccosb). (3.4)

the moment of time, t.,. This photon is observed at the moment of time, ., with the

wavelength, A, (or with the frequency, vons). The time interval between two consequent

4The scales of the greater length are considered in cosmology, so 1 Mpc = 10° pc is used as an unit of
the measurement.

®In this section, the speed of light, c, is reintroduced for clarity.

6The wavelength and the frequency of the electromagnetic radiation are interconnected as, A\v = ¢
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uAl, cos 6

1 —u?fc?

Figure 3.2: Tllustration of the relativistic Doppler shift. (Figure from Ref. (Carroll & Ostlie
(2007)))

light signals emitted by the source, At.,, and registered by the observer, At, is related
to the frequency of the emitted photons, At.s, and the frequency of the registered photons,
Vem, like Ve = ¢/Alen and vops = ¢/Atops. Using these relationships, Eq. (3.4) can be
rewritten as:

Ve (14 u/ccosb), (3.5)

Vobs = 7\/ﬁ2/c2
this equation describes the relativistic Doppler shift.
Consider the velocity projection of the object in two perpendicular directions: transverse
and radial (longitudinal) to the line of sight. In Eq. (3.5), setting § = 90°, we get the

equation for the transverse relativistic Doppler shift:

Vobs = Vem\/ 1 — u?/c2. (3.6)

The transverse relativistic Doppler shift occurs due to the effect of time dilation associated
with the motion of the source of light relative to an observer.

In Eq. (3.5), if the source moves away from the observer, we will assume, § = 0°, and
if the source moves toward the observer, we will assume, # = 180°. As a result, we obtain

the equation of the radial relativistic Doppler shift, in which v = ucos@ is the radial
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velocity of the source relative to the observer:

V1—u?/c? \/1—u2/02. (3.7)

Vobs = Vem +ufccosh Vo™ +v/c

Accordingly, Eq. (3.7), for the wavelengths Ay, and Aep, has the form:
[1+wv/c
Aobs = Aemi | ————. 3.8
b 1—v/c (3:8)

Redshift (or blueshift), z, is defined by the relative difference between the observed and

Determination of Redshift

emitted wavelengths (or the frequency):

)\obs - )\em o Vem — Vobs

)\em Vobs

(3.9)

For the redshift, with z > 0, the source of light moves away from the observer, and the
emitted energy of light, registered by the observer, shifts to the lower values. For the
blueshift, with z < 0, the source of light moves to the observer, and the emitted energy of
light, which is registered by the observer, shifts to the higher values.
From Eq. (3.9) we get:
Aobs _ Vem

1 = = ) 3.10
e )\em Vobs ( )

Relativistic Redshift

Substituting the obtained results from Eq. (3.7) or from Eq. (3.8) into Eq. (3.9), we get the

_ [1+v/c
z_,/l_v/c—l, (3.11)

relativistic redshift equation:
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Redshift at Low Velocities of the Source of Light

Consider the limiting case of a small radial velocity of the source, v < ¢, in Eq. (3.11):

z = lim( 1+v/c_1>
v/e—=o\\l 1 —v/c
2v/c v/c
= 1m (41 ~1) ~ ~ /e, 3.12
v/lclgo i 1—v/c 1—v/c v/e (3.12)

Relation of Cosmological Redshift with Scale Factor

Consider a reference frame described by the FLRW metric. An observer is at the center of
this reference frame. The light ray moves towards the observer in the radial direction along
the zero geodesic line, which is described by the metric, ds* = 0, for df = d¢ = 0.

From Eq. (2.91) we get:
dr

ik

We choose a negative sign in Eq. (3.13) due to the fact that a ray of light comes from a

dt = +aft) (3.13)

source of light located at the distance, » = r.,,. This ray of light moves in the direction of

the center of the reference frame, r = ro,s = 0, therefore, dr < 0 and dt > 0:

tobs dt Tem d
/ LN (3.14)
tom A(1) o V1-—-Kr?

Differentiating Eq. (3.14) and considering that a radial coordinate, rey, of the comoving

sources does not depend on time:

Atem o Atobs
a<tem) a(tobs> .

(3.15)

Assuming that the light signals are the successive wave crests, the emitted frequency and
the observed frequency are defined as v, = 1/Aten and vops = 1/Atops, respectively.

Rewritting Eq. (3.15), as:

Vobs/Vem = @(tem)/a(tobs)- (3.16)

A scale factor, a(t), is an increasing time-dependent function, while the frequency, v(t),
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is a decreasing function by the factor (1 + z) according to Eq. (3.10). By combining the
equations, Eq. (3.10) and Eq. (3.16), we get:

I+2z= a(tobs)/a(tem) = aO/a(tem)' (317)

The relation between the redshift and the scale factor, which is specified in Eq. (3.17), is
very important in cosmology. The redshift can be measured and it is sometimes the only

information about the distances of the most distant objects.

3.4 Comoving Distance

The comoving distance is a distance between two astronomical objects, measured along the
geodesic line (along the radial direction) at the present epoch of the cosmological time.
The comoving distances and the conformal time form the comoving reference frame. The
comoving distance between two objects in the comoving reference frame remains constant
provided that these objects move only with the Hubble flow”.

Based on the symmetry of the issue, we use the four-dimensional Minkowski metric,

presented in the spherical coordinates:
ds® = g datds” = dt* — a®(t)[dr® + r*(d6)* + r* sin® 0(dp)]. (3.18)

In Eq. (3.18) we assume ds* = 0 and df = d¢ = 0. The comoving distance from the distant

object to the observer is determined as:

to ¢! @ da 1 zody
p— p— —_— = 3-]—9
" / ot / ad H/ E(Z)’ (3.19)

where ton, Gem and z., are the cosmological time, the scale factor and redshift of the source

of light registered by the observer at the moment of time, ¢y, respectively; aq is the scale
factor at the time of observation, ;.
Consider the dependence of the comoving distance on the different values of the curvature

parameter, K, for the FLRW metric, Eq. (2.91). Assuming ds*> = 0 and df = d¢ = 0 in

"The solar system moves with a peculiar velocity of 370.6 £0.4 km ¢! relative to the Hubble flow in the
direction of the Leo constellation, which is determined by the equatorial coordinates, (a,§) = (11.2", —7°).
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Bq. (2.91):

agHo E(z")

(
1 ( Zdz) for K> 0

1 z _d2 —
- i Jo B for K=0 . (3.20)

\/+—Ksinh<aOH0 fz dz’ ) for K <0

\

In Eq. (3.20) we express the curvature parameter, K, through the curvature density param-

eter, Qko:
' Ho\/lﬁ m<m foz Ed(zz’)> for Qg >0
7’(2) = aoHo z Ed(zz for Qo =0 . (3_21)
i rYes o smh(VQ—K Ji Ed(;)) for Qo < 0

\

3.5 Physical Distance

A physical distance is a distance to the distant object, which can be measured at some
moment of the cosmological time, ¢, with a physical ruler. The value of the physical distance
varies due to the universe expansion.

To determine the distances to the astronomical objects with a small redshift value, z < 1,
the following method can be applied. For small redshifts, the relation between the radial
velocity and redshift of the object is®, v ~ 2, Eq. (3.12). In this case, the Hubble’ law,
described in Eq. (2.1), is transformed into the local Hubble’s law:

z~ Hod = d~— forz < 1. (3.22)
Hy

The physical distance obtained by this method is called the distance determined from red-
shift.

The following expression establishes the relationship between the physical distance, d(t),
and the comoving distance, r:

d(t) = a(t)r. (3.23)

According to the expression, Eq. (3.23), the values of the physical and comoving distances

are equal to each other only at the present epoch:

8For small redshifts, v & ¢z, but in our convention ¢ = 1.
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Let’s decompose the integral in Eq. (3.19) into a Taylor series near z = 0. We also apply the
relation, Hy = —HZ(1—q), from Eq. (2.114), where ¢q is an acceleration parameter defined
in Eq. (2.116):

: 1 3, 1
d(to) = Hio/o (- -2+ <§ + 20— Sa + §QK0> 22|d2 + . (3.25)

As a result of the integrating in Eq. (3.25), we get:

1 1 2 1 1
d(to) = H, [Z —(1—q0)2" + <5 —3h~ 5@3 + EQKO> 23] to (3.26)

Restricting Eq. (3.26) by the first two terms of the Taylor expansion:

d(to) ~ Hio [1 —(1- qo)z] for z < 1. (3.27)

Eq. (3.27) is an approximate expression for determining the physical distance to an object
taking into account the acceleration of the universe. The second term in this equation
is a deviation from a classical definition of the physical distance using the Hubble’s law,
Eq. (3.22). With an increase in the value of the mass energy density parameter, {29, the
value of the acceleration parameter, ¢qo = —(Qmo/2+ Q2o — Q4 ), decreases, i.e., an increase in
the value of the mass in the universe leads to a slower accelerated expansion of the universe.

In turn, it leads to decrease in the value of the physical distance to an object, Eq. (3.27).

3.6 Interval of the Cosmological Time Between Two Events

A photon with a redshift, z, was emitted by the source of light and then registered by the
observer at z = 0. A photon traveled for the time, At = d/c, where d is the physical distance.

Consider the FLRW reference frame and the observer is at its center. Light propagates
along the zero geodesic line, which is described by the zero lightlike metric, ds? = 0, see
Fig. (2.5) (left panel). In Eq. (2.91) we set ds* = 0 and df = d¢ = 0. From Eq. (2.91), we
find the time, which is elapsed between two moments of the cosmological time, ¢(z) and #(0),

respectively:

At = t(z) — t(0) = / "= / " d(d(t)) = / " (3.28)

t(0) ag
In the equations, Eq. (2.111) and Eq. (3.19), we go over to the differential, da = —dzao/(1+
2)?, for a = ap/(1 + 2).
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Suchwise, Eq. (3.28) can be rewritten as:

A — 1 /Z dz'
aoly Jo (1+2)E(2)
1 z ds'
agHy /o (1+ z)\/Qro(l T QoL+ 2 + Quo(l + 202 + On

(3.29)

From Eq. (3.29) it follows that the interval of the cosmological time between two events is
uniquely related to the value of redshift. The value of the interval of the cosmological time
depends on the chosen cosmological model and on its model parameters.

The age of the universe can be determined from Eq. (3.29), provided that the upper

boundary of the integration tends to infinity, z — oo:

1 & dz’
At — / .
aHo Jo (14 2)/Qo(1+ 2/)* + Quo(1 + 2/)3 + Qo (1 + 2/)2 + O

(3.30)

According to Planck 2015 under the assumption that the model with the cosmological con-
stant A is correct, the age of our universe is t, = 13.79940.038 billion years, at the confidence

level at 68%, Ref. (Ade et al. (2016)).

3.7 Luminosity Distance

A luminosity distance, dy, is a distance from which an astronomical object at redshift, z,
and with a bolometric luminosity?, L, creates a bolometric (i.e., it is integrated over all the
frequencies) flux, F', under the assumption that the following relation between the luminosity

and the flux is fulfilled:
L

== (3.31)
4rd?

Thereby, the luminosity distance to an object is defined as:

[ L

The luminance distance, dy, is a measure of the value of the energy flux, F', created by an
object with a known luminosity, L.
Due to the universe expansion, the absolute bolometric luminosity, L, which is created

by the source of light at redshift, z, differs from the luminosity, Ls, which is registered by

9A bolometric luminosity is the total radiation power measured in Watts.
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the receiver of light at redshift, z = 0. The absolute bolometric luminosity, L, is defined as

an energy, Fe,, which is emitted by a source of light at redshift, z, for the time interval,
JAV .

o Eem
- Ao

L (3.33)

Respectively, the observed bolometric luminosity, Loy, is determined as an energy registered

by the receiver of light, E,ps, for the time interval, Atq,g:

Eobs

Lons = )
b Atobs

(3.34)

Consider the ratio of the absolute bolometric luminosity, L, to the observed bolometric

luminosity, Lgps:
L o Eem Atobs o Eem Atobs
Lobs B Atem Eobs B Eobs Atem '

(3.35)

Owing to the fact that the energy of the photon is proportional to its frequency, and taking
into account the results obtained in Eq. (3.16) and Eq. (3.17):
Eem Vem

= =1 . 3.36
Eobs Vobs e ( )

The obtained result reflects the fact of the decrease in the photon energy by virtue of redshift
as a consequence of the universe expansion.

On the contrary, considering the relations obtained in Eq. (3.15) and Eq. (3.17), we get:

Atobs
Atem

—1+z. (3.37)

This result illustrates the fact, that due to the universe expansion, there is an increase of the
propagation time of the photons, which leads to the decrease in the intensity of the photons,
registered by the receiver of light.

Thereby, based on the results obtained in Eq. (3.36) and Eq. (3.37), we can rewrite
Eq. (3.35) as:

L= (1+ 2)2 (3.38)

The energy flux is defined as an energy, Fe,, transferred per unit of time and per unit of
the area of a certain surface, S. According to this definition, we can write F' = Lgps/S.
The energy, F.,, emitted by the source of light, was distributed over a spherical surface of

a radius, R = agr, at time of registration by the receiver of light at = = 0. Thus, the energy
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flux received from the source of light is defined as:

L Lobs
drds Am(agr)? (3:39)

From this equation it follows:

L
d3 = (agr)? : (3.40)
Lobs
If we substitute Eq. (3.38) in Eq. (3.40), we will get:
di, = (ar)*(1+2)%,
= d, = aor(l+2). (3.41)

Let’s substitute the expressions, Eq. (3.21), for the comoving distance, r, in Eq. (3.41). As
a result, the expression for the luminosity distance, which is represented in terms of the

cosmological parameters'’, can be obtained:

142z VQ Z dz
HE)\/% sm( KO fo Ed(z ) for Qko > 0
14z z 2!
dp(2) = e ey for Qo =0 . (3.42)
HO(\I/K)) smh( V—{Tko foz Ed(zz ) for Qko < 0

\

The coefficient (1+42z) characterizes the loss of the energy flux because of the effects, associated
with the universe expansion: i) decrease of the intensity of the photons due to the extension
of the propagation time of the photons; ii) decrease of the energy of the photons due to
redshift. Therefore, an object with the luminosity, L., seems more distant than it really is.

For the small values of redshift, z, the luminosity distance can be defined as:

1
dy~ —|1+>(1+q)z| forz<1. (3.43)
Hl "2

By comparing Eq. (3.26) and Eq. (3.43), we can conclude, that the physical distance to an
object at present time and the luminosity distance to this object are equal only for very
small redshifts. This occurs with the domination of the first term in these equations. For
larger redshifts, the luminosity distance is greater than the physical distance, d;, > d(to).
The values of the luminosity of the type Ia supernovae have the small dispersions. In

cosmology, these objects are the standard candles for determining the distances to the distant

10 Assuming that dark energy is represented by the cosmological constant, A.
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objects. By measuring the energy flux, which is obtained from the type Ia supernovae for
different redshifts, z, it is possible to determine the luminosity distances to these objects by
the different way and to refine the values of the model parameters for considered cosmological

model from Eq. (3.42).

3.8 Angular Diameter Distance

Consider an astronomical object at redshift, z, with a linear transverse diameter, R, and
with an apparent angular diameter, /, measured in radians. The angular diameter distance
to this object, denoted as, d4, is defined as the ratio of its linear transverse diameter, R, to
the apparent angular diameter, 6:

dy = (3.44)

R
7
We introduce the FLRW reference frame with the observer at the center. In the FLRW
reference frame an astronomical object at redshift, z, has a comoving coordinate, r. The
linear transverse diameter of this object is the physical distance between two events at the

same redshift, z, and separated in space by a small angle, df. Assuming dt = dr = d¢ = 0
in the FLRW metric, Eq. (2.91). As a result, we get:

ds* = a(t)’r(t)?d6?,
= ds=dR = a(t)r(t)do. (3.45)

Integrating the FLRW metric in the transverse direction to the line of sight direction in
Eq. (3.45):
R = a(t)r(t)0. (3.46)

Substituting the result obtained in Eq. (3.46) into Eq. (3.44):

da(z) = “rgw - (ff)z). (3.47)
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Plugging the values of the comoving distance, r, from Eq. (3.21) into Eq. (3.47), we obtain

the values of the angular diameter distance depending on the model parameters:

(

1 ; VQOko % dZ
(1+2)Hov/ o Sm( iy Jo E(z/)> for Qko > 0
1 z dz! .
dA(Z) = (1+2)Ho fo E(Z) fOl“ QKO = O . (348)
1 (Vg (¢ de
o) Hov=0rcs smh( HOKo . E(z/)> for Qo <0

\

The relationship between the luminosity distance and the angular diameter distance is ex-
pressed through the equation:
dr(z) = (14 2)%da(2). (3.49)

The luminosity distance and the angular diameter distance defined in Eq. (3.42) and Eq. (3.48)
depend on the chosen cosmological model. These distances coincide at small redshifts, z < 1,
at which the spacetime curvature can be neglected. At large redshifts (respectively, at large
distances), the specific cosmological effects, such as the nonstationarity and the spacetime
curvature, already appear. Therefore, the concept of an unambiguous distance to an object
becomes inapplicable.

The radio galaxies Fanaroff-Riley Type II (FRII) have the small dispersions in their
linear transverse diameters, so these objects can serve as the standard ruler for determining
the distances to the distant objects in cosmology, Ref. (Buchalter et al. (1998)). Knowing
the angular size, #, and redshift of these objects, z, it is possible to determine the angular
diameter distance to these objects in the different way and, using Eq. (3.48), to refine the

values of the model parameters in the given cosmological model.
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Chapter 4

Observational Probes

4.1 Type Ia Supernovae

A supernova explosion is observed as a sudden increase in the brightness of the star by
about 10 orders of the magnitude. As a result of this explosion, the supernova shines at the
maximum of the light curve like all the stars of a galaxy.

The supernovae are recorded from the distant galaxies up to redshift, z =~ 1.7. Depending
on the spectral properties, the supernovae are divided into two main types: I - there are no
hydrogen lines in the spectra and II - there are hydrogen lines in the spectra. Type I
supernovae (SNela) are in turn subdivided into: Ia - light curves have an universal form,
Ib - light curves are similar to the light curves of the supernovae type IT and Ic - there are
no helium lines in the spectra and their light curves are similar to the light curves of the
supernovae type II.

The most plausible model of SNela is considered to be a model of a white dwarf ther-
monuclear explosion with the radius of R ~ 103 km, whose mass reached Chandrasekhar’s
mass, ma, ~ 1.44 Mg, as a result of the mass accretion from a satellite-star with the energy
release, F ~ 2 -10°% erg. This explosion is caused by the thermonuclear carbon fusion and
the radioactive decay of nickel, °Ni (*Ni — 6Co — 56Fe). The radioactive decay of *SNi
is the main source of the observed light curves of SNela and determines the shape of these
light curves. The luminosity in the maximum of the light curves depends only on the mass
of the ejected nickel, *Ni, (L. =~ 1.4 - 10% erg/sec, for nickel mass my; = 0.5 My). This
luminosity corresponds to the absolute magnitude, M., = —19™.2!. Tt can be expected

that all the SNela emit the same amount of light, assuming that the white dwarf is com-

!The definition of the absolute magnitude is given below.
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pletely burned out. Since the explosion mechanism is universal, all the SNela located at the
same distance from us should have approximately the same luminosity at the maximum, so
these objects are used as the standard candles for determining the distances to the distant
galaxies. The furthest galaxy, in which the Type la supernova (1997ff) was registered, has
redshift z = 1.7.
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Figure 4.1: Left panel: B-band light curves for the different SNela from the Calan-Tolono
survey. (Figures from Ref. (Heitmann et al. (2006))). The right panel: the same light curves
after one-parameter correction. (Figures from Ref. (Kim et al. (2004)))

Among the various samples of the SNela light curves, there is a dispersion in the shapes
of the curves, as well as in the maximum luminosity values (the dispersion reaches of 0.4
magnitudes in the blue light range), see Fig. (4.1) (left panel). This effect is caused by
the effect of the redshift on the observed spectra of the objects in the expanding universe,
since these observations were made in the specific wavelength range. These curves can be
normalized by applying an empirically found correlation, the so-called K-correction, between
the maximum luminosity and the width of the light curve, see Fig. (4.1) (right panel). After

carrying out this correction, the SNela light curves can be used as the standard candles.

Distance Modulus

A distance modulus is a method for determining the distances to the distant objects based
on the logarithmic scale of the magnitudes comparison.

The distance modulus, p, is defined as a difference between the apparent magnitude, m,
and the absolute magnitude, M, of a distant object with the corresponding bolometric energy
fluxes, [}, and F);. The apparent magnitude, m, is the magnitude of an object located at
the luminosity distance, dy, and the absolute magnitude, M, is defined as the apparent

magnitude that the object would have if it were located at a distance, d;, = 10 pc. From the
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Pogson’s law, Ref. (Pogson (1857)), connecting the apparent magnitude of an astronomical

object and the bolometric energy flux recorded from it, 10™ oc F=25, we get:

F,, dy,
—m—M=-251 ( )_ 1 ( )
p=m 5 logy Fy 5logy, 10 pe

From Eq. (4.1), it follows that the distance modulus, u, is determined by the luminosity
distance, dy, of the object. In this equation, the Hubble constant, Hj, is considered as a
nuisance parameter, and it is the reason for the uncertainty in the determination of the
absolute magnitude of the SNela.

The value of the speed of light, ¢ = 3 -10% km ¢!, should be taken into account to
determine the actual distance modulus. Suchwise, to calculate the luminosity distance, the
expression c¢ - dy, is assumed, where d;, is obtained from Eq. (3.42). In this case, applying
Eq. (4.1), we get an expression for the distance modulus, u, depending on redshift and the

model parameters:

(

_éK s1n( VKo fz Ed(zz ) for QKO >0
p = 42.3856—5 log; o (h)+5logo(142)+5 logy, o Ed() for Q2o =10 .

\/ﬁmsinh«*f}‘( fz Az ) for Qko < 0

\

(4.2)

Distance modulus is a function of the cosmological parameters, Eq. (4.2), therefore, the value
of the distance modulus is very sensitive to the changes in the values of the cosmological
parameters, see Fig. (4.2) (left panel). The SNela data correspond to the values of the
distance modulus for the ACDM model by the best way, as shown in Fig. (4.2) (right panel).

In the mid-1990’s, two independent astronomical groups: the Supernova Cosmology
Project (SCP), led by Saul Perlmutter, Refs. (Riess et al. (1998), Perlmutter et al. (1999))
and the High-Z Supernova Cosmology Team (HZSNS Team), headed by Brian Schmidt,
Ref. (Schmidt et al. (1998)), observed the SNela to determine the distances to these distant
objects. Starting processing the gathered information, the scientists hoped to get the confir-
mation of the slowing expansion of the universe. Both groups of researchers independently
discovered that SNela at redshift, z = 0.5, were dimmer by 0.25 of the magnitude compared

to the magnitude predicted by the open model with the cosmological parameters: .0 = 0.3
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Figure 4.2: Left panel: Hubble diagram for the 307 SNela of the Union compilation. (The
figures from Ref. (Kowalski et al. (2008))). The top panel: the red line corresponds to the
ACDM universe (2, = 0.28, Q5 = 0.72); the green line corresponds to the open universe
(2 = 028, 2y = 0) and the blue line corresponds to the Einstein-de Sitter universe
(Qm =1, Qy = 0). The bottom panel: the residuals of the distance modulus from the
best fitting cosmology for the ACDM model. Right panel: Hubble diagram for the Union2.1
compilation. The best fit cosmology for the ACDM model is represented as a black solid
line. (The figure from Ref. (Suzuki et al. (2012)))

and €24, = 0, which describes the slowing down universe. The so-called Einstein-de Sitter
model with the cosmological parameters: 2,0 = 1 and 2y = 0, which describes a flat slowing
down universe, also failed to correctly approximate the obtained results. Thus, the SNela
were at a greater distance than it was predicted by the cosmological models, which describe
the open and flat slowing down universe.

The cosmological model of a flat accelerating universe with the cosmological parameters,
Qmo = 0.3 and Q4 = 0.7, predicts well the results obtained by these observers. Thereby, the
discovery of the accelerated expansion of our universe according to the SNela data was made
by these two groups of researchers. In 2011, Saul Perlmutter, Brian Schmidt and Adam

Riess were awarded the Nobel Prize in Physics for this discovery.
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4.2 Cosmic Microwave Background Radiation

4.2.1 Description of the CMBR
Origination of the CMBR

In the universe, the recombination epoch began approximately ... = 350000 years after
the Big Bang? at redshift z,.. &~ 1400, at the average temperature in the universe, (T'),cc &~
3800 K, Ref. (Rubakov & Gorbunov (2017)). Due to the expansion and, therefore, the cooling
of the universe, at the recombination epoch the charged electrons and protons become bound,
forming the electrically neutral hydrogen atoms®, Ref. (Peebles (1968)). At the same time,
the matter from the plasma state, which is opaque for the most part of the electromagnetic
radiation, passes into a gaseous and an electrically neutral state.

The CMBR appeared at the end of the recombination epoch, in the period of the last
scattering of the photons on the electrons, in the so-called period of the photon decoupling
from the hydrogen atoms. The last photon scattering occurred t4e. &~ 379000 years after the
Big Bang at redshift zq.. &~ 1100, at an average temperature in the universe, (7') gec ~ 3100 K.
As a consequence of the decoupling of the radiation and the matter, the relic photons no
longer interacted with the neutral hydrogen atoms. The free path of the relic photons
becomes larger than the size of the Hubble horizon, and these photons begin to spread freely
in the universe. Thus, at the present epoch, an observer registers the relic photons that last
interacted with the matter at redshift zgec.

According to the Big Bang model, the CMBR photons began its propagation in the

’In 1946, George Gamow developed the "hot universe" theory, also known as the Big Bang theory,
Ref. (Gamov (1946)). Based on this theory, George Gamow, Ralph Alfer and Robert Herman predicted
the existence of the microwave background radiation (CMBR), Refs. (Alpher & Herman (1948a), Alpher &
Herman (1948b)). In 1965, the American radio astronomers Arno Penzias and Robert Wilson absolutely
accidentally recorded this isotropic radiation, Ref. (Penzias & Wilson (1965)). Detection of CMBR, which
was originated at the epoch of the primordial recombination of hydrogen, is one of the main evidence of the
correctness of the Big Bang theory. In 1978, Arno Penzias and Robert Wilson were awarded the Nobel Prize
in Physics for the discovery of the CMBR.

3Before recombination, the baryonic matter consisted of 75% of the protons and 25% of the a-particles
or, in other words, the helium nuclei, “He. The ionization energy of the helium is greater than the ionization
energy of the hydrogen; therefore, the helium recombination occurred much earlier, Ref. (Peebles (1966)).
The first helium recombination, Hett 4+ e~ — He™ + ~, happened at redshift, z ~ 6000. The second helium
recombination, He™ 4+ e~ — He + v, occurred at redshift, z ~ 2500, Ref. (Hu (1995)). Despite the fact that
after the recombination of the helium the universe is still optically opaque, the recombination of the helium
affects the temperature power spectrum of the CMBR, which increases in the height of the 2nd, 3rd and 4th
peaks by 0.2%, 0.4% and 1%, respectively, Refs. (Hu et al. (1995), Hu (1995)).
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universe from the surface of a sphere called the surface of last scattering, whose radius is*:
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CMBR Properties

In 1989, the Cosmic Background Explorer (COBE) satellite was launched to study the
CMBR. The results of the measurements obtained from this satellite are: the discovery
of the CMBR Planck spectrum (the project Differential Microwave Radiometer (DMR)),
Refs. (Mather et al. (1994), Mather et al. (1999)) and the discovery of the CMBR temperature
anisotropy® (the project Far-InfraRed Absolute Spectrophotometer (FIRAS)), Ref. (Bennett
et al. (1996)). In 2006, the leaders of these projects, George Smoot (the DMR project) and
John Mather (the FIRAS project) received the Nobel Prize in Physics.

The CMBR is a thermal radiation, its spectrum corresponds to the spectrum of the
absolutely black body with a temperature at the present epoch Ty ~ 2, 72548 + 0, 00057 K,
see Fig. (4.2) (left panel). This temperature accords to the average temperature of the
CMBR at the present epoch, (T',) = 7j. The maximum of the Planck’s spectrum accords
to the frequency 160,4 GHz, which corresponds to a wavelength 1,9 mm, see Fig. (4.2) (left
panel). The energy density of the CMBR is approximately equal to p, = (72/15)T ~
4.64-107% g em™3 ~ 0.26 eV ¢cm~®. The mass density of the CMBR is n, = (2((3)/72)T¢ ~
411 em™3, where the ¢ is a Riemann function, ((3) = 1.202, Ref. (Scott & Smoot (2010)).

CMBR Temperature Anisotropy

The temperature of the CMBR, which was registered in the direction in the sky, (0, ), as
T'(0, ) is the main measurement in the investigation of the CMBR. The value of # determines
the polar angle on the sphere and the value of ¢ is the azimuth angle. The dimensionless

value of the CMBR temperature anisotropy is defined as:

5T(‘97 ()0) _ T(‘gv ()0) B TO

To To

(4.4)

4By virtue of the fact that the recombination is not an instantaneous process and takes place over a
finite range of redshifts, the CMBR photons are scattered for the last time inside the surface of the finite
thickness. The thickness of this surface during the recombination is approximately equal to the photons
diffusion length, therefore, this effect is significant on the same length scales as the Silk damping (the Silk
damping effect is described below), Ref. (Schneider (2006)).

5Tn 1983, the RELICT-1 experiment was carried out from the spacecraft PROGNOZ-9 in the USSR. The
purpose of this experiment was to study the CMBR temperature anisotropy. The Soviet scientists failed to
register the temperature anisotropy of the CMBR.
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The CMBR is isotropic and uniform at the level of the temperature fluctuation, 07'(0, ¢) /Ty ~
1074, see Fig. (4.3) (right panel).

The map of the temperature anisotropies of the CMBR is presented in Fig. (4.3) (right
panel). This map is obtained by the project Planck 2013, Ref. (Ade et al. (2014b)). At the
present epoch, the temperature anisotropy of the CMBR is 67(0, ¢) /Ty ~ 107°.
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Figure 4.3: Left panel: the Planck spectrum of the CMBR, which is obtained by the exper-
iments: FIRAS, DMR, UBC, LBL-Italy, Princeton, Cyanogen. (Figure from Ref. (Smoot
& Scott (1997))) Right panel: the temperature fluctuations of the CMBR relative to the
average temperature based on the results of the Planck 2013. (Figure from Ref. (Ade et al.
(2014b))) The dipole anisotropy, which related with the motion of the solar system rela-
tive to the rest frame of the CMBR and the non-Planckian emission from the Galactic disk
are subtracted. The amplitude of the temperature fluctuations relative to the background
temperature is AT /Ty ~ 1075.

4.2.2 CMBR Angular Power Spectrum of the Temperature Anisotropy

Since the temperature anisotropy of the CMBR depends on the direction of the observation,
the value of the temperature anisotropy can be represented as the decomposition in the
spherical orthonormal harmonics, Y;(6, ). This decomposition is the analogous to the

Fourier decomposition on a spherical surface:

o 1
RO =YY a0 (45)
where @;,, are the multipole coefficients of the decomposition in the spherical harmonics,
Y ™0, ¢). The coefficients q;,, characterize the amplitude of the temperature fluctuations
at the different angular scales and have the following property, a;,, = (—1)™ay .
The study of the statistical properties of the coefficients a;,, are very important for

the analysis of the distribution of the CMBR temperature anisotropy. The coefficients a; ,,
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can have both positive and negative values. The value |a;,,|> determines the deviation of
the coefficient @;,, from zero and, accordingly, determines the amplitude of the tempera-
ture anisotropy. According to the observations, the distribution of the CMBR temperature
fluctuations forms a random Gaussian field.

Assuming an isotropic and homogeneous universe, the coefficients q,,, for the different
values of the indices [ and m are statistically independent of each other, Ref. (Mukhanov
(2005)):

(A,ma)r ) = Crmipr O - (4.6)

The value of the coefficients C},, determines the temperature angular power spectrum
anisotropy of the CMBR.

The requirement of the independence of the statistical properties of the coefficients a;,,
on the choice of the origin for any direction of the observation or the so-called requirement, of
the rotational invariance leads to the fact that the value of the angular power spectrum Cj,,
does not depend on the value of the index m but depends only on the index [, i.e., C,,, = C,
Ref. (Durrer et al. (1998)). Therefore, Eq. (4.6) with the coincidence of the indices, [ = I,
can be rewritten as, Ref. (Mukhanov (2005)):

({laim|*) = Ci. (4.7)

The angle brackets, (), in Eq. (4.6) and in Eq. (4.7), denote the averaging over a hypothetical
ensemble of the universes like our. Assuming that our universe is an ergodic dynamic system®,
these angle brackets can be interpreted as averaging over all the possible observers in our
universe. The fact is that each observer in the universe can observe only one realization of
all the possible observable universes. For example, the observers from the Earth can study
the CMBR, which is visible only from the Earth. In the universe, each observer registers the
photons of the CMBR with their own distribution of the temperature fluctuations, which
differs from each other. The difference between our region of the observable universe in
comparison with the averaged region of the observable universe is called the cosmic variance.
The value of the cosmic variance for each measurement, C, is defined as, Ref. (Scott & Smoot

(2010)):
s 2

(AC)" =5

C?. (4.8)

The value of the cosmic variance is negligible on the small angular scales, it becomes sig-

6The ergodic systems are characterized by the coincidence of the expectation of the time series with the
expectation of the spatial series.
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nificant for the angular scales ¥ > 10°. The value of the angular power spectrum, Cf,
characterizes the size of temperature fluctuations on the angular scale ¥ = 180°/l. The
index [ determines the value of the angular scale. A small value of the index [ corresponds to
a large angular scale and vice versa, a large value of [ corresponds to a small angular scale.
With an increase in the value of the index [, the spherical harmonics have the variations
on the smaller angular scales. The values of the index [ in the range from one to several
thousand are applied in the current observations.

The value of the index [ = 1 determines the properties of the CMBR, called the dipole.
In 1969, the dipole component was detected in the CMBR. It manifests itself in the fact that
in the direction of the constellation Leo the temperature of this radiation is 0.1 K, above the
average temperature of the CMBR, respectively, in the opposite direction the temperature
of this radiation is on the same value below. This temperature anisotropy is explained
by the Doppler effect due to the motion of the solar system relative to the CMBR, in the
direction of the constellation Leo with the velocity 370.6 & 0.4 km c¢~!. The velocity of this
motion determines the value of the dipole component of the temperature anisotropy, 07gipo1 =
3.355 £ 0.008 mK, Ref. (Hinshaw et al. (2009)). The maximum value of the temperature
fluctuations for the dipole component, which is averaged over a year, is 67 /Ty ~ 1.23-1073.
The observations of the dipole component do not contain the information about the intrinsic
properties of the CMBR. In this regard, the dipole is considered separately, and the study of
the CMBR begins with the minimum value of the index [ = 2, with the so-called quadrupole
anisotropy.

Consider the analysis of the temperature anisotropy of the CMBR, without taking into

account the dipole:

0T(0,p) _ T(0,9) —To — 6Taipol > -
T, T, =D anY " (0.). (4.9)

The spherical harmonics, Y;™ (6, ), are expressed in terms of the Legendre functions, P/ (cos 9),

as, Ref. (Arfken (1985)):

Ym0, o) = (—1)m\/ 21; ! 8 - Ziiﬂm(cos 9)eime . (4.10)

The requirement for fulfillment of the rotational invariance or the fulfillment of the conditions

of the isotropy relative to the value of the azimuth angle, ¢, is equivalent the equality to
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zero the value of m, m = 0. In this case, Eq. (4.10) takes the form:

Yi(0,¢) =1/ 2l;_113l<COS’l9). (4.11)

Thus, in Eq. (4.11), the spherical harmonics are reduced to the ordinary Legendre’s polyno-
mials, Pj(cos ).

In this case, the temperature correlation function between two directions is:

<5T(91,g01) ‘ 0T (05, cp2)> _ Z 20+1

T T - CP(cos ), (4.12)

where 9 is the value of the polar angle between the directions (61, 1) and (6, ps). The
coefficients C; set the correlation between the temperature fluctuations in the different di-
rections.

The expression for the square of the value of the temperature fluctuations is a particular

case of Eq. (4.12):

< T >_zl: - clw/ 5 CidInl. (4.13)

Under the derivation of this formula, it was taken into account that the polar angle between

two collinear co-directional vectors is zero, ¥ = 0, and Fj(cos0) = 1. The value of W

determines the total contribution of the angular moments of the same order.
The dependence of the angular power spectrum of the CMBR temperature anisotropy,
11+1)C

== FLTE, on the angular momentum, [, is shown in Fig. (4.4).

4.2.3 CMBR Primary Temperature Anisotropy

The temperature fluctuations that occur during the decoupling period in the recombination
epoch are called the primary anisotropy.

Consider the angular power spectrum of the CMBR temperature anisotropy, which is
presented in Fig. (4.5). The angular power spectrum of the CMBR temperature anisotropy
is mainly characterized by three regions of the angular momentum values, [: [ < 100, [ > 100
and [ > 1000, see Fig. (4.5), Refs. (Hu & Okamoto (2002), Scott & Smoot (2010)).

For the first region with [ < 100, the function (2] 4+ 1)/47 will be almost flat, if the

7

Harrison-Zeldovich power spectrum is considered in the calculations.”. The second region

"The power spectrum P(k) = k™ with ng = 1 is called the Harrison-Zeldovich spectrum, where k is a
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Figure 4.4: The angular power spectrum of the CMBR temperature anisotropy obtained by
the experiments: WMAP 5 year, Acbar, Boomerang, CBI. (Figure from Ref. (Nolta et al.
(2009)))

with [ > 100 contains the peaks with the different amplitudes. These peaks are caused
by the acoustic oscillations that arose in the baryon-photon plasma before decoupling of
the photons from the baryons during the recombination epoch. After the termination of
the recombination, their positions were shifted as a result of the expansion of the universe.
Therefore, the positions and the amplitudes of the acoustic peaks contain the important
information about the evolution of the universe. The first acoustic peak defines the sound
horizon of the baryons, the value of which serves as the standard ruler for determining the
distances in cosmology. On the other hand, the size of the sound horizon can be determined
by measuring the angular scale of the first sound peak. In the third region with [ > 2000,
the amplitude of the power anisotropy spectrum decreases sharply due to the Silk damping

(a description of this effect is given below).

4.2.4 Basic Mechanisms Causing the CMBR Primary Anisotropy

e Matter density fluctuations in the primordial plasma, Refs. (Hu & Okamoto (2002),
Kosowsky (2001))

conformal momentum.
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Figure 4.5: The influence of the cosmological parameters on the CMBR angular power spec-
trum. The values of the square root of the angular power spectrum, Ar = /I(l + 1)C, /27Ty,
are plotted versus to the logarithmic scale of the angular momentum, {. (Figure from Ref. (Hu
& Okamoto (2002)))

The density of the baryons is directly related to the energy density of dark matter.
On the scales larger than the event horizon during the recombination, the distribution
of the baryons follows the distribution of dark matter. On the smaller scale, the
pressure of the baryon-photon plasma is effective, since before the recombination these
components were closely related to the Thompson scattering. In the regions with the
increased dark matter density, the density of the baryons is also increased. In such
regions, the temperature of the baryons increases due to their adiabatic compression,

which leads to an increase in the value of the temperature of the photons.

e Doppler effect, Ref. (Schneider (2006))

The electrons, which scatter the CMBR photons for the last time during the recom-
bination, have the additional peculiar velocities relative to the Hubble flow. These

velocities are associated with the fluctuations in the matter density and, accordingly,

74



with the temperature fluctuations. As a consequence of the Doppler effect, the CMBR
photons, which move away from us at the velocities greater than the Hubble expan-
sion, experience the additional redshift. This leads to the decrease in the value of the

temperature measured in this direction.

Silk damping, Refs. (Hu & Okamoto (2002), Kosowsky (2001), Scott & Smoot (2010))

The Silk damping or, in other words, the photon diffusion damping is a physical process
that reduces the energy density anisotropy, Ref. (Silk (1968)). Since the mean free path
of the photons is finite, the baryons and the photons become separated from each other
on the small spatial scales. This means that on the small length scales (for I > 1000),
the temperature fluctuations can be smeared out by the diffusion of the photons, see

Fig. (4.5) (d).

Integrated Sachs-Wolfe effect, Refs. (Sachs & Wolfe (1967), White & Hu (1997), Hu &
Okamoto (2002), Scott & Smoot (2010))

The spatial distribution of the potential in the universe changes at the radiation dom-
inated epoch or at the dark energy dominated epoch. When the CMBR photons pass
through this evolving potential, the energy of these photons changes, i.e., the differ-
ential gravitational redshift of the photons occurs. This is the so-called Integrated
Sachs-Wolfe effect (ISW), Ref. (Sachs & Wolfe (1967)). The ISW effect mainly affects
the low values of the CMBR multipoles, see Fig. (4.5) (a). On the large scales, the
CMBR temperature anisotropy is associated with the density fluctuations owing to the

ISW effect, Ref. (White & Hu (1997)).

Primary metric tensor perturbations, Refs. (Hu & White (1997), Scott & Smoot (2010))

The cause of the CMBR primary temperature anisotropy is the metric perturbations.
These perturbations can generate the scalar, vector and tensor modes. The tensor
modes (the transverse metric perturbations with zero trace) or, the so-called gravita-
tional waves generate the primary temperature anisotropies of the CMBR due to the
total effect of the anisotropic expansion of space, Ref. (Scott & Smoot (2010)). The
contribution of the tensor modes to the angular power spectrum of the CMBR temper-
ature anisotropy can occur at ¢ > 1, respectively, at [ > 180. The tensor mode can be
distinguished from the angular power spectrum of the CMBR temperature anisotropy

using the polarization data of the CMBR (information about this is presented below).
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4.2.5 Secondary Anisotropy of the CMBR

Propagating through the universe, the CMBR photons can experience a number of the
distortions, which can change the temperature distribution of the CMBR photons on the
sky. In the angular power spectrum of the CMBR temperature anisotropy, these effects
are considered as the secondary anisotropies. Consider the effects that cause the secondary

anisotropes:

e Thomson scattering of the CMBR photons, Refs. (Hu & Dodelson (2002),Schneider
(2006))

The Thomson scattering of the CMBR photons on the free electrons occurred in the
redshift range, z € (6;20). These free electrons appeared as a result of the reionization
of the neutral hydrogen atoms in the universe by the dwarf galaxies, and /or by the very
first generation of the stars (by the Population IIT stars), and/or by the first quasars.
The Thomson scattering is isotropic, so the direction of the photons after scattering
becomes almost independent of their original directions of the motion. The scattered
CMBR photons form the isotropic component of the radiation with the CMBR tem-
perature. As a result of this effect, the primary temperature anisotropy is suppressed,
i.e., the measured CMBR, temperature fluctuations will decrease due to the fraction
of the photons that experienced the Thompson scattering. In addition to suppressing
of the primary temperature anisotropy, the re-scattering of the CMBR photons causes
the generation of the additional polarization at the large angles and the Doppler effect

at the large angles, Ref. (Hu & Dodelson (2002)).

e Gravitational lensing of the CMBR photons, Refs. (Hu & Dodelson (2002), Schneider
(2006))

The gravitational field of the matter density fluctuations in the universe causes the
gravitational lensing (the gravitational deviation) of the CMBR, photons, which leads
to the change of the initial direction of the motion of the photons. This means that
while at the present epoch we observe two photons separated by an angle, 6, the
physical separation between them during the decoupling epoch differed from the value
dA(zgec)f due to the gravitational deviation of the photons. As a result of this effect,
the correlation function of the temperature fluctuations becomes slightly blurred. The

influence of this effect is significant at the small angular scales.
e Sunyaev-Zeldovich effect, Refs. (Scott & Smoot (2010), Yoo & Watanabe (2012))
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The galactic clusters left an imprint on the CMBR photons, by the so-called Sunyaev-
Zeldovich (SZ) effect®, Ref. (Sunyaev & Zeldovich (1970)). If the CMBR. photons
move through a cluster of the galaxy, then they will experience the inverse Compton
scattering on the high-energy electrons in this cluster. As a result of this scattering,
the energy and the temperature of the CMBR, photons increase. Thus, the spectrum
of the CMBR becomes distorted.

Influence of the Cosmological Parameters on the CMBR Angular Power Spec-

trum

The influence of the cosmological parameters on the angular power spectrum of the CMBR
is shown in Fig. (4.5). The dependence of the CMBR, angular power spectrum on the space
curvature of the universe is shown in Fig (4.5) (a). There are two effects associated with
the influence of the space curvature on the CMBR angular power spectrum: the shift of the
minima and maxima of the Doppler peaks and the strong dependence of the angular power
spectrum in the region with [ < 100 on the total energy density parameter, (., Refs. (Hu
& Dodelson (2002), Schneider (2006)). The latter effect is a consequence of the ISW effect,
since an increase in the values of the space curvature leads to a greater time variation of the
gravitational potential. The shift of the acoustic peak is due to the fact that the value of the
angular diameter distance, d(z.c), is sensitive to the space curvature variation, therefore,
the angular diameter distance scale, which corresponds to the sound horizon, also changes.

The influence of dark energy (the cosmological constant A) on the CMBR, angular power
spectrum in the case of a flat universe is shown in Fig. (4.5) (b). The location of the acoustic
peaks is almost independent of the value of the dark energy density parameter, (2.

The dependence of the CMBR angular power spectrum on the baryons energy density is
shown in Fig. (4.5) (¢). An increase in the value of the energy density parameter, (7%, leads
to an increase in the amplitude of the first acoustic peak and a decrease in the amplitude of
the second acoustic peak.

The influence of the value of the matter energy density parameter, ,,h%, on the CMBR
angular power spectrum is presented in Fig. (4.5) (d). Changing in the value of this parameter

causes a change in the acoustic peaks amplitudes and the acoustic peaks locations, Refs. (Hu

8The SZ effect is scattering and its value does not depend on redshift, so the clusters of the galaxies
can be found at any distances. The measurements of the SZ effect are used to search for the clusters of
the galaxies in order to estimate their masses, as well as to clarify the value of the Hubble constant, Hy,
Ref. (Scott & Smoot (2010)). In addition, in combination with the accurate values of redshift and masses
for the clusters of the galaxies (for example, with the X-ray observations), the SZ effect can be applied as
the standard ruler in cosmology, Ref. (Cooray et al. (2001)).
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& Dodelson (2002), Schneider (2006)).

4.2.6 Polarization of the CMBR

The CMBR is polarized at the level of several mkK, Ref. (Hu & White (1997)). The cause of
both the temperature anisotropy and its polarization are the scalar and tensor gravitational
perturbations of the metric?. Since the sources of the CMBR temperature anisotropy and the
polarization are the same, their power spectra should be correlated, Refs. (Kosowsky (2001),
Scott & Smoot (2010)). The combination of the angular power spectrum of the CMBR
temperature anisotropy and the signal of the CMBR E-mode polarization according to the
results of the experiments: BICEP, BOOMERANG, CBI, DASIT and QUAD, are shown in
Fig. (4.6) (right panel).

Angular Scale |deg|
90 10 2 0.5 0.2

10— c— - — g o L e e T —T T
£ A Vi 3l + = WMAP 1
F E-mocdles \/’\{/\ ‘U"un, ; 1 1 ]
10°L . LM s - « BOOMERANG
— E . P I o CBI ]
\ £ x = 4
E S‘»" 205 11 « DASI o}
S 107E A4 & L ] o QUAD i
N #\ 18 Al '
15} \ Ea i J = i
£l SRR AR R B
& 1o ] I 1 I ]
10 2 \ E— I jﬂ[J ﬂ $ 1
35 B-modes \X: —05 1 { N
107t -
Eoad RO M | P A L IOk TS il P I I I I | I Y W M
10' 10° 10° 10" 0 200 400 600 800 1000 1200 1400
Multipole moment £ Multipole ¢

Figure 4.6: Left panel: the predicted polarization spectra of the E-mode (red curve) and B-
mode (blue curves) combined with the results of the experiments: WMAP, Planck and EPIC.
(Figure from Ref. (Dodelson et al. (2009))) Right panel: the combination of the angular
power spectrum of the temperature anisotropy and the signal of the E-mode polarization,
according to the results of the experiments: BICEP, BOOMERANG, CBI, DASI and QUAD.
(Figure from Ref. (Scott & Smoot (2010)))

Stokes Parameters

Mathematically, the polarization vector of the electromagnetic waves is described by the
Stokes parameters, Ref. (Kosowsky (1996)).
Suppose a plane monochromatic wave, which is characterized by a frequency of wg, prop-

agates along the direction of z. The projections of the electric field vector, E, on the x and

9The vector perturbations are not usually taken into account due to their absence in the standard cos-
mological scenario.
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y axes have the form, respectively, Refs. (Kosowsky (1996), Kosowsky (2001)):

E, = a,(t) cos(wot — B.(t)),  E, = a,(t) cos(wot — B,(1)), (4.14)

where the amplitudes of the projections of the electric field vector a, and a,, as well as the
phase angles 3, and 3,, are the slowly varying functions of time relative to inverse frequency
of the electromagnetic wave.

The Stokes parameters are determined by the time-averaged values of the amplitudes

projections and the phases of the electric field vector:

=
—_
D

._.b
[y
~I

U = (2a,a, cos(a, — ay

V = (2a,a,sin(a, — ay)).

The parameter [ is the intensity of the electromagnetic radiation, therefore, this parameter
has a positive value. The sign and the values of the parameters (), U and V characterize
the polarization state of the electromagnetic wave. For the natural unpolarized light, these
parameters are equal to zero, () = U =V = 0. The value of the parameter V' determines
the difference between the intensities of the right and left-side circular (rotor) polarizations.
The parameter V' depends on the rotation of the axes of the coordinate system, while the
parameters () and U are invariant with respect to the rotation of the axes of the coordinate
system.

The linear polarization of the electromagnetic wave is determined by the parameters ()
and U. The linear polarization matrix is formed from these parameters as:

a9V (4.19)

U -Q
The determinant of this matrix is defined as:
det(A) = —(Q* + U?). (4.20)

The linear polarization will be absent if the determinant of the matrix A is equal to zero.

Suppose that the electromagnetic radiation is linearly polarized, i.e., Q* + U? # 0. Then it
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is possible to determine the degree of the linear polarization, p, and the value of the angle,

1, with respect to the axis, z, as:

VQ*+ U? 1 U
— = B arctan 0’ (4.21)

the value of the parameter, I, determines the intensity of the electromagnetic radiation,

Ref. (Kosowsky (1996)).

Divergence and Curl Components of the CMBR Polarization

The CMBR polarization can be decomposed into the divergence part (called "E-mode") and
the curl part (called "B-mode"), Ref. (Kosowsky (1996)). The direction of the polarization of
the B-mode is rotated by 45° relative to the direction of the polarization of the E-mode, see

Fig. (4.7). The E-mode of the CMBR. polarization has parity (—1)!, similar to the spherical

Figure 4.7: The divergence E-mode and the curl B-mode of the polarized field. (Figure from
Ref. (Dodelson et al. (2009)))

harmonics, see Fig. (4.7), while the B-mode has parity (—1)"*1. The scalar perturbations
cannot generate the B-mode of the polarization. The contribution of the vector perturbations
to the B-mode formation is a factor of 6 larger than to the E-mode formation, while the

contribution of the tensor perturbations to the B-mode formation is a factor of 8/13 smaller
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than to the E-mode formation, Ref. (Hu & White (1997)). The appearance of the E-mode
is due to the Thomson scattering on the electrons from the CMBR photons propagating in
an inhomogeneous plasma, Refs. (Kosowsky (1999), Kosowsky (2001)). In 2002, the E-mode
was registered by the Degree Angular Scale Interferometer (DASI) experiment, Ref. (Leitch
et al. (2002)), see Fig. (4.6) (right panel).

The maximum amplitude of the CMBR, polarization is of the order of 0.1 mkK, Ref. (Hu
& White (1997)). The cosmologists predict the existence of two types of the B-mode of the
CMBR polarization. The emergence of the first type of the B-mode is associated with the
interaction of the CMBR, with the primordial gravitational waves (tensor mode), i.e., with
the rotational, vorticity perturbations (vector mode!®) arising during inflation. The relic
gravitational waves are generated by the tensor perturbations of the metric.

The second type of the B-mode is associated with the gravitational lensing of the E-mode
or, in other words, with the cosmological birefringence effect, based on the interaction of the
electromagnetic field with the scalar field, Refs. (Lepora (1998), Galaverni et al. (2015)).
The second type of the B-mode appeared at a later time than the first type of the B-
mode. In addition, the B-mode of polarization can also cause the interaction of the CMBR
photons with the particles of the background galactic dust. The second type of the B-mode
was discovered in 2013 by the South Pole Telescope and the Herschel Space Observatory,
Ref. (Hanson et al. (2013)).

The discovery and the study of the first type of the B-mode is of the great interest for
cosmologists. The amplitude of the first type of B-mode corresponds to the amplitude of
the primordial gravitational waves and, accordingly, determines the energy scale of inflation,
Ref. (Gawiser & Silk (2000)). Therefore, the registration of this type of the B-mode, i.e.,
the registration of the primordial gravitational waves would be a direct evidence of the
correctness of the theory of inflation. In March 2014, the registration of the first type of the
B-mode was announced by the BICEP2 experiment, Ref. (Ade et al. (2014a)). However, a
later analysis, published in September 2014 and provided by another group of researchers,
which used data from the Planck Observatory, showed that the result obtained in the BICEP2
experiment was caused by the CMBR photons scattering on the particles of the galactic dust,
Ref. (Adam et al. (2016)). Unfortunately, so far the first type of the B-mode is not detected.

The difficulty in detecting of the first type of B-mode is due to the small value of the B-

10Tn the standard cosmology, the vector mode already decays at the inflation stage. The presence of the
neutrinos, Ref. (Lewis (2004)), or/and the primordial magnetic fields, Ref. (Kahniashvili & Ratra (2005)),
can counteract to the vector mode decay. Taking into account these effects, the contribution of the vector
mode must be considered.
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mode amplitude of the CMBR polarization, as well as the influence of the birefringence effect
on the B-mode, Ref. (Zhao & Li (2014)) and with the impact of the intergalactic medium
(in particular, with the influence of the galactic dust). The birefringence effect influences
the vector and tensor fluctuations. As a result of this effect, the B-mode is transformed into
the E-mode and the tensor perturbations, which generate the B-mode and the E-mode, also
occur, Ref. (Lepora (1998)).

In this thesis, we obtained the constraints on the model parameters o and 2, in the
»CDM Ratra-Peebles scalar field model using the BAO/CMBR analysis. In the BAO/CMBR
analysis, we compared the observational and theoretical values of the ratio of the comoving
angular diameter distance to the distance scale at the decoupling epoch. A more detailed

description of the BAO/CMBR analysis and its results is presented in Chapter VIII.

4.3 Barion Acoustic Oscillations

Before the recombination epoch, the photons, the baryons and the electrons were closely
interrelated. In the primary plasma, the regions of the over matter density, which consist
of dark matter and the baryons, can be randomly formed. Such the regions attract another
matter to themselves and, on the other hand, as a result of the baryons and the photons
interaction, a strong radiation pressure is created. Oppositely directed the gravitational
and radiation pressures induce the joint oscillations of the baryons and the photons. These
oscillations are called the Baryon Acoustic Oscillations (BAO), which are the sound waves,
and they are characterized by the fluctuations, dy,, in the baryon-photon medium.

The radial pressure leads to the emergence of the spherical sound wave of both the
baryons and the photons moving outward from the region with the over matter density. The
baryon-photon medium before recombination is almost relativistic, i.e., the photons energy
density, p., is greater than the baryons energy density, p,: p, < p,. The photons pressure,
P

s

speed in the primordial plasma is defined as, Ref. (Rubakov (2014)):

is related to the photons energy density, p,, as P, = 1/3p,. The value of the sound

vy = \JOP,)0py, = \/1/3 ~ 0.58. (4.22)

Thus, the value of the sound speed (the speed of the sound wave) is no much more than half

the speed of light'!. Dark matter interacts only gravitationally and, therefore, it remains at

" Taking into account the value of the speed of light, this formula has the form, v ~ 0.58c.
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the center of the sound wave being the primary cause of the emergence of the regions with
the over matter density.

At the end of the recombination epoch, the decoupling of the photons and the baryons
occurs at redshift zgq.. &~ 1100. If before decoupling the baryons and the photons move from
the center of the over matter density region together, then after decoupling the photons
will cease to interact with the baryons and dissipate. As a result, the radiation pressure in
the over matter density region decreases and, eventually, the over As a result, the radiation
pressure in the over matter density region decreases and, eventually, the over density region
with a fixed radius is formed density region with a fixed radius is formed, which is called

the sound horizon, rs. The comoving size of the sound horizon at the photons decoupling is

tdec dt/
ry = / Vg——r. (4.23)
0 a(t')

The energy distribution of BAO within the sound horizon is defined as, Ref. (Rubakov
(2014)):

determined by the equation!?:

tdec k ,
Op ~ cos (krg) = cos (/0 vsa(t’) dt ), (4.24)

here k is the conformal momentum 2.

The energy distribution of BAO outside of the sound horizon, d,=const, i.e., the baryon
fluctuations are frozen. According to Eq. (4.24), before recombination, the baryon-photon
fluctuations are the oscillating function of the conformal momentum, k. The baryon density

fluctuations, dpy, oscillate as:
dpv(k) =~ prop, (k) ~ ppcos(krs). (4.25)

The baryon density oscillations, dpy,, are preserved to the present epoch. The baryon den-
sity oscillations in the matter power spectrum, P(k), as the tiny fluctuations are represented
in Fig. (4.8).

After recombination, the baryons remain at the distance of the sound horizon from each
other, rg, and dark matter is located at the center of the over density region. Dark matter
and the baryonic matter attract each other'*, which ultimately leads to the formation of

the galaxies in the universe. Thus, the galaxies are separated from each other by the sound

12The physical size of the sound horizon at the photons decoupling is equal to a(tgec)rs-

13The physical momentum is described by the equation, kpnys = k/a(t).

'4Due to the dominance of dark matter, the gravitational potential, which is formed by dark matter, is
also dominant. The baryonic matter follows this potential, rolling down into its potential well.
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Figure 4.8: Baryon Acoustic Oscillations in the matter power spectrum discovered in: (a)
2dFGRS and SDSS main galaxies, (b) SDSS LRG sample, (c¢) both samples. Solid curves
represent the best fit of the data. (Figure from Ref. (Percival et al. (2007)))

horizon or the BAO signal, the size of which increases over time due to the Hubble expansion,
Ref. (Rubakov (2014)). The theoretical predictions of the current comoving size of the BAO
sound horizon give the following results, Ref. (Yoo & Watanabe (2012)):

/  codt / e
Te = —=
i tdec @ tdec H (Z)

where h = 0.678, according to Plank 2015, Ref. (Ade et al. (2016)).

dz ~ 150 Mpc ~ 100~ Mpc, (4.26)

Using the observational data on the large-scale structure of the galaxies, one can measure
the sound horizon scale and compare the result obtained with the theoretical predicted value
of this scale. The two-point correlation function, £(s), depends on the comoving distance,
s, of the galaxy. This function describes the probability that one galaxy will be found at a
given distance from another, Ref. (Rubakov (2014)). The Sloan Digital Sky Survey (SDSS)
provides the redshift distribution of the galaxies in the range up to the value z = 0.47,
Ref. (Eisenstein et al. (2005)). This information can be used to estimate the size of the BAO

signal. The two-point correlation function fixes the BAO signal at the distance, 100h~* Mpc,
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Figure 4.9: The large-scale redshift-space two-point correlation function, £(s), of the SDSS
sample. (Figure from Ref. (Eisenstein et al. (2005)))

in the redshift range, z € (0.16;0.47), see Fig. (4.9). The size of the BAO signal is used
as the standard ruler to determine the distance scale in cosmology, Ref. (Yoo & Watanabe
(2012)).

Comparing Fig. (4.4) and Fig. (4.9), we can conclude that the measurements of the
CMBR angular power spectrum of the temperature anisotropy and the measurements of the
BAO signal indicate that the current radius of the sound horizon is approximately 150 Mpc.
This result coincides with the theoretically calculated value of the BAO signal in Eq. (4.26).

4.4 Statistics of the Large-Scale Structure of the Uni-
verse

The large-scale structures, which are observed at the present epoch in the universe, such as
galaxies, clusters of galaxies and superclusters, were formed as a result of the evolution of the

small initial matter density fluctuations in the expanding universe, Ref. (Lifshitz (1946)).
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4.4.1 Influence of the Gravitational Instability on the Formation of

Large-Scale Structures in the Universe.

The temperature fluctuations of the CMBR, which is detected by the COBE satellite, are
caused by the inhomogeneities in the matter density that originated in the early universe,
Ref. (Kosowsky (2001)). The cause of the matter density fluctuations could be the quantum
fluctuations of the scalar field or the topological defects resulting from the phase transitions
during inflation, Ref. (Kamionkowski & Kosowsky (1998)). The theory that describes the
formation and the growth of these inhomogeneities is based on the Jeans instability or, in
other words, on the gravitational instability of the matter density fluctuations, Ref. (Jeans
(1902)). The matter density fluctuations, being a source of the additional gravitational field,
attract the surrounding matter to themselves. As a result of this process, an increase in the
size of these fluctuations occurs, since the force of the radiation pressure prevails over the
force of gravity, which leads to the spread of the matter density fluctuations in the medium.
The growth of the matter density fluctuations continues until the equilibrium is reached
between the force of gravity and the force of the radiation pressure. This equilibrium occurs
at a critical size of the matter density fluctuations, at the so-called Jeans wavelength, \;.
The value of the Jeans wavelength is determined by the speed of the sound wave, vy, and
the average density of the medium, (p), in which the matter density fluctuations develop,

Ref. (Gorbunov & Rubakov (2011)):

Ay = gy | =——. (4.27)

After reaching the Jeans wavelength, the force of gravity prevails over the force of the
radiation pressure. At the same time, the process of an increase in the size of the matter
density fluctuations is replaced by the process of the adiabatic compression. As a result,
the relaxation (the collapse) of the matter density fluctuations occurs. The particles tend to
a common gravitational center, in the end, most particles concentrate at the center, and a
new object, the protogalaxy, is formed. The emergence of the protogalaxies in the universe
occurs at redshift z ~ 10. The subsequent evolution of the protogalaxies led to the formation

of the large-scale structures in the universe.
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4.4.2 Linear Perturbation Theory
Relative Density Contrast

The value of the matter density fluctuations is determined by the relative contrast of the

matter density:

5p(7;»’ t) _ 5p(’f’: t) _ p(’F, t) — <p>’ (428)

() ()

here p(7,t) is the value of the density in the universe in the direction, 7, and at the moment

of time, t.

From Eq. (4.28), it follows that § > —1 because p > 0. The small value of the temperature
anisotropy of the CMBR, 07 /Ty = 1/36p/{p) ~ 1075 assumes that || < 1 at redshift zge..
The protogalaxies that arose in the universe are characterized by a large density contrast,
50/ (p) > 1.

The gravitational field formed by the average matter density, (p), determines the dynam-
ics of the Hubble expansion of the universe. The fluctuations of the matter density from the

average value, dp(7,t) = p(7,t) — (p), generate the additional gravitational field.

Linear Perturbation Equation

Consider the growth of the matter density fluctuations on the length scale, which is sig-
nificantly smaller than the Hubble radius'®. Suppose that the matter in the universe is
approximated by the dust fluid. The dust fluid is characterized by: the energy density,
p(7,t); the three-dimensional velocity, v(7, ), and the zero pressure, p.

The behavior of the dust fluid is described by the following equations:
1. The continuity equation, presented earlier, Eq. (2.42).
2. The Euler’s equation!®:

ov Vp
SAINE N VAT v S 4.2
T + (v V) + + P 0, (4.29)

where ® is the Newton’s gravitational potential corresponding to the Poisson’s equation.

150n these length scales, the growth of the structures in the universe is described by the Newton’s theory
of gravity. Considering the growth of the matter density fluctuations on the length scales comparable or
more than the Hubble radius, it is necessary to take into account the influence of the spacetime curvature
and, therefore, it is necessary to apply the GTR.

16The Euler’s equation expresses the conservation law of the momentum. This equation also describes the
matter behavior under the action of forces on it, which are represented through the pressure gradient, Vp,
and the gradient of the Newton’s gravitational potential, V®.
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3. The Poisson’s equation'":

V20 = 417G (p + 3p) . (4.30)

As a result of solving the system of the aforementioned equations: the continuity equation,
Eq. (2.42), the Euler’s equation, Eq. (4.29), and the Poisson’s equation, Eq. (4.30), and then
linearizing this solution with || < 1, we can obtain a linear equation for the matter density

fluctuations, the so-called linear perturbation equation, Ref. (Pace et al. (2010)):

/

5 2=
+aJrE

" (3 £ 5=0, (4.31)

)5/ 3Qm0
2a°F?
here the prime means the derivative with respect to the scale factor, ' = d/da.
The linear perturbation equation, Eq. (4.31), completely describes the evolution of the

matter density fluctuations in the universe.

Growth Rate Function of the Matter Density Fluctuations

The evolution of the fluctuations is expressed in terms of the linear growth factor, D(a),
which is usually normalized arbitrarily. We chose the normalization in which the value of
the linear growth factor is equal to unity at the present epoch, D(ag = 1) = 1. Thereby, the

linear growth factor is defined as:
D(a) = 6(a)/d(ao), (4.32)

where §(ap) is a value of the matter density contrast today. The relation D(a) = a fora < 1
is fulfilled for the matter dominated epoch.

The fractional matter density is given as:
O (a) = Qmoa >/ E*(a). (4.33)

The growth rate of the matter density fluctuations is described by the logarithmic derivative
of the linear growth rate, or, in other words, by the the growth rate function, Ref. (Wang &
Steinhardt (1998)):

f(a) =dInD(a)/dIna. (4.34)

1"The Poisson’s equation is given as the 0-0 component of the Einstein’s equation, Eq. (2.52). Since only
the matter is considered to study the growth of the matter density fluctuations, in Eq. (4.30) the pressure
is equal to zero, p = 0.
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The growth rate function, f(a), is highly dependent on the fractional matter density, Q,(a),
and its dependence can be parametrized by the power law, Ref. (Wang & Steinhardt (1998)):

fa) = (Qu(a)), (4.35)

here y(a) is the effective growth indez, which is a time-dependent function. The value of the
effective growth index depends on both the dark energy model and the theory of gravity.
The dependence of the effective growth index, y(a), on the scale factor can be determined

by the expression presented in Eq. (4.35), Ref. (Wu et al. (2009)):

v(a) = %. (4.36)

4.4.3 Linder y-parametrization

Assuming that the GTR is a correct theory of gravity, the effective growth index, v(a), can
be parametrized by the independent way, by the Linder y-parametrization, Ref. (Linder &
Cahn (2007)):

. 0.55 + 0.05(1 + wo + 0.5w,), if wy > —1; (4.37)
0.55 4 0.02(1 4+ wo + 0.5w,), if wy < —1,
where wy = w(z = 0) and w, = (dw/dz)|,—;. We determined that this parametrization is
precise up to redshift, z =5 (a = 0.2), see Fig. (7.6) (right panel). The value of v depends
on the characteristics of the dark energy model, for example, on the EoS parameter, w.

In the ACDM model based on the GTR, the value of the Linder y-parametrization, ~,
is equal to 0.55, Ref. (Linder & Cahn (2007)). In the models based on a theory of gravity
different from GTR, the value of the Linder y-parametrization, v, differs from the value of
the v in the models based on GTR gravity. For example, in the Dvali-Gabadadze-Poratti
model, v ~ 0.68, Refs. (Dvali et al. (2000), Linder (2005), Linder & Cahn (2007)). The
value of the Linder y-parametrization, v, which is obtained from the observations in the
combination with the constraints on other cosmological parameters, can be used to verify
the accuracy of GTR on the cosmological length scales, Refs. (Pouri et al. (2014), Taddei &
Amendola (2015)).
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Chapter 5

Elements of the Statistical Analysis

5.1 Gaussian Probability Distribution

5.1.1 Definition of Gaussian Probability Distribution

The Gaussian or, in other words, the normal distribution of a random variable x is described
by the probability density:
1

— —(z—e)/202
f(x) U\/%e . (5.1)

The Gaussian distribution is determined by the parameters e and o. The parameter e is
the mathematical expectation and the parameter o is the standard deviation of the random
variable z. The value of o2 is the variance of the random variable z. The values 1o, 20 and
30 determine the probability of the event realization or the confidence levels, respectively,

at 68.27%, 95.45%, 99.73%.

5.1.2 Function y? and the Likelihood Function
Function x? and the Likelihood Function for Independent Measurements

Suppose that the model parameters, p, are distributed according to the Gaussian distri-
bution, Eq. (5.1). N independent measurements, X°(z;), were carried out to determine
the values of these model parameters. The standard deviation for each measurement, o;, is
known. These measurements are obtained at redshifts z;. The theoretical model predicts

the corresponding values, X*%(p, ;).
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The function x?(p) is a function of the model parameters, p, is given as:

2 [XOP3(z;) — X(p, 2)]?

e =Y = . )

The function y*(p) determines the deviation of the theoretical predictions from the obser-
vations at the particular values of the parameters, p. A small value of x*(p) means a good
approximation by the chosen theory of the observations and, accordingly, a large value of
x%(p) means a poor approximation by the theory of the observations.

The likelihood function, £(p), for the independent variables is defined as:

L(p) = eXp{—%XQ(p)}- (5.3)

The likelihood function, £(p), determines the probability that the theoretical predictions of
the parameters values, p, coincide with the observations. The large value of the likelihood
function, £(p), means a good approximation of the observations by this theory and the
parameter values, p, are the best fit values'. Conversely, the small value of the likelihood
function, £(p), means a poor approximation of the observations by this theory.

In the case of the combining of M types of the independent variables, pi, po, ..., pu, the
resulting value of the function x?(p) is calculated as a sum of the functions x?(p1), ..., x*(pum),

each of which characterizes a specific type of the independent variables:

X(P) = X*(p1) + .+ X*(pm-1) + X (pn)- (5.4)

In this case, the resulting probability function is calculated as the product of the likelihood
functions, L£(p1), L(p2), ..., L(pm), each of which defines a specific type of the independent

variables:

L(p) = L(p1) - L(p2).--L(Prr-1) - L(Pm)- (5.5)

Function x? and the Likelihood Function for the Dependent Measurements

For the dependent measurements, function x?(p) is defined as:

X*(p) = [X°(z) — X™(p, 2))] C7'X%(2;) — X™(p, 2)], (5.6)

'Tt is necessary to distinguish between the notions the best fit values of the parameters, p, and the
true values of the parameters, p. The likelihood function, £(p), determines the probability with which the
values of the arbitrary parameters, p, will be the true values (which are unknown to us). The best fit values
are the values of the parameters, p, which are likely to be the true values.
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where C' =cov[X;, X;] is a covariance matrix of the dependent measurements; X°P5(z;) is a
vector of the values of the dependent measurements; Xt (p, z;) is a vector of the theoretically
predicted values; the superscript T denotes a vector transposition.

The likelihood function for the dependent measurements is:
1 T
£(p) = exp{ 5 |X*(z0) = XM (p,z)| O [XP(z) - XP(p,z) |} (57)

5.1.3 Fisher Formalism

The inverse Fisher matrix, [['!], is a matrix that is inverse to the covariance matrix,

[C]:

0'21 a. 12
=0 =| " T (5.8)
UP1P2 0]2)2

where the standard deviations o2

o, and 012,2 are the 1o uncertainties of the parameters, p;

and po, respectively; 0,,,, = 00,,0,,; 0 is a correlation coefficient. The absolute value of the
correlation coefficient ¢ does not exceed unity, | o [< 1. If p = 0, then the parameters, p; and
po, are independent of each other, i.e., they are mutually uncorrelated. If | o |= 1, then the
parameters will be completely correlated with each other. If | o |< 1, then the parameters
will be partially correlated with each other.

Consider the function x?(pi,p2), which depends on two parameters, p; and p,. The
elements of the Fisher matrix are the second-order expansion coefficients in the Taylor series
of the function x?(py, p2) near the minimum of this function.

The two-dimensional Fisher matrix, [F], is calculated as:

o2 o2

1 2 Op10
Fl=<| 7T (5.9)

2 82 82

Op10p2 op3

In other words, the elements of the Fisher matrix, [F], are calculated as the second derivatives

of the function x? with respect to the parameters, p; and po:

1 0y?
Foo == . 5.10
p1ip 9 8]71 8]72 ( )
The covariance matrix, [C], is defined through the Fisher matrix as: [C] = [F]™!.
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Transformation of the Variables

Formulation of the problem: the Fisher matrix, [F], is defined via the variables?, p =
D1, P2, P3- In turn, these variables depend on the other variables, p’ = p!, p5, p5. It is necessary
to calculate the Fisher matrix, [F'], with respect to the variables, p’ = p/, ph, ps, based on
the information about the original Fisher matrix, [F].

The elements of the Fisher matrix, [F’ |, are calculated according to the derivative of

the composition of two functions:

Z Op: Ops p, (5.11)

op,, 819

The Fisher matrix, [F”], can be obtained as, Ref. (Coe (2009)):
[F] = [M]"[F][M]. (5.12)

The matrix, [M], is defined as:
Opr Opr Op
op), Oph, Oph

[M] = | 2 02 Op2 | (5.13)

op), Oph, Oph

Ops Ops Ops
L Opy  Opy  Opy

Thereby, the elements of the matrix, [M], are calculated as: M;; = Op;/0p);.

5.1.4 Best Fit Model Parameters

Regardless of the type of the observations, the model parameters, pg, for which the function
X%(p) takes the minimum value, are called the best fit model parameters for this theory. In
this case, the minimum value of the function x?(po) determines the smallest value of the
variance, o2, for this theory. For the model with two parameters, the boundaries of the
confidence intervals at 1o, 20 and 30 are defined, respectively, as: x*(p) = x*(po) + 2.3,
X*(P) = x*(Po) + 6.17 and x*(p) = x*(po) + 11.8.

The likelihood function, £(p), has a maximum value with the best fit of the model
parameters, pg. The values of the model parameters, pg, for which the likelihood function

is maximal, have the maximum probability of being the true parameters.

2The number of the variables can be arbitrarily large, p = p1, p2...pn. In this case, we limited ourselves
to the number of the variables N = 3.
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5.2 Elements of the Theory of Monte Carlo Markov Chains

The Monte Carlo Markov Chain (MCMC) method is used in constructing the vectors for the
multidimensional distribution functions. In the statistics, this method is applied to study

the posterior distributions of the model parameters.

5.2.1 Definition of the Markov Chains. Transition Probabilities

In 1907, A. A. Markov developed a new type of the random processes. In this process, the
result of the experiment affects the result of the subsequent experiment. This type of process
is called a Markov chain.

The Markov chain can be described as follows. Consider a set of the states, S =
S1,89,...,8-. The process begins in one of these states and sequentially moves from one
state to another. Each movement is called a step. If the chain is currently in the s; state,
then it will go to the s; state in the next step with the probability, denoted as p;;, and
this probability does not depend on the states in which the chain was located before the
current state. The probabilities, p;;, are called the transition probabilities. The initial

probability distribution, S, determines the initial state?.

Transition Matrix. Homogeneous Markov Chain.

In the notation, p;;, the first index indicates the number of the previous state ¢, and the
second index indicates the number of the next state j. The process can remain in the state
in which it is located, and this happens with the probability, p;;.

Suppose that the number of the states is finite and equals k. The transition matrix
of the system is a matrix, which contains all the transition probabilities of this system,
Ref. (Gmurman (2003)):

Pu1 P12 .- DPik
j. P21 P22 ... P2k ' (5.14)
Prr Prk2 -+ Pkk
Since the transition probabilities of the events from the state ¢ to the state j placed in each

row of the matrix form a complete group, the sum of the probabilities of these events is

30ften the Markov chains are compared to a frog jumping on a set of lily pads. The frog starts on one
of the lily pads and then jumps from a lily pad to a lily pad with the corresponding transition probabilities,
pij, Ref. (Howard (1971)).
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equal to unity. In other words, the sum of the transition probabilities for each row in the

transition matrix is equal to unity:

k
d piy=1, (i=12.k). (5.15)
j=1

The Markov chain is called the homogeneous chain, when the conditional probability, p;;,

does not depend on the number of the test.

Markov Equality

Let’s denote by P,;(n) the probability that the system S will transit from the state i to the
state j as a result of n steps (tests). For example, Py;(10) is the transition probability from
the second to the fifth state as a result of 10 steps. We emphasize that for n = 1 we get the
transition probability:

Pi;(1) = pij. (5.16)

Markov problem: knowing the transition probabilities, p;;, find the probabilities, P;;, of
the transition of the system from the state ¢ to the state j in n steps.

Let’s introduce the intermediate state r between the states ¢ and j. In other words, we
assume that the system will move from the initial state 7 to the intermediate state r with the
probability, P,.(m), in m steps. After that, the system moves from the intermediate state r
to the final state j with the probability, P,;(n —m), in (n — m) steps.

The transition probability, P;;, of the system from the state ¢ to the state j in n steps

YE

can be found using the Markov equality:

Pyj(n) = Py(m)Py(n —m). (5.17)

In our calculations, we apply the normal distribution of the random variable x, which is

described by Eq. (5.1).

5.2.2 Monte Carlo Method

In 1949, N. Metropolis and S. Ulam published the paper entitled “Monte Carlo Method”
in which this method was presented. The Monte Carlo method is a statistical method
for studying the problems based on using of the random numbers, similar to the numbers

generated in gambling. Applying the Monte Carlo method, it is required to find a set of the
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random numbers, which corresponds to a certain probability distribution.

Essence of the Monte Carlo Method

It is required to find the expectation value e of some random variable. For this purpose a

random variable is chosen X whose expectation is equal to e:
M(X)=e. (5.18)

In reality, n tests are performed, as a result of n possible values X are obtained, after which

their arithmetic average is calculated:

%= (Z a:) /n. (5.19)

The value of Z is considered as an approximate value of e* of the number e:
e~e" =1. (5.20)

Since the Monte Carlo method requires a large number of the tests, it is often called the
method of the statistical tests. To use the Monte Carlo method, a reliable set of the
random numbers is needed. Such numbers are hard to get, so the pseudo-random numbers
are usually used. These numbers must be uncorrelated and evenly distributed over a prior

range of the numbers.

Transformation Method

The transformation method is used to search for the pseudo-random numbers from the known
probability distributions. It is required to reproduce a continuous random variables X, i.e.,
to obtain a sequence of its possible values, X = x1, x9, ..., 1y, which is characterized by the
distribution function F(x).

Theorem: consider a possible random value z; with the distribution function F'(x). The
value of a random number r; will correspond to the value of z;, if it is the solution of the

following equation:

In other words, in order to find a possible value of x; a continuous random variable X,

determined by the density distribution f(x), we must choose a random number r; and solve
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one of the equations with respect to x;:

/Ii f(x)dx =r; or /I f(z)dz =y, (5.22)
—o0 b

where b is a finite, smallest value of a random variable X.
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Chapter 6

Dark Energy

As it was described in Chapter I, our universe is in the state of the accelerated expansion.
One possible explanation of this phenomenon is the existence of so-called dark energy. Dark
energy is characterized by the value of the EoS parameter, w, which is defined as a ratio
between the pressure, ppg, and the energy density, ppg, w = ppg/ppe. The accelerated
expansion requires that w < —1/3. Dark energy is approximately 69% of the total energy
density in the universe, its distribution is highly spatially uniform and isotropic, Ref. (Ade
et al. (2016)). The negative effective pressure of dark energy causes an accelerated expan-
sion of the universe. The nature of dark energy still remains an unresolved mystery for

cosmologists.

6.1 Cosmological Constant A

The simplest model of dark energy is a concept of vacuum energy or, in other words, a
time-independent cosmological constant denoted as A, which was first proposed by Albert
Einstein, Ref. (Einstein (1917)), for the review: Refs. (Carroll (2001), Peebles & Ratra
(2003), Martin (2012)). In 1917, in order to obtain a static solution, @ = 0, Albert Einstein
introduced a new term, Ag,,, into the Einstein tensor, Eq. (2.38), Ref. (Einstein (1917)).

As a result, the Einstein’s equation, Eq. (2.52), took the form:

1
Ry = 59w R = Agu = 87GT,, (6.1)

where A is called the cosmological constant. The addition of this term violates the condition
for the transition of the strong gravitational fields to the weak gravitational fields (the transi-

tion to the Newtonian limit), imposed on the Einstein tensor in the equations Eq. (2.53) and
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Eq. (2.54). In order to fulfill the conditions of this transition, the value of the cosmological
constant must be negligible.

Einstein did not have a real physical interpretation of the cosmological constant A. After
the discovery of the expansion of the universe by Edwin Hubble in 1929, Ref. (Hubble
(1929)), Einstein removed the cosmological constant from his equations in 1931. He called
the introduction of A into these equations his "biggest blunder", Ref. (Gamov (1956)). From
the 1930s to the end of the 1990s, the cosmologists were not taken the cosmological constant
into account, assuming its value to be zero. After the discovery of the accelerated expansion
of the universe in 1998, Refs. (Riess et al. (1998), Perlmutter et al. (1999), Schmidt et al.
(1998)), the cosmologists began to use the cosmological constant with a positive nonzero
value to explain this phenomenon. Taking into account the cosmological constant A in the
Friedmann’s equations, Eq. (2.97) and Eq. (2.98), a non-static solution can be found. This
solution describes an expanding universe.

It is now accepted that the cosmological constant is equivalent to a final energy density
of the vacuum, Ref. (Zeldovich (1968)). Suchwise, if the cosmological constant is determined
by the vacuum energy density, py.c, then the energy density of the cosmological constant,
pa, will not depend on time:

PA = Pyac = const. (6.2)

The energy density of the cosmological constant is defined as:

-2 (6.9
PA = 87TG’ .
where A = 4.33 - 10750 eV?2.
The EoS for the cosmological constant:
pA = —pa = const. (6.4)
Therefore, the EoS parameter for the cosmological constant is defined as:
WA = —1. (65)
The action for the cosmological constant:
1
S=— d'zy/— 2A) + S 6.6
g [ VTR 28) 4 S (6.6
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where Sy is an action for matter.

The Friedmann’s equations with the cosmological constant have the form:

a®> 881G K A
2= 3 at3 62)
and
a 4rG A
— = (p+3p) + = 6.8
- 5 (P +3p)+ 3 (6.8)

6.2 Cosmological ACDM Model

The Lambda Cold Dark Matter (ACDM) model is the standard model of the universe.
This model describes a spatially flat universe and it is the simplest parametrization of the
cosmological Big Bang model. In the ACDM model, dark energy is represented by the
cosmological constant A, which is assumed to be associated with the vacuum energy density.
Dark matter is the cold dark matter in the ACDM model. The ACDM model is based on
the GTR in order to describe the gravity in the universe at the cosmological scales.

The ACDM model is a concordance model of the universe, since this model is in a good

agreement with the currently available cosmological observations, see Fig. (6.1). In addition,
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Figure 6.1: The confidence contours at 68% and 95% as a result of the different measure-
ments: SNIa (JLA) and SNIa (C11) compilations, the combination of the Planck temperature
and WMAP polarization (Planck + WP) and the combination of the BAO scale. Left panel:
for the Q. and Q4 cosmological parameters in the ACDM model. The black dashed line
corresponds to a flat universe. Right panel: for the €2, and w cosmological parameters in
the flat w — AC' DM model. The black dashed line corresponds to the cosmological constant
hypothesis. (Figure from Ref. (Betoule et al. (2014)))

the ACDM model explains: the accelerated expansion of the universe; the large-scale struc-

ture in the distribution of the galaxies; the CMBR temperature anisotropy; the chemical
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composition of the universe (the content of hydrogen, helium and lithium'), Ref. (Schneider
(2006)).

The ACDM model is characterized by main six independent parameters: the physical
baryon density parameter, Q,h%; the dark matter physical density parameter, .h%; the age
of the universe, tg; the scalar spectral index, ng; the amplitude of the curvature fluctuations,
AZ%; the optical depth during the reionization period?, 7. In addition to these parameters,
the ACDM model is described by six extended fized parameters: the total energy density
parameter, (; the EoS parameter, w; the total mass of three types of the neutrinos, Y m,;
the effective number of the relativistic degrees of freedom, N.g; the tensor/scalar ratio, r;
the running scalar index, dns/dIn k.

According to the ACDM model, our universe consists of 69,2% of dark energy; 26% of
dark matter; 4.8% of the ordinary baryonic matter; 0.1% of the neutrinos; 0.01% of the
photons, Ref. (Ade et al. (2016)).

The first Friedmann’s equation, which describes the universe expansion in the spatially
flat ACDM model, is:

E(a) = (Qa™* 4+ Quoa > + Q)2 (6.9)

where €9, (0,0 and €2, are the energy density parameters for the radiation, the matter
and vacuum, respectively, at the present epoch. Until the moment of the neutrinos non-
relativization®, the neutrinos are the relativistic particles, therefore, the neutrinos energy
density parameter, €),,, changes with the dependence on the scale factor as a~—*. Thus, before
the moment of the neutrinos non-relativization, the total radiation energy density consists
of the energy densities of the relativistic particles: the photons and the neutrinos. After
the moment of the neutrinos non-relativization, the neutrinos become the non-relativistic
particles and the energy density parameter of the neutrinos, €, evolves as a=3. There-
fore, the total energy density parameter of the matter, {2,,, contains all the non-relativistic

components, including the non-relativistic neutrinos.

'The process of the formation of these chemical elements began during the primordial nucleosynthesis
in the universe. This epoch began at the temperature of about 1 MeV when the age of the universe was
approximately 1 sec. At this time, the following reactions are terminated: e~ +p <> n+v, and the "freezing"
of neutrons occurs from these reactions. Approximately from 10 seconds to 20 minutes after the Big Bang,
the thermonuclear reactions took place, forming more complex elements: p +n — 2H + v, 2H +p —
3He+, *He+ 2H — *He +p, ..., up to "Li, Ref. (Rubakov (2014)).

2The reionization is the process of the ionization of the neutral hydrogen atoms, which happened in the
universe at the range of redshifts, z € (6;20).

3The neutrino transition from the relativistic to the non-relativistic state occurs at the matter dominated
epoch. The earlier this transition occurs, the greater value of the mass acquired by the neutrino. The results
of this study are presented in Chapter X.
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6.2.1 Shortcomings of the ACDM Model

If, indeed, the vacuum energy is the origin of the cosmological constant, then there is a
problem with the energy scale of the cosmological constant. The theoretically predicted

energy density of the cosmological constant, p,, is defined as:
pa ~ WMy ~ 107 Gev' ~ 210" erg/cm®, (6.10)

where My ~ 10'® Gev is a Planck mass scale; f is a reduced Planck constant*. The result
obtained in Eq. (6.10) is confirmed by the laboratorian measurements of the vacuum fluctu-
ations by the Casimir effect, Ref. (Casimir (1948)). However, the cosmological observations

of the cosmological constant, as dark energy, show a completely different result:
P~ 107 Gev? ~ 210717 erg/cm?. (6.11)

Thus, the observed value of the energy scale of the cosmological constant is by 120 magnitudes
less than its value derived from the theoretical predictions. This discrepancy in 120 values
of the energy scale is called the cosmological constant problem or the fine turning problem,
Refs. (Carroll et al. (1992), Carroll (2001)).

The second problem of the cosmological constant is the so-called coincidence problem.
The essence of this problem is that the energy density of dark energy is comparable with the
energy density of dark matter at the present epoch. The radiation energy density, the matter
energy density and dark energy depend on the scale factor by the different laws, which are
described in Eq. (2.101), Eq. (2.102) and Eq. (2.105), respectively: for the radiation it is
pr ~ a~4, for the baryons and cold dark matter it is p,, ~ a~® and for the cosmological
constant it is py=const. The precise cosmological observations show that the ratio between
the density of the matter and the density of dark energy today is of the order of unity,
pm/pa =~ 1/3. This fact is a mystery, since the standard ACDM model predicts that this
ratio must be time-dependent, pn,/pa o< a™3.

Since the vacuum energy does not change over time, it was insignificant during both at the
radiation domination epoch and at the matter domination epoch. While the vacuum energy
has become the dominant component only recently, at a ~ 0.76 (or z ~ 0.31), according to
Planck 2015 data, Ref. (Ade et al. (2016)), and it will be the only component in the universe

in the future, see Fig. (6.2). The energy density of the matter and the energy density of

4In accordance with our convention, i = 1.
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Figure 6.2: The evolution of the radiation energy density, the matter energy density and the
cosmological constant A. (Figure from Ref. (Samushia (2009)))

the cosmological constant are comparable for a very short period of time, see Fig. (6.2),
therefore, the following question arises: "Why did it happen that we live in this short (by
the cosmological scale) period of time?" After all, this fact is in the contradiction with the
Copernican’s principle.

The so-called anthropic principle, proposed by Steven Weinberg in 1987, Ref. (Weinberg
(1987)), can explain the cosmological constant problems and answer the questions: "Why
is the energy density of the cosmological constant so small?" and "Why has the accelerated
expansion of the universe started recently?" According to the anthropic principle, the energy
density of the cosmological constant, observed today, ps, must be suitable for the evolution

of the intelligent beings in the universe, Ref. (Barrow & Tipler (1988)).

6.3 Scalar Field Models

There are the numerous alternative models for the ACDM model, Refs. (Copeland et al.
(2006b), Yoo & Watanabe (2012)). Despite the diversity of these models, the ACDM model
still remains the basic model, the model of the comparison with other dark energy models.

The main alternative to the ACDM model are the dynamical scalar field models® or, in
other words, the so-called 9CDM models, Refs. (Wetterich (1988b), Ratra & Peebles (1988b),
Peebles & Ratra (2003)). In these models, dark energy is represented in the form of a slowly

A scalar field is a field that is characterized by a scalar value, which is defined at any point in this field.
This field is an invariant under the Lorentz transformations.
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varying cosmological uniform scalar field, ¢. The self-interacting spatially uniform scalar
field is minimally related to the gravity on the cosmological scales. The ¢CDM models do
not have the fine tuning problem of the ACDM model. These models have a more natural
explanation for the observable low-energy scale of dark energy. If in the ACDM model the
EoS parameter is constant, w = —1, then in the ¢CDM model the EoS parameter will be
time-dependent. When the energy density of the scalar field begins to dominate over the
energy density of both the radiation and the matter, the universe begins the stage of the
accelerated expansion.

At the early epochs of the universe evolution (at large redshifts), the dynamical scalar
field is different from the behavior of the ACDM model. At the later epoch of the universe
evolution (at small redshifts), the dynamical scalar field is almost indistinguishable from the
behavior of the cosmological constant A.

The ¢CDM models are divided into two classes: the quintessence models, Ref. (Zlatev
et al. (1999)), and the phantom models, Refs. (Caldwell (2002), Caldwell et al. (2003)). These

models differ from each other:

e By the value of the FoS parameter

In the quintessence fields —1/3 < w, < —1 and in the phantom fields wy < —1.

e In the sign of the kinetic component in Lagrangian
The positive sign for the quintessence fields and the negative sign for the phantom

fields.

e [n the dynamics of the scalar fields
The quintessence field rolls down to the minimum of its potential, the phantom field

rolls to the maximum of its potential.

e In the dynamics of dark enerqgy
In the quintessence fields, dark energy almost do not change over time and in the

phantom fields it increase over time.

e In the forecasting the future of the universe
In the quintessence models, either the eternal expansion of the universe, or a repeated
collapse is predicted depending on the spatial curvature of the universe. In the phantom
models, the destruction of any gravitationally-related structures in the universe is
predicted. Depending on the asymptotic behavior of the Hubble parameter, H(t), the

future scenarios of the universe are divided into: a big rip, for which H(t) — oo for

104



finite time, ¢t = const; a little rip for which H(t) — oo for infinite time, ¢t — oo and a

pseudo rip, for which H(t) — const for infinite time, t — oo.

The full action for the scalar field is defined as:
M2
S = /d4x\/—g[— FPIR + £¢] + Swm, (6.12)
T

where Ly is the Lagrangian density of the scalar field, the shape of which depends on the
type of the chosen model.

6.3.1 Quintessence Scalar Field

The quintessence scalar field is described by the Lagrangian density:

Lo = 50" 0,00,0 - V(o). (6.13)

There are many different quintessence potentials, but so far no preference has been given to

any of them. The incomplete list of the quintessence potentials® are presented in Table” 6.1.

‘ Name ‘ Form ‘ Reference ‘
Ratra-Peebles V(p) = VoM2¢~; o = const > 0 Ref. Ratra & Pee-
bles (1988b)
Ferreira-Joyce V(p) = Voexp(—Ap/Mp); A = const > 0 Ref.  Ferreira &
Joyce (1998)
Zlatev-Wang- V(¢) = Vo(exp(Mp/¢) — 1) Ref. Zlatev et al.
Steinhardt (1999)
Sugra V(g) = Voo X exp(7¢2/M§1); X,y = const > | Brax & Martin
0 (1999)
Sahni-Wang V(¢) = Vo(cosh(sp) — 1)9; ¢ = const > 0, | Ref. Sahni & Wang
g = const < 1/2 (2000)
Barreiro- V(p) = Volexp(vep) + exp(ve)); v, v = | Barreiro et al.
Copeland-Nunes | const > 0 (2000)
Albrecht-Skordis | V(¢) = Vo((¢ — B)? + A) exp(—pug); A, B = | Albrecht & Skordis
const > 0, u = const > 0 (2000)
Uréna-Loépez- V() = Vosinh™(EMp¢); € = const > 0, | Urena-Lopez &
Matos m = const < 0 Matos (2000)
Inverse exponent | V(¢) = Vyexp(My1/9) Caldwell & Linder
potential (2005)
Chang-Scherrer | V(¢) = Vo(1 4 exp(—7¢)); 7 = const > 0 Chang & Scherrer
(2016)

Table 6.1: The list of the dark energy quintessence potentials.
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The energy-momentum tensor of the quintessence scalar field, 7,,, is defined as:

oL
T,, = Qﬁ — GuOLy. (6.14)

Substituting Eq. (6.13) into Eq. (6.14), we get:

1

T;w - }L(bal/(b — Y égaﬁaa(baﬁ(b - V((b) : (615)

The components of the quintessence scalar field energy-momentum tensor, 7),,, is defined as:

Too = po = 5+ V(6), (6.16)
Ty =0, (6.17)
T, =0 (i #J). (6.15)
T =po= 5~ V(6), (6.19)

where pg and py are the energy density and the pressure of the scalar field under the as-
sumption that this scalar field is described by the ideal barotropic fluid model®.

The components of the scalar field energy-momentum tensor can be represented in the
matrix form, as in Eq. (2.47). The EoS parameter for the quintessence scalar field is defined

as:
=P _ 9[2-V(9)
¢ = — = .
P 9?2+ V(0)

The Klein-Gordon equation of motion for the quintessence scalar field can be obtained by

(6.20)

varying the action in Eq. (6.12), where the Lagrangian density is defined by Eq. (6.13):

V(¢)

. .9
O+ 3Ho + 20

=0, (6.21)

here the overdots denote the derivatives with respect to physical time, t.

The influence of the scalar field, ¢, on the dynamics of the universe is reflected in the

6The Ferreira-Joyce potential was investigated earlier by Lucchin and Matarrese, Ref. (Lucchin & Matar-
rese (1985)), as well as by Ratra and Peebles, Ref. (Ratra & Peebles (1988a)), although the complete detailed
description of the model was given by Ferreira and Joyce, Ref. (Ferreira & Joyce (1998)).

TIn Table 6.1 and in Table 6.2, the model parameter, V), has a dimension of GeV*. This model parameter
is related to the dark energy density parameter at the present epoch.

8The barotropic fluid is a fluid whose density depends only on the pressure.
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first Friedmann’s equation:
H = Hy(hoa™* + Quoa > + Qy(a))'/?, (6.22)

where Q4(a) is an energy density parameter of the scalar field depending on time. In many
ways, the evolution of the function Q4(a) is determined by the form of the scalar field
potential, V'(¢).

Depending on the shape of the potentials, the quintessence models are subdivided into
the thawing models and the freezing models, Ref. (Caldwell & Linder (2005)). On the w, —
dwy/dIna phase space, the thawing and the freezing scalar models can be located at the

strictly designated regions for each of them, see Fig. (6.3) (left panel). At the early stages of
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Figure 6.3: Left panel: the occupation of the thawing and the freezing scalar fields in the
wy — dwy/dIna phase space. (Figure from Ref. (Caldwell & Linder (2005))) Right panel:
the regimes of the quick rolling down and the slow rolling down for the freezing scalar field,
¢, to the minimum of its potential.

the evolution of the universe, the thawing scalar field was too suppressed by the retarding
effect of the Hubble expansion, which represented by the term, 3H ¢, in Eq. (6.21)). Thereby,
the scalar field evolution happened much slower compared to the Hubble expansion rate. The
result of the overwhelming effect of the Hubble expansion on the thawing scalar field is the
freezing of this scalar field.

This field manifests itself as the vacuum energy with the EoS parameter w, = —1. The
Hubble expansion rate, H(a), is a decreasing function over time. After the Hubble expansion
rate reaches the value of H < \/W, the scalar field begins to roll to the minimum
of its potential. This leads to the fact that the value of the EoS parameter for the scalar

field, wg, increases over time and becomes wy > —1.
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The scalar field in the freezing models is always suppressed (it is damped), i.e., H >
\/W. There are the fast and slow rolling regimes for the freezing models. The
scalar field equation of motion, Eq. (6.21), describes: the fast rolling regime (with 3H¢ <
AV (¢)/0t), therefore, ¢ > V(¢)), or the slow rolling regime (for 3Hp < V (¢)/0t) depend-
ing on the ratio of the term 3H¢ and the term 9V (¢)/0t. In the slow-roll regime, the
scalar field tends to minimize its potential and almost does not change over time, ¢ < Vo),
therefore, from Eq. (6.20), it follows that w, ~ —1, see Fig. (6.3) (right panel).

The freezing scalar field models have the so-called tracking solutions. FEnergy density for
the freezing scalar field models is almost constant over time. The contribution of this energy
density to the total energy density of the universe, both at the radiation domination epoch
and at the matter domination epoch, is almost negligible. Therefore, the scalar field energy
density remains subdominant at these epochs. It tracks first the radiation energy density
and then the matter energy density. The radiation energy density and the matter energy
density decrease over time due to the universe expansion. The scalar field energy density
increases over time. Eventually, it becomes the dominant component and begins to behave
as a component with the negative effective pressure. That is manifested in the accelerated

expansion of the universe at the later stages of the universe evolution.

6.3.2 Phantom Scalar Field

The Lagrangian density for the phantom scalar fields is described by the equation:
L.,
Lo = —59"0u00,0 — V(0). (6.23)

The incomplete list of the phantom potentials is given in Table 6.2.

The energy-momentum tensor for the phantom scalar field, 7},,, is defined as:

0L,

T = =25 2% = 0L (6.24)
Substituting Eq. (6.23) into Eq. (6.24), we get:
1

T = —0,00,6 — G §ga58a¢85¢ —~V(9)]. (6.25)

The components of the energy-momentum tensor for the phantom scalar field, 7, are
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| Name Form | Reference |

Fifth power V(p) = Voo® Scherrer &  Sen
(20084)

Inverse square power Vig) = Vo2 Scherrer &  Sen
(20084)

Exponent V(¢) = Voexp(Bo), 5 = const > 0 Scherrer &  Sen
(2008a)

Quadratic Vig) = Voo? Dutta & Scherrer
(2000)

Gaussian V(g) = Vo(1 — exp(¢?/0?)),0 = const | Dutta & Scherrer
(2000)

pseudo-Nambu- V(¢) = Vo(1—cos(¢/k)), k = const > 0 | Frieman et  al.

Goldstone boson (pNGb) (1995)

Inverse hyperbolic cosine | V(¢) = Vy(cosh(w¢))!, ¢ = const > 0 | Dutta & Scherrer
(2000)

Table 6.2: The list of the dark energy phantom potentials.

represented as:

1-
Too = py = —§¢2 +V(9),
T(]i 207

1.
,I‘u_qu:_é 2_V(¢)

The EoS parameter for the phantom scalar field is defined as:

po _ —0%/2-V(9)
po —¢2 2+ V()

w¢:

The Klein-Gordon equation of motion for the phantom scalar field:

V(o)

90 = 0.

b+ 3Hep—

6.4 Coupled Models of Matter and Dark Energy

(6.26)

(6.27)
(6.28)

(6.29)

(6.30)

(6.31)

As it was mentioned earlier, one of the unresolved problems of modern cosmology is the

problem of coincidence in the standard ACDM model. Due to the fact that the dark energy

density and the matter energy density in the modern universe have the same order, it can

be assumed that the matter and dark energy somehow interact with each other.
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In the coupled models between the matter and dark energy, the transformation of dark
energy and the energy of the matter into each other is considered. The interaction between
the matter and dark energy is described by the following modified continuity equations for

the matter and dark energy, respectively, as:

ﬁm + 3Hpm = 5couple7 (632)

p¢ + 3H(p¢ + qu) = _5C0uplea (633)

where p,, is the matter energy density; py and p, are the energy density and the pressure
of dark energy represented as the scalar field; dcouple is the coupling coefficient between the
matter and dark energy.

In the interaction models between the matter and dark energy, the following forms of the

coupling coefficient, dcoupre, are used, Refs. (Amendola (2000), Zimdahl & Pavon (2001)):

5coup1e = nme¢7 (634)
5couple = OZH(Pm + p¢), (635)

where n = V871G o and @) are the dimensionless constants. According to the Planck 2015
data, Ref. (Ade et al. (2016)), @ < 0.1.

The coupling models of the matter and dark energy are divided into two types.

6.4.1 Coupling First Type

The coupled models of the matter and dark energy of the first type are characterized by the
exponential potential and the linear interaction determined by the interaction coefficient,
which is presented in Eq. (6.34), Ref. (Amendola (2000)).

The coupled quintessence scalar field equation is:

b+3H¢p— a‘giff) = —nQpmo, (6.36)

where V(¢) = Voe ™% is a scalar field potential and X is a model parameter.

The coupled continuity equation for dark energy:

po + 3H (ps + Do) = —nQpmo. (6.37)
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The matter energy density evolves as:

Pm 4+ 3Hpm = 1nQpm = pm = pPmot "%,

6.4.2 Coupling Second Type

(6.38)

For the second type of the coupled models, the potential and the dynamics of the interaction

between the matter and dark energy are constructed under the fulfillment of the requirement

pm/poe—const, Ref. (Zimdahl & Pavon (2001)).
The coupled equation, Eq. (6.33), is equivalent to:

¢|:¢ =+ 3H¢ - a‘gig(;b) = _5couple-

The coupling coefficient is defined as:
Ocouple = —3HI1,, = 3HIL,,

PP

Where%:’%:%andp:perpqﬁ.

The continuity equations for the matter and dark energy have the form:

Po + 3H(py + py +11y) = 0.

The form of the scalar field potential is constructed as follows:

1 <1_%>il = M:_)\V(gb)’

(Vo + 1) 12 o

where r = 2™ —const and A = \/ 24{TG i
P Yo (1+7)

From Eq. (6.44) it follows that the potential has the exponential form:

V(g) = Ve Meé—%0)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

The significant drawback of this model is the absence of the convincing explanation for the

onset of the interaction of dark energy and the matter at the transition epoch from the
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decelerated to accelerated expansion of the universe.

6.5 Chevallier-Polarsky-Linder Parametrization

The EoS parameters in the time-dependent models of dark energy are modeled as: p = w(a)p.

9. This parametrization

This type of parametrization is called the wCDM parametrization
has no physical motivation. The application of the wCDM parametrization is typically used
as an ansatz in data analysis for the quantifying of the time-dependent dark energy models.
The parametrization of the EoS parameter, w(a), is used to distinguish the different dark
energy models. In particular, this approach can be used to distinguish the ACDM model
from the other dark energy models at the present epoch.

The time-dependent EoS parameter in the dark energy models is often characterized by
the Chevallier-Polarsky-Linder (CPL) wy — w, parametrization, Refs. (Chevallier & Polarski
(2001), Linder (2003)):

w(a) = wy + we(l — a), (6.46)

here wy = w(a = 1) and w, = (dw/dz)|,—1 = —a"?(dw/da)|s=1/2. Although this parametriza-
tion is very simple, it is flexible enough to accurately describe the EoS parameters in the most
dark energy models. The CPL parametrization cannot describe the arbitrary dark energy
models with good accuracy (up to the several percent) in a wide redshift range, Ref. (Linder
(2003)).

The normalized Hubble parameter, expressed through the CPL parametrization of the

EoS parameter, w(a), can be written as:

E(a) = (Qa™ + Quoa~3 + Qa3 Fwotwe) g=dwall=a))y1/2 (6.47)

9Dark energy is sometimes characterized only by the EoS parameter and the corresponding cosmological
models are called the wCDM models, Ref. (Barger et al. (2007)).
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Chapter 7

Dynamics and Growth Rate in the
Ratra-Peebles ¢CDM Model

This chapter is based on the results of the research presented in the papers, Ref. (Avsajan-
ishvili et al. (2014)) and Ref. (Avsajanishvili et al. (2017)).

In this chapter, the Ratra-Peebles inverse-power-law potential, V' (¢) o< 1/¢%, is inves-
tigated in detail. This potential was first considered by Jim Peebles and Bharat Ratra in
1988, Refs. (Ratra & Peebles (1988b), Ratra & Peebles (1988a)). The scalar field model
with the Ratra-Peebles potential is the simplest quintessence scalar field ¢CDM model of
the freezing type. This model was proposed to solve the fine-tuning problem in the standard

ACDM model.

7.1 Basic Equations

The Ratra-Peebles potential has the form:
K —«
V= §M§1¢ , (7.1)

here « is a positive model parameter. The value of this parameter affects the steepness of
the potential, thereby determining the shape of the potential. In our studies, we consider the
values of the o parameter in the range of 0 < o < 0.7. This range corresponds to modern
cosmological observations, Ref. (Samushia (2009)). For the value of the model parameter,
a=0, the pCDM Ratre-Peebles model is reduced to the ACDM model. The positive

parameter! is defined by the parameter .

IThe calculation of the x parameter is presented below.
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The parameter x relates to the mass scale of the particles, My, as:

kM2 =5
My~ (52)7 (7.2)

We consider a flat and isotropic universe, which is described by the spacetime FLRW metric:
ds® = dt* — a(t)*dx>. (7.3)

The Klein-Gordon equation of motion in the Ratra-Peebles model has the form:
b+3Ho— %mMglgb(a“) =0. (7.4)

The energy density, the pressure and the EoS parameter in the Ratra-Peebles model are

defined, respectively, as:

M? /.
_ 7l 2 2 —a
po = (0% +rMEe™), (7.5)
M? /.
_ pl 2 2 | —«
P = g (8 rMie), (7.6)
2 — kMg
wy = u (7.7)

(2'52 =+ "fMSl(?*a'

From Eq. (7.7) it follows that the requirement for the fulfillment of the condition, wq ~ —1,
the following restriction imposes, ¢2/2 < V(¢). The Ratra-Peebles 9CDM scalar field model
has the tracker solutions. This means that the scalar field energy density, py, at the early
epochs of the universe evolution, first tracks the radiation energy density and then the matter
energy density, while remaining a subdominant. Only in late times the energy density of the
scalar field, p;, becomes dominant.

The value of the EoS parameter for the scalar field Ratra-Peebles model at the radiation

domination epoch or at the matter domination epoch can be approximately defined as,

Ref. (Zlatev et al. (1999)):
%wbac -1

Wy ~
P71+ g

, (7.8)

where wy,. is the background EoS parameter at the radiation domination epoch or at the
matter domination epoch. For the radiation domination epoch wy,. = 1/3 and for the matter
domination epoch wy,. = 0. The approximation, which is presented in Eq. (7.8), is true for

Phac > Py, Where prae is a value of the background energy density.
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The scalar field model with the Ratra-Peebles potential has both the tracker solutions and
the attractor solutions?. This means that the evolution of the scalar field energy density, py,
in the Ratra-Peebles model is insensitive to the initial conditions, (¢, gf)in), and the solutions
for the wide range of the initial conditions converge into the same common solution at the
present, epoch.

The energy density parameter and the first Friedmann’s equation for the Ratra-Peebles

potential are defined, respectively, as:

1 .
Qp(a) = 33 7 <¢2 + mMﬁlcb‘“), (7.9)
E(a) = (Qroa_4 + Qmoa_3 + W <¢2 + HM§1¢_Q>>1/2. (710)
0

7.1.1 Calculation of the Model Parameter x and the Initial Condi-

tions

The calculations of the k parameter and the initial conditions are based on: Ref. (Farooq
(2013), Sec. 3.6.3,) and Ref. (Avsajanishvili et al. (2014), Appendix A).
In the scalar field equation, Eq. (7.4), we represent, the scale factor, a(t), and the scalar

field, ¢(¢), in the form of the power law:

a)=a() s =0(")" (7.11)

here a, = a(t,) and ¢, = ¢(t,) are the values of the scale factor and the scalar field at time,
t = t,, respectively. A parameter, p, is associated with the parameter, o, by the following
expression, p = 2/(2 + «).
As a result:
(a+2)°

ot = M3t2. 7.12
% 4(6n + 3na — «) Al (7.12)

Using the equations, Eq. (7.11), Eq. (7.12), Eq. (7.5) and Eq. (7.10), we find:

3n  MyN2 @2 <t>‘7
= — — 7.13
p 87T< t, ) ala+2) \t, ’ ( )
n>2 8w
— = —), (7.14)
(7) - 2

where p = p, is the dark energy density that dominates in the universe at the moments of

2An attractor is a set of the numerical values toward which a system tends to evolve for a wide variety
of the starting conditions of this system.
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time, t < t,. Assuming p(t) = p.(t/t.)?, we get 5 = —2a/(a + 2). On the other hand,
considering that the dominant dark energy component is represented as p,, at the moment
of time a = a,:

a,\ -

p= p*<—)%, (7.15)

a
where n = 1/2 and n = 2/3 are the values of the parameter n for the radiation domination
epoch and the matter domination epoch, respectively.

In order to get an expression for, ¢, we find 1/¢* from Eq. (7.14). Substituting Eq. (7.15)
into Eq. (7.13), assuming a = a, and p = p,. Comparing the obtained result with Eq. (7.12),

we find:

327 (671 + 3na — o
K

=30 P ) [na(a + 2)]2 p,. (7.16)
pl

Plugging Eq. (7.16) into Eq. (7.12) and using Eq. (7.14), we get:

NI

o, = [na(a+2)]z, (7.17)
(=)™ (7.18)

Qe

N[

¢ = [na(a+2)

Substituting the value of n = 1/2 into Eq. (7.18) and assuming a, = ag, we can obtain
the equations for the initial conditions at the radiation domination epoch, Eq. (7.22) and
Eq. (7.23).

Plugging Eq. (7.18) into Eq. (6.21):

4n <6n+3na—a
K

= (s )[na(a +2)]or2, (7.19)
pl¥x

Since Eq. (7.16) must be true for an arbitrary moment of time, ¢,, we assume ¢, = Mr;l.

As a result, for the values n = 1/2 and n = 2/3, we get:

k(n=1/2) = (Zig)[%a(a—i—m]aﬁ, (7.20)
K(n=2/3) = §(O‘+4) [goz(oz+2)r/2. (7.21)
J\a+2/13

7.1.2 Initial Conditions

We numerically integrated the system of the equations, Eq. (7.4) and Eq. (7.10). The initial
conditions were established at the radiation domination epoch, for the moment a;, = 5-1075.

The calculations were carried out to the present epoch, ag = 1. Despite the fact that
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the Ratra-Peebles potential has an attractor solution, for the best numerical convergence

we chose a specific solution at the radiation dominated epoch with the following initial

conditions:
1 /2,
Oin = {ﬁa(oHrQ)] tot?, (7.22)
. 8a 1/2 g—_g
Gin = (Q +2) tare. (7.23)

The value of the x parameter was obtained from Eq. (7.20). In our calculations, we applied
the current values of the matter energy density parameter and the dark energy density pa-
rameter, the reduced Hubble parameter, respectively: €, = 0.315, {249 = 0.685, h = 0.673.
These results were obtained by the Planck 2013 collaboration, Ref. (Ade et al. (2014c¢)).

7.2 Dynamics and Energy in the Ratra-Peebles ¢CDM
Model

We analyzed the dependence of the scalar field, ¢, and its time derivative, b, depending
on the model parameter a. The results of this analysis are presented in Fig. (7.1) and in

Fig. (7.2). In the ¢CDM model, a larger value of the o parameter induces a stronger time

a=0
v=0.5
«=0.5 071

—~ -
= S o4
< iasS
06
0.3  ‘
04f 5 oalk .
02r 1 01t
0 ‘ ‘ ‘ ‘ ‘ ‘ 0 ; ; ; ; ; ;
s 04 05 06 07 08 09 p 0.3 0.4 05 06 07 0.8 0.9 1

a

Figure 7.1: Left panel: dependence of the scalar field, ¢(a), on the value of the parameter
a. Right panel: dependence of the time derivative of the scalar field, ¢(a), on the value of
the parameter o.

dependence of the EoS parameter w and its scale factor derivatives, dw/da. As expected, in
the ACDM model the value of w is equal to minus one and the values of ¢, ¢ and dw/da are

equal to zero.
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Figure 7.2: Left panel: dependence of the EoS parameter, w(a), on the value of the parameter
a. Right panel: dependence of the scale factor derivative of the EoS parameter, w'(a), on
the value of the parameter a.

We applied the CPL parametrization to the effective EoS parameter, w(a), in the Ratra-
Peebles ¢CDM model, Eq. (6.46). This parametrization provides a good approximation in
the scale factor range, a € (0.98; 1), see Fig. (7.3) (left panel). We investigated the evolution

-0.75

3.5

a=0

a=0.1
a=05
a=07

-0.81

—a=0

3 alpha = 0.1 S
~ — — —w=-0967+1.013(1-a) =
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0.9 | — — — w=-0.858+0.046l(1-a) 1 2r
alpha=0.7
— — — w=-0.814+0.054(1-a)

-0.95

Figure 7.3: Left panel: the EoS parameter, w(a), for the different values of the parameter «
along with the predictions computed from the CPL parametrization with the corresponding
best fit values for wg and w,. Right panel: the normalized Hubble expansion rate, F(a), for
the different values of the parameter .

of the normalized Hubble parameter, E(a), which determines the expansion rate of the
universe for the different values of the a parameter in the pCDM model. The results of
this study are presented in Fig.(7.3) (right panel). With an increase in the value of the «
parameter, the universe is expanding faster. The slowest expansion rate corresponds to the
ACDM model.

The relationship between the dynamics and the energy components in the universe in
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Figure 7.4: Left panel: the second derivative of the scale factor, a, for the different values of
the parameter . Right panel: the matter energy density parameter, {,(a), (dashed lines)
and the scalar field density parameter, 24(a), (solid lines) as functions of the scale factor for
the different values of the parameter a.

the #CDM model is shown in Fig. (7.4). With the same value of the a parameter, the dy-
namic dominance of dark energy begins earlier, see Fig. (7.4) (left panel), than the energetic
dominance, see Fig. (7.4) (right panel). With an increase in the value of the o parameter,

the energetic dominance of dark energy begins earlier, see Fig. (7.4) (right panel).

7.3 Structure Growth in the Ratra-Peebles 9CDM Model

The evolution of the matter density fluctuations depends on the given cosmological model
of dark energy. The influence of dark energy on the large-scale structure evolution in the
universe is due to its influence on the expansion rate of the universe, E(a). In turn, the
expansion rate of the universe affects the growth of the matter density fluctuations. We
investigated the evolution of a large-scale structure in the expanding universe in the Ratra-
Peebles ¢CDM model. To calculate the growth of the matter density fluctuations, we used
the linear perturbation equation, Eq. (4.31). The evolution of the linear growth rate function,
D(a) = 6(a)/d6(ap), depending on the v parameter is shown in Fig. (7.5) (left panel). With
an increase in the value of the « parameter the linear growth factor, D(a), becomes more
dependent on time.

As it was discussed earlier, with an increase in the value of the o parameter, the Hubble
expansion occurs faster, see Fig. (7.3) (right panel), while the domination of the scalar
field energy begins earlier, see Fig. (7.4) (right panel). The growth of the matter density

fluctuations occurs only during the matter dominated epoch, Ref. (Frieman et al. (2008)),

119



1 1 1
a=0 ———1f a=0
a=0.1 ———Q a=0 =055
a=05 0.95 m @ v
oo =07 §r“=°’-101 = 0551
0.9 —— =9, =01 4=0
———f a=05
Y - v =
o8l | 085t —— -9 a=05 7=0556
’ —f a=07
Py 08 — 0] a=07 5=0558
E o7 =B
Q S o
S~
0.7
06
0.65
05t < 06k
0.55
04 .
03 04 05 06 07 0.8 09 1 05 . . . . . A
a 0.3 04 05 0.6 0.7 0.8 0.9 1
a

Figure 7.5: Left panel: the linear growth rate, D(a), for the different values of the parameter
a. Right panel: the growth rate, f(a), (solid lines) for the different values of the parameter
a along with the predictions Q) (a) (dashed lines), computed for the corresponding best fit
values of the parameter ~.

therefore, with an increase in the value of the a parameter, less time remains for the growth
of the matter density fluctuations. To achieve the same amplitude of the matter density
fluctuations at present epoch, d(ag), in the scalar field Ratra-Peebles ¢CDM model with a
larger value of the o parameter is required a larger initial amplitude for the matter density
fluctuations. Thus, the scalar field with the larger value of the a parameter induces a larger
amplitudes of the matter fluctuations at the beginning of their formation and at the all

subsequent moments of their growth until the present epoch.

7.4 Growth Index in the Ratra-Peebles ¢CDM Model

We investigated how well the power-law parametrization of the growth rate of the mat-
ter density fluctuations, f(a), and the fractional matter density parameter, Q,(a), which
is described in Eq. (4.35), can be applied in the Ratra-Peebles $CDM model. Provided
that instead of the effective growth index, 7y(a), we applied the value of the Linder -
parametrization, v, which is defined in Eq. (4.37).

The results of these investigations are shown in Fig. (7.5) (right panel). The value of the
Linder ~-parametrization, v, in the CDM model depends on the value of the o parameter,
herewith the value of the Linder y-parametrization, -, increases with an increase in the value
of the o parameter. The value of the Linder y-parametrization, ~, is slightly higher in the
¢CDM model than the value of the Linder y-parametrization, ~, in the ACDM model, for
which ~ ~ 0.55.
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The growth rate of the matter density fluctuations occurs slower with an increase in the
value of the parameter a, see Fig. (7.5) (right panel). This is a result of the fact that the
Hubble expansion and the growth rate of the matter density fluctuations are interrelated and
oppositely directed processes. The faster Hubble expansion, which corresponds to a larger
value of the « parameter, see Fig. (7.3) (right panel), leads to a greater suppression of the
growth rate of the matter density fluctuations.

We explored the applicability of the Linder y-parametrization for large redshifts. We
found, that this parametrization can be applied in the range of redshifts, z € (0;5) and it is

not applicable for the larger values of redshift, see Fig. (7.6) (left panel).
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Figure 7.6: Left panel: the growth rate, f(a), for the different values of the parameter «
(solid lines) along with the predictions Q7 (dashed lines), computed for the corresponding
best fit values of the 7 parameter in the range of redshifts, z € (0;10). Right panel: the v(a)
function for the different values of the parameter « in the range of redshifts, z € (0; 10).

We studied the behavior of the effective growth index function, v(a), was presented in
Eq. (4.36), at large redshifts, see Fig. (7.6) (right panel). We found that in a certain range of
scalar factor values, the function of the effective growth index, (a), is almost independent
of the value of the scalar factor. The weak dependence of the effective growth index function
on the value of the scalar factor occurs in the range of the values of the scalar factor: in the
ACDM model, a € (0.25;1) (or z € (0;3)); in the Ratra-Peebles #CDM model, a € (0.18;1)
(or z € (0;5)). Suchwise, with an decrease in the value of the parameter «, the weak
dependence of the effective growth index function ceases later in the pCDM model. Thus, in
the ACDM model, the applicability of the Linder y-parametrization is completed later than
in the CDM model. Comparing Fig. (7.6) (left panel) and Fig. (7.6) (right panel), we see
that the cessation of the Linder y-parametrization for the different values of the parameter o

coincides with the termination of the weak dependence of the effective growth index function,
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~(a), on the scalar factor. Thus, only in the range of the values of the scalar factor at which
the effective growth index function almost does not depend on the value of the scalar factor,

the Linder «-parametrization can be applied.

7.5 Conclusion

We scrupulously investigated the various properties of the Ratra-Peebles CDM model in
comparison with the ACDM model. In particular, we studied the dynamics of the Ratra-
Peebles CDM model with dependence on the model parameter a.. Since the larger value of
the parameter « increases, the steepness of the potential and, thereby, it induces the stronger
time dependence of the scalar field, ¢, its time derivatives (;5, as well as the EoS parameter,
w, and its scale factor derivatives, dw/da.

We showed that the Ratra-Peebles #CDM model differs from ACDM model in number
of characteristics. These characteristics are generic to a class of the freezing quintessence
¢»CDM models, and these characteristics do not depend on the value of the model parameter

Qe

In the 9CDM models, the expansion rate of the universe, E(a), is always greater than

the expansion rate of the universe in the ACDM model.

e The moment of dark energy domination in the pCDM models starts earlier than in the

ACDM model (provided that other cosmological model parameters are fized).

e The Ratra-Peebles o CDM model and the ACDM model differ in their predictions for
the growth rate of the matter density fluctuations in the universe: the scalar field model

predicts a slower growth rate of the matter density fluctuations than the ACDM model.

e We studied the applicability of the Linder - parametrization in the Ratra-Peebles
¢CDM model. We found that this parametrization works well in this model. The
value of the growth index in the Linder y-parametrization in the Ratra-Peebles pCDM
model increases with an increase in the value of the model parameter a. The value of
the growth index in the Linder ~y-parametrization in the @ CDM model is slightly larger
than in the ACDM model.

e We defined the boundaries of applicability in the Linder ~-parametrization in the
Ratra-Peebles 9CDM model, z € (0;5). The applicability of the Linder vy-parametrization
ceases later in the ACDM model than in the ¢ CDM model.
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Chapter 8

Constraints on the Model Parameters 1n

the Ratra-Peebles Model

8.1 Constraints on the Model Parameters in the Ratra-

Peebles Model from the Growth Rate Data

We carried out the constraints on the a and (), parameters in the Ratra-Peebles ¢CDM
model using a compilation of the growth rate observations obtained from, Ref. (Gupta et al.

(2012)). These data are presented in Table 8.1:

[ Jo [ 2 o |
0.51 0.15 0.11
0.60 0.22 0.10
0.654 0.32 0.18
0.700 0.35 0.18
0.700 0.41 0.07
0.75 0.55 0.18
0.730 0.60 0.07
0.910 0.77 0.36
0.700 0.78 0.08
0.90 1.40 0.24
1.460 3.00 0.29

Table 8.1: Growth rate data, f.ns; redshift z; 1o uncertainty of the growth rate data.

To get the theoretical values of the growth rate, fi;,, we numerically solved the linear

perturbation equation, Eq. (4.31), for a series values of « and €),,, parameters. After that we
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calculated the function x?(a, Qups) as:

_ 2
XQ(Oé,Qobs) - [fObs f?§a79m)] ) (81)

here ¢ is the standard deviation of the growth rate data. We calculated the likelihood

function, £f(c, Qy,), assuming that it obeys the Gaussian distribution:
L0, ) ox expl—x(, %) /2] (5.2

The results of these calculations are presented in Fig. (8.1). The 1o and 20 confidence level

25

1.5

0.5F

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Qn,

Figure 8.1: 10 and 20 confidence level contours on the parameters (2, and « in the 9CDM
model. This constraints are obtained from the growth rate data, Ref. (Gupta et al. (2012)).

contours in the a - €2, phase space are strongly degenerated with respect to the constraint
on the a parameter. Thus, the observations on the growth rate alone cannot simultaneously
restrict both parameters, a and §2,,,, in the Ratra-Peebles CDM model. However, we found
the constraint on the 2, parameter in the ACDM model and in the Ratra-Peebles ¢CDM
model, using only the growth rate observations. If we fix the ordinate with a = 0, see
Fig. (8.1), which corresponds to the spatial flat ACDM model, we will obtain the best fit
value Q,, = 0.278 & 0.03. This value is within of the 1o confidence level of the Planck 2013
data, Ref. (Ade et al. (2014¢)). In the ACDM model, the values of 0.18 < Q,, < 0.36 are

124



contained at the 20 confidence level, see Fig. (8.1). In the Ratra-Peebles ¢CDM model, the
values of {2, < 0.18 are outside of the 20 confidence level, but the values of €2, > 0.36 are

still allowed for the large values of the model parameter «, see Fig. (8.1).

8.2 Constraints on the Model Parameters in the Ratra-

Peebles Model from the BAO Data

To eliminate the degeneration between the model parameters v and €2,,,, which was obtained
as a result of applying the constraints from the growth rate data, f(a), we carried out
the additional constraints using BAO data with small redshifts, which were taken from,
Ref. (Giostri et al. (2012)). We also followed the approach used in the paper, Ref. (Giostri
et al. (2012)).

We calculated the angular diameter distances:

z dz/
d Qum, Hy) = :
A(zaaa 0) /0 H(Z/,Oé,Qm,Ho) (8 3)
and the distance scale (dilaton scale):
Dy (z, a, 0, Hy) = [d3 (2, o, Qun, Ho)z/H (2, v, Qu, Ho)]M3. (8.4)

We constructed a combination of the angular diameter distance, da(zgec), and the distance

scale, Dy (zpao0), Ref. (Eisenstein et al. (2005)):

1(2) = da(zree)/ Dv(2B10)- (8.5)

The expression in Eq. (8.5) is the BAO/CMBR constraints.
The BAO and CMBR observations are dependent on each other. Assuming that these
data obey the Gaussian distribution, we calculated the function Y% using the following

covariant inverse matrix, C~:

g =X'C'X. (8.6)

We also calculated the likelihood function by applying the results from Eq. (8.6):

LB, O, Hy) o< exp(—x3/2), (8.7)
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where X' = 1 — Nops-

The value of a vector, X, is calculated as:

dA (Zrec)

Dy (0.106)

dA(Zrec)
Dy(0.2)
dA(Zrec)
Dvy(0.35)

dA (Zrec>

Dy/(0.44)

dA(Zrec)
Dy (0.6)

dA (Zrec)

Dy (0.73)

— 17.55

—30.95

—10.11

—8.44

—6.69

—5.45

The inverse covariance matrix for the observations, C™1, is defined as:

0.48435
—0.101383
—0.164945

—0.0305703
—0.097874
—0.106738

—0.101383
3.2882
—2.45497
—0.0787898
—0.252254
—0.2751

—0.164945
—2.45497
9.55916
—0.128187
—0.410404
—0.447574

—0.0305703
—0.0787898
—0.128187
2.78728
—2.75632
1.16437

—0.097874
—0.252254
—0.410404
—2.75632
14.9245
—7.32441

(8.8)

—0.106738
—0.2751
—0.447574
1.16437
—7.32441
14.5022

(8.9)

In the Gaussian distribution, we used the prior value of the Hubble constant, Hy = 74.3+£2.1,

to restrict the Hy parameter in the likelihood function, £B, Ref. (Freedman et al. (2012)).

The likelihood function obtained for the growth rate function, £, and the likelihood function

obtained for BAO/CMBR. constraints, £B, are independent of each other, therefore, the

combined likelihood function, £, is simply a multiplication of the given likelihood functions,

according to the results from Eq. (5.4): £ = £t LB.

The results of our calculations are presented in Fig. (8.2). After conducting the BAO/CMBR

analysis, we received the new constraints on the 2, and a model parameters. The model

parameter (), is restricted within 0.26 < €, < 0.34 at the 1o confidence level. For the

parameter a we got a range of the values, 0 < o < 1.30, at the 1o confidence level, see

Fig. (9.1).
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Figure 8.2: 10 and 20 confidence level contours on the parameters (2, and « in the pCDM
model. These constraints are obtained after adding BAO/CMBR measurements of the prior
distances, Ref. (Giostri et al. (2012)).

8.3 Conclusion

To constrain the parameters in the Ratra-Peebles ¢CDM scalar field model, we used a
compilation of the observations: the growth rate data and BAO data with the prior distances
from the CMBR. Using only the growth rate data, there is a strong degeneracy between the
values of the model parameters €2,, and «. It means that the larger values of the parameter «
are allowed with an increase in the value of the parameter 2,,. The degeneracy is eliminated
after combining the constraints on the growth rate data with the constraints on the distance-
redshift ratio of the BAO data and the prior distance from the CMBR.

As a result, we received the constraints on the model parameters in the Ratra-Peebles
dCDM model: €, = 0.30 = 0.04 and 0 < o < 1.30 at the 1o confidence level. The best fit

value for the parameter « is o = 0.00.
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Chapter 9

Constraints on the Models Parameters

in the Quintessence and Phantom

oCDM Models

This chapter is based on the research, which was carried out in the paper, Ref. (Avsajanishvili
et al. (2018)).

We studied the quintessence (canonical scalar fields) and the phantom (non-canonical
scalar fields) scalar field models in the case of flat spacetime. There is still no final decision,
which of these models is preferable, Refs. (Suzuki et al. (2012), Novosyadlyj et al. (2013),
Ade et al. (2014¢), Betoule et al. (2014), Ade et al. (2016)). We applied the predicted
data, calculated for the upcoming DESI experiment and studied the scalar fields models
compared to the standard ACDM model. Our study is based on the comparison of data on
the expansion rate of the universe, the growth rate of the matter density fluctuations and
the measurements of the angular diameter distance, which will be obtained from the DESI

experiment.

9.1 Definition of the Model Parameters and the Initial
Conditions

We studied the scalar field models with 10 quintessential and 7 phantom potentials, a list
of which is presented in Table 6.1 and in Table 6.2. All the scalar field models presented in
these Tables have the same parameters €2,,,0 and Hy. In addition to these parameters, each

scalar field model has its own set of the extra model parameters that determine the shape
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and the strength of the potential, V(o).

For each potential, we numerically solved the system of the differential equations: the
Klein-Gordon equation of motion for the quintessence (the phantom) model, respectively
Eq. (6.21) (Eq. (6.31)), the first Friedmann’s equation, Eq. (6.22) and then the perturbation
equation, Eq. (4.31), for a wide range of the free parameters and the initial conditions (¢,
gzgo) for the matter dominated epoch. Due to the fact that for all the potentials the ranges
of the initial conditions and the model parameters are unknown precisely, we developed a
method for defining these ranges. For each potential, we found the plausible solutions, for

which the following three criteria were simultaneously fulfilled:

1. The transition between the matter and dark energy equality (€2, = £4) happens relatively
recently, a € (0.6;0.8), see Fig. (7.4) (right panel).

2. The growth rate of the matter density fluctuations, f(a), and the fractional matter density,
Q. (a), are parametrized by the Linder v-parametrization, Eq. (4.37).

3. The EoS parameter predicted by the different dark energy models should be in the agree-
ment with the expected current value of the EoS parameter (for the phantom models
wy < —1; for the quintessence models —1 < wy < —0.75, for the freezing type w, < 0

and for the thawing type w, > 0).

Despite the fact that the Ratra-Peebles potential has an attractor solution, for the best
numerical convergence we chose a specific solution at the matter dominated epoch with the
following initial conditions, Refs. (Ratra & Peebles (1988b), Farooq (2013), Avsajanishvili
et al. (2014)):

8 fa+4 2 a/2
_° : 2 1
=3 (255) [ata+2]™ (9.1)
9 /2 5
¢1n = |:§a(a+2):| tii“? (9 2)
' 6o ]Y? 1za
in = t2te 9.3
b= |005] i 9:)

The initial value of the scale factor, a;, o tizr{?’, was chosen at the matter domination epoch,
Eq. (2.101). In our calculations, we used the values of the model parameter « in the range,
a < 0.7, Ref. (Samushia (2009)).

We applied the aforementioned phenomenological method and found the following ranges

for each potential: the allowed initial conditions and the model parameters, which describe
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the form and the strength of the potential. These ranges, along with the general free model

parameters 2,0 and Hy, are presented in Table 6.1 and Table 6.2. We used this data for

each dark energy model as the initial conditions for the MCMC calculations.

Quintessence potentials

| Free parameters

_ C Ho(50 = 90) Vo(3+5)
V(g) = VoMo (0252 032) a(10-5 = 0.7)
Ho(50 = 90) A(1077+1077)
V() = Vo exp(=A¢/Mp) Qu0(0.25+0.32) (0.2 + 1.6)
V(10 + 10%) $0(79.8 + 338.9)
Ho(50 = 90) ,
 Vo(ex N . $o(L.5 + 10)
Hy(50 = 90) (655 T)

V() = Voo X exp(y¢® /M)

Quno(0.25 = 0.32)
Vo(1072 = 107Y)

¢0(5.78 + 10.55)
$0(680.6 = 879)

x(4( +8) ;
Hy(50 = 90
N g(0.1+0.49)

V(¢) = Vi(cosh(sp) — 1)9 %&%@285) +0.32) ¢o(1.8 + 5.8)
(015 = 1) $0(360 + 685)
Hy(50 = 90) v(6+12)

V(p) = Vo(exp(vo) + exp(ve)) m0(0.25+0.32)  ¢(0.014 +~ 1.4)
Vo(1 +12) $o(9.4 + 311)
Hy(50 = 90) B(1 + 60)

V(O) = Vol(o = B + Ayexp(-pg) | PP 098 HO2E 09
A(1 + 40) $o(681 <+ 804.5)
Hy(50 = 90) .

. £(1072+1)

V(¢) = Vosinh™ ({Myi9) %?01(32150)‘ 0.32) $0(0.5 + 2.5)
775(—0'.1 J g3y G190+ 367)
Hy(50 = 90)

V(¢) = Vo exp(Mpyi/ )

Qn0(0.25 + 0.32)
Vo(10% = 10°)

¢0(5.78 + 10.55)
$0(680.6 + 879)

V(¢) = Vo(1 + exp(—79))

Hy(50 = 90)
n0(0.25 = 0.32)
Vo(1 = 102)

7(10 = 107)
$0(0.01 + 0.075)

Table 9.1: The list of the dark energy quintessence potentials and the free parameters.
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Phantom potentials ‘

Free parameters

Hy(50 < 90) ,
. ) ¢0(3.37 + 3.94)
Vig) = Vod %ﬁ??ilg-iﬁ) $0(523 + 563.6)
Hy(50 = 90) ,
o ) ¢0(2.83 + 5.15)
V(o) = Voo %?%%0355 6)0'32) Go(471.4 = 600)
Hy(50 = 90) 5(0.08 = 0.3)
V(¢) = Vo exp(60) Um0 (0.25 + 0.32) (0.2 + 9.14)
Vo(1 + 20) $o(79.8 + 830.9)
Hy (50 = 90) ,
o ) $0(0.67 + 2.8)
V(¢) = Voo %?3(22250). 0.32) o1+ 450)
Hy (50 = 90) (5 + 30)
V(g) = Vo(1 — exp(¢?/c?)) Dm0(0.25+0.32)  ¢(0.67 = 2.8)
Vo (5 + 30) o(191 = 450)
Hy(50 = 90) r(11+2)
V(¢) = Vo(1 — cos(¢/x)) U0(0.25 + 0.32) (2.3 + 3.37)
Vo(1 +4) $o(420 <+ 500)
Hy(50 = 90) (1077 1)
V(¢) = Vo(cosh(i)) ! Um0 (0.25 -+ 0.32)  ¢o(1.4 + 2.3)

Vo(1073 = 102)

$0(310 = 420.7)

Table 9.2: The list of the dark energy phantom potentials and the free parameters.

9.2 MCMC Analysis for Study of the Dark Energy Mod-

els

We calculated the values of the normalized Hubble parameter for all the dark energy models,

the angular diameter distance and the growth rate in the redshift range, z € (0.15;1.85).

e The normalized Hubble parameter, E(z)

We calculated the values of the normalized Hubble parameter, E(z), from Eq. (6.22).

e The angular diameter distance, da(z)

We computed the angular diameter distances using the equation:

dA(Z) =

1 *odY
H0(1+z)/0 E(2')

(9.4)

This equation is a special case for the flat universe, it was obtained from Eq. (3.48).

e The combination of the growth rate of the matter density fluctuations and the matter

power spectrum amplitude, f(a)os(a)

The value of the growth rate of the matter density fluctuations was found from Eq. (4.34).
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The matter power spectrum amplitude can be determined through the function og(a) =
D(a)og, where og = 0g(ag) is the rms linear fluctuation in the mass density distribution
on the scale 8h~! Mpc. We fixed the value of oy to its current best fit ACDM value
of og = 0.815 from the Plank 2015 data, Ref. (Ade et al. (2016)).

Since the observations for the expansion rate of the universe, H(z), the growth rate of
the matter density fluctuations, f(a)og(a), and the angular diameter distances, D4(z), are
dependent on each other, we calculated the covariant matrices for these measurements. We
followed the standard approach for calculating the Fisher matrices, proposed in Ref. (Font-
Ribera et al. (2014)). We assumed 14000 sq. deg. of sky coverage and the wavenumbers up
t0 Kkmax = 0.2 Mpc/h. Our variances matched the numbers in Table V of Ref. (Font-Ribera
et al. (2014)). We also accounted for the covariances between the measurements within
the same redshift bin. The D4(z) and H(z) measurements are negatively correlated by
approximately 40%, while the correlations with f(a)og(a) are below 10% for all the redshift
bins.

After conducting the MCMC analysis, we found that the values of the parameters cor-
responding to the maximum probability are within of the prior ranges of these parameters
presented in Table 9.1 and Table 9.2. We found that there is no need to adjust the prior
ranges of the model parameters. The examples of the MCMC constraints for the quintessence
Ratra-Peebles, the Golden-Wang-Steinhardt and the phantom pseudo-Nambu-Goldstone bo-

son potentials are shown in Figs. (9.1-9.3).

9.3 Bayesian Statistics

To assess the quality of the different models and to distinguish them from each other, we
applied the Akaike information criterion (AIC'), Ref. (Akaike (1974)) and the Bayesian (or
Schwarz) information criterion (BIC), Ref. (Schwarz (1978)). The AIC and BIC' infor-
mation criteria are the functions of the number of estimated model parameters, N. The

information, which is obtained by these criteria, complement each other.

The AIC and BIC' are defined respectively as:
AIC = =21In L. + 2k (9.5)

and

BIC = =210 Loy + kIn N, (9.6)
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Figure 9.1: The 20 confidence level contour plots for various pairs of the free parameters («,
Quo, h), for which the ¢CDM model with the Ratra-Peebles potential V(¢) = VoM7¢™ is
in the best fit with the ACDM model.

where L. o exp(—x2;,/2) is the maximum value of the probability function, k is the
number of observations.
We also conducted the Bayes evidence analysis. The Bayes evidence for the model with

a set of the parameters, p, is determined by the integral:

e~ [Eprip) (9.7)

where P is the posterior likelihood, which is proportional to the local density of the MCMC
points. The boundaries of the integration are given by the prior on the extra parameters,
i.e., from the previously found ranges of the model parameters shown in Table 6.1 and Table
6.2.

The models with the higher values of the Bayes evidence are preferable to the models

with the lower values of the Bayes evidence.
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Figure 9.2: The 20 confidence level contour plots for various pairs of the free parameters
(Vo, Qmo, hy 0o, ¢o), for which the 9CDM model with the Zlatev-Wang-Steinhardt potential
V(¢) = Vo(exp(My1/¢) — 1) is in the best fit with the ACDM model.

Figure 9.3: The 20 confidence level contour plots for various pairs of the free parameters (k,
Quo, h, Vo, ¢o, ¢o), for which the pCDM model with the phantom pseudo-Nambu-Goldstone
boson potential V' (¢) = Vy(1 — cos(¢/k)) is in the best fit with the ACDM model.
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‘ Quintessence potentials AIC ‘ BIC ‘ Bayes factor ‘

V(p) = VoMo~ 10 | 18.7 ] 0.5293
V(9) = Vo exp(—Ag/M,)) 12 | 22.4 [ 0.0059
V(9) = Vo(exp(M,/6) — 1) 10 | 18.7 [ 0.0067
V($) = Voo Xexp(y¢?/M3) 14 | 26.2 ] 0.0016
V(p) = Vo(cosh(sp) — 1)9 14 26.2 | 0.0012
V() = Vio(exp(vo) + exp(vo)) 14 | 26.2 | 0.0053
V() = Vol(é — B2 + A)exp(—pua) | 16| 20.9 | 0.0034
V() = Vosinh™ (EMp19) 14 | 26.2|0.0014
V($) = Vo exp(Mp/9) 10 | 18.7 [ 0.0077
V(g) = Vo(1 + exp(—79)) 12 | 22.4 | 0.0024

Table 9.3: The list of the dark energy quintessence potentials with the corresponding values
of AIC, BIC and Bayes factor.

‘ Phantom potentials ‘ AIC ‘ BIC ‘ Bayes factor ‘
V(gp) = Vop® 10.0 | 18.7 | 0.0921
V($) = Vod2 10.0 | 18.7 | 0.0142
V($) = Vo exp(Bd) 22.4 | 12.0 | 0.0024
V(g) = Voo? 10.0 | 18.7 | 0.0808
V(9) = Vo(1 — exp(6?/0%)) | 12.0 | 22.4 | 0.0113
V(o) = Vo(1 — cos(¢/k)) 12.0 | 22.4 | 0.0061
V(¢) = Vy(cosh(v¢))~? 12.0 | 22.4 | 0.0056

Table 9.4: The list of the dark energy phantom potentials with the corresponding values of
AIC, BIC and Bayes factor.

We investigated how tight the prior on the extra model parameters should be for the
competitiveness of the dark energy models (in the sense of the Bayes evidence) with the
standard ACDM model. We checked that the priors ranges of the model parameters include
the values of the model parameters from the posterior ranges.

We numerically integrated the posterior probability for all the models, the results of this
integration are presented in Table 9.3 and Table 9.4. All these numbers are normalized

relative to the fiducial ACDM model.
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9.4 ¢CDM Models in the CPL Phase Space

To check how well the CPL parametrization approximates the dark energy models, how
these models are consistent with the ACDM model and how they differ from each other, we
presented a set of the possible values of the EoS parameters, wy and w,, for each dark energy
potential in the CPL - ACDM phase space.

The mapping of the dark energy models on the wy — w, plane is shown in Fig. (9.4)
for the quintessence models and in Fig. (9.5) for the phantom models. In these figures, the
curves represent the maximum ranges of the values of the EoS parameters, w(a), for each
dark energy model in the wy — w, plane. These CPL-ACDM contours at the 1o, 20, and 30
confidence levels were obtained by fitting the data H(z), da(z) and f(a)og(a) for each dark
energy model under study and for the ACDM model of the CPL parametrization.

In order to check how well the CPL parametrization, Eq. (6.46), describes the dark energy
models, we find the best fit effective values of wy — w, for a range of the free parameters
for each model. For an easy visual representation of this information, we chose a parameter
with respect to which the best fit wy and w, values are the most sensitive and plotted these
ranges within priors. These results are presented in Fig. (9.4) for the quintessence models
and in Fig. (9.5) for the phantom models.

In Fig. (9.4) we show that some of the dark energy models are located very close to the
ACDM model for a wide range values of the EoS parameter within our priors. The range
of the values of the FoS parameters for the Ferreira-Joyce, the inverse exponent and the
Sugra potentials is very small, it almost coincides with the value of the EoS parameter for
the ACDM model, (wyg = —1,w, = 0), therefore, these models are absolutely impossible
to distinguish from the ACDM model. The values of the EoS parameter for the Chang-
Scherrer, the Uréna-Lépez-Matos, and the Barreiro-Copeland-Nunes potentials are inside of
the 30 confidence levels of the CPL - ACDM contours. Thus, these potentials cannot be
distinguished from the standard ACDM model today. The values of the EoS parameter for
the Ratra-Peebles, the Zlatev-Wang-Steinhardt, the Albrecht-Skordis, and the Sahni-Wang
potentials are beyond of the 30 confidence levels of the CPL - ACDM contours. This means
that depending on the value of the EoS parameter at the present epoch, these models can
either be distinguished or they cannot be distinguished from the ACDM model today.

The results obtained for the phantom potentials are presented in Fig. (9.5). Obviously,
the values of the EoS parameter for the phantom quadratic potential are outside of the

30 confidence levels of the CPL - ACDM contours, so this potential cannot imitate the
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ACDM model today. The EoS parameter curves for the pseudo-Nambu-Goldstone boson,
the inverse hyperbolic cosine, the exponent, the Gaussian, the inverse square power potentials
are partially at the 3o confidence levels of the CPL - ACDM contours and partly outside
of these boundaries. Thus, these models either can mimic the ACDM model today or they
can also manifest themselves as the dark energy models with a faster change of the EoS
parameter over time than the EoS parameter in the ACDM model. The curve of the EoS
parameter for the fifth power phantom potential is within the 30 confidence levels of the
CPL - ACDM contours, so this model cannot be distinguished from the ACDM model today.

For each potential we investigated whether a change in the value of one of the model
parameters (provided that the values of the other model parameters and the values of the
initial conditions are fixed) or a change in the values of the initial conditions (provided that
the values of the model parameters are fixed) leads to the maximum range of the values
of the EoS parameter. The result of this study is that we can divide all the considered
potentials into two types: into the potentials whose evolution depends on the values of the
initial conditions and into the potentials whose evolution doesn’t depend on the values of the
initial conditions, i.e., such potentials have the attractor solutions. The first type includes
the following quintessence potentials: the Zlatev-Wang-Steinhardt, the Sahni-Wang, as well
as the following phantom potentials: the quadratic, the Gaussian, the fifth power, the inverse
square power. The second type includes the following quintessence potentials': the Sugra,
the Uréna-Lépez-Matos, the Albrecht-Scordis, the Chang-Scherer, the Barreiro-Copeland-
Nunes, as well as the following phantom potentials: the pseudo-Nambu-Goldstone boson,

the inverse hyperbolic cosine, the exponent.

9.5 Conclusion

Applying the phenomenological method developed by us, we reconstructed the dark energy
model of a scalar field, listed in Table 6.1 and in Table 6.2. Thus, we found the prior ranges
for the initial conditions and the model parameters. The results are summarized in Table
9.1 and in Table 9.2.

The constraints on the dark energy models were obtained by comparing H(z), da(z),
f(a)og(a) data with the corresponding data generated for the fiducial ACDM model. The

examples of the constraints for the Ratra-Peebles, the Zlatev-Wang-Steinhardt quintessence

! The Ratra-Peebles potential is in the privileged position in comparison with the other potentials, since
for this potential we considered a solution with the fixed initial conditions, Eq. (9.1). Thus, this potential
was not, considered in this study.
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Figure 9.4: The comparison of the possible wy and w, values for the quintessence dark energy
potentials with the CPL-ACDM 3¢ confidence level contours.

potentials and for the inverse hyperbolic cosine phantom potential are shown in Figs. (9.1-
9.3).

We applied the Bayes statistical criteria to compare the models, such as the Bayes factor,
as well as the AIC' and BIC information criteria. To this end, we have integrated Eq. (9.7)
within the boundaries corresponding to the previously found ranges of the model parameters
given in Table 9.1 and in Table 9.2. The calculated values of AIC, BIC and Bayes factor
for all the dark energy models are summarized in Table 9.3 and in Table 9.4. These numbers
clearly demonstrated that if the ACDM model is the true description of dark energy, then
the full DESI data will be able to strongly discriminate most of the scalar field dark energy
models currently under consideration.

We investigated how the dark energy models are mapped on the wy — w, phase space of
the CPL-ACDM contours, see Fig. (9.4) and Fig. (9.5).

We found that the Ferreira-Joyce, the inverse exponent, the Sugra, the Chang-Scherrer,

the Uréna-Lépez-Matos, the Barreiro-Copeland-Nunes quintessence models and the fifth
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power phantom model cannot be distinguished from the ACDM model for the present time.
Whilst the Ratra-Peebles, the Zlatev-Wang-Steinhardt, the Albrecht-Skordis, the Sahni-
Wang quintessence models and the pseudo-Nambu-Goldstone boson, the inverse hyperbolic
cosine, the exponent, the Gaussian, the inverse square power phantom models can either
be distinguished or cannot be distinguished from the ACDM model today. The quadratic
phantom model can be absolutely distinguished from the ACDM model at the present epoch.

All the studied models can be divided into two types: on the models whose evolution de-
pends on the values of the initial conditions and into the models whose evolution doesn’t de-
pend on the values of the initial conditions. The first type includes the following quintessence
models: the Zlatev-Wang-Steinhardt, the Sahni-Wang and also the phantom models: the
quadratic, the Gaussian, the fifth power, the inverse square power. The second type includes
the following quintessence models: the Sugra, the Chang-Scherrer, the Albrecht-Skordis, the
Urena-Lépez-Matos, the Barreiro Copeland-Nunes, as well as the following phantom models:

the pseudo-Nambu-Goldstone boson, the inverse hyperbolic cosine, the exponent.
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Chapter 10

Mass Varying Neutrino Model

The coupled models of dark matter and dark energy were developed to resolve the coincidence
problem in the standard ACDM model. Based on the essence of this problem, it follows that
dark matter and dark energy interacted with each other during their evolution. At the same
time, the assumed dark matter particles had the mass that varied over time.

One of the candidates for the role of dark matter can be considered the relic neutrinos.
The neutrinos belong to the class of leptons and can participate only in the weak gravita-
tional interactions. In addition, the neutrino has the mass. According to Planck 2015, the
value of the sum of neutrino masses at the present epoch is > m, < 0.23 eV under the
assumption that the ACDM model is correct, Ref. (Ade et al. (2016)). Fardon, Nelson and
Weiner elaborated the mechanism of the Varying Mass Particles (VAMPs). They applied
the VAMPs mechanism to the neutrinos, as a result of which the model of Mass Varying
Neutrino (MaVaN) was created, Ref. (Fardon et al. (2004)). In this model, the fermionic
field interacts with the bosonic scalar field via the Yukawa coupling. If initially (before in-
teraction) the relic neutrino is massless, then interacting with the scalar field the neutrino
will acquire the mass, which subsequently varies over time.

The MaVaN model is quite compelling, since the cause of the neutrino mass emergence
is explained in this model. In addition, the coincidence problem is resolved in this model,
i.e., the answer to the following question is given: "Why do the neutrinos (dark matter) and
dark energy have the comparable energy scales at the present epoch?"

The disadvantage of the MaVaN model is the instability of a fluid, which consists of the
neutrinos and dark energy. This instability is a consequence of the negative value of the
square of the sound speed in this medium. A negative value of the square of the sound speed

arises due to the exponential growth of the scalar fluctuations, which leads to the expo-
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nential clustering of the neutrinos, Refs. (Afshordi et al. (2005), Kaplinghat & Rajaraman
(2007)). To get rid of this problem, the additional complications were introduced into the
MaVaN model, for example, a multicomponent scalar field was considered, Ref. (Takahashi
& Tanimoto (2007)). In the paper Ref. (Chitov et al. (2011)), the authors studied the stable,
metastable and unstable phases of the MaVaN model and found a consistent solution for the
equilibrium condition.

In this work, we consider the inverse-power Ratra-Peebles scalar field potential. This
potential does not have a non-trivial minimum. The fermionic mass is generated due to the
violation of the chiral symmetry in the Dirac sector of the Lagrangian. It is assumed that the
fermionic mass is obtained from the minimizing the total thermodynamic potential. At the
same time, the evolution of the mass is slow enough, so that the coupled system (fermions

and dark energy) to be in the equilibrium at the temperature of T'(a).

10.1 Interaction of the Scalar Field and Dirac Field

The Hamiltonian of the bosonic scalar field for the FLRW metric and the Euclidean action

of the bosonic scalar field are defined, respectively, as:

Hp = /a3d3x [%Qz}? + #(W)? + V(¢)] (10.1)
" E ’ 503 [LOT\2, 1 2
St :/0 dT/a(t) i [5(075) 55 (VOP V()] | (10.2)

where [ d*z =V is a comoving volume; a*V = Vjys is a physical volume; V() is a potential
of the scalar field.
The Dirac Hamiltonian for the FLRW metric and the Euclidean action for the Dirac field

are presented, respectively, as:

Hp = /a3d3x 1/_1( — 2’7 -V + m,,)z/J (10.3)
and
A - 0
SE— /0 dT/a(t)3d3$ Y(x,7) (’705 - 27 -V +m, — /ﬂ“)w(& 7), (10.4)

where m,, is the fermionic mass.
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The grand partition function is defined by the Grassmann functional integral:
Zp = Tre PH-HQ) — / DYDipe b, (10.5)

Consider the interaction of the bosonic scalar field with the massless fermions via the Yukawa
coupling:

p _
S=S5E+ Sﬁ\muzo +g/ dT/agdgx oY, (10.6)
0

where ¢ is the dimensionless Yukawa coupling constant, g = 1.

The Lagrangian for the Yukawa coupling is defined as:

Ly = =g, (10.7)

The path integral for the partition function in the interaction of the bosonic field with the

fermionic field:

Z = / D¢DYDpe . (10.8)

The Grassmann fields can be formally integrated, Ref. (Chitov et al. (2011)):

Z= /meS(@ = /Dqs exp [ — SE + logDetD(¢)] (10.9)

where the Dirac operator is defined as:

. 0

D(6) =75 = =7+ V +go(x,7) — 11" (10.10)

10.2 Saddle Point Approximation

The thermodynamic potential in the coupled model of the bosonic scalar field and the
fermionic field, Eq. (10.6), can be found in the saddle point approximation, minimizing
the path integral, Eq. (10.9). We take into account that the bosonic scalar field at the

moment, ¢ = ¢., minimizes the action, S. This is the so-called classical field value:

Per = () (10.11)
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In this case, we can precisely determine the value of log det D((b), where the fermions acquire

the mass:

my, = gQPer- (10.12)

At the moment ¢ = ¢, the partition function has the form:
Zyy = Zpe PV (0er), (10.13)

In this case, the total thermodynamic potential, Vy, (¢, ), is defined as:

Vi (fer) = V(6e) + Vi(60), (10.14)
where
Vo = Vo — #/0 (i]();)) [np(e+) + np(e_)], (10.15)

1

here Vj is a thermodynamic potential for vacuum'; ng(z) is a Fermi distribution function:

1

= 10.16

Let’s consider the approximation in the saddle point, ¢ = ¢... This approximation will be
a self-consistent if ¢, minimizes the free energy. The conditions for the minimum of the
total thermodynamic potential, Eq. (10.14), at the saddle point (at fixed temperature and

chemical potential):

OV (D)
8¢ W, B50=ccr

—0, Vo (0) > 0. (10.17)

2
a¢ HyB3p=cr

Applying the first condition in Eq. (10.17) to the total thermodynamic potential, Eq. (10.14),

we get:
V'(¢er) + gps = 0, (10.18)
where p; is a fermionic density. R
(V) oV,
s = — = y ]_0].9
= =5 (10.19)

here N = [ d® /=g xp.

!Henceforth, the values of the potential, the pressure and the energy density will be redefined with respect
to the corresponding vacuum values as: Vg, — Vg, — Fo, P, — P, — Py, ps — ps — po-
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The fermionic density is defined as:

m [ dpp?

Ps = —
7 Jo  €(p)

|:77,F<6+) —+ nF(e,) —11. (1020)

10.2.1 Fermionic Potential

Consider the Dirac fermions, for which the number of the fermions and the antifermions
is the same, i.e., the chemical potential is zero, 4 = 0. The fermions with zero chemical

potential are described by the Fermi distribution function, Eq. (10.16):

1

where F is a physical fermionic energy, which is defined as:
E(p) = v/mi + p?, (10.22)

here p is a fermionic momentum.

The fermionic potential, V,,, is completely determined by the fermionic pressure, p,:

N o ptd
V, = —p, = —F / DD (B2) + np(ES)
0

3r2 )y E(p)
2Np [*  pldp
= — = 10.23
o |, w0 1029

where Np is the number of the neutrinos species, Np = 3; § = 1/T and T = T,/a,
T,o = 1.9454 €V is a neutrinos temperature at the present epoch?.
In Eq. (10.23), taking into account that EL = FE(p)+pu, if p = 0, then np(E_) = np(Ey).

Let’s introduce the new variables to the integral, Eq. (10.23): E = 3E, dE = BdE, where
J— J— -2 =2
E* = #m2 + 3% Eq. (10.22); pdp = LdE, pb = ELmil? _ E g

boundaries of the integration: for p = 0, E = fm, = ¢ and for p = oo, E = co.

The new

Eventually, Eq. (10.23) can be rewritten as:

o 2 . o /=2 _
_QNF/ (E-%)PE & _ 2Np / E )" & (10.24)

Vi, =—p, = 53E<€E+ 1) B - 371.264

2The neutrinos temperature at the present epoch can be obtained from the equation: T,o = (4/11)1/3T,,0,
where T,o = Tp is a photons temperature at the present epoch.
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10.2.2 Fermionic Energy Density

The total thermodynamic potential, Vj,, is defined as:

9N o (B2 _32)3/2 _
Voo = V() +Vilo) = Vil0) - iy [ EZ i (10.25)
%)

We examine the Ratra-Peebles potential for the bosonic scalar field:

a+4
_ M¢>

V(o) =t (10.26)

where My is a mass scale for the Ratra-Peebles potential.
From the condition of the minimizing the total thermodynamic potential, Eq. (10.18),

we have:
Vv, 10V,
— = __ . 10.2

Differentiating Eq. (10.24), we obtain the equation for the fermionic density:

oV, 2N /00 325°m, (B — (Bm,)*)'*
pom e _ E . dF,
dp  3m2B Js,, 2 el +1

-2

IN 5 o (BT 5 2\1/2

=2 / (B = GBm) )" 5 (10.28)
usie} Bmy, el +1

Eq. (10.28) can be rewritten as:

INg  [©3208%E —$)2 . 2Npg [~ (B —§)? _
= F/ 32000E =0 )" & 2Npd [T (E—0) 7 &= (10.29)
St g 2 P +1 B J5  eF 41
10.3 Mass Equation
Plugging Eq. (10.26) into Eq. (10.18), we get:
aMa+4 ——a+4 —a+1
gbaﬁl =gp, = aMy  g¢*=p9  ps, (10.30)

hereazﬁmyz%; =

¢
Substituting Eq. (10.29) into Eq. (10.30), we obtain the mass equation:

@ 2Ne6 [* (B =)

aM, g% =p¢ o - 1 dE (10.31)

)
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ar?e" M, o ey [C(E -9
-7 I = — dE . 10.32
e =@, L@ =7 [ (10.32)

The numerical solutions of Eq. (10.32), which depend on the parameter «, are shown in

Fig. (10.1).

« =0.0001
a =0.001
a=0.01
a=0.1
a=05
a=0.7
a=1

Figure 10.1: The solutions of the mass equation, Eq. (10.32), for the different values of the
« parameter.

10.4 Energy Balance in the Universe to the Critical Point

We are considering a flat universe, which implies the equality of the total energy density and

the critical density: piot = per- Namely:

3H?

Prot = Pr0@ "+ Pmoa@ > + Peouple = et (10.33)
Equally, the total energy density can be represented as:
Prot = %T? (10.34)
The energy density for the photons is defined as:
72 2
py = =T = =T} 1+ 2)*. (10.35)

15 15
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From Eq. (10.35) and Eq. (10.34) we get?:

7T2 7NF
ot R couple = — | 1+ ——]. 10.
Ptot p’Y—i_p pl 15 ( + 4 ) ( 036)
Hence, we have:
TNp 4
Qeouple = ———— = 0.84, Q,=——=0.16. 10.37
Ple = 4 1 TN 08 " 4+ 7Np 0.16 (10.37)

The energy density parameters for the photons, the matter and the neutrinos-dark energy

fluid depending on redshift are presented in Fig. (10.2). The evolution of the energy density

a=1,M=0.0132¢eV

1.0

Q(z)

10! 10? 10° 10* 10° 10° 107
1+z

Figure 10.2: The dependence of the energy density parameters for the photons, the matter
and the neutrinos-dark energy fluid on redshift. The value of z, denotes the epoch of the
matter and dark energy equality.

parameters was calculated from the moment 1+ z = 107, i.e., starting with the temperature
T ~ 2.35 KeV to the present epoch. Thus, the values of the temperature are lower than the
value of the temperature at the epoch of the electron-positron pairs annihilation, the value

of which is T, = 0.5 MeV, see Fig. (10.2).

3At the high temperatures, the value of which are in the range, Toq < T < T., where T, is the tempera-
ture in the universe at the moment of the matter energy and dark energy equality; T, is the temperature at
the epoch of the electron-positron annihilation. We can ignore the contribution of the matter energy density
to the total energy density, since the matter is a subdominant during this period of time.
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10.5 Joint Solution of the First Friedmann’s and the Scalar

Field Equations

10.5.1 Relativistic Neutrino Before the Critical Point

At the values of the scale factor a < a, the fermionic and bosonic fields do not interact
with each other, therefore, the neutrinos remain relativistic and, accordingly, the neutrinos
have no mass, _m, = 0.

For this period of time, the total potential, the energy density and the pressure for the

scalar field and the relativistic neutrinos can be written, respectively, as:

—2
IN o (F° _ 232 3/2
V=V,- Tﬂ/ E -5 5 (10.38)
37T B (pﬁ eE + 1
_ & vy, 4 2N /°° E(E - P*B) (10.39)
P=73 ? T w2t 0B eF + 1 7 .
: —2
¢2 2NF /oo (E _¢2ﬁ2>3/2 o
=— -V — dFE. 10.40
P=r ¢t 323t s el +1 ( )

The first Friedmann’s equation and the scalar field equation for the values of the scale factor

a < a. are presented, respectively, as:

_2_

a\ 2 _ _ 1 §Z§2 2NF E (122 —@252)1/2 —
-] = H2<QT Y40 3+—<V + =+ / — dE)) 10.41
( ) 0 0a 0 or T 234 " eE 11  ( )

—2
R0 OV 20Np /°° (B —*8)' "
+3-¢+ + — dE = 0. 10.42
gb agb a(b 7T2/83 Lpﬁ eE + 1 ( )
Taking into account that a < a:
=2 =2 —=3

© EY(E — 2p22\1/2 © . 7 4
¢ =m, =0 and / ( _SOB) dE:/ =" (10.43)

% e +1 o efF+1 120

Therefore, the equations, Eq. (10.41) and Eq. (10.42), can be rewritten as:

aNz o, » 1 ¢*  Tr’Np
(5) — H (Qroa g™ (VQ5 + 5+ o5 )) (10.44)
.ooa, OV
3—d + —2 = 0. 10.45
¢+3-9+ > 5 (10.45)
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10.5.2 Neutrino Masses Evolution after the Critical Point

At the critical point, the total thermodynamic potential reaches its equilibrium and, there-
fore, has a minimum value, as a result of which the neutrinos acquire the mass. After this
point, the mass of the neutrinos varies over time. The behavior of the neutrinos obeys the
law of change of the matter depending on the scale factor, i.e., the neutrinos energy density
varies as, p, o< a2 for a > a.,.

The total potential, the energy density and the pressure for the interaction of the neu-

trinos and the scalar field are presented, respectively, as:

3
‘/couple = V¢ + Cbpcr(%) y (1046)
? e\ 3
Pcouple = % + Vqﬁ + gbpcr(;) s (1047)
¢’ e\ 3
Pcouple = 7 - V¢ - prcr(?) . (1048)

The EoS for interaction of the neutrinos and the scalar field:

(o Y 3
Pcouple % - V¢ - ¢pcr (%)

_ . (10.49)
Pcouple % + V¢ + gbpcr <M)

a

Weouple

The matter energy density parameter, €2,,,, and the dark energy density parameter, (2, are

defined, respectively, as:

Qmoa_3
O, (a) = , 10.
@ = s (10.50)
¢2 M$+4 a 3
2 + e + gbpcr (f)
Qg(a) = E2(a)pero (10.51)

The first Friedmann’s equation and the scalar field equation are represented, respectively,

as: )
H = Ho(Qumoa™ + ~ (Vi + ; + ¢pcr<%>3))l/2, (10.52)
é+3H+ %—? +pcr(%)3 — 0. (10.53)
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The mass scale, My, is calculated as:

a1 —3a

My = (" po) S AT, (10.54)

where pg, is the energy density for the matter and the neutrinos-dark energy fluid at the

my (acr)

present epoch; v ~ ¢, = =2, where v = a + 5/2, m,(as) is the value of the sum of

neutrino masses at the critical point, 7., is the value of the neutrinos temperature at the
critical point.

The value of the neutrinos energy density at the critical point is defined as:

a+1
o= M? (”—) 10.55
P ¢Oé v ) ( )
where
V2, \ai
Ver = (WV exp ) (10.56)
and

(10.57)

10.5.3 Results

We numerically integrated Eq. (10.52) and Eq. (10.53). The results of these calculations are
presented in Table 10.1 and in Fig. (10.3).

‘ @ ‘ er ‘ my(ae) eV ‘ my,(ag) eV ‘
107° | 0.00440 0.13366 0.13541
10~* | 0.00240 0.23779 0.23853
1072 | 0.00140 0.42491 0.42525
102 | 0.00070 0.79610 0.79636
1071 | 0.00020 2.44842 2.44891
0.2 | 0.00010 5.32040 5.32085
0.3 | 0.00006 10.57513 10.57546
0.4 | 0.00003 | 20.02527 20.02550
0.5 | 0.00002 | 36.60875 36.60890

Table 10.1: The value of the scale factor at the critical point, a.., the value of the sum of
neutrino masses at the critical point, m, (a. ), the value of the sum of neutrino masses today,
my(ap), depending on the value of the model parameter a.

In Table 10.1 we present the values of the scale factor at the critical point, a.., the
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Figure 10.3: The evolution of the neutrino masses, m,, for the value of the parameter
a = 0.0001.

values of the sum of neutrino masses at the critical point, m, (a. ), the values of the sum of
neutrino masses today, m,(ag), depending on the value of the model parameter, a. With an
increase in the value of the model parameter, «, i.e., with the strengthening of the scalar
field potential: i) the value of the scale factor at the critical point, a.,, decreases, thus, the
moment of the scalar and fermionic fields interaction occurs at the earlier time; ii) the value
of the initial sum of neutrino masses and, accordingly, the final value of the sum of neutrino
masses increases.

The evolution of the neutrino masses for the value of the model parameter o = 0.0001
is shown in Fig. (10.3). The evolution of the matter energy density parameter, €2, and
the energy density parameter of the neutrinos-dark energy fluid, Qcouple, for the value of
the model parameter o = 0.0001 is presented in Fig. (10.4) (left panel). The moment of
the matter and dark energy equality occurs at the value of the scalar factor a = 0.75. The
evolution of the EoS parameter in the interaction of the neutrinos and the scalar field for
the value of the model parameter v = 0.0001 is shown in Fig. (10.4) (right panel). With the
given value of the model parameter «, the scalar field is very weak. Therefore, after reaching

the critical point, the value of the EoS parameter tends to weoupie = —1.

10.6 Conclusion

Studying the MaVaN model:

1. The analysis was carried out and the approximation was found for the possible values
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Figure 10.4: Left panel: the evolution of the matter energy density parameter, €2, and
the neutrinos-dark energy density parameter, Qcouple, for the value of the model parameter,
a = 0.0001. Right panel: the EoS parameter, weoupie(a), depending on the value of the scale
factor for the value of the model parameter o = 0.0001.

of the matter energy density parameter, the energy density parameter for the photons
and the energy density parameter for the fluid, which consists of the neutrinos and dark

energy.

2. The system of the differential equations, which describes the dynamics of the universe in
the MaVaN model, were obtained: i) until the moment of the neutrinos interaction with
the scalar field, ii) from the beginning of the neutrinos interaction with the scalar field to

the present epoch.

3. We calculated the value of the scale factor and the value of the sum of neutrino masses at
the critical point, as well as the value of the sum of neutrino masses at the present epoch

depending on the value of the model parameter « of the Ratra-Peebles potential.

4. In our future research, we are going to test this model using various observational data.
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Chapter 11

Conclusion

This thesis is devoted to the study of the scalar field CDM models. The detailed description

of these investigations is presented below.

I. We investigated the various properties of the Ratra-Peebles CDM model compared to
the ACDM model:

1. We studied the dynamics of the universe in the Ratra-Peebles 9CDM model depend-
ing on the value of the model parameter . An increase in the value of the parameter

« causes a stronger time dependence of the scalar field, ¢, its time derivative, ¢, as

well as the EoS parameter, w, and its derivative with respect to the scale factor,

dw/da.

2. We found that the Ratra-Peebles ¢CDM model differs from the ACDM model in
number of characteristics that do not depend on the value of the model parameter,
«. These characteristics are generic to the class of the pCDM quintessence models

of the freezing type:

a) In the CDM models, the expansion rate of the universe is always greater than
the expansion rate in the ACDM model.

b) The domination of the dark energy epoch in the CDM models begins earlier than
in the ACDM model (provided that the other cosmological model parameters are
fixed).

¢) The Ratra-Peebles )CDM model and the ACDM model differ in their predictions
for the growth rate of the matter density fluctuations in the universe: the pCDM
model predicts a slower growth rate of the matter density fluctuations than in

the ACDM model.
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d) The value of the Linder ~-parametrization in the ¢CDM model increases with
an increase in the value of the model parameter o. The value of the Linder

~v-parametrization in the CDM model is greater than in the ACDM model.

e) We defined the boundaries of the applicability for the Linder ~-parametrization
in the Ratra-Peebles model, z € (0;5). The applicability of the Linder -
parametrization is terminated later in the ACDM model than in the ¢CDM

model.

IT. We constrained the €2, and a model parameters in the Ratra-Peebles ¢CDM scalar

field model using various observations:

a) Applying only the observations of the growth rate function, there is a strong degen-
eracy between the model parameters 2, and a. It means that with an increase in
the value of the parameter €2,,, the larger values of a parameter are allowed. In this

case, it is impossible to find a constraint on the value of the parameter «.

b) The degeneracy is eliminated after combining the constraints on the observations of
the growth rate function, the constraints on the distance-redshift ratio of the BAO

observations and prior distance from CMBR.

c) As a result, we obtained the constraints on the model parameters in the Ratra-
Peebles ¢CDM scalar field model: €, = 0.30 + 0.04 and 0 < o < 1.30 at lo

confidence level. The best fit value for the model parameter a is a = 0.00.

ITT. We studied the scalar field CDM models: ten quintessence models and seven phantom

models:

1. We reconstructed these models using the phenomenological method developed by us.
Resulting in, for each potential the following ranges were found: i) the model pa-
rameters, ii) the EoS parameters, iii) the initial conditions for differential equations,

which describe the dynamics of the universe.

2. Using the MCMC analysis, we obtained the constraints on the scalar field models
by comparing the observations for: the expansion rate of the universe, the angu-
lar diameter distance and the growth rate function with the corresponding data,

generated for the fiducial ACDM model.

3. We applied the Bayes statistical criteria to compare the scalar field models. To this

end, we calculated the Bayes factor, as well as the AIC and BIC information criteria.
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IV.

The results of this analysis showed that the DESI data cannot uniquely distinguish
between the scalar field models under the assumption and that the ACDM model is

a true dark energy model.

4. We investigated the scalar field models in the wy — w, phase space of the CPL-
ACDM contours. We identified the subclasses of the quintessence and the phantom
scalar field models, which at the present epoch: i) can be distinguishable from the
ACDM model, ii) cannot be distinguishable from the ACDM model, iii) can be either
distinguishable or indistinguishable from the ACDM model.

5. Moreover, we found that all the studied models can be divided into two classes: the
models that have the attractor solutions and the models whose evolution depends

on the initial conditions.
Investigating the MaVaN model:

1. The analysis was carried out and the approximation was found for the possible
values of the matter energy density parameter, the energy density parameter for
the photons and the energy density parameter for the fluid, which consists of the

neutrinos and dark energy.

2. The differential equations, which describe the dynamics of the universe for the Ma-
VaN model, were obtained: i) until the moment of the neutrinos interaction with
the scalar field, ii) from the beginning of the neutrinos interaction with the scalar

field to the present epoch.

3. The value of the scale factor and the value of the sum of neutrino masses at the
critical point, as well as the value of the sum of neutrino masses at the present
epoch were calculated depending on the value of the model parameter « in the

Ratra-Peebles potential.
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Chapter 12

Future Projects

The future projects include:

1. The study of the neutrinos influence on the large-scale structure formation of the universe
in the MaVaN model. The investigation of the neutrinos clustering in the MaVaN model

in the interaction of the neutrinos with the scalar field.

2. The investigation of the non-flat inflationary ¢CDM scalar field models, Refs. (Ratra &
Peebles (1995), Ratra (2017)). Carrying out the Fisher matrix analysis and more ad-

vanced Dali matrix analysis to study these models.
3. The exploration of the modified gravity models.

4. The investigation of the large-scale structure of the universe in the modified gravity

models.
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