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სნელი ამოცანაც (მათ შორისაა, მაგალითად, საწყისი პირობების არაბუნებრივად
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სკალარული ველის მოდელების მიახლოება. ვადგენთ სკალარული ველის მოდელის
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ბის მომენტამდე (ე.წ. კრიტიკულ წერტილამდე) და კრიტიკული წერტილიდან დღე-

ვანდელ ეპოქამდე. გამოთვლილია სკალარული მამარავლის მნიშვნელობა კრიტიკულ

წერტილში, ნეიტრინოს მასა კრიტიკულ წერტილში და ნეიტრინოს მასა დღევანდელ

ეპოქაში, რომელიც დამოკიდებულია რატრა-პიბლსის პოტენციალის α პარამეტრზე.

ძირითადი საძიებო სიტყვები: ფარული ენერგია, კოსმოლოგიური მუდმივა, სკალა-

რული ველი, მსხვილ მასშტაბოვანი სტრუქტურა, მატერიის ზრდის შეშფოთებები,

ნეიტრინო, ბაიესის სტატისტიკა, MCMC მონაცემთა ანალიზი.
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Abstrat

The standard Lambda Cold Dark Matter (ΛCDM) osmologial model assumes that the

General Relativity is a orret theory of gravity on the osmologial spatial and temporal

sales, and the aeleration of the universe is due to dark energy or the osmologial on-

stant Λ. Dark energy exerts the negative pressure on spae, i.e., it has the property of

"antigravity" and, thus, auses the aelerated expansion of the universe. The energy den-

sity of the osmologial onstant does not depend on time and has reently beome dominant

(in partiular, the energy density assoiated with the osmologial onstant is about 69%

of the total energy density of the universe today). In addition, around 26% of the total

energy density in the universe is presented in the form of old dark matter. Thereby, within

the framework of the standard ΛCDM model, about 95% of the universe energy density

ontent today is presented in the dark (invisible) form (dark energy and dark matter) with

unknown nature, and only 5% is presented in the form of the radiation and the ordinary

matter (baryons, leptons). The theoretial preditions of the ΛCDM model are in a good

agreement with the urrent observations, but there are several unresolved problems asso-

iated with this model. The so-alled osmologial onstant problem (an extremely small

value of the osmologial onstant when ompared to the theoretial estimate of the vauum

energy density), and the so-alled problem of the oinidene (order of) of the dark energy

density and the dark matter energy density. To overome these di�ulties, the dynamial

dark energy models have been proposed. In these models, dark energy is presented in the

form of the dynamial salar �eld, in whih the density of dark energy varies over time. In

this thesis, we studied the various salar �eld models. In partiular, we investigated the

evolution of the bakground expansion and the growth rate of the matter density �utua-

tions in the salar �eld φCDM Ratra-Peebles model. We onstrained the model parameter

α and the matter density parameter Ωm using the reent measurements of the growth rate

of the matter density �utuations and the baryon aousti osillation peak positions. In

addition, we studied a number of the φCDM salar �eld models in order to distinguish these

models from eah other and from the baseline ΛCDM model, using the predited data for

the future Dark Energy Spetrosopi Instrument (DESI) observations. For this purpose, we

arried out the statistial Bayesian analysis, suh as Bayes oe�ients, as well as Akaike and

Bayesian information riteria. We found that the results of the Bayesian analysis provide

the ompelling evidene in favor of the ΛCDM model. We also onduted the MCMC anal-
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ysis and obtained the onstraints on the parameters of the salar �eld models, omparing

the observational data for: the universe expansion rate, the angular diameter distane and

the growth rate funtion, with the orresponding data generated for the ΛCDM model. We

investigated how well the Chevallier-Polarsky-Linder (CPL) parametrization approximates

the various salar �eld models. We determined the loation of salar �eld model in the

phase spae of the CPL parameters. In the Mass Varying Neutrino model, we investigated

the interation of the fermion �eld and the salar �eld with the Ratra-Peebles potential. We

obtained the equations desribing the dynamis of the universe: up to the moment of the

neutrinos interation with the salar �eld (up to the so-alled ritial point) and from the

ritial point up to the present epoh. We alulated the value of the sale fator and the

value of the sum of neutrino masses at the ritial point, as well as the value of the sum of

neutrino masses at the present epoh depending on the value of the model parameter α of

the Ratra-Peebles potential.

Key words: dark energy, osmologial onstant, salar �eld, large-sale struture, growth

rate of the matter density �utuations, neutrinos, Bayesian statistis, Monte Carlo Markov

Chains (MCMC) analysis.
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of the parameter α. Right panel: the matter energy density parameter, Ωm(a),

(dashed lines) and the salar �eld density parameter, Ωφ(a), (solid lines) as

funtions of the sale fator for the di�erent values of the parameter α. . . . 119

7.5 Left panel: the linear growth rate, D(a), for the di�erent values of the pa-

rameter α. Right panel: the growth rate, f(a), (solid lines) for the di�erent

values of the parameter α along with the preditions Ωγm(a) (dashed lines),

omputed for the orresponding best �t values of the parameter γ. . . . . . . 120

7.6 Left panel: the growth rate, f(a), for the di�erent values of the parameter

α (solid lines) along with the preditions Ωγm (dashed lines), omputed for

the orresponding best �t values of the γ parameter in the range of redshifts,

z ∈ (0; 10). Right panel: the γ(a) funtion for the di�erent values of the

parameter α in the range of redshifts, z ∈ (0; 10). . . . . . . . . . . . . . . . 121

8.1 1σ and 2σ on�dene level ontours on the parameters Ωm and α in the φCDM

model. This onstraints are obtained from the growth rate data, Ref. (Gupta

et al. (2012)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2 1σ and 2σ on�dene level ontours on the parameters Ωm and α in the φCDM

model. These onstraints are obtained after adding BAO/CMBR measure-

ments of the prior distanes, Ref. (Giostri et al. (2012)). . . . . . . . . . . . 127

9.1 The 2σ on�dene level ontour plots for various pairs of the free parameters

(α, Ωm0, h), for whih the φCDM model with the Ratra-Peebles potential

V (φ) = V0M
2
plφ

−α
is in the best �t with the ΛCDM model. . . . . . . . . . . 133

9.2 The 2σ on�dene level ontour plots for various pairs of the free parameters

(V0, Ωm0, h, φ0, φ̇0), for whih the φCDM model with the Zlatev-Wang-

Steinhardt potential V (φ) = V0(exp(Mpl/φ) − 1) is in the best �t with the

ΛCDM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xi



9.3 The 2σ on�dene level ontour plots for various pairs of the free parameters

(k, Ωm0, h, V0, φ0, φ̇0), for whih the φCDM model with the phantom pseudo-

Nambu-Goldstone boson potential V (φ) = V0(1− cos(φ/κ)) is in the best �t

with the ΛCDM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.4 The omparison of the possible w0 and wa values for the quintessene dark

energy potentials with the CPL-ΛCDM 3σ on�dene level ontours. . . . . 138

9.5 The omparison of the possible w0 and wa values for the phantom dark energy

potentials with the CPL-ΛCDM 3σ on�dene level ontours. . . . . . . . . . 139

10.1 The solutions of the mass equation, Eq. (10.32), for the di�erent values of the

α parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10.2 The dependene of the energy density parameters for the photons, the matter

and the neutrinos-dark energy �uid on redshift. The value of z⋆ denotes the

epoh of the matter and dark energy equality. . . . . . . . . . . . . . . . . . 147

10.3 The evolution of the neutrino masses, mν , for the value of the parameter

α = 0.0001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.4 Left panel: the evolution of the matter energy density parameter, Ωm, and

the neutrinos-dark energy density parameter, Ωcouple, for the value of the

model parameter, α = 0.0001. Right panel: the EoS parameter, wcouple(a),

depending on the value of the sale fator for the value of the model parameter

α = 0.0001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xii



List of Tables

6.1 The list of the dark energy quintessene potentials. . . . . . . . . . . . . . . 105

6.2 The list of the dark energy phantom potentials. . . . . . . . . . . . . . . . . 109

8.1 Growth rate data, fobs; redshift z; 1σ unertainty of the growth rate data. . . 123

9.1 The list of the dark energy quintessene potentials and the free parameters. . 130

9.2 The list of the dark energy phantom potentials and the free parameters. . . . 131

9.3 The list of the dark energy quintessene potentials with the orresponding

values of AIC, BIC and Bayes fator. . . . . . . . . . . . . . . . . . . . . . 135

9.4 The list of the dark energy phantom potentials with the orresponding values

of AIC, BIC and Bayes fator. . . . . . . . . . . . . . . . . . . . . . . . . . 135

10.1 The value of the sale fator at the ritial point, acr, the value of the sum of

neutrino masses at the ritial point, mν(acr), the value of the sum of neutrino

masses today, mν(a0), depending on the value of the model parameter α. . . 150

xiii



Contents

Abstrat ii

Aknowledgments vi

Dediation vi

List Of Figures vii

List Of Tables xiii

Notations 1

1 Introdution 7

2 Cosmology as a Siene 13

2.1 Expansion of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Hubble's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Short Review of the General Theory of Relativity . . . . . . . . . . . . . . . 19

2.3.1 Spaetime Metri for Curvilinear Coordinates . . . . . . . . . . . . . 19

2.3.2 Transformation of Curvilinear Coordinates . . . . . . . . . . . . . . . 20

2.3.3 Covariant Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Riemann-Christo�el Tensor, Rii Tensor, Einstein Tensor. Rii Salar. . . 24

2.4.1 Energy-Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Matter in the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Einstein's Field Equations . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Spatial Metris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Flat Eulidean Spae . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Minkowski Spaetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.3 Geodesi Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiv



2.5.4 Isotropi Four-Dimensional Spaetime Metri . . . . . . . . . . . . . 40

2.5.5 Friedmann's Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.6 Aeleration Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Distane in Cosmology 49

3.1 Conept of Distane in Cosmology . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Trigonometri Parallax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Cosmologial Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Comoving Distane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Physial Distane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Interval of the Cosmologial Time Between Two Events . . . . . . . . . . . . 57

3.7 Luminosity Distane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Angular Diameter Distane . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Observational Probes 63

4.1 Type Ia Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Cosmi Mirowave Bakground Radiation . . . . . . . . . . . . . . . . . . . 67

4.2.1 Desription of the CMBR . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 CMBR Angular Power Spetrum of the Temperature Anisotropy . . . 69

4.2.3 CMBR Primary Temperature Anisotropy . . . . . . . . . . . . . . . . 72

4.2.4 Basi Mehanisms Causing the CMBR Primary Anisotropy . . . . . . 73

4.2.5 Seondary Anisotropy of the CMBR . . . . . . . . . . . . . . . . . . 76

4.2.6 Polarization of the CMBR . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Barion Aousti Osillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Statistis of the Large-Sale Struture of the Universe . . . . . . . . . . . . . 85

4.4.1 In�uene of the Gravitational Instability on the Formation of Large-

Sale Strutures in the Universe. . . . . . . . . . . . . . . . . . . . . 86

4.4.2 Linear Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.3 Linder γ-parametrization . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Elements of the Statistial Analysis 90

5.1 Gaussian Probability Distribution . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 De�nition of Gaussian Probability Distribution . . . . . . . . . . . . 90

5.1.2 Funtion χ2
and the Likelihood Funtion . . . . . . . . . . . . . . . . 90

5.1.3 Fisher Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xv



5.1.4 Best Fit Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Elements of the Theory of Monte Carlo Markov Chains . . . . . . . . . . . . 94

5.2.1 De�nition of the Markov Chains. Transition Probabilities . . . . . . . 94

5.2.2 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Dark Energy 98

6.1 Cosmologial Constant Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Cosmologial ΛCDM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Shortomings of the ΛCDM Model . . . . . . . . . . . . . . . . . . . 102

6.3 Salar Field Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Quintessene Salar Field . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Phantom Salar Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Coupled Models of Matter and Dark Energy . . . . . . . . . . . . . . . . . . 109

6.4.1 Coupling First Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.2 Coupling Seond Type . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Chevallier-Polarsky-Linder Parametrization . . . . . . . . . . . . . . . . . . . 112

7 Dynamis and Growth Rate in the Ratra-Peebles φCDM Model 113

7.1 Basi Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.1 Calulation of the Model Parameter κ and the Initial Conditions . . . 115

7.1.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Dynamis and Energy in the Ratra-Peebles φCDM Model . . . . . . . . . . . 117

7.3 Struture Growth in the Ratra-Peebles φCDM Model . . . . . . . . . . . . . 119

7.4 Growth Index in the Ratra-Peebles φCDM Model . . . . . . . . . . . . . . . 120

7.5 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Constraints on the Model Parameters in the Ratra-Peebles Model 123

8.1 Constraints on the Model Parameters in the Ratra-Peebles Model from the

Growth Rate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2 Constraints on the Model Parameters in the Ratra-Peebles Model from the

BAO Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Constraints on the Models Parameters in the Quintessene and Phantom

φCDM Models 128

xvi



9.1 De�nition of the Model Parameters and the Initial Conditions . . . . . . . . 128

9.2 MCMC Analysis for Study of the Dark Energy Models . . . . . . . . . . . . 131

9.3 Bayesian Statistis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.4 φCDM Models in the CPL Phase Spae . . . . . . . . . . . . . . . . . . . . . 136

9.5 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10 Mass Varying Neutrino Model 140

10.1 Interation of the Salar Field and Dira Field . . . . . . . . . . . . . . . . . 141

10.2 Saddle Point Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.2.1 Fermioni Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.2.2 Fermioni Energy Density . . . . . . . . . . . . . . . . . . . . . . . . 145

10.3 Mass Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.4 Energy Balane in the Universe to the Critial Point . . . . . . . . . . . . . 146

10.5 Joint Solution of the First Friedmann's and the Salar Field Equations . . . 148

10.5.1 Relativisti Neutrino Before the Critial Point . . . . . . . . . . . . . 148

10.5.2 Neutrino Masses Evolution after the Critial Point . . . . . . . . . . 149

10.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

10.6 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11 Conlusion 153

12 Future Projets 156

xvii



Notations

Natural Units

Name Value

Energy 1 GeV = 1.6 · 10−3 erg
Mass 1 GeV = 1.8 · 10−24 g
Temperature 1 GeV = 1.16 · 1013 K
Length 1 GeV−1 = 2 · 10−14 cm
Time 1 GeV−1 = 6.6 · 10−25 c
Partile number density 1 GeV3 = 1.3 · 1041 cm−3

Energy density 1 GeV4 = 2.1 · 1038 erg cm−3

Mass density 1 GeV4 = 2.3 · 1017 erg cm−3

Parameters

Name Notation

Units

SGC Natural

Astronomoal unit AU 1.4960 · 1013 cm 7.5812 · 1026 GeV−1

Critial density ρcrit 1.8791h2 · 10−29 g cm−3 8.0992h2 · 10−47 GeV4

Hubble onstant H0 3.241h · 10−18 sec−1 2.1332h · 10−42 GeV
Megaparse Mpc 3.0856 · 1024 cm 1.5637 · 1038 GeV−1

Newton's onstant G 6.672·10−8 cm3 g−1 sec
−2 6.707 · 10−39 GeV−2

Plank mass Mpl 2.1768 · 10−5 g 1.2211 · 1019 GeV
Parse pc 3.0856 · 1018 cm 1.5637 · 1032 GeV−1

Solar mass M⊙ 1.989 · 1033 g 1.116 · 1057 GeV
Speed of light c 2.9979 · 1010 cm sec−1 1
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Variables

Symbol Meaning

a Sale fator

al,m
Multipole oe�ients of the deomposition in the spherial

harmonis

cs Sound speed

ds2 Metri

dA Angular diameter distane

dL Luminosity distane

e Expetation

f(x) Density distribution

f(a) Growth rate funtion

g Yukawa oupling onstant

Ωm(a) Frational matter density

h Normalised Hubble parameter

~ Redued Plank onstant

k Conformal momentum

kphys Physial momentum

l Multiple moment

p Pressure of the perfet �uid

pφ Salar �eld pressure

pij Transition probabilities

p̃ Parallax

q Aeleration parameter of the universe

q0 Aeleration parameter of the universe at the present epoh

r Physial distane

rs Comoving size of the sound horizon

m Apparent magnitude

mch Chandrasekhar's mass

mν Neutrino mass

nF (x) Fermi distribution

r⊕ Radius of the Earth's orbit

t Physial time

v Radial veloity

vf Three dimensional veloity of the perfet �uid

w Equation of state parameter

w0 Current equation of state parameter

wa
Value of the sale fator derivative of equation of state

parameter at a = 1/2
wvac Equation of state parameter for vauum

wΛ Equation of state parameter for osmologial onstant

wφ Salar �eld equation of state parameter

z Redshift

zdec Redshift at photon deoupling epoh

zrec Redshift at reombination epoh

C−1
Covariane matrix

D Linear growth fator

DV Distane sale

D̂ Dira operator
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Variables

Symbol Meaning

E Energy

E(a) Normalized Hubble parameter

E Integral of the Bayes' evidene

F Flux

G Newton onstant

H Hubble parameter

HB Bosoni Hamiltonian

HD Dira Hamiltonian

K Curvature parameter

L Luminosity

L Likelihood funtion

Lf
Likelihood funtion for the growth rate data

Lbao
Likelihood funtion for the BAO data

Lφ Salar �eld lagrangian density

M Absolute magnitude

Mφ Salar partiles mass sale

P1 Transition matrix

Pl Legendre's polynomials

P (k) Power spetrum

R Rii salar

R Radius

SM Matter ation

S Ation

T0 The average urrent CMBR temperature

V (φ) Salar �eld potential

V0 The parameter of the φCDM salar �eld model

ZD Grassmann funtional integral

Ylm Spherial harmonis

α
The parameter of the salar �eld φCDM Ratra-Peebles

model

δ Matter density �utuations

γ Linder γ-parametrization
γ(a) E�etive growth index

δρb Baryon density �utuations

δµν Kroneker delta funtion

δTdipol Dipole temperature anisotropy

η Conformal time

λ Wavelenght

µ Distane modulus

ξ Spae urvature funtion

ρb Energy density of the baryons

ρb0 Energy density of the baryons at present epoh

ρm Energy density of the matter �uid

ρph Energy density of the photons

ρφ Salar �eld energy density

ρr Energy density of the relativisti �uid

ρs Fermioni energy density
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Variables

Symbol Meaning

ρK Energy density of the urvature

ρΛ Vauum energy density

ρm0 Energy density of the matter �uid at present epoh

ρr0 Energy density of the relativisti �uid at present

ρK0 Energy density of the urvature at present

σ Standard deviation

σ8
rms linear �utuation in the mass density distribution on

sales 8h−1
Mp

σ2
Variane

∆ρ Matter density �utuation

φ Salar �eld

χ2 χ2
funtion

ω0 Frequeny of the plane monohromati wave

Γλµν Christo�el symbols

Λ Cosmologial onstant

Ωm Density parameter for matter

Ωm0 Density parameter for matter at present

Ωr Density parameter for radiation

Ωr0 Density parameter for radiation at present

ΩK Density parameter for urvature

ΩK0 Density parameter for urvature at present

ΩΛ Density parameter for vauum

Ωφ Density parameter for salar �eld
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Speial Designations

Designation Meaning

(+,−,−,−) Spaetime signature

Conventions for indies:

∗ (α, β, γ, µ, ν) run from 0 to 3 Greek letters

∗ (i, j, k, l,m, n) run from 1 to 3 Roman letters

(t, x, y, z) ≡ (x0, x1, x2, x3) = xµ Four dimensional oordinates

(x, y, z) ≡ (x1, x2, x3, ) = xi Three dimensional Cartesian oordinates

(r, ϕ) Polar oordinates

(r, ϕ, z) Cylindrial oordinates

(r, θ, ϕ) Spherial oordinates

(̺, ς, ϕ) Pseudo spherial oordinates

Vetors:

Ai Covariant vetor

Ai Contravariant vetor

Tensors:

Aij Seond rank ovariant tensor

Aij Seond rank ontravariant tensor

Aij Seond rank mixed tensor

gµν Spaetime metri tensor

uµ Four dimensional veloity

Gµν Einstein tensor

Rik Rii tensor

Riklm Riemann tensor

Tµν Stress-energy tensor
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Abbreviations

Symbol Full Form

AIC Akaike information riterion

BIC Bayesian information riterion

BAO Baryon Aousti Osillations

CDM Cold Dark Matter

CMBR Cosmi Mirowave Bakground Radiation

DESI Dark Energy Spetrosopi Instrument

ISW Integrated-Sahs-Wolfe

CPL Chevallier-Polarsky-Linder

EoS Equation of State

GTR General Theory of Relativity

FRII Fanaro�-Riley Type II

FLRW Friedmann-Lema��tre-Robertson-Walker

MCMC Markov Chain Monte Carlo

SDSS Sloan Digital Sky Survey

SZ Sunyaev-Zel'dovih

SNeIa Supernovae Ia

WMAP Wilkinson Mirowave Anisotropy Probe

WFIRST Wide-Field Infrared Survey Telesope

ΛCDM Lambda Cold Dark Matter

φCDM Phi Cold Dark Matter

2dFGRS 2dF Galaxy Redshift Survey

MaVaN Mass Varying Neutrino

VAMPs Varying Mass Partiles
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Chapter 1

Introdution

In 1998, the aelerated expansion of our universe was disovered on the basis of the mea-

surements of the Supernovae type Ia magnitudes, Refs. (Riess et al. (1998), Perlmutter

et al. (1999), Riess et al. (2007)). In 2011, Saul Perlmutter, Brian Shmidt and Adam

Riess were awarded the Nobel Prize in Physis for this disovery. The aelerated expansion

of the universe is on�rmed by the other osmologial observations, in partiular: by the

measurements of the temperature anisotropy and the polarization in the osmi mirowave

bakground radiation, Refs. (Hinshaw et al. (2009), Nolta et al. (2009), Komatsu et al.

(2011), Ade et al. (2014), Ade et al. (2016)); by the studies of the large-sale struture of

the universe, Refs. (2dFGRS (2002), Eisenstein et al. (2005), Perival et al. (2007), SDSS

(2017)).

There are numerous models explaining the urrent aelerated expansion of the universe,

Refs. (Frieman et al. (2008), Caldwell & Kamionkowski (2009), Yoo & Watanabe (2012)).

The most popular model suggests that a signi�ant part of the universe is in the form of dark

energy or dark �uid, for a review Refs. (Peebles & Ratra (2003), Copeland et al. (2006a),

Tsujikawa (2010), Tsujikawa (2011)). The unusual property of dark energy is that it exerts

a negative pressure on spae, i.e., dark energy has the property of "antigravity". For the

time being, the nature and the origin of dark energy is one of the most important and still

unresolved issues of modern osmology.

The simplest desription of dark energy is the onept of the vauum energy or the

osmologial onstant Λ, �rst introdued by Albert Einstein, Refs. (Einstein (1915a), Ein-

stein (1915b)). The osmologial model based on suh a desription of dark energy is alled

the Lambda Cold Dark Matter (ΛCDM) model, whih has been the standard model of the

universe sine 2003, Refs. (Zeldovih (1968), Blumenthal et al. (1984)); the monographs:
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Refs. (Peebles (1994), Dodelson (2003), Weinberg (2008)); for the reviews: Refs. (Carroll

et al. (1992), Carroll (2001), Peebles & Ratra (2003), Copeland et al. (2006b), Martin (2012),

Padilla (2015)). This model is based on the General Theory of Relativity (GTR), whih was

developed by Albert Einstein in order to desribe the gravity in the universe on the osmo-

logial length sales.

In addition, there is still an unresolved problem of dark matter in the universe, whih, in

partiular, manifests itself in the anomalously high veloity of rotation of the outer regions

of the galaxies, Ref. (Rubin et al. (1980)). The dark matter partiles do not interat with

the eletromagneti radiation and weakly gravitationally interat with the ordinary baryoni

matter.

Based on GTR, about 95% of the energy in the universe is in the "dark" form, i.e., in

the form of dark energy and dark matter. Reent observations of the Plank spae telesope

show that the universe onsists of 4, 8% of ordinary matter, 26% of dark matter and 69, 2%

of dark energy, Ref. (Ade et al. (2016)).

The ΛCDM model is a onordane model of the universe, sine this model is in a good

agreement with the urrently available osmologial observations. However, the ΛCDM

model still has unsolved problems: the osmologial onstant problem or, in other words,

the �ne turning problem and the oinidene problem, Refs. (Weinberg (1989), Weinberg

(2000), Padmanabhan (2003), Padilla (2015)). The osmologial onstant problem is that

the observed value of the osmologial onstant is 120 values less than its theoretially

predited value, Ref. (Weinberg (2000)). The oinidene problem is that, based on the

preise osmologial observations, the density of dark energy is omparable to the energy of

dark matter at the present epoh: ρDM/ρDE ≃ 1/3, ρDE and ρDM are the dark energy density

and the dark matter energy density, respetively. This fat is a mystery, beause aording

to the standard ΛCDM model, the energy of the osmologial onstant does not depend on

time, ρDE = ρΛ=onst, while the energy of dark matter varies over time as ρDM ∼ a−3(t), see

Fig. (6.2). Therefore, the ratio of these quantities should be time-dependent: ρDM/ρDE ∝
1/a3(t), a(t) and t are the sale fator and physial time, respetively.

In order to solve the problems of the ΛCDM model, many alternative models have been

elaborated. These models are divided into two types: the models based on the gravity of

the GTR and the models with the di�erent gravity from the GTR on the osmologial sales

in the universe (i.e., on the sales omparable to the urrent size of the universe). The

�rst type of the models inludes the dynamial salar �elds models of dark energy: the

quintessene models, Refs. (Ratra & Peebles (1988b), Ratra & Peebles (1988a), Wetterih
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(1988a)), the k-essene models, Refs. (Armendariz-Pion et al. (1999), Armendariz-Pion

et al. (2000), Armendariz-Pion et al. (2001)), the phantom salar �eld models, (Caldwell

(2002)); the oupled dark energy and matter models, Refs. (Amendola (2000), Zimdahl &

Pavon (2001)), in partiular, the mass varying neutrino model, Refs. (Farrar & Peebles

(2004), Fardon et al. (2004)); the uni�ed model of dark energy and matter, the so-alled

Chaplygin gas model, Refs. (Kamenshhik et al. (2001), Bento et al. (2002)) and the k-

essene model, as an uni�ed model of dark energy and matter, Ref. (Sherrer (2004)); the

heterogeneous model of Lema��tre-Tolman-Bondi, Refs. (Lemaitre (1933), Tolman (1934),

Bondi (1947), Tomita (2001)), and et. The seond type of the models are: the models

with Lagrangian densities that are more omplex funtions of spaetime urvature, the so-

alled f(R) models, Refs. (Capozziello et al. (2003), Carroll et al. (2004), Mukhanov (2005),

Nojiri & Odintsov (2006)); the warped brane world senarios, the so-alled the model of

Dvali-Gabadadze-Poratti, Refs. (Dvali et al. (2001)), Gabadadze (2007)); the massive gravity

models, Refs. (Fierz & Pauli (1939), de Rham & Gabadadze (2010), de Rham et al. (2011),

Hassan & Rosen (2012)); quantum gravity and string-motivated modi�ations of gravity,

Refs. (Polhinski (2007a), Polhinski (2007b), Meruri (2009)); the Galilean gravity models,

Ref. (Niolis et al. (2009)); the salar-tensor gravity models, Refs. (Brans & Dike (1961),

Mo�at (2006), Mishra & Singh (2013)); degravitation and asading gravity, Refs. (Arkani-

Hamed et al. (1998), Khoury & Wyman (2009), Dvali et al. (2003), de Rham et al. (2008),

Nojiri & Odintsov (2003)), the models with large extra spatial dimensions, Refs. (Shifman

(2010)) and et.

The main alternative to the ΛCDMmodel is the dynamial dark energy salar �eld φCDM

models, Refs. (Ratra & Peebles (1988a), Ratra & Peebles (1988b), Wetterih (1988a), Brax

& Martin (2002), Linder (2008), Cai et al. (2010), Bahamonde et al. (2017), Ryan et al.

(2019)). The salar �eld models avoid the osmologial onstant problem of the ΛCDM

model. In the salar �eld models, the equation of state (EoS) parameter, w, depends on time:

w ≡ pDE/ρDE, pDE - a dark energy pressure, whereas in the ΛCDM model the EoS parameter

is a onstant, w = −1. Depending on the value of the EoS parameter, the φCDM salar

�eld models are divided into: the quintessene models, with −1 < w < −1/3, Refs. (Peebles

& Ratra (2003), Caldwell & Linder (2005), Shimd et al. (2007)), and the phantom models,

with w < −1, Refs. (Caldwell (2002), Elizalde et al. (2004), Sherrer & Sen (2008a), Dutta

& Sherrer (2009), Frampton et al. (2012), Frampton et al. (2011), Ludwik (2017)). The

quintessene models are divided into two lasses: the traker (freezing) models, in whih the

salar �eld evolves more slowly than the Hubble expansion rate, and the thawing models, in
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whih the salar �eld evolves faster than the Hubble expansion rate, Refs. (Steinhardt et al.

(1999), Caldwell & Linder (2005), Dutta & Sherrer (2009), Chiba et al. (2013), Lima et al.

(2015)).

In the quintessene traker models, the energy density of the salar �eld �rst traks the

radiation energy density and then the matter energy density, while it remains a subdominant,

Ref. (Zlatev et al. (1999)). Only reently the salar �eld beomes dominant and begins to

behave as a omponent with the negative pressure, whih leads to the aelerated expansion

of the universe, Refs. (Shimd et al. (2007), Linder (2015), Bag et al. (2017)). For the ertain

shape of the potential, the quintessene traker models have an attrator solution that is

insensitive to the initial onditions, Ref. (Zlatev et al. (1999)). The simplest example of

the traker salar �eld models with an attrator solution is the salar �eld model with the

inverse-power-law Ratra-Peebles potential. This model was for the �rst time proposed by

Bharat Ratra and Jim Peebles in 1988, Refs. (Ratra & Peebles (1988a), Ratra & Peebles

(1988b)).

The study of the quintessene φCDM salar �eld model with the Ratra-Peebles potential

is one of the main objetives of this thesis. In partiular, we investigated the dynamis of

the salar �eld with this potential, the in�uene of the salar �eld with the Ratra-Peebles

potential on the dynamis of the universe and its energy omponents. We also studied the

in�uene of the dark energy salar �eld Ratra-Peebles model on the large-sale struture

evolution of the universe.

The interest to the dark energy phantom models among the osmologists has inreased

reently, due to the fat that some modern observations are onsistent with these models,

Refs. (Hinshaw et al. (2013), Ade et al. (2016)). The dark energy phantom models have

a negative non-anonial kineti omponent in the ation, as a result of whih the energy

density in these models inreases over time, Refs. (Caldwell (2002), Sherrer & Sen (2008b),

Sherrer & Sen (2008a), Ludwik (2017)). During the aelerated expansion of the universe,

driven by the phantom salar �eld, the rip an our between all gravitationally bound stru-

tures (from the disruption of superlusters and lusters of galaxies to the disruption of atomi

nulei), Refs. (Caldwell et al. (2003), Nojiri et al. (2005), Frampton et al. (2011), Frampton

et al. (2012)). To study the history of the universe expansion, the large-sale struture of

the universe, the nature of dark energy and dark matter, the Wide-Field Infrared Telesope

(WFIRST), the Dark Energy Spetrosopi Instrument (DESI) and the Eulidean Spae

Telesope (Eulid) will be launhed in the next deade, Refs. (Amendola et al. (2013), Levi

et al. (2013), Font-Ribera et al. (2014), Spergel et al. (2015), Aghamousa et al. (2016)).
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After ompleting these missions, very preise measurements of the expansion rate of the

universe, the angular diameter distanes and the growth rate of the matter density �utua-

tions in the universe will be performed to redshifts z ∼ 2. These preise measurements an

onstrain the numerous dark energy models and some of them an be disarded. We studied

10 quintessene and 7 phantom φÑDM salar �eld models, whih were �rst presented in the

papers: Refs. (Frieman et al. (1995), Ferreira & Joye (1998), Zlatev et al. (1999), Brax

& Martin (1999), Sahni & Wang (2000), Barreiro et al. (2000), Albreht & Skordis (2000),

Urena-Lopez & Matos (2000), Caldwell & Linder (2005), Sherrer & Sen (2008a), Dutta &

Sherrer (2009), Rakhi & Indulekha (2009), Chang & Sherrer (2016), Bag et al. (2017)).

We proposed a phenomenologial method for studying the potentials in these models. As a

result, for eah potential the following ranges were found: the model parameters, the EoS

parameters, the initial onditions for di�erential equations desribing the dynamis of the

universe. We also investigated how the various salar �eld models an be approximated by

the Chevallier-Polarsky-Linder (CPL) parametrization. We determined the loation of eah

model in the phase spae of the CPL parameters. One of the objetives of this study is to

answer the question: "Is it possible to distinguish these models from the standard ΛCDM

model at the present epoh using the predited data from the future DESI observations?"

For this purpose the expansion rate, the angular diameter distane and the measurements

of the matter density �utuations growth rate were alulated both for eah φÑDM model

under investigation and the ΛCDM model. We also applied the omparison riteria in the

Bayesian statistis, suh as Bayes oe�ients, as well as Akaike and Bayesian information

riteria.

The oupled models of matter and dark energy were developed to resolve the problems in

the standard ΛCDM model, Refs. (Amendola (2000), Zimdahl & Pavon (2001)). In the Mass

Varying Neutrino model, the interation of the bosoni salar �eld with the fermioni �eld

(massless neutrino) is onsidered. As a onsequene of this interation, the neutrino aquires

a mass that varies over time, Ref. (Fardon et al. (2004)). In the Mass Varying Neutrino

model, we investigated the interation of the fermioni �eld and the bosoni salar �eld

with the Ratra-Peebles potential. The equations desribing the dynamis of the universe are

obtained: before the moment of neutrinos interation with the salar �eld (before a ritial

point) and after the ritial point to the present epoh. We alulated the value of the sale

fator and the value of the sum of neutrino masses at the ritial point, as well as the value

of the sum of neutrino masses at the present epoh depending on the value of the model

parameter α of the Ratra-Peebles potential.
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This thesis is organized as follows: the theoretial foundations of osmology are dis-

ussed in Chapter II; the various types of distanes used in osmology are desribed in

Chapter III; the di�erent osmologial observations are presented in Chapter IV; Chapter V

is devoted to the basis of the statistial analysis; the various dark energy models are on-

sidered in Chapter VI; the investigations of the Ratra-Peebles φCDM salar �eld model

are desribed in Chapter VII; the observational onstraints on the model parameters in the

Ratra-Peebles φCDM model are onsidered in Chapter VIII; the observational onstraints

in the �at quintessene and in the phantom salar �eld φCDM models are disussed in

Chapter IX; the Mass Varying Neutrino model is desribed in Chapter X; the onlusion is

ontained in Chapter XI; a plan for the future researh is presented in Chapter XII.

In this thesis, we used the natural system of units: c = ~ = kB = 1.
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Chapter 2

Cosmology as a Siene

Sine anient times, people have always been interested in the struture of the world in

whih they live. Staring into the night sky, they asked themselves the questions: "How did

the universe originate and how is it arranged? Will the universe exist forever, and if not,

how will it ease its existene? Is the universe �nite and what is its size or is it in�nite?"

Namely, the uriosity of people to learn more about the universe aused the emergene and

development of the siene osmology.

Cosmology studies the universe as a whole (as a single system), explores its origin, evolu-

tion, dynamis, struture and ultimate fate. The peuliarity of this siene is that the objet

of researh is exlusive and, apparently, exists in a single instane. The study of the universe

also presents a onsiderable di�ulty, sine it is very di�ult for the researher to draw the

objetive onlusions about the universe (about the system) part of whih he is. While the

empirial foundation of osmology is an extragalati astronomy, the theoretial foundation

is the basi physial theories, suh as the general theory of relativity, �eld theory, et.

Cosmology is based on the results of a study of the most ommon properties suh as the

homogeneity, the isotropy

1

and the expansion of the part of the universe that is available

for the astronomial observations. Due to the fat that the speed of light has a �nite value,

we an observe only a ertain part of the expanding universe, whose radius is approximately

14.25 Gp. On the osmologial length sale, the average value of whih is more than

100 Mp, the large-sale strutures suh as galaxies, lusters and super lusters are not

observable in the universe. The priniple of relativity or the so-alled Copernius's priniple

1

The onept of the homogeneity implies that the universe looks the same at every point in spae; the

onept of the isotropy means that the universe looks the same in all diretions. The ful�llment of the

isotropy ondition does not automatially follow from the ful�llment of the homogeneity ondition and vie

versa. The homogeneity ondition follows only from the requirement that the isotropy ondition is satis�ed

with respet to eah point in spae.
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is appliable on these length sales. Aording to this priniple, the privileged points do not

exist in the universe, and the human beings are not privileged observers in it. Thus, our

universe an be onsidered as isotropi and homogeneous on the osmologial length sales.

The spatial distribution of the nearby galaxies aording to the Two-degree-Field (2dF)

Galaxy Redshift Survey is presented in Fig. (2.1). Our Milky Way galaxy is loated at

the enter. With an inrease of the distane (or redshift respetively) from our galaxy, the

distribution struture of the galaxies beomes less lear. At the large distanes (or large

redshifts respetively), the galaxies are randomly arranged, i.e., the isotropi and uniform

distribution of the galaxies is observed on these length sales. Based on the theoretial

Figure 2.1: The spatial distribution of the galaxies in the Two-degree-Field (2dF) Galaxy

Redshift Survey. The esape veloities (redshifts) are plotted in the radial diretion, the

polar angle is a right asension. This distribution is obtained for 200 000 galaxies using 350

000 spetra. (Figure from Ref. (Colless et al. (2003)))

and experimental results, Vesto Slipher, George Lemaitre, and Edwin Hubble disovered

that the universe is expanding, and this expansion is an essential feature of our universe.

Aording to the model of the hot universe, that is the most ommon in modern osmology,

the universe began its evolution or, in other words, expansion about 13.7 billion years ago

as a result of the Big Bang. At early stages of the universe development the matter and the

radiation had a very high temperature and density. The expansion of the universe led to

its gradual ooling, the formation of the atoms, and, an onsequene, stars, protogalaxies,

galaxies, lusters of galaxies, superlusters and other osmi bodies that exist today.
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2.1 Expansion of the Universe

In 1917, while the Amerian astronomer Vesto Slipher was studying the spetra of the

galaxies, he disovered a shift in the spetral lines of these galaxies to the red end of the

spetrum

2

. Based on these data, Vesto Slipher onluded that the galaxies are moving away

from us.

In 1929, the Amerian sientist Edwin Hubble disovered that the radial veloities of the

galaxies, v, measured by the Doppler shift of the spetral lines, proportionally inrease with

the physial distanes to them, d = |~d|, Ref. (Hubble (1929)). Hubble identi�ed a linear

relationship between the radial veloities and the physial distanes

3

between the galaxies,

v ∝ d, alled the Hubble's law.

The mathematial form of this law is:

~v = H0
~d, (2.1)

where H0 is a oe�ient of the proportionality, alled the Hubble onstant

4

. The values

of the radial veloities as a funtion of the physial distanes, d, are shown in the Hubble

diagram, see Fig. (2.2). In this �gure, the points are approximated by a straight line, whose

slope is determined by the value of the Hubble onstant, H0. The linear inrease in the

value of the radial veloities of the galaxies with an inrease in the value of the physial

distanes to them an be interpreted as the moving away of the galaxies from eah other as

a result of the expansion of the universe. With suh an interpretation, the radial veloities

are the reessional veloities of the galaxies from eah other (the explanation of this logial

onlusion is given below). The expansion of the universe, alled the Hubble expansion, is

one of the main features of our universe.

Let's introdue the following terminology

5

:

2

Redshift ours due to the Doppler e�et. This e�et is assoiated with a hange in the frequeny and,

aordingly, in the wavelength of the radiation, pereived by the observer, due to the motion of the soure of

radiation. When the soure of radiation moves away from the observer, the wavelength inreases. Conversely,

when the soure of radiation moves towards the observer, the wavelength dereases.

3

The de�nition of the notion of the physial distane is given below.

4

The oe�ient of the proportionality in the Hubble's law, H0, is a onstant at the present epoh. In the

general ase, this oe�ient is a funtion depending on time (a more detailed desription of this funtion is

presented below).

5

The detailed information about the di�erent types of the distanes, used in osmology, is ontained in

Chapter III.
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Figure 2.2: The Hubble diagram, whih is based on the observations of the remote Cepheids

from Hubble Spae Telesope. The solid line orresponds to the Hubble's law with H0 =
75 km c−1 Mpc

−1
. (Figure from Ref. (Freedman et al. (2001)))

Proper (physial) distane

The physial distane,

~d(t), is a real, measured distane between two objets in spae, where

t is osmologial or physial time.

Comoving Distane

Let's onsider a radially expanding or ontrating homogeneous sphere

6

. We hoose a mo-

ment of time, t = t0, whih orresponds to the present moment of time, and we introdue a

referene frame, ~x, with the origin that oinides with the enter of this sphere. As a result

of the expansion or ontration of the sphere, at the present moment of time, t0, a partile

will be in the position,

~d(t0). At the arbitrary moment of time, t, the partile will be in the

position,

~d(t). Due to the fat that the expansion or ontration is radial, the diretion, ~d(t),

will remain the onstant.

Sine

~d(t0) = ~x, this means that:

~d(t) = a(t)~x, (2.2)

where a funtion a(t) is alled a sale fator. This funtion depends only on time. The

sale fator desribes the hange in the spatial separation between the objets over time and

6

The expansion or ontration of a homogeneous sphere an serve as a model of an expanding (or on-

trating) universe.
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haraterizes the expansion or the ontration of the universe. At the present moment of

time, the value of the sale fator is usually represented in the normalized form. In this

thesis, we hose the normalization in whih the value of the sale fator is equal to unity,

a(t0) ≡ a0 = 1.

The observers who move in aordane with the equation, Eq. (2.2), are referred to the

omoving observers, where ~x are the omoving oordinates that form the omoving referene

frame.

In the expanding or ontrating universe, the physial distane between two omoving

objets inreases or dereases over time, while the omoving distane between objets does

not hange over time.

Conformal Time

Conformal (omoving) time is time elapsed sine the Big Bang in aordane with the lok of

the omoving observer. The di�erential of physial time, t, and the di�erential of onformal

time, η, are interrelated as follows:

dt = a(t)dη. (2.3)

The value of onformal time, η, an be obtained from Eq. (2.3):

η =

∫ t

0

dt′

a(t′)
. (2.4)

Eq. (2.4) an be rewritten as:

η =

∫ a

0

1

a′H(a′)

da′

a′
. (2.5)

2.2 Hubble's Law

The veloity of the omoving observer an be found as a time derivative from the omoving

distane:

~v(d, t) =
d

dt
~d(t) =

da

dt
~x ≡ ȧ

a
~d(t) ≡ H~d(t), (2.6)

where the funtion H is alled the Hubble parameter or the expansion rate of the universe

7

:

H =
ȧ

a
. (2.7)

7

Georges Lema��tre, based on the results of Vesto Slipher's researh, suggested that the universe is expand-

ing and �rst introdued the onept of the expansion rate of the universe, H . The results of his theoretial

studies were presented in the paper, Ref. (Lema��tre (1927)). This paper was published in 1927, two years

before the Edwin Hubble's publiation.

17



The Hubble's law an be written in the general form for an arbitrary moment of time.

Consider the relative veloity of two omoving objets loated in the positions,

~d and ~d+d~d,

respetively:

d~v(t) = ~v(~d+ d~d(t))− ~v(~d, t) = Hd~d(t). (2.8)

Consequently, the relative veloity is proportional to the spatial separation of the omov-

ing objets. The oe�ient of proportionality, H , does not depend on the position of the

observers but depends only on time.

The Hubble parameter for the present moment of time, t = t0, is alled the Hubble

onstant, H(t0) ≡ H0. The Hubble onstant is usually represented in the parametrized

form, H0 = 100h km −1 Mpc−1
, where h is a dimensionless parameter.

At the present time, the universe is expanding with an aeleration, and the gravitation-

ally unoupled astronomial objets are moving away from eah other, therefore, ȧ(t0) > 0,

i.e., the sale fator is an inreasing time-dependent funtion.

The value of the Hubble onstant, H0, is very important in osmology, as it determines

the age and the expansion rate of the universe at the present epoh. The Hubble onstant is

determined by the so-alled Hubble distane or by the radius of the Hubble sphere, rHS. The

radius of the Hubble sphere is the distane to the objets moving away from the observer

at the speed of light. This radius determines the boundary between the objets that move

slower and faster than the motion of the objets at the speed of light relative to the observer

at the present time. In the general ase, the radius of the Hubble sphere, rHS, is alulated

as

8

, rHS(t) = c/H . Consequently, at the present time, the radius of the Hubble sphere is

de�ned as: rHS(t0) = c/H0 and its value is 4.1 Gp.

Aording to the Hubble's law, Eq. (2.8), there are no privileged points in the homoge-

neous and isotropi universe, and the expansion will be the same at any point in spae, see

Fig. (2.3). This assumption is onsistent with the Copernian's priniple. Therefore, being a

generalized harateristi of the universe, the value of the Hubble onstant, H0, is the same

for all the galaxies and does not depend on the diretion to the galaxy in the sky or the

distane to it.

We �nd the time derivative of the physial distane to a galaxy,

~d, represented in Eq. (2.2):

~̇d(t) =
ȧ

a
~d(t) + ~up(~x, t), (2.9)

here ~up(~x, t) is a peuliar veloity, determining the random motions of the galaxy in spae.

8

Here the speed of light, , reintrodued for larity.
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Figure 2.3: Hubble expansion. (Figure from https://www.nature.om)

The peuliar veloity haraterizes the deviation of the motion of the nearby galaxy from the

homogeneous Hubble expansion. On the length sales that are smaller than the osmologial

sales, the value of the peuliar veloity, ~up(~x, t) in Eq. (2.9), exeeds the value of the galaxy

veloity under the in�uene of the Hubble expansion, ~v =
ȧ

a
~d. On these length sales, the

motion of the galaxies are determined to a greater extent by their random motion than by

the in�uene of the Hubble expansion, therefore, this de�nition is not exat on these length

sales. On the other hand, the motion of the distant galaxies is ompletely determined by the

Hubble expansion on the osmologial sales, sine the peuliar veloities of the galaxies are

negligible in the omparison with the Hubble expansion rate. The motion of the astronomial

objets, solely due to this expansion, is alled the motion in aordane with the Hubble �ow.

The disoveries of Vesto Slipher, George Lema��tre, and Edwin Hubble are the foundation

on whih modern physial osmology is built. These disoveries are marked by the beginning

of the transition of osmology from the desriptive philosophial siene to the exat siene,

in whih eah proposed theory is veri�ed by the results of the observational experiments.

2.3 Short Review of the General Theory of Relativity

2.3.1 Spaetime Metri for Curvilinear Coordinates

The GTR is the theoretial basis of modern osmology, Refs. (Einstein (1915a), Einstein

(1915b); the monographs: Refs. (Landau & Lifshitz (1971), Weinberg (1972), Misner et al.

(1973), Carroll (2004)). In GTR, spaetime with the four-dimensional urvilinear oordinates

is onsidered as, xµ = (x0, x1, x2, x3). The spatial part of spaetime is denoted as, x1, x2, x3,

while the temporary part as, x0 = t. The distane between two nearby points with the
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oordinates, xµ and xµ + dxµ, is given by a linear element, whose square in the urvilinear

oordinates is a quadrati form of the di�erentials, dxµ, or by a metri:

ds2 ≡ gµνdx
µdxν , (2.10)

where gµν is a ovariant spaetime metri tensor, whih is a funtion of the oordinates. The

value of the metri is an invariant during the transition from one referene frame to another.

The ovariant metri tensor, gµν , is symmetrial in the indexes µ and ν, gµν = gνµ. The

ovariant metri tensor is inverse to the ontravariant metri tensor, gµν :

gmµg
µν = δνm, (2.11)

where δνm is a Kroneker delta funtion.

Kroneker Delta Funtion

The Kroneker delta funtion is a single four-dimensional tensor, whih is de�ned as:

δνmx
m = xν . (2.12)

In the matrix form this expression an be represented as:

δνm =











1, m = l

0, m 6= 1

(2.13)

A trae

9

of the Kroneker delta funtion is equal to

∑

i δ
i
i = 4. The Kroneker delta funtion

has the following property: the omponents of this funtion are the same in any referene

frame.

2.3.2 Transformation of Curvilinear Coordinates

Consider the salar, vetor and tensor transformation from one urvilinear referene frame,

x0, x1, x2, x3, to another, x
′0, x

′1, x
′2, x

′3
.

9

A trae (or Spur-Germ.) of the matrix is a sum of the elements on the main diagonal. If bij are the

elements of the matrix B, then the trae of this matrix will be de�ned as, tr(B) =
∑

i bii.
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Salar (Zero Rank Tensor)

A salar is a value that in any referene frame is ompletely determined by a single number

(or a funtion). The value of the salar does not hange during the transition from one

referene frame to another. If ϕ is a salar value in one referene frame, x0, x1, x2, x3, and

ϕ′
is a salar value in another referene frame, x

′0, x
′1, x

′2, x
′3
, then:

ϕ′(x
′0, x

′1, x
′2, x

′3) = ϕ(x0, x1, x2, x3). (2.14)

Usually a salar has one omponent. Examples of the salars: pressure, density, temperature,

volume, length, area, et.

Vetor (First Rank Tensor)

A four-dimensional vetor is de�ned in the four-dimensional urvilinear referene frame by

four numbers in the ase of a ontravariant vetor as: Ai = A0, A1, A2, A3
; in the ase of a

ovariant vetor as: Ai = A0, A1, A2, A3.

For example, during a Lorentz transformation from a four-dimensional referene frame

to another, the ontravariant omponents of the four-dimensional vetors, Ai, are onverted

as follows

10

:

A0 =
A

′0 + (V/c)A
′1

√

1− V 2/c2
, A1 =

A
′1 + (V/c)A

′0

√

1− V 2/c2
, A2 = A

′2, A3 = A
′3′ , (2.15)

where V is a speed of motion of one inertial referene frame relative to another.

The ovariant vetor, Ai, is the ovetor of the ontravariant vetor, A
i
. The elements

of the ovariant vetor, Ai, and the ontravariant vetor, Ai, are interrelated as follows:

A0 = A0, A1 = −A1, A2 = −A2, A3 = −A3. (2.16)

The omponents of the four-dimensional vetor an be written as:

Ai = (A0, ~A), Ai = (A0,− ~A), (2.17)

where A0
is a temporal oordinate whih is a salar;

~A is a three-dimensional vetor, whih

10

Here the speed of light, , reintrodued for larity.
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ontains the spatial oordinates. The square of the four-dimensional vetor is de�ned as

11

:

3
∑

i=0

= AiAi = A0A0 + A1A1 + A2A2 + A3A3. (2.18)

The onnetion between the ovariant vetor and the ontravariant one is arried out through

the metri tensor, gµν , whih is used to inrease or derease the indies of both the vetors

and the tensors

12

:

gikAk = Ai, gikA
k = Ai. (2.19)

In general, in the urvilinear oordinates, a ontravariant four-dimensional vetor, Ai, and

à ovariant one, Ai, are transformed as follows:

Ai =
∂xi

∂x′k
A

′k, Ai =
∂x

′k

∂xi
A

′

k. (2.20)

Tensors (Seond and Higher Rank Tensors)

A four-dimensional seond-rank tensor is alled a set of the 42 = 16 omponents of this tensor.

In the transition from one referene frame to another, these omponents are transformed as

a produt of the omponents of two four-dimensional vetors. Similarly, one an de�ne the

four-dimensional tensors of the third rank (with 43 = 64 omponents) and the tensors of the

higher N-th rank, onstituting 4N omponents.

The omponents of the four-dimensional tensor an be represented as: ontravariant, Aik,

ovariant, Aik, and mixed, Aik.

A ontravariant seond-rank tensor, Aik, is formed as a result of the produt of two four-

dimensional ontravariant vetors, Ai =
∂xi

∂x′l
A

′l
, and, Ak =

∂xk

∂x′m
A

′m
. In the transition from

one referene frame to another, the omponents of the seond-rank ontravariant tensor are

transformed as:

Aik = Ai · Ak = ∂xi

∂x′l

∂xk

∂x′m
A

′lm. (2.21)

A ovariant seond-rank tensor, Aik, is formed as a result of the produt of two four-

dimensional ovariant vetors, Ai =
∂x

′l

∂xi
A

′

l, and, Ak =
∂x

′m

∂xk
A

′

m. In the transition from

one referene frame to another, the omponents of the seond-rank ovariant tensor are

11

In the tensor analysis, the Einstein rule is applied, aording to whih: the repeating indies twie in

the expression (one of them is at the top and the other is at the bottom) means summation, and the sign of

the sum is omitted.

12

In the partiular ase, onsidering the Minkowski spae, a Kroneker symbol, δνm, is used for raising or

lowering the indies.
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transformed as:

Aik = Ai · Ak =
∂x

′l

∂xi
∂x

′m

∂xk
A

′

lm. (2.22)

A mixed seond-rank tensor, Aik, is formed as a result of the produt of the four-dimensional

ontravariant vetor, Ai =
∂xi

∂x′l
A

′l
, and the four-dimensional ovariant vetor, Ak =

∂x
′m

∂xk
A

′

m.

In the transition from one referene frame to another, the omponents of the seond-rank

mixed tensor are transformed as

13

:

Aik = Ai · Ak =
∂xi

∂x′l

∂x
′m

∂xk
A

′l
m. (2.23)

The four-dimensional tensors (ontravariant, ovariant, mixed) of the N-th rank are trans-

formed as a result of the produt of N four-dimensional (ontravariant, ovariant, mixed)

vetors, respetively. In the transition from one referene frame to another, the omponents

of the tensors (ontravariant, ovariant, mixed) of N-th rank are transformed, respetively,

as:

Aβ1...βN =
∂xβ1

∂x′γ1
...
∂xβN

∂x′γN
A

′γ1...γN , (2.24)

Aβ1...βN =
∂x

′γ1

∂xβ1
...
∂x

′γN

∂x′βN
A′γ1...′γN , (2.25)

Aβ1...βlβ1+1...βN
=
∂xβ1

∂x′γ1
...
∂xβl

∂x′γl

∂x
′γl+1

∂xβl+1
...
∂x

′γN

∂x′βN
A

′γ1...′γl
′γl+1...′γN

. (2.26)

Tensors Operations

• Addition: Aαβγδ +Bαβ
γδ = Cαβ

γδ

• Subtration: Aαβγδ − Bαβ
γδ = F αβ

γδ

• Produt: AαβγδB
ην
γδ = Cαβην

γδγδ

• Contration of the tensors as a result of summing over the idential indies: Bλχ
χξ = Hλ

ξ

• Inner produt: F αβ
φσK

σψ
γω =Mαβσψ

φσγω = Nαβψ
φγω

2.3.3 Covariant Derivatives

Consider a vetor, Ai, in the urvilinear oordinates. The di�erential, dAi, of this vetor is

not a vetor and the derivative, ∂Ai/∂x
k
, is not a tensor too. This is due to the fat that

the di�erential, dAi, is the di�erene of the vetors loated at the di�erent points of urved

13

Here and above the following notations are used: A
′lm = A

′lA
′m
, A

′

lm = A
′

lA
′

m, A
′l
m = A

′lA
′

m.
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spae. The vetors in urved spae at the di�erent points are transformed aording to the

di�erent laws, so a speial type of the derivatives is used for the urvilinear oordinates -

the ovariant or ontravariant derivatives.

The ovariant derivatives for the ontravariant and ovariant vetors are de�ned as:

Ai;j =
∂Ai

∂xj
+ ΓikjA

k, Ai;j =
∂Ai
∂xj

− ΓkijAk, (2.27)

where the funtions, Γλµν , are alled the Christo�el symbols or the a�ne onnetion. They

are expressed in the terms of the derivatives of the metri tensor as follows:

Γλµν =
1

2
gλκ

(

∂gκµ
∂xν

+
∂gκν
∂xµ

− ∂gµν
∂xκ

)

. (2.28)

The ovariant derivatives for the seond-rank tensors: ontravariant, Aik, ovariant, Aik, and

mixed type, Aik, are de�ned as:

Aik;j =
∂Aik

∂xj
+ ΓimjA

mk + ΓkmjA
im, (2.29)

Aik;j =
∂Aik
∂xj

− ΓmijAkm − ΓmkjAim, (2.30)

Aik;j =
∂Aik
∂xj

− ΓmkjA
i
m + ΓimjA

m
k . (2.31)

The ontravariant derivatives an be formed from the ovariant ones by the raising the index,

whih means the di�erentiation. This an be done using a ontravariant metri tensor:

A;k
i = gkjAi;j, Ai;k = gkjAi;j. (2.32)

2.4 Riemann-Christo�el Tensor, Rii Tensor, Einstein

Tensor. Rii Salar.

Riemann-Christo�el Tensor

The ombination of the Christo�el symbols and their derivatives form the urvature tensor,

or the so-alled fourth-rank Riemann-Christo�el tensor, Ri
klm:

Ri
klm =

∂Γikm
∂xl

− ∂Γikl
∂xm

+ ΓinlΓ
n
km − ΓinmΓ

n
kl. (2.33)
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The Riemann-Christo�el tensor has the following properties:

• Cyliality: Ri
klm +Ri

mkl +Ri
lmk = 0

• Antisymmetry of l and m indies: Ri
klm = −Ri

kml

• Symmetry: Riklm = Rlmik

• Asymmetry: Riklm = −Rkilm = −Rikml

• First Bianhi identity: Riklm +Rimkl +Rilmk = 0

• Seond Bianhi identity: Rn
ikl;m +Rn

imk;l +Rilm;k = 0

The equality or non-equality to zero of the urvature Riemann � Christo�el tensor, Ri
klm,

is a riterion for determining, whether four-dimensional spaetime is �at or urved. At the

same time, the diret theorem is true: four-dimensional spaetime will be �at (urved) if

the urvature tensor is zero (non-zero) and the inverse theorem is also true: if the urvature

tensor is zero (non-zero), then four-dimensional spaetime will be �at (urved).

Rii Tensor

The seond-rank Rii tensor, Rik, is obtained by the ontration of the Riemann-Christo�el

tensor:

Rik = glmRlimk = Rl
ilk. (2.34)

The Rii tensor is de�ned as:

Rik =
∂Γlik
∂xl

− ∂Γlil
∂xk

+ ΓlikΓ
m
lm − Γmil Γ

l
km. (2.35)

The symmetry of the Rii tensor is obvious from Eq. (2.35): Rik = Rki.

Rii Salar

Contrating the Rii tensor, Rik, we get a salar value, R, whih is alled a Rii salar or

the salar urvature:

R = gikRik = gilgkmRiklm. (2.36)

The Rii salar is a trae of the Rii tensor, Rik: R =
∑

iRii.

In the GTR, the ation for the gravitational �eld, SG, is expressed through the integral

over the four-dimensional volume, dΩ, from the salar urvature density, R
√−g, as follows:

SG = 8πG

∫

M

R
√−gdΩ, (2.37)
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where g is a determinant, whih omposed from the matrix elements of the metri tensor,

gµν .

Einstein Tensor

The ombination of the Rii tensor, Rµν , the Rii salar, R, and the metri tensor, gµν ,

de�nes the Einstein tensor:

Gµν = Rµν −
1

2
gµνR. (2.38)

The Einstein tensor, Gµν , is a seond-rank tensor in N-dimensional spaetime. The Einstein

tensor ontains N(N + 1)/2 independent omponents. This tensor an be onstruted only

from the quadrati (in the �rst derivatives from the metri) or the linear (in the seond

derivative from the metri) terms.

The Einstein tensor is symmetri due to the symmetry of the Rii tensor, Rµν , and the

metri tensor, gµν , that form it:

Gµν = Gνµ. (2.39)

The Einstein tensor is an invariant under the ovariant di�erentiation, i.e., the ovariant

divergene of the Einstein tensor identially equals to zero:

Gµν;λ = 0. (2.40)

2.4.1 Energy-Momentum Tensor

In the GTR, the notion of an energy-momentum tensor or a stress-energy tensor, Tµν , in-

ludes all the possible forms of matter and energy

14

, that an distort spaetime. The energy-

momentum tensor haraterizes everything that an be ontained in a spei� region of

spaetime: the energy �uid and the momentum �uid, the energy density and the momentum

density, as well as energy and mass. The energy-momentum tensor is de�ned as the �ux

of a four-dimensional momentum, whih passes through a three-dimensional surfae of the

onstant oordinates.

The energy-momentum tensor, Tµν , is a seond-rank tensor. Its properties are idential to

the properties of the Einstein tensor, Gνµ, suh as, the symmetry of the energy-momentum

tensor:

Tµν = Tνµ, (2.41)

14

In aordane with the priniple of the equivalene of mass and energy in the GTR.
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and the equality to zero of the ovariant divergene of the energy-momentum tensor or the

ful�llment of the onservation law for the energy-momentum tensor:

Tµν;ν = 0. (2.42)

In the limiting ase of the Minkowski metri (that is desribed below in Eq. (2.71)), the

ovariant derivative is transformed into the ordinary derivative:

Tµν
∂xν

= 0. (2.43)

In the presene of the gravitational �eld, the onservation law takes the form:

Tµν;ν =
∂Tµν
∂xν

+ ΓkµνTkν + ΓkkνTµν = 0. (2.44)

Consider the di�erent forms of the energy-momentum tensor, Tµν , for the following ases:

perfet �uid, vauum and dust.

Perfet Fluid

The perfet �uid is isotropi with respet to the referene frame in whih it is at rest. The

perfet �uid an be ompletely haraterized by its energy density, ρ, and the isotropi

pressure, p, that are onneted by the equation of state (EoS), p = f(ρ). This �uid has no

visosity or heat ondution. In osmology, the perfet �uid model is used to desribe the

early universe at the radiation dominated epoh.

For any referene frame the energy-momentum, tensor for the perfet �uid has the form:

Tµν = (ρ+ p)uµuν − pgµν , (2.45)

here uµ is a four-dimensional veloity.

The four-dimensional veloity is determined as:

uµ ≡ dxµ
ds

. (2.46)

The four-dimensional veloity is normalized as, uµuµ ≡ 1.15 Hene, for the observer in

the omoving referene frame, relative to whih the perfet �uid is at the rest, the four-

15

In the geometri representation, uµ is an unit four-dimensional vetor, that is a tangent to the world

line of the partile.
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dimensional veloity, uµ, has the form, ~u = (1, 0, 0, 0).

In the omoving referene frame, the energy-momentum tensor for the perfet �uid an

be written as:

Tµν =

















ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

















. (2.47)

From the energy-momentum onservation equation, Eq. (2.42), the ontinuity equation fol-

lows:

∂ρ

∂t
+∇(ρ~vf) = 0, (2.48)

where ~vf is the three-dimension veloity of the �uid.

This equation desribes the behavior of the perfet �uid and expresses the fat of the

matter onservation. Indeed, the onverging veloity �eld leads to an inrease of the density.

Conversely, the diverging veloity �eld leads to the derease of the density.

Vauum

There are no �elds, energy, matter in a ertain region of spaetime in this ase. The om-

ponents of the energy-momentum tensor, Tµν , for this region are equal to zero:

Tµν = 0. (2.49)

Dust

In osmology, the matter in the universe is approximated by a dust �uid model or a dust

matter model

16

, onsisting of the idential, eletrially neutral, non-interating massive par-

tiles. These partiles move with the idential veloities, whih are muh smaller than the

speed of light, u ≪ c. The dust �uid is haraterized by the zero pressure, the rest density,

ρ, and the four-dimensional veloity, u(~r, t)17.

In this ase, the energy-momentum tensor for any referene frame is de�ned as:

Tµν = ρuµuν. (2.50)

16

The validity of this approximation is related to the fat that in the astrophysial and osmologial

gravitational issues, matter undergoes very high stresses, so it beomes the �uid.

17

The real universe ontains the multiomponent �ows of the dust matter.
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In the omoving referene frame, the energy-momentum tensor for the dust �uid takes the

form:

Tµν =

















ρ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















. (2.51)

In the limiting ase of the low veloity and zero pressure, a perfet �uid model is redued

to a dust �uid model. The dust �uid model is used for desription of the universe at the

matter dominated epoh.

2.4.2 Matter in the Universe

The nonrelativisti partiles onsisting of the baryons, the massive neutrinos and dark matter

form matter in the universe. A general property of these partiles is that they an aumulate

under the ation of the gravitational fores.

The observable universe ontains 26% of dark matter; 4.8% of the ordinary baryoni

matter; 0.1% of neutrino, aording to Plank 2015 data, Ref. (Ade et al. (2016)).

The number density of these partiles, n(t), and the energy density of the matter, ρ(t),

hange over time in the same way as

18

: ρ(t) ∼ n(t) ∝ a−3
(t).

Baryoni Matter

The baryoni matter onsists of the baryons. Aording to the Standard Model of partile

physis, the baryons belong to the family of the hadrons. The baryons are formed from

the odd number of the quarks. At the same time, the baryons are the fermions, due to the

fat that they have a half-integer spin. The lightest baryons are the nuleons: protons and

neutrons. The protons onsist of one down (or d) quark and two up (or u) quarks, p = uud,

and the neutrons onsist of one u quark and two d quarks, n = ddu, Ref. (Okun (1988)).

The baryons are the omponents of the atomi nulei of the ordinary matter, they onsti-

tute most of the visible matter in the universe and an also form the invisible baryoni dark

matter. The energy density of the baryons at the present epoh is ρb0 ≈ 2.4 ·10−7
GeV/m

3
.

At the late stage of the evolution of the universe, whih is haraterized by the average

temperature 〈T 〉 ≤ 100 KeV, the ratio of the number density of the baryons to the number

density of the photons remains onstant, ηb ≡ nb/nγ ≈ 6.1 · 10−10
, Ref. (Rubakov (2014)).

18

This result is valid only for old dark matter.
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Massive Neutrino

The neutrinos belong to the leptons family. The neutrinos, being leptons, an partiipate

only in the weak gravitational interations. The leptons are the fermions, their spin is 1/2.

The leptons have no struture, so they are really the elementary partiles. Being the neutral

elementary partiles, the neutrinos have three �avors: the eletron neutrinos, νe, the muon

neutrinos, νµ, and the tau neutrinos, ντ . If the neutrinos are the Dira fermions, then

there will be the anti-neutrinos, respetively: ν̃e, ν̃µ, ν̃τ . If the neutrinos are the Majorana

fermions, then they will not have their antipartile and, like the photons, they will be the

really neutral partiles.

The present number density for eah type of the neutrinos is nνα0 = 110 m

−3
, where

nνα = νe, νµ, ντ . The energy density for all the types of neutrinos is ρν,total ∼ 6·10−7
GeV/m

3
.

The total mass of all the types of neutrinos is

∑

mν,total < 0.23 eV, Ref. (Ade et al. (2016)).

Dark Matter

Presumably, dark matter onsists of the stable massive partiles, the nature of whih is not

known yet. The dark matter partiles do not interat with the observed eletromagneti

radiation and weakly gravitationally interat with the ordinary baryoni matter.

Dark matter is loated in the galaxies, as well as in the lusters of galaxies. The term

"dark matter" was �rst introdued by Fritz Zwiky in 1933. He measured the radial veloity

for eight galaxies in the onstellation Coma, v(R), whih depends on the distane from the

enter of the galaxy, R. Zwiky onluded that for maintaining the stability of the galaxy,

its total mass must be ten times more than the mass of the stars inluded in it.

Vera Rubin and Kent Ford were the �rst who presented the aurate alulations indiat-

ing the dark matter existene in the galaxies, Ref. (Rubin et al. (1980)). They found that in

the spiral galaxies most of the stars, that are not too lose to the enter of the galaxies, move

in the orbits with the same radial veloity, v(R) =onst, see Fig. (2.4) (left panel). For the

regions, whih ontain the visible matter (onsidering only the visible matter), v(R) ∝
√
R,

see Fig. (2.4) (left panel). For the large distanes from the enter of the galaxies, i.e., for the

peripheral regions of the galaxies, v(R) ∝ 1/
√
R, see Fig. (2.4) (left panel). This disrepany

in the radial veloities of the stars an be explained by assuming that the visible matter of

the galaxies is immersed in a muh larger loud � in the galati halo. The galati halo

ontains the signi�ant mass of the invisible matter, the partiles of whih do not interat

with the photons.
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In the early stages of the evolution of the universe, the dark matter partiles were in the

thermodynami equilibrium with the partiles of the primordial plasma. During the universe

expansion, at a ertain moment of time, the temperature of the primordial plasma dereased

so muh that the interation of the dark matter partiles with the baryoni matter eased,

and the dark matter partiles deoupled from the primordial plasma, see Fig. (2.4) (right

panel).

Depending on the temperature at whih this deoupling ourred (or depending on the

mass of the dark matter partiles at that moment), dark matter is subdivided on Cold Dark

Matter (CDM), Warm Dark Matter (WDM) and Hot Dark Matter (HDM).

CDM onsists of the heavy partiles with the mass, mCDM ≥ 100 KeV. The andidates for

CDM are the slowly moving hypothetial partiles, the so-alled weakly interating massive

partiles (WIMPs). The partiles that form WDM have the mass, mWDM ≈ 3 − 30 KeV.

At the time of going out of the equilibrium with the primordial plasma, these partiles were

relativisti. During the deoupling of the HDM partiles from the primordial plasma, their

energy far exeeded their mass, i.e., these partiles were ultrarelativisti. Ñonsequently,

HDM may onsist of the light partiles suh as the neutrinos.

Figure 2.4: Left panel: the �at urve of the spiral galaxy NGC 3198 rotation (upper urve),

whih is a ombination of the visible matter rotation (urve "disk") and dark matter (urve

"halo"). (Figure from Ref. (Begeman et al. (1991))) Right panel: the evolution of the

Newton's potential, Φ, and the relative density ontrast for: dark matter, δDM, the baryons,

δB, and the photons, δγ . teq is the transition from the radiation domination epoh to the

matter domination epoh; trec is the beginning of the reombination epoh; tΛ is the transition
from the deelerated to aelerated expansion of the universe. (Figure from Ref. (Rubakov

(2014)))

Dark matter plays a very important role in the large-sale strutures formation of the

universe. The formation of the galaxies happened in the regions with over density of dark

matter. The deoupling of the dark matter partiles from the primordial plasma ourred
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muh earlier than the deoupling of the baryons. As a onsequene of this, the growth of

the dark matter density �utuations happened muh earlier than the growth of the baryoni

matter density �utuations, see Fig. (2.4) (right panel). The baryons fell into a potential

well formed by dark matter, ñonsequently, after reombination, the dark matter density

�utuations and the baryons density �utuations developed together, inseparable from eah

other, see Fig. (2.4) (right panel).

There are numerous possible andidates for the role of dark matter. Dark matter an

have of the baryoni or non-baryoni origin. Baryoni dark matter, the so-alled Massive

Compat Halo Objets (MACHOs), have low luminosity. Baryoni dark matter an be the

brown dwarfs, the dark galati halos, the massive planets, the ompat objets at the �nal

stages of the evolution: the neutron stars, the white and blak dwarfs, the blak holes. Non-

barioni dark matter an be light or heavy neutrinos, axions, the supersymmetri partiles.

In addition, dark matter an be the primordial blak holes and the topologial defets of

spaetime.

2.4.3 Einstein's Field Equations

The basi equations of the GTR are the gravitation �eld equations, whih are alled the

Einstein's �eld equations:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν . (2.52)

The Einstein's �eld equations onnet the metri of urved spaetime, gµν , the Rii urva-

ture tensor, Rµν , the Rii salar, R, with the properties of the matter that �lls this spae,

whih is haraterized by an energy-momentum tensor, Tµν . These equations establish the

interrelation between the urvature (geometry) of spaetime (left side of the equation) and

matter, as well as its motion (right side of the equation). Thus, the Einstein's �eld equations

desribe how the urvature of spaetime a�ets matter in the universe, and vie versa, how

matter in the universe a�ets the urvature (geometry) of spaetime.

The gravitational �eld equations are the nonlinear seond-order partial di�erential equa-

tions. This nonlinearity is assoiated with the e�et of the gravity on itself, sine the gravi-

tational �eld arries the energy and the momentum. Due to the fat that the Einstein's �eld

equations are nonlinear, the superposition priniple is not valid for the gravitational �elds.

Linearization of the Einstein's �eld equations is possible in the ase of the onsideration of

the gravitational waves with low amplitude or for the weak gravitational �elds (for exam-

ple, for the gravitational �elds in the Newtonian limit). For suh �elds the deviations of
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the metri omponents of the equation from their values for �at spaetime are insigni�ant

and, aordingly, the spaetime urvature generated by them is also small. In this ase, the

superposition priniple of the �elds an be applied.

In the ase of the weak gravitational �elds reated by a nonrelativisti moving substane,

the zero omponent of the Einstein tensor, G00, is de�ned as:

G00 ≈ ∇2g00, (2.53)

for the Newtonian limit, the Einstein's �eld equations take the form:

G00 = −8πGT00. (2.54)

We obtain an alternative form of the Einstein's �eld equations, Eq. (2.52), ontrating both

sides by the ontravariant metri tensor, gµν :

R = −8πGT. (2.55)

Substituting Eq. (2.52) into Eq. (2.55), we get another form of the Einstein's �eld equations:

Rµν = 8πG(Tµν −
1

2
gµνT ). (2.56)

The value of the energy-momentum tensor is equal to zero for vauum, Eq. (2.49). From

Eq. (2.56) it follows that the following equation is ful�lled for vauum:

Rµν = 0. (2.57)

The result obtained in Eq. (2.57) does not mean that empty spae is �at, and

there are no gravitational �elds in it. This statement requires the additional

ondition: the Riemann-Christo�el tensor must be equal to zero, Ri
klm = 0. In

spaetime with two or three dimensions, the ondition Rµν = 0 means that the Riemann-

Christo�el tensor is zero and, aordingly, it means the absene of the gravitational �elds

there.

The full Riemann-Christo�el tensor an be non-zero under the ful�llment of the ondition,

Rµν = 0, in vauum spaetime with four and higher dimensions. Therefore, in this ase, the

gravitational �elds an exist.
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2.5 Spatial Metris

2.5.1 Flat Eulidean Spae

The Eulidean geometry is based on �ve axioms:

1. Axiom of belonging

2. Axiom of order

3. Axiom of equality of segments and angles

4. Axiom of the parallel lines

5. Axiom of the ontinuity (Arhimedes' axiom)

Figure 2.5: Left panel: the three-dimensional Cartesian oordinates. Right panel: the

spherial oordinates. (Figure from Ref. (Dubrovin et al. (1979)))

From the "Axiom of the parallel lines" it follows the statement "The sum of the interior

angles of the triangle is equal to 180◦", whih is very important feature of Eulidean spae.

Eulidian spae is three-dimensional �at spae. Eah point in this spae is de�ned by the

orthogonal Cartesian oordinates, (x1, x2, x3 = x, y, z), see Fig. (2.5) (left panel).

The invariant metri in the Cartesian oordinates is de�ned as:

ds2 =

3
∑

i=1

dxi = (x1)2 + (x2)2 + (x3)2. (2.58)
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The ompat form of this metri is:

ds2 = gµνdx
µdxν , (2.59)

where gµν = δµν .

The metri tensor for Eulidean spae in the Cartesian oordinates has the form

19

:

gµν = δµν =











1 0 0

0 1 0

0 0 1











. (2.60)

The invariant metri in the Cartesian oordinates, (dxµ, dxν), an be expressed in the arbi-

trary oordinates, (dxm
′

, dxn
′

), as:

ds2 = δµνdx
µdxν = δµν

( ∂xi

∂xm′
dxm

′

)( ∂xj

∂xk′
dxk

′

)

= gm′k′dx
m′

dxk
′

, (2.61)

here gm′k′ is the spatial metri tensor in an arbitrary referene frame.

Consider the Eulidean metri in the polar, ylindrial and spherial oordinates:

The polar oordinates

The Cartesian oordinates, (x1, x2), on the plane are expressed through the polar oor-

dinates, (y1 = r, y2 = ϕ), as:

x1 = r cosϕ, x2 = r sinϕ (2.62)

and

gm′k′ = δµν =





1 0

0 r2



 . (2.63)

The metri in the polar oordinates is given by:

ds2 = (dr)2 + r2(dϕ)2. (2.64)

The ylindrial oordinates

19

The isotropy and the homogeneity of spae is expressed in the diagonal form of the metri tensor and

vie versa, the metri tensor for isotropi and homogeneous spae must be diagonal.
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The Cartesian oordinates, (x1, x2, x3), are expressed through the ylindrial oordinates,

(y1 = r, y2 = ϕ, y3 = z), as:

x1 = r cosϕ, x2 = r sinϕ, x3 = z (2.65)

and

gm′k′ =











1 0 0

0 r2 0

0 0 1











. (2.66)

The metri in the ylindrial oordinates is given by:

ds2 = (dr)2 + r2(dϕ)2 + sin2(dϕ)2. (2.67)

The spherial oordinates

The Cartesian oordinates, (x1, x2, x3), are expressed through the spherial oordinates,

(y1 = r, y2 = θ, y3 = ϕ), see Fig. (2.5) (right panel) as:

x1 = r cosϕ sin θ, x2 = r sinϕ sin θ, x3 = r cos θ (2.68)

and

gm′k′ =











1 0 0

0 r2 0

0 0 r2 sin2 ϕ











. (2.69)

The metri in the spherial oordinates is given by:

ds2 = dr2 + r2[(dθ)2 + r2 sin2 θ(dϕ)2]. (2.70)

2.5.2 Minkowski Spaetime

In 1908, HermannMinkovski �rst introdued four oordinates for desription of four-dimensional

vetor spae or the spaetime ontinuum. The points of this spaetime are alled the events

or the world points. Eah event orresponds to a set of four numbers (x0, x1, x2, x3), where

x0 = t is a moment of time when the event ourred and (x1, x2, x3) is the loation of the

event. In four-dimensional spae, the proess of life for eah objet is identi�ed by the line

xi(t) (i = 1, 2, 3), whih is alled the world line. The values of (t, x1, x2, x3) an be regarded
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Figure 2.6: Left panel: two-dimensional Minkovski diagram. Right panel: three-dimensional

light one.

as the Cartesian oordinates in the spaetime ontinuum. Thereby, the spaetime ontinuum

an be onsidered as four-dimensional Cartesian spae. On the ontrary, three-dimensional

spae, in whih the lassial geometry unfolds, will be a surfae of the onstant level (where

t=onst).

The metri tensor of Minkowski spaetime is de�ned as

20

:

ηµν = δµν =

















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

















. (2.71)

This metri tensor desribes �at four-dimensional isotropi and homogeneous spaetime.

The metri for the Minkovski metri tensor is represented as:

ds2 = ηµνdx
µdxν . (2.72)

The metri, ds2, an take the following values in four-dimensional spaetime: to be equal

to zero, to be positive or negative. The metri, ds2 = 0, orresponds to the propagation

of a signal with the speed of light or a motion of the massless partiles in four-dimensional

20

Hereinafter, the metri signature is used, (1,−1,−1,−1).
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spaetime. The zero metri, ds2 = 0, desribes the lightlike events. The positive metri,

ds2 > 0, desribes the timelike events. For the timelike events, there is a frame of referene in

whih these events an our in the same plae. In this ase, the linear interval between two

events, ds, is a real number. A negative metri, ds2 < 0, desribes the spaelike events.

There is a frame of referene for the spaelike events, in whih these events an our

simultaneously. In this ase, the linear interval between two events, ds, is an imaginary

number.

The above-mentioned types of the events are presented on the two-dimensional, (x0, x1),

Minkovski diagram, see Fig. (2.6) (left panel). The origin of the oordinate, O, orresponds

to the present point in time. The lines ab and cd are onsistent with two di�erent signals,

whih propagate at the speed of light, so ds2 = 0 for them. The spaelike events are ontained

in the dOa and cOb regions with ds2 < 0, while the regions aOc and dOb orrespond to the

timelike events with ds2 > 0.

Sine the time from the aOc region has a positive value, t > 0, the events from this region

will happen in the future with respet to the present moment of time, O. The time from the

dOb region has a negative value, t < 0, onsequently, the events from this region happened

in the past with respet to the present point in time, O. In other words, the events from

the aOc region an be alled the "absolutely future", onsequently, the events from the dOb

region an be alled the "absolutely past" with respet to the present point in time, O. Sine

it an be unambiguously determined whih of the events with a timelike interval ourred

earlier and whih later, these events an be ausally-related to eah other.

The metri for the Minkowski spaetime, Eq. (2.72), is timelike, so it an be loated in

the aOc and dOb regions on the Minkowski diagram. This metri an be written in the

extended form:

ds2 = (x0)2 − (x1)2 − (x2)2 − (x3)2. (2.73)

Eq. (2.73) desribes a so-alled light one or, in other words, a one of the ausal events.

The three-dimensional Minkowski oordinates, (x0, x1, x2), an be expressed in the terms of

the pseudospherial oordinates, (̺, ς, ϕ):

χ(r) =



















x0 = ̺ cosh ς

x1 = ̺ sinh ς

x2 = ̺ sinh ς sinϕ

(2.74)
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From Eq. (2.74) it follows:

(x0)2 − (x1)2 − (x2)2 = ̺2 > 0. (2.75)

Therefore, the oordinates, (̺, ς, ϕ), are de�ned only in the region, (x0)2− (x1)2− (x2)2 > 0.

This region is loated inside of the light one in three-dimensional spaetime, (x0)2 = (x1)2+

(x2)2, see Fig. (2.6) (right panel). The metri for this region has the form:

ds2 = d̺2 − ̺2[(dχ)2 + sinh2 χ(dϕ)2]. (2.76)

2.5.3 Geodesi Equation

Suppose that a point with the oordinates xi moves along a ertain trajetory with the

four-dimensional veloity, ui = xi/ds. Aording to the GTR, a free material point moves

in the gravitational �eld in four-dimensional spaetime, so its world line is extremal. This

extremal world line is alled the geodesi line between two given world points.

The motion of the partile in the gravitational �eld is determined by the priniple of

least ation, aording to whih the ation funtional takes the minimum value:

δS = δ

∫

ds = 0, (2.77)

where ds2 = gikdx
idxk is a metri in four-dimensional urved spaetime.

Applying the priniple of least ation, we obtain the equation of motion of the partile

in the gravitational �eld.

Due to the fat that:

δds2 = 2dsδds = δ(gikdx
idxk) = dxidxk

∂gik
dxl

δxl + 2gikdx
idδxk. (2.78)

Substituting this result into Eq. (2.77), we get:

S =

∫

(dxi

ds

dxk

ds

dgik
dxl

δxl + gik
dxi

ds

dδxk

ds

)

ds = 0. (2.79)

While we integrate Eq. (2.79) by parts and take into aount that in the seond term at the

boundaries of integration δxk = 0, we obtain:

S =

∫

(1

2

dxi

ds

dxk

ds

dgik
dxl

δxl − d

ds

(

gik
dxi

ds

)

δxk
)

ds = 0. (2.80)
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Replaing the index k with the index l, in the seond term of Eq. (2.80):

1

2
uiuk

dgik
dxl

− d

ds
(dgilu

i) =
1

2
uiuk

dgik
dxl

− gil
dui

ds
− uiuk

dgil
dxk

= 0. (2.81)

We represent the third term in Eq. (2.81) as:

uiuk
dgil
dxk

=
1

2
uiuk

(dgil
dxk

+
dgkl
dxi

)

. (2.82)

Multiplying the left and right sides of Eq. (2.81) by gim:

gimgil
dui

ds
+

1

2
gimuiuk

(dgil
dxk

+
dgkl
dxi

− dgik
dxl

)

= 0. (2.83)

Considering that gimgil = δml , we replae the index l with the index m in the expression

loated in the parentheses, Eq. (2.83):

dui

ds
+

1

2
gimuiuk

(dgil
dxk

+
dgkm
dxi

− dgik
dxm

)

= 0. (2.84)

As a result of replaing the index i to the index l in the expression loated in the parentheses,

Eq. (2.84), and introduing the Christo�el symbols, Γikl = 1
2
gim

(

∂gmk

∂xl
+ ∂gml

∂xk
− ∂gkl

∂xm

)

, we

obtain the equation of motion of a material point in the gravitational �eld along the geodesi

line:

d2xi

ds2
+ Γikl

dxk

ds

dxl

ds
= 0. (2.85)

The geodesi line has a urved shape in four-dimensional spaetime, (x0, x1, x2, x3), and the

motion of the partile is not uniform and retilinear.

2.5.4 Isotropi Four-Dimensional Spaetime Metri

The metri tensor for four-dimensional homogeneous and isotropi spaetime, whih is spa-

tially expanding or ontrating with dependene on the sale fator, a(t)21, is de�ned as

follows:

gµν =

















1 0 0 0

0 −a2(t) 0 0

0 0 −a2(t) 0

0 0 0 −a2(t)

















. (2.86)

21

This metri tensor desribes the expanding spaetime, sine a sale fator is the time-dependent inreas-

ing funtion,

˙a(t) > 0.
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The metri for this spaetime is:

ds2 ≡ gµνdx
µdxν = dt2 − a2(t)γijdx

idxj , (2.87)

where γij is a metri of three-dimensional spae.

The funtion γij in the spherial oordinates, (r, θ, ϕ), Eq. (2.87), is represented as:

γij = dr2 + χ(r)2(dθ2 + sin2 θdϕ2), (2.88)

here χ(r) is a spae urvature funtion, whih is de�ned as:

χ(r) =



















1√
K
sin

(√
K r

)

for K > 0

r for K = 0

1√
−K

sinh
(√

−K r
)

for K < 0

, (2.89)

here K is a urvature parameter.

Replaing the variable x = ξ in Eq. (2.89) and expressing the variable r through x, we

�nd the square of the di�erential dr2:

dr2 =























1
1−Kx2

dx2 for K > 0

dx2 for K = 0

1
1−Kx2

dx2 for K < 0

. (2.90)

Substituting Eq. (2.89) and Eq. (2.90) into Eq. (2.87), we get the expression for the Friedmann-

Lema��tre-Robertson-Walker (FLRW) spaetime metri:

ds2 = dt2 − a2(t)

[

dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]

. (2.91)

This metri desribes the homogeneous and isotropi expanding spae. The oordinates,

(r, θ, ϕ), are the omoving oordinates, i.e., the moving objet is at rest relative to these

oordinates.

The FLRW metri in the Cartesian oordinates an be written as:

ds2 = dt2 − a2(t)
1

(1 + K
4
r2)2

δijdx
idxj . (2.92)

Depending on the sign of the urvature parameter, K, Eq. (2.91) desribes the geometrially
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Figure 2.7: The examples of losed, �at and open two-dimensional spaes. (Figure from

http://www.astro.ornell.edu/aademis/ourses/astro201/)

di�erent types of the universe. The ase K > 0 orresponds to the so-alled losed universe

(to spherial three-dimensional spae). The two-dimensional analogue of this universe is

the surfae of a sphere, see Fig. (2.7), and the funtion, 1/
√
K, an be interpreted as its

urvature radius. The ase K = 0 orresponds to the so-alled �at universe (to Eulidean

three-dimensional spae), see Fig. (2.7). The ase K < 0 orresponds to the so-alled open

universe (to three-dimensional hyperboli spae). The two-dimensional analogue of this

universe is the surfae of a saddle, see Fig. (2.7).

The urvature of the universe an be negleted in the study of the ertain proesses.

For example, when a photon moves freely in the homogeneous and isotropi universe, the

wavelength of the photon will be muh smaller than the radius of the spatial urvature of

the universe (in the ase of an open or losed universe). In this ase, the universe an be

onsidered as spatially �at and the metri presented in Eq. (2.87) an be used.

In the terms of onformal time, whih is de�ned in Eq. (2.4), the Eq. (2.87) takes the

form:

ds2 = a2(η)dη2 − a2(η)γijdx
idxj = a2(η)[η2 − γijdx

idxj ]. (2.93)

From Eq. (2.93), it follows the relation between the Minkowski metri tensor ηµν and the

metri tensor gµν :

gµν = a2(η)ηµν . (2.94)

Hene, the metri tensor, gµν , has a onformally �at form in the oordinates, (η, xµ).
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For the di�erent types of the urvature, Eq. (2.93) has the form:

ds2 = a2(η)(dη2 − dξ2 −̟2(dθ2 + sin2 θdϕ2)), (2.95)

where the variable ̟ is de�ned as:

̟ =























sin ξ for K > 0, r = a(η) sin ξ, ξ ∈ [0, π]

ξ for K = 0, r = a(η)ξ, ξ ∈ [0,∞]

sinh ξ for K < 0, r = a(η) sinh ξ, ξ ∈ [0,∞]

(2.96)

2.5.5 Friedmann's Equations

Substituting the FLRW metri, Eq. (2.91), and the energy-momentum tensor, Eq. (2.45),

into the Einstein's equations, Eq. (2.52), the �rst and the seond Friedmann's equations an

be derived:

ȧ2

a2
=

8πG

3
ρ− K

a2
(2.97)

and

ä

a
= −4πG

3
(ρ+ 3p). (2.98)

If we know the evolution of the sale fator, a(t), whih haraterizes the expansion history

of the universe, we will be able to determine the value of the urvature parameter and the

mass-energy omposition of the universe using the Friedmann's equations. Conversely, if we

know the value of the urvature parameter and the matter-energy ontent of the universe, we

will be able to alulate the evolution of the sale fator, a(t). For example: the expansion

history of the universe depends on the value of the urvature parameter, K: for K < 0 (the

open universe), the universe will expand forever, see Fig. (2.8); for K = 0 (the �at universe),

the universe will expand forever either, but for t → ∞, the expansion will our with the

onstant veloity, i.e., ȧ→ 0, see Fig. (2.8); for K > 0 (the lose universe), the universe will

expand till ertain moment, after that the expansion will turn into a ontration and the

universe will re-ollapse, see Fig. (2.8).

As mentioned previously, all the matter-energy omponents of the universe on the osmo-

logial sales an be modeled as the perfet �uid. The relation between the energy density

and the pressure for the perfet �uid is de�ned by the EoS:

p = wρ, (2.99)
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Figure 2.8: The evolution of the sale fator, a(t), for the di�erent signs of the urvature

parameter, K. (Figure from https://wmap.gsf.nasa.gov/universe/)

where w is an EoS parameter, the value of whih is di�erent for eah matter-energy ompo-

nent in the universe.

If we solve the ontinuity equation, Eq. (2.48), and the Friedmann's equation, Eq. (2.97),

for a �at universe, K = 0, we will get the following equations:

ρ ∝ a−3(1+w), a(t) ∝ t
2

3(1+w) ⇒ H =
2

3(1 + w)t
, (2.100)

where the value of the EoS parameter, w, is time-independent and w 6= 1.

The equations, whih are determined in Eq. (2.100), desribe the evolution of the energy

density, ρ, the sale fator, a, and the Hubble parameter, H , in dependene on the value of

the EoS parameter, w, and the physial time, t. Let's analyze Eq. (2.100) for the di�erent

values of the EoS parameter, w. We suppose that only one matter-energy omponent is

ontained in the universe, whih is desribed by the given EoS parameter.

The EoS parameter, w = 1/3, orresponds to the perfet �uid of the relativisti partiles

(the photons and the neutrinos), whih is alled the radiation. For this ase Eq. (2.100)

takes the form:

ρr ∝ a−4, a(t) ∝ t
1
2 ⇒ H =

1

2t
. (2.101)

The EoS parameter, w = 0, orresponds to the perfet �uid of the non-relativisti partiles

or the dust (matter), whih onsists of CDM and the baryons. Aordingly, in this ase,
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Eq. (2.100) takes the form:

ρm ∝ a−3, a(t) ∝ t
2
3 ⇒ H =

2

3t
. (2.102)

The EoS parameter, w = −1/3, orresponds to the universe with the nonzero spatial urva-

ture, i.e., for the lose or open universe. In this ase, Eq. (2.100) takes the form:

ρK ∝ a−2, a(t) ∝ t ⇒ H =
1

t
. (2.103)

If we substitute the EoS, whih is de�ned in Eq. (2.99), in the seond Friedmann's equation,

Eq. (2.98), we will get:

ä

a
= −4πGρ

3
(1 + 3w). (2.104)

If the value of the EoS parameter, w, satis�es the ondition,−1 ≤ w < −1

3
, then ä ≤ −1, i.e.,

the universe will expand with an aeleration. The aelerated expansion of the universe is

explained by the presene of dark energy in it. The ase w = −1 orresponds to the simplest

model of dark energy, the so-alled vauum energy or the osmologial onstant Λ. In this

ase, the universe is aelerating with a onstant energy density, ρΛ, and with a onstant

Hubble parameter, whereas the sale fator hanges exponentially over time:

ρΛ = const, a(t) ∝ eHt ⇒ H = const. (2.105)

The total energy density of the universe inludes the following omponents: the radiation,

the matter, the urvature and dark energy:

ρ = ρr + ρm + ρK + ρΛ. (2.106)

If we onsider the dependene of the energy density omponents on the sale fator, whih

is presented in the equations, Eq. (2.101)- Eq. (2.105), we will get:

ρ = ρr0a
−4 + ρm0a

−3 + ρK0a
−2 + ρΛ, (2.107)

where ρr0, ρm0, ρK0 = −K/H2
0 , and ρΛ are the values for the energy densities at the present

epoh: for the radiation, the matter, the urvature and dark energy, respetively.
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The equation for the total energy density, ρ0, at the present epoh, a = a0 = 1:

ρ0 = ρr0 + ρm0 + ρK0 + ρΛ. (2.108)

Eq. (2.107) an be represented in more onvenient form through the dimensionless density

parameters. The dimensionless density parameters are usually applied for the desription of

the matter-energy ontent in the universe:

Ω = ρ/ρcr = Ωr0a
−4 + Ωm0a

−3 + ΩK0a
−2 + ΩΛ, (2.109)

where Ω is a total energy density parameter, whih is de�ned for an arbitrary moment

of time; Ωi0 is an energy density parameter for the 'i' omponent at the present epoh,

whih is haraterized by the orresponding energy density, ρi0; ρcr is a ritial density in

the universe at the present epoh

22

. The value of the ritial energy today is equal to

ρcr = 3H2
0/8πG = 1.8791h2 · 10−29 g cm−3

At the present epoh, Eq. (2.109) has the form:

Ω0 = ρi0/ρcr =
∑

i

Ωi0 =
∑

i

Ωi0 = Ωr0 + Ωm0 + ΩK0 + ΩΛ, (2.110)

where Ω0 is a total energy density parameter at the present epoh. This parameter is one of

the most important osmologial parameters.

The �rst Friedmann's equation, whih is de�ned in Eq. (2.97), an be expressed in the

terms of the urrent energy density parameters, Ωi0, as:

H(a) = H0(Ωr0a
−4 + Ωm0a

−3 + ΩK0a
−2 + ΩΛ)

1/2. (2.111)

Eq. (2.111) an be represented as:

E(a) = (Ωr0a
−4 + Ωm0a

−3 + ΩK0a
−2 + ΩΛ)

1/2, (2.112)

where E(a) = H(a)/H0 is a dimensionless Hubble parameter.

If we rewrite Eq. (2.111) at the present epoh, we will get:

Ω0 − 1 =
K

H2
0

. (2.113)

22

The ritial density is a total energy density in the universe whih is neessary for the universe to be

spatially �at.
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From Eq. (2.113) it follows that the value of the total density parameter, Ω0 > 1, orresponds

to the losed universe with the positive urvature parameter, K > 0, see Fig. (2.8). The

value of the total density parameter, Ω0 < 1, orresponds to the open universe, where the

urvature parameter is negative, K < 0, see Fig. (2.8). The value of the total density

parameter, Ω0 = 1, orresponds to the �at universe with the zero urvature parameter,

K = 0, see Fig. (2.8). Aording to Plank 2015, Ref. (Ade et al. (2016)), the urrent

urvature density parameter is ΩK0 = 0.006 (at the 68% on�dene level). Thus, the ritial

density in the universe orresponds to the average energy density in the universe, 〈ρ〉, i.e.,
ρcr = 〈ρ〉, with an auray of the order of 1%.

2.5.6 Aeleration Parameter

Take a time derivative from the Hubble parameter whih is de�ned in Eq. (2.7):

Ḣ =
aä− ȧ2

a2
= −H2 +

ä

a
= −H2

(

1− ä

H2a

)

= −H2(1− q), (2.114)

and

q ≡ ä

aH2
, (2.115)

where a dimensionless parameter, q, is alled an aeleration parameter

23

. The urrent value

of the aeleration parameter, q0, is de�ned as:

q0 ≡
1

H2
0

( ä

a

)

0
. (2.116)

The aeleration parameter haraterizes the state of the aeleration or deeleration of the

universe. A positive value of this parameter, q > 0, orresponds to the aeleration expansion

of the universe, for whih ä > 0, and a negative value, q < 0, orresponds to the deeleration

expansion of the universe, for whih ä < 0.

The aeleration parameter an be expressed in terms of the values of the EoS parameter,

wi, and the energy density parameter, Ωi:

q(t) = −1

2

∑

i

(1 + 3wi)Ωi(t), (2.117)

here, the index "i" indiates a ertain omponent of the energy density in the universe and

23

In the literature, the so-alled deeleration parameter is the most ommonly mentioned, whih is de�ned

as, q ≡ −ä/aH2
. Here we use the designation "aeleration parameter" beause this designation better

desribes the urrent state of the universe.
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the orresponding EoS parameter. If we use the values of the EoS parameter for the matter,

the radiation and vauum, respetively: wm = 0, wr = 1/3, wΛ = −1, we will get:

q(t) = −(Ωm/2 + Ωr − ΩΛ). (2.118)

By applying the data from Plank 2015, Ref. (Ade et al. (2016)), we an alulate the value

of the urrent aeleration parameter of the universe:

[q0]Planck ≈ 0.54. (2.119)

A positive sign of the urrent aeleration parameter, q0, indiates that our universe is in

the aelerated state nowadays. This state began at the value of the sale fator, a ≈ 0.60,

or at redshift, z ≈ 0.65, aording to Plank 2015 data, Ref. (Ade et al. (2016)).

48



Chapter 3

Distane in Cosmology

3.1 Conept of Distane in Cosmology

The de�nition of the distanes between the astronomial objets in the expanding universe

is one of the main and most di�ult problems in osmology.

There is no onept of a single distane in osmology. The di�erent types of the os-

mologial distanes are used, suh as: the physial distane, the omoving distane

1

, the

luminosity distane, the angular diameter distane, et. These distanes di�er from eah

other in the methods of their determination and measurement.

In osmology, the onept of the "exat distane" to a remote objet is vague. The

values of the osmologial distanes depend on the hosen osmologial model and, therefore,

they are the funtions of the model parameters. Thus, the auray in the determining

the distanes depends on the orretness of the onsidering osmologial model and on the

auray of determining the model parameters

2

.

The above-mentioned osmologial distanes are united by the fat that these distanes

are a measure of the separation of two objets loated on a radial trajetory from eah other.

A vivid example of the importane of the exat osmologial distanes de�nition is the

evidene of the existene of dark energy in the universe. This de�nition is largely based on

the measured luminosity distanes to the type Ia supernovae. The position of an objet on

a sphere gives us the two-dimensional piture. To obtain the three-dimensional information,

very preise distane measurements are required. In addition, the knowledge of the distanes

1

The de�nition of the physial distane and the omoving distane (length sales) was given in Chapter II.

2

In osmology, all the values obtained from the observations (the distanes, the model parameters, et.)

are found using the statistial methods or the probability theory (for more information, see Chapter V).

Therefore, when a alulated value is mentioned, it is always neessary to indiate the auray with whih

it was obtained. Usually the on�dene level are indiated, 1σ, 2σ, 3σ, or the orresponding auray levels,
68.27%, 95.45%, 99.73%, where σ is a standard deviation in the Gaussian distribution.
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to the remote astronomial objets is neessary to determine the physial parameters of the

universe.

3.2 Trigonometri Parallax

The trigonometri parallax is one of the most important distane measurement methods

used in astronomy. This method is based on a geometrial e�et. Due to the rotation of

the Earth around the Sun, for an observer loated on the surfae of the Earth, the positions

of the nearby stars hange against the bakground of the distant objets, see Fig. (3.1).

During the year, the visible position of the nearby star follows an ellipse on the sphere, see

Figure 3.1: Illustration of the parallax e�et. (Figure from Ref. (Shneider (2006)))

Fig. (3.1). The semimajor axis of this ellipse is alled a parallax, p̃. The value of the parallax,

p̃, depends on the physial distane to the star, d, and the radius of the Earth's orbit, r⊕,

whih is equal to one astronomial unit (AU)3, see Fig. (3.1). The value of the parallax is

de�ned as:

r⊕

d
= tan p̃ ≈ p̃, (3.1)

where p̃≪ 1 and p̃ are measured in the radians.

3

More preisely, 1AU = 1.496 · 1013 m is a semimajor axis of the Earth's ellipsoidal orbit.
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The physial distane to the objet orresponding to the measured parallax, p̃, an be

found as:

d =

(

p̃

1′′

)−1

pc. (3.2)

The trigonometri parallax is also applied to determine one of the basi units of the distane

in astronomy, the parse. The parse (p)

4

is the distane to the objet for whih the parallax

is one seond, p̃ = 1′′, where 1′′ ≈ 4.8484 · 10−6
radian and p̃/1′′ = 206265 p, so:

1 pc = 206265 AU = 3.086 · 1018 cm. (3.3)

The trigonometri parallax is a very aurate method for determining distanes, but it an

be used only for the nearby stars. Using this method, the distanes to the stars an be

de�ned only within a distane ∼ 5 Kp, Refs. (Gaia (2013), Brown et al. (2018)).

3.3 Cosmologial Redshift

Relativisti Doppler Shift

5

Consider a distant soure of light that emits the onsequent light signals at the time

moments, tem and tem + ∆tem, respetively. The measurements were arried out aording

to the lok, whih was at rest relative to the soure. This soure of light moves relative to

the observer with the veloity, ~u, see Fig. (2.8). The time interval between two onsequent

light signals, whih were emitted by the soure, ∆tobs, will be a�eted: by the relativisti

e�et of time dilation assoiated with the motion of the soure, ∆tem/
√

1− u2/c2, and by

the e�et assoiated with the di�erene of the distanes traveled by two signals from the

moving soure of light to the observer, ∆d = u cos θ∆tem/
√

1− u2/c2, see Fig. (3.2).

Thus, the time interval between two signals registered by the observer is:

∆tobs =
∆tem

√

1− u2/c2
+
u/c∆tem cos θ
√

1− u2/c2
=

∆tem
√

1− u2/c2
(1 + u/c cos θ). (3.4)

Suppose that a photon with the wavelength, λem, (or the frequeny, νem)
6

, was emitted at

the moment of time, tem. This photon is observed at the moment of time, tobs, with the

wavelength, λobs, (or with the frequeny, νobs). The time interval between two onsequent

4

The sales of the greater length are onsidered in osmology, so 1 Mpc = 106 pc is used as an unit of

the measurement.

5

In this setion, the speed of light, , is reintrodued for larity.

6

The wavelength and the frequeny of the eletromagneti radiation are interonneted as, λν = c
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Figure 3.2: Illustration of the relativisti Doppler shift. (Figure from Ref. (Carroll & Ostlie

(2007)))

light signals emitted by the soure, ∆tem, and registered by the observer, ∆tobs, is related

to the frequeny of the emitted photons, ∆tobs, and the frequeny of the registered photons,

νem, like νem = c/∆tem and νobs = c/∆tobs. Using these relationships, Eq. (3.4) an be

rewritten as:

νobs =
νem

√

1− u2/c2
(1 + u/c cos θ), (3.5)

this equation desribes the relativisti Doppler shift.

Consider the veloity projetion of the objet in two perpendiular diretions: transverse

and radial (longitudinal) to the line of sight. In Eq. (3.5), setting θ = 90◦, we get the

equation for the transverse relativisti Doppler shift:

νobs = νem
√

1− u2/c2. (3.6)

The transverse relativisti Doppler shift ours due to the e�et of time dilation assoiated

with the motion of the soure of light relative to an observer.

In Eq. (3.5), if the soure moves away from the observer, we will assume, θ = 0◦, and

if the soure moves toward the observer, we will assume, θ = 180◦. As a result, we obtain

the equation of the radial relativisti Doppler shift, in whih v = u cos θ is the radial
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veloity of the soure relative to the observer:

νobs = νem

√

1− u2/c2

1 + u/c cos θ
= νem

√

1− u2/c2

1 + v/c
. (3.7)

Aordingly, Eq. (3.7), for the wavelengths λobs and λem, has the form:

λobs = λem

√

1 + v/c

1− v/c
. (3.8)

Determination of Redshift

Redshift (or blueshift), z, is de�ned by the relative di�erene between the observed and

emitted wavelengths (or the frequeny):

z =
λobs − λem

λem
=
νem − νobs

νobs
. (3.9)

For the redshift, with z > 0, the soure of light moves away from the observer, and the

emitted energy of light, registered by the observer, shifts to the lower values. For the

blueshift, with z < 0, the soure of light moves to the observer, and the emitted energy of

light, whih is registered by the observer, shifts to the higher values.

From Eq. (3.9) we get:

1 + z =
λobs
λem

=
νem
νobs

. (3.10)

Relativisti Redshift

Substituting the obtained results from Eq. (3.7) or from Eq. (3.8) into Eq. (3.9), we get the

relativisti redshift equation:

z =

√

1 + v/c

1− v/c
− 1, (3.11)
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Redshift at Low Veloities of the Soure of Light

Consider the limiting ase of a small radial veloity of the soure, v ≪ c, in Eq. (3.11):

z = lim
v/c→0

(

√

1 + v/c

1− v/c
− 1

)

= lim
v/c→0

(

√

1 +
2v/c

1− v/c
− 1

)

≈ v/c

1− v/c
≈ v/c. (3.12)

Relation of Cosmologial Redshift with Sale Fator

Consider a referene frame desribed by the FLRW metri. An observer is at the enter of

this referene frame. The light ray moves towards the observer in the radial diretion along

the zero geodesi line, whih is desribed by the metri, ds2 = 0, for dθ = dφ = 0.

From Eq. (2.91) we get:

dt = ±a(t) dr√
1−Kr2

. (3.13)

We hoose a negative sign in Eq. (3.13) due to the fat that a ray of light omes from a

soure of light loated at the distane, r = rem. This ray of light moves in the diretion of

the enter of the referene frame, r = robs = 0, therefore, dr < 0 and dt > 0:

∫ tobs

tem

dt

a(t)
=

∫ rem

0

dr√
1−Kr2

. (3.14)

Di�erentiating Eq. (3.14) and onsidering that a radial oordinate, rem, of the omoving

soures does not depend on time:

∆tem
a(tem)

=
∆tobs
a(tobs)

. (3.15)

Assuming that the light signals are the suessive wave rests, the emitted frequeny and

the observed frequeny are de�ned as νem = 1/∆tem and νobs = 1/∆tobs, respetively.

Rewritting Eq. (3.15), as:

νobs/νem = a(tem)/a(tobs). (3.16)

A sale fator, a(t), is an inreasing time-dependent funtion, while the frequeny, ν(t),
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is a dereasing funtion by the fator (1 + z) aording to Eq. (3.10). By ombining the

equations, Eq. (3.10) and Eq. (3.16), we get:

1 + z = a(tobs)/a(tem) = a0/a(tem). (3.17)

The relation between the redshift and the sale fator, whih is spei�ed in Eq. (3.17), is

very important in osmology. The redshift an be measured and it is sometimes the only

information about the distanes of the most distant objets.

3.4 Comoving Distane

The omoving distane is a distane between two astronomial objets, measured along the

geodesi line (along the radial diretion) at the present epoh of the osmologial time.

The omoving distanes and the onformal time form the omoving referene frame. The

omoving distane between two objets in the omoving referene frame remains onstant

provided that these objets move only with the Hubble �ow

7

.

Based on the symmetry of the issue, we use the four-dimensional Minkowski metri,

presented in the spherial oordinates:

ds2 = gµνdx
µdxν = dt2 − a2(t)[dr2 + r2(dθ)2 + r2 sin2 θ(dϕ)2]. (3.18)

In Eq. (3.18) we assume ds2 = 0 and dθ = dφ = 0. The omoving distane from the distant

objet to the observer is determined as:

r =

∫ t0

tem

dt′

a(t′)
=

∫ a0

aem

da

aȧ
=

1

a0H0

∫ z

0

dz′

E(z′)
, (3.19)

where tem, aem and zem are the osmologial time, the sale fator and redshift of the soure

of light registered by the observer at the moment of time, t0, respetively; a0 is the sale

fator at the time of observation, t0.

Consider the dependene of the omoving distane on the di�erent values of the urvature

parameter, K, for the FLRW metri, Eq. (2.91). Assuming ds2 = 0 and dθ = dφ = 0 in

7

The solar system moves with a peuliar veloity of 370.6± 0.4 km c−1
relative to the Hubble �ow in the

diretion of the Leo onstellation, whih is determined by the equatorial oordinates, (α, δ) = (11.2h,−7◦).
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Eq. (2.91):

r =































1√
K
sin

( √
K

a0H0

∫ z

0
dz′

E(z′)

)

for K > 0

1
a0H0

∫ z

0
dz′

E(z′)
for K = 0

1√
−K

sinh
(√

−K
a0H0

∫ z

0
dz′

E(z′)

)

for K < 0

. (3.20)

In Eq. (3.20) we express the urvature parameter, K, through the urvature density param-

eter, ΩK0:

r(z) =































1
H0

√
ΩK0

sin
(√

ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 > 0

1
a0H0

∫ z

0
dz′

E(z′)
for ΩK0 = 0

1
H0

√
−ΩK0

sinh
(√

−ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 < 0

. (3.21)

3.5 Physial Distane

A physial distane is a distane to the distant objet, whih an be measured at some

moment of the osmologial time, t, with a physial ruler. The value of the physial distane

varies due to the universe expansion.

To determine the distanes to the astronomial objets with a small redshift value, z ≪ 1,

the following method an be applied. For small redshifts, the relation between the radial

veloity and redshift of the objet is

8

, v ≈ z, Eq. (3.12). In this ase, the Hubble' law,

desribed in Eq. (2.1), is transformed into the loal Hubble's law:

z ≈ H0d ⇒ d ≈ z

H0
for z ≪ 1. (3.22)

The physial distane obtained by this method is alled the distane determined from red-

shift.

The following expression establishes the relationship between the physial distane, d(t),

and the omoving distane, r:

d(t) = a(t)r. (3.23)

Aording to the expression, Eq. (3.23), the values of the physial and omoving distanes

are equal to eah other only at the present epoh:

d(t0) = a(t0)r ⇒ d(t0) = r =
1

H0

∫ z

0

dz′

E(z′)
. (3.24)

8

For small redshifts, v ≈ cz, but in our onvention c = 1.
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Let's deompose the integral in Eq. (3.19) into a Taylor series near z = 0. We also apply the

relation, Ḣ0 = −H2
0 (1− q0), from Eq. (2.114), where q0 is an aeleration parameter de�ned

in Eq. (2.116):

d(t0) =
z

H0

∫ z

0

[

1− (1− q0)z
′ +

(1

2
+ 2q0 −

3

2
q20 +

1

2
ΩK0

)

z′2
]

dz′ + .... (3.25)

As a result of the integrating in Eq. (3.25), we get:

d(t0) =
1

H0

[

z − (1− q0)z
2 +

(1

6
− 2

3
q0 −

1

2
q20 +

1

6
ΩK0

)

z3
]

+ .... (3.26)

Restriting Eq. (3.26) by the �rst two terms of the Taylor expansion:

d(t0) ≃
z

H0

[

1− (1− q0)z
]

for z ≪ 1. (3.27)

Eq. (3.27) is an approximate expression for determining the physial distane to an objet

taking into aount the aeleration of the universe. The seond term in this equation

is a deviation from a lassial de�nition of the physial distane using the Hubble's law,

Eq. (3.22). With an inrease in the value of the mass energy density parameter, Ωm0, the

value of the aeleration parameter, q0 = −(Ωm0/2+Ωr0−ΩΛ), dereases, i.e., an inrease in

the value of the mass in the universe leads to a slower aelerated expansion of the universe.

In turn, it leads to derease in the value of the physial distane to an objet, Eq. (3.27).

3.6 Interval of the Cosmologial Time Between Two Events

A photon with a redshift, z, was emitted by the soure of light and then registered by the

observer at z = 0. A photon traveled for the time, ∆t = d/c, where d is the physial distane.

Consider the FLRW referene frame and the observer is at its enter. Light propagates

along the zero geodesi line, whih is desribed by the zero lightlike metri, ds2 = 0, see

Fig. (2.5) (left panel). In Eq. (2.91) we set ds2 = 0 and dθ = dφ = 0. From Eq. (2.91), we

�nd the time, whih is elapsed between two moments of the osmologial time, t(z) and t(0),

respetively:

∆t = t(z)− t(0) =

∫ t(z)

t(0)

dt =

∫ a(z)

a0

d(d(t)) =

∫ a(z)

a0

adr. (3.28)

In the equations, Eq. (2.111) and Eq. (3.19), we go over to the di�erential, da = −dza0/(1+
z)2, for a = a0/(1 + z).
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Suhwise, Eq. (3.28) an be rewritten as:

∆t =
1

a0H0

∫ z

0

dz′

(1 + z)E(z′)
,

=
1

a0H0

∫ z

0

dz′

(1 + z)
√

Ωr0(1 + z′)4 + Ωm0(1 + z′)3 + ΩK0(1 + z′)2 + ΩΛ

.

(3.29)

From Eq. (3.29) it follows that the interval of the osmologial time between two events is

uniquely related to the value of redshift. The value of the interval of the osmologial time

depends on the hosen osmologial model and on its model parameters.

The age of the universe an be determined from Eq. (3.29), provided that the upper

boundary of the integration tends to in�nity, z → ∞:

∆t =
1

a0H0

∫ ∞

0

dz′

(1 + z)
√

Ωr0(1 + z′)4 + Ωm0(1 + z′)3 + ΩK0(1 + z′)2 + ΩΛ

. (3.30)

Aording to Plank 2015 under the assumption that the model with the osmologial on-

stant Λ is orret, the age of our universe is t0 = 13.799±0.038 billion years, at the on�dene

level at 68%, Ref. (Ade et al. (2016)).

3.7 Luminosity Distane

A luminosity distane, dL, is a distane from whih an astronomial objet at redshift, z,

and with a bolometri luminosity

9

, L, reates a bolometri (i.e., it is integrated over all the

frequenies) �ux, F , under the assumption that the following relation between the luminosity

and the �ux is ful�lled:

F =
L

4πd2L
. (3.31)

Thereby, the luminosity distane to an objet is de�ned as:

dL =

√

L

4πF
. (3.32)

The luminane distane, dL, is a measure of the value of the energy �ux, F , reated by an

objet with a known luminosity, L.

Due to the universe expansion, the absolute bolometri luminosity, L, whih is reated

by the soure of light at redshift, z, di�ers from the luminosity, Lobs, whih is registered by

9

A bolometri luminosity is the total radiation power measured in Watts.
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the reeiver of light at redshift, z = 0. The absolute bolometri luminosity, L, is de�ned as

an energy, Eem, whih is emitted by a soure of light at redshift, z, for the time interval,

∆tem:

L =
Eem

∆tem
. (3.33)

Respetively, the observed bolometri luminosity, Lobs, is determined as an energy registered

by the reeiver of light, Eobs, for the time interval, ∆tobs:

Lobs =
Eobs

∆tobs
. (3.34)

Consider the ratio of the absolute bolometri luminosity, L, to the observed bolometri

luminosity, Lobs:

L

Lobs
=

Eem

∆tem
· ∆tobs
Eobs

=
Eem

Eobs
· ∆tobs
∆tem

. (3.35)

Owing to the fat that the energy of the photon is proportional to its frequeny, and taking

into aount the results obtained in Eq. (3.16) and Eq. (3.17):

Eem

Eobs
=
νem
νobs

= 1 + z. (3.36)

The obtained result re�ets the fat of the derease in the photon energy by virtue of redshift

as a onsequene of the universe expansion.

On the ontrary, onsidering the relations obtained in Eq. (3.15) and Eq. (3.17), we get:

∆tobs
∆tem

= 1 + z. (3.37)

This result illustrates the fat, that due to the universe expansion, there is an inrease of the

propagation time of the photons, whih leads to the derease in the intensity of the photons,

registered by the reeiver of light.

Thereby, based on the results obtained in Eq. (3.36) and Eq. (3.37), we an rewrite

Eq. (3.35) as:

L

Lobs

= (1 + z)2. (3.38)

The energy �ux is de�ned as an energy, Eem, transferred per unit of time and per unit of

the area of a ertain surfae, S. Aording to this de�nition, we an write F = Lobs/S.

The energy, Eem, emitted by the soure of light, was distributed over a spherial surfae of

a radius, R = a0r, at time of registration by the reeiver of light at z = 0. Thus, the energy
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�ux reeived from the soure of light is de�ned as:

F =
L

4πd2L
=

Lobs

4π(a0r)2
. (3.39)

From this equation it follows:

d2L = (a0r)
2 L

Lobs
. (3.40)

If we substitute Eq. (3.38) in Eq. (3.40), we will get:

d2L = (a0r)
2(1 + z)2,

⇒ dL = a0r(1 + z). (3.41)

Let's substitute the expressions, Eq. (3.21), for the omoving distane, r, in Eq. (3.41). As

a result, the expression for the luminosity distane, whih is represented in terms of the

osmologial parameters

10

, an be obtained:

dL(z) =































(1+z)

H0
√
ΩK0

sin
(√

ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 > 0

(1+z)
a0H0

∫ z

0
dz′

E(z′)
for ΩK0 = 0

(1+z)

H0
√
−ΩK0

sinh
(√

−ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 < 0

. (3.42)

The oe�ient (1+z) haraterizes the loss of the energy �ux beause of the e�ets, assoiated

with the universe expansion: i) derease of the intensity of the photons due to the extension

of the propagation time of the photons; ii) derease of the energy of the photons due to

redshift. Therefore, an objet with the luminosity, Lobs, seems more distant than it really is.

For the small values of redshift, z, the luminosity distane an be de�ned as:

dL ≃ z

H0

[

1 +
1

2
(1 + q0)z

]

for z ≪ 1. (3.43)

By omparing Eq. (3.26) and Eq. (3.43), we an onlude, that the physial distane to an

objet at present time and the luminosity distane to this objet are equal only for very

small redshifts. This ours with the domination of the �rst term in these equations. For

larger redshifts, the luminosity distane is greater than the physial distane, dL > d(t0).

The values of the luminosity of the type Ia supernovae have the small dispersions. In

osmology, these objets are the standard andles for determining the distanes to the distant

10

Assuming that dark energy is represented by the osmologial onstant, Λ.

60



objets. By measuring the energy �ux, whih is obtained from the type Ia supernovae for

di�erent redshifts, z, it is possible to determine the luminosity distanes to these objets by

the di�erent way and to re�ne the values of the model parameters for onsidered osmologial

model from Eq. (3.42).

3.8 Angular Diameter Distane

Consider an astronomial objet at redshift, z, with a linear transverse diameter, R, and

with an apparent angular diameter, θ, measured in radians. The angular diameter distane

to this objet, denoted as, dA, is de�ned as the ratio of its linear transverse diameter, R, to

the apparent angular diameter, θ:

dA =
R

θ
. (3.44)

We introdue the FLRW referene frame with the observer at the enter. In the FLRW

referene frame an astronomial objet at redshift, z, has a omoving oordinate, r. The

linear transverse diameter of this objet is the physial distane between two events at the

same redshift, z, and separated in spae by a small angle, dθ. Assuming dt = dr = dφ = 0

in the FLRW metri, Eq. (2.91). As a result, we get:

ds2 = a(t)2r(t)2dθ2,

⇒ ds = dR = a(t)r(t)dθ. (3.45)

Integrating the FLRW metri in the transverse diretion to the line of sight diretion in

Eq. (3.45):

R = a(t)r(t)θ. (3.46)

Substituting the result obtained in Eq. (3.46) into Eq. (3.44):

dA(z) =
ar(z)θ

θ
=

r(z)

(1 + z)
. (3.47)
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Plugging the values of the omoving distane, r, from Eq. (3.21) into Eq. (3.47), we obtain

the values of the angular diameter distane depending on the model parameters:

dA(z) =































1
(1+z)H0

√
ΩK0

sin
(√

ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 > 0

1
(1+z)H0

∫ z

0
dz′

E(z′)
for ΩK0 = 0

1
(1+z)H0

√
−ΩK0

sinh
(√

−ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 < 0

. (3.48)

The relationship between the luminosity distane and the angular diameter distane is ex-

pressed through the equation:

dL(z) = (1 + z)2dA(z). (3.49)

The luminosity distane and the angular diameter distane de�ned in Eq. (3.42) and Eq. (3.48)

depend on the hosen osmologial model. These distanes oinide at small redshifts, z ≪ 1,

at whih the spaetime urvature an be negleted. At large redshifts (respetively, at large

distanes), the spei� osmologial e�ets, suh as the nonstationarity and the spaetime

urvature, already appear. Therefore, the onept of an unambiguous distane to an objet

beomes inappliable.

The radio galaxies Fanaro�-Riley Type II (FRII) have the small dispersions in their

linear transverse diameters, so these objets an serve as the standard ruler for determining

the distanes to the distant objets in osmology, Ref. (Buhalter et al. (1998)). Knowing

the angular size, θ, and redshift of these objets, z, it is possible to determine the angular

diameter distane to these objets in the di�erent way and, using Eq. (3.48), to re�ne the

values of the model parameters in the given osmologial model.
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Chapter 4

Observational Probes

4.1 Type Ia Supernovae

A supernova explosion is observed as a sudden inrease in the brightness of the star by

about 10 orders of the magnitude. As a result of this explosion, the supernova shines at the

maximum of the light urve like all the stars of a galaxy.

The supernovae are reorded from the distant galaxies up to redshift, z ≈ 1.7. Depending

on the spetral properties, the supernovae are divided into two main types: I - there are no

hydrogen lines in the spetra and II - there are hydrogen lines in the spetra. Type I

supernovae (SNeIa) are in turn subdivided into: Ia - light urves have an universal form,

Ib - light urves are similar to the light urves of the supernovae type II and I - there are

no helium lines in the spetra and their light urves are similar to the light urves of the

supernovae type II.

The most plausible model of SNeIa is onsidered to be a model of a white dwarf ther-

monulear explosion with the radius of R ∼ 103 km, whose mass reahed Chandrasekhar's

mass, mch ≈ 1.44 M⊙, as a result of the mass aretion from a satellite-star with the energy

release, E ≈ 2 · 1052 erg. This explosion is aused by the thermonulear arbon fusion and

the radioative deay of nikel,

56Ni ( 56Ni → 56Co → 56Fe). The radioative deay of

56Ni

is the main soure of the observed light urves of SNeIa and determines the shape of these

light urves. The luminosity in the maximum of the light urves depends only on the mass

of the ejeted nikel,

56Ni, (Lmax ≈ 1.4 · 1043 erg/se, for nikel mass mNi = 0.5 M⊙). This

luminosity orresponds to the absolute magnitude, Mmax = −19m.21. It an be expeted

that all the SNeIa emit the same amount of light, assuming that the white dwarf is om-

1

The de�nition of the absolute magnitude is given below.
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pletely burned out. Sine the explosion mehanism is universal, all the SNeIa loated at the

same distane from us should have approximately the same luminosity at the maximum, so

these objets are used as the standard andles for determining the distanes to the distant

galaxies. The furthest galaxy, in whih the Type Ia supernova (1997�) was registered, has

redshift z = 1.7.

Figure 4.1: Left panel: B-band light urves for the di�erent SNeIa from the Calan-Tolono

survey. (Figures from Ref. (Heitmann et al. (2006))). The right panel: the same light urves

after one-parameter orretion. (Figures from Ref. (Kim et al. (2004)))

Among the various samples of the SNeIa light urves, there is a dispersion in the shapes

of the urves, as well as in the maximum luminosity values (the dispersion reahes of 0.4

magnitudes in the blue light range), see Fig. (4.1) (left panel). This e�et is aused by

the e�et of the redshift on the observed spetra of the objets in the expanding universe,

sine these observations were made in the spei� wavelength range. These urves an be

normalized by applying an empirially found orrelation, the so-alled K-orretion, between

the maximum luminosity and the width of the light urve, see Fig. (4.1) (right panel). After

arrying out this orretion, the SNeIa light urves an be used as the standard andles.

Distane Modulus

A distane modulus is a method for determining the distanes to the distant objets based

on the logarithmi sale of the magnitudes omparison.

The distane modulus, µ, is de�ned as a di�erene between the apparent magnitude, m,

and the absolute magnitude,M , of a distant objet with the orresponding bolometri energy

�uxes, Fm and FM . The apparent magnitude, m, is the magnitude of an objet loated at

the luminosity distane, dL, and the absolute magnitude, M , is de�ned as the apparent

magnitude that the objet would have if it were loated at a distane, dL = 10 p. From the
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Pogson's law, Ref. (Pogson (1857)), onneting the apparent magnitude of an astronomial

objet and the bolometri energy �ux reorded from it, 10m ∝ F−2.5
, we get:

µ = m−M = −2.5 log10

(Fm
FM

)

= 5 log10

( dL
10 pc

)

,

= 5 log10(H0dL)− 5 log10H0 + 25. (4.1)

From Eq. (4.1), it follows that the distane modulus, µ, is determined by the luminosity

distane, dL, of the objet. In this equation, the Hubble onstant, H0, is onsidered as a

nuisane parameter, and it is the reason for the unertainty in the determination of the

absolute magnitude of the SNeIa.

The value of the speed of light, c = 3 · 105 km ñ

−1
, should be taken into aount to

determine the atual distane modulus. Suhwise, to alulate the luminosity distane, the

expression c · dL is assumed, where dL is obtained from Eq. (3.42). In this ase, applying

Eq. (4.1), we get an expression for the distane modulus, µ, depending on redshift and the

model parameters:

µ = 42.3856−5 log10(h)+5 log10(1+z)+5 log10































1√
ΩK0

sin
(√

ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 > 0

∫ z

0
dz′

E(z′)
for ΩK0 = 0

1√
−ΩK0

sinh
(√

−ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 < 0

.

(4.2)

Distane modulus is a funtion of the osmologial parameters, Eq. (4.2), therefore, the value

of the distane modulus is very sensitive to the hanges in the values of the osmologial

parameters, see Fig. (4.2) (left panel). The SNeIa data orrespond to the values of the

distane modulus for the ΛCDM model by the best way, as shown in Fig. (4.2) (right panel).

In the mid-1990's, two independent astronomial groups: the Supernova Cosmology

Projet (SCP), led by Saul Perlmutter, Refs. (Riess et al. (1998), Perlmutter et al. (1999))

and the High-Z Supernova Cosmology Team (HZSNS Team), headed by Brian Shmidt,

Ref. (Shmidt et al. (1998)), observed the SNeIa to determine the distanes to these distant

objets. Starting proessing the gathered information, the sientists hoped to get the on�r-

mation of the slowing expansion of the universe. Both groups of researhers independently

disovered that SNeIa at redshift, z = 0.5, were dimmer by 0.25 of the magnitude ompared

to the magnitude predited by the open model with the osmologial parameters: Ωm0 = 0.3
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Figure 4.2: Left panel: Hubble diagram for the 307 SNeIa of the Union ompilation. (The

�gures from Ref. (Kowalski et al. (2008))). The top panel: the red line orresponds to the

ΛCDM universe (Ωm = 0.28, ΩΛ = 0.72); the green line orresponds to the open universe

(Ωm = 0.28, ΩΛ = 0) and the blue line orresponds to the Einstein-de Sitter universe

(Ωm = 1, ΩΛ = 0). The bottom panel: the residuals of the distane modulus from the

best �tting osmology for the ΛCDM model. Right panel: Hubble diagram for the Union2.1

ompilation. The best �t osmology for the ΛCDM model is represented as a blak solid

line. (The �gure from Ref. (Suzuki et al. (2012)))

and ΩΛ = 0, whih desribes the slowing down universe. The so-alled Einstein-de Sitter

model with the osmologial parameters: Ωm0 = 1 and ΩΛ = 0, whih desribes a �at slowing

down universe, also failed to orretly approximate the obtained results. Thus, the SNeIa

were at a greater distane than it was predited by the osmologial models, whih desribe

the open and �at slowing down universe.

The osmologial model of a �at aelerating universe with the osmologial parameters,

Ωm0 = 0.3 and ΩΛ = 0.7, predits well the results obtained by these observers. Thereby, the

disovery of the aelerated expansion of our universe aording to the SNeIa data was made

by these two groups of researhers. In 2011, Saul Perlmutter, Brian Shmidt and Adam

Riess were awarded the Nobel Prize in Physis for this disovery.
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4.2 Cosmi Mirowave Bakground Radiation

4.2.1 Desription of the CMBR

Origination of the CMBR

In the universe, the reombination epoh began approximately trec = 350000 years after

the Big Bang

2

at redshift zrec ≈ 1400, at the average temperature in the universe, 〈T 〉rec ≈
3800K, Ref. (Rubakov & Gorbunov (2017)). Due to the expansion and, therefore, the ooling

of the universe, at the reombination epoh the harged eletrons and protons beome bound,

forming the eletrially neutral hydrogen atoms

3

, Ref. (Peebles (1968)). At the same time,

the matter from the plasma state, whih is opaque for the most part of the eletromagneti

radiation, passes into a gaseous and an eletrially neutral state.

The CMBR appeared at the end of the reombination epoh, in the period of the last

sattering of the photons on the eletrons, in the so-alled period of the photon deoupling

from the hydrogen atoms. The last photon sattering ourred tdec ≈ 379000 years after the

Big Bang at redshift zdec ≈ 1100, at an average temperature in the universe, 〈T 〉dec ≈ 3100 K.

As a onsequene of the deoupling of the radiation and the matter, the reli photons no

longer interated with the neutral hydrogen atoms. The free path of the reli photons

beomes larger than the size of the Hubble horizon, and these photons begin to spread freely

in the universe. Thus, at the present epoh, an observer registers the reli photons that last

interated with the matter at redshift zdec.

Aording to the Big Bang model, the CMBR photons began its propagation in the

2

In 1946, George Gamow developed the "hot universe" theory, also known as the Big Bang theory,

Ref. (Gamov (1946)). Based on this theory, George Gamow, Ralph Alfer and Robert Herman predited

the existene of the mirowave bakground radiation (CMBR), Refs. (Alpher & Herman (1948a), Alpher &

Herman (1948b)). In 1965, the Amerian radio astronomers Arno Penzias and Robert Wilson absolutely

aidentally reorded this isotropi radiation, Ref. (Penzias & Wilson (1965)). Detetion of CMBR, whih

was originated at the epoh of the primordial reombination of hydrogen, is one of the main evidene of the

orretness of the Big Bang theory. In 1978, Arno Penzias and Robert Wilson were awarded the Nobel Prize

in Physis for the disovery of the CMBR.

3

Before reombination, the baryoni matter onsisted of 75% of the protons and 25% of the α-partiles
or, in other words, the helium nulei,

4He. The ionization energy of the helium is greater than the ionization

energy of the hydrogen; therefore, the helium reombination ourred muh earlier, Ref. (Peebles (1966)).

The �rst helium reombination, He++ + e− → He+ + γ, happened at redshift, z ≈ 6000. The seond helium

reombination, He+ + e− → He + γ, ourred at redshift, z ≈ 2500, Ref. (Hu (1995)). Despite the fat that

after the reombination of the helium the universe is still optially opaque, the reombination of the helium

a�ets the temperature power spetrum of the CMBR, whih inreases in the height of the 2nd, 3rd and 4th

peaks by 0.2%, 0.4% and 1%, respetively, Refs. (Hu et al. (1995), Hu (1995)).
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universe from the surfae of a sphere alled the surfae of last sattering, whose radius is

4

:

rdec =
1

a0H0

∫ zdec

0

dz′

E(z′)
. (4.3)

CMBR Properties

In 1989, the Cosmi Bakground Explorer (COBE) satellite was launhed to study the

CMBR. The results of the measurements obtained from this satellite are: the disovery

of the CMBR Plank spetrum (the projet Di�erential Mirowave Radiometer (DMR)),

Refs. (Mather et al. (1994), Mather et al. (1999)) and the disovery of the CMBR temperature

anisotropy

5

(the projet Far-InfraRed Absolute Spetrophotometer (FIRAS)), Ref. (Bennett

et al. (1996)). In 2006, the leaders of these projets, George Smoot (the DMR projet) and

John Mather (the FIRAS projet) reeived the Nobel Prize in Physis.

The CMBR is a thermal radiation, its spetrum orresponds to the spetrum of the

absolutely blak body with a temperature at the present epoh T0 ≃ 2, 72548± 0, 00057 K,

see Fig. (4.2) (left panel). This temperature aords to the average temperature of the

CMBR at the present epoh, 〈Tγ〉 = T0. The maximum of the Plank's spetrum aords

to the frequeny 160, 4 GHz, whih orresponds to a wavelength 1, 9 mm, see Fig. (4.2) (left

panel). The energy density of the CMBR is approximately equal to ργ = (π2/15)T 4
0 ≃

4.64 ·10−34
g m

−3 ≃ 0.26 eV m

−3
. The mass density of the CMBR is nγ = (2ζ(3)/π2)T 3

0 ≃
411 m−3

, where the ζ is a Riemann funtion, ζ(3) = 1.202, Ref. (Sott & Smoot (2010)).

CMBR Temperature Anisotropy

The temperature of the CMBR, whih was registered in the diretion in the sky, (θ, ϕ), as

T (θ, ϕ) is the main measurement in the investigation of the CMBR. The value of θ determines

the polar angle on the sphere and the value of ϕ is the azimuth angle. The dimensionless

value of the CMBR temperature anisotropy is de�ned as:

δT (θ, ϕ)

T0
=
T (θ, ϕ)− T0

T0
. (4.4)

4

By virtue of the fat that the reombination is not an instantaneous proess and takes plae over a

�nite range of redshifts, the CMBR photons are sattered for the last time inside the surfae of the �nite

thikness. The thikness of this surfae during the reombination is approximately equal to the photons

di�usion length, therefore, this e�et is signi�ant on the same length sales as the Silk damping (the Silk

damping e�et is desribed below), Ref. (Shneider (2006)).

5

In 1983, the RELICT-1 experiment was arried out from the spaeraft PROGNOZ-9 in the USSR. The

purpose of this experiment was to study the CMBR temperature anisotropy. The Soviet sientists failed to

register the temperature anisotropy of the CMBR.
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The CMBR is isotropi and uniform at the level of the temperature �utuation, δT (θ, ϕ)/T0 ≃
10−4

, see Fig. (4.3) (right panel).

The map of the temperature anisotropies of the CMBR is presented in Fig. (4.3) (right

panel). This map is obtained by the projet Plank 2013, Ref. (Ade et al. (2014b)). At the

present epoh, the temperature anisotropy of the CMBR is δT (θ, ϕ)/T0 ≃ 10−5
.

Figure 4.3: Left panel: the Plank spetrum of the CMBR, whih is obtained by the exper-

iments: FIRAS, DMR, UBC, LBL-Italy, Prineton, Cyanogen. (Figure from Ref. (Smoot

& Sott (1997))) Right panel: the temperature �utuations of the CMBR relative to the

average temperature based on the results of the Plank 2013. (Figure from Ref. (Ade et al.

(2014b))) The dipole anisotropy, whih related with the motion of the solar system rela-

tive to the rest frame of the CMBR and the non-Plankian emission from the Galati disk

are subtrated. The amplitude of the temperature �utuations relative to the bakground

temperature is ∆T/T0 ∼ 10−5
.

4.2.2 CMBRAngular Power Spetrum of the Temperature Anisotropy

Sine the temperature anisotropy of the CMBR depends on the diretion of the observation,

the value of the temperature anisotropy an be represented as the deomposition in the

spherial orthonormal harmonis, Y m
l (θ, ϕ). This deomposition is the analogous to the

Fourier deomposition on a spherial surfae:

δT (θ, ϕ)

T0
=

∞
∑

l=1

l
∑

m=−l

al,mY
m
l (θ, ϕ), (4.5)

where al,m are the multipole oe�ients of the deomposition in the spherial harmonis,

Y m
l (θ, ϕ). The oe�ients al,m haraterize the amplitude of the temperature �utuations

at the di�erent angular sales and have the following property, a∗l,m = (−1)mal,−m.

The study of the statistial properties of the oe�ients al,m are very important for

the analysis of the distribution of the CMBR temperature anisotropy. The oe�ients al,m
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an have both positive and negative values. The value |al,m|2 determines the deviation of

the oe�ient al,m from zero and, aordingly, determines the amplitude of the tempera-

ture anisotropy. Aording to the observations, the distribution of the CMBR temperature

�utuations forms a random Gaussian �eld.

Assuming an isotropi and homogeneous universe, the oe�ients al,m for the di�erent

values of the indies l and m are statistially independent of eah other, Ref. (Mukhanov

(2005)):

〈al,ma∗l′,m′〉 = Clmδll′δmm′ . (4.6)

The value of the oe�ients Clm determines the temperature angular power spetrum

anisotropy of the CMBR.

The requirement of the independene of the statistial properties of the oe�ients al,m

on the hoie of the origin for any diretion of the observation or the so-alled requirement of

the rotational invariane leads to the fat that the value of the angular power spetrum Cl,m

does not depend on the value of the index m but depends only on the index l, i.e., Cl,m = Cl,

Ref. (Durrer et al. (1998)). Therefore, Eq. (4.6) with the oinidene of the indies, l = l′,

an be rewritten as, Ref. (Mukhanov (2005)):

〈|al,m|2〉 = Cl. (4.7)

The angle brakets, 〈〉, in Eq. (4.6) and in Eq. (4.7), denote the averaging over a hypothetial
ensemble of the universes like our. Assuming that our universe is an ergodi dynami system

6

,

these angle brakets an be interpreted as averaging over all the possible observers in our

universe. The fat is that eah observer in the universe an observe only one realization of

all the possible observable universes. For example, the observers from the Earth an study

the CMBR, whih is visible only from the Earth. In the universe, eah observer registers the

photons of the CMBR with their own distribution of the temperature �utuations, whih

di�ers from eah other. The di�erene between our region of the observable universe in

omparison with the averaged region of the observable universe is alled the osmi variane.

The value of the osmi variane for eah measurement, Cl, is de�ned as, Ref. (Sott & Smoot

(2010)):

(∆Cl)
2 =

2

2l + 1
C2
l . (4.8)

The value of the osmi variane is negligible on the small angular sales, it beomes sig-

6

The ergodi systems are haraterized by the oinidene of the expetation of the time series with the

expetation of the spatial series.
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ni�ant for the angular sales ϑ ≥ 10◦. The value of the angular power spetrum, Cl,

haraterizes the size of temperature �utuations on the angular sale ϑ = 180◦/l. The

index l determines the value of the angular sale. A small value of the index l orresponds to

a large angular sale and vie versa, a large value of l orresponds to a small angular sale.

With an inrease in the value of the index l, the spherial harmonis have the variations

on the smaller angular sales. The values of the index l in the range from one to several

thousand are applied in the urrent observations.

The value of the index l = 1 determines the properties of the CMBR, alled the dipole.

In 1969, the dipole omponent was deteted in the CMBR. It manifests itself in the fat that

in the diretion of the onstellation Leo the temperature of this radiation is 0.1 K, above the

average temperature of the CMBR, respetively, in the opposite diretion the temperature

of this radiation is on the same value below. This temperature anisotropy is explained

by the Doppler e�et due to the motion of the solar system relative to the CMBR in the

diretion of the onstellation Leo with the veloity 370.6± 0.4 km ñ

−1
. The veloity of this

motion determines the value of the dipole omponent of the temperature anisotropy, δTdipol =

3.355 ± 0.008 mK, Ref. (Hinshaw et al. (2009)). The maximum value of the temperature

�utuations for the dipole omponent, whih is averaged over a year, is δT/T0 ≃ 1.23 · 10−3
.

The observations of the dipole omponent do not ontain the information about the intrinsi

properties of the CMBR. In this regard, the dipole is onsidered separately, and the study of

the CMBR begins with the minimum value of the index l = 2, with the so-alled quadrupole

anisotropy.

Consider the analysis of the temperature anisotropy of the CMBR without taking into

aount the dipole:

δT (θ, ϕ)

T0
≡ T (θ, ϕ)− T0 − δTdipol

T0
=

∞
∑

l=2

l
∑

m=−l

al,mY
m
l (θ, ϕ). (4.9)

The spherial harmonis, Y m
l (θ, ϕ), are expressed in terms of the Legendre funtions, Pm

l (cosϑ),

as, Ref. (Arfken (1985)):

Y m
l (θ, ϕ) = (−1)m

√

2l + 1

2

(l −m)!

(l +m)!
Pm
l (cosϑ)eimϕ. (4.10)

The requirement for ful�llment of the rotational invariane or the ful�llment of the onditions

of the isotropy relative to the value of the azimuth angle, ϕ, is equivalent the equality to
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zero the value of m, m = 0. In this ase, Eq. (4.10) takes the form:

Yl(θ, ϕ) =

√

2l + 1

2
Pl(cosϑ). (4.11)

Thus, in Eq. (4.11), the spherial harmonis are redued to the ordinary Legendre's polyno-

mials, Pl(cosϑ).

In this ase, the temperature orrelation funtion between two diretions is:

〈δT (θ1, ϕ1)

T0
· δT (θ2, ϕ2)

T0

〉

=
∑

l

2l + 1

4π
ClPl(cos ϑ), (4.12)

where ϑ is the value of the polar angle between the diretions (θ1, ϕ1) and (θ2, ϕ2). The

oe�ients Cl set the orrelation between the temperature �utuations in the di�erent di-

retions.

The expression for the square of the value of the temperature �utuations is a partiular

ase of Eq. (4.12):

〈δT (θ1, ϕ1)

T0
· δT (θ2, ϕ2)

T0

〉

=
∑

l

2l + 1

4π
Cl ≈

∫

l(l + 1)

2π
Cld ln l. (4.13)

Under the derivation of this formula, it was taken into aount that the polar angle between

two ollinear o-diretional vetors is zero, ϑ = 0, and Pl(cos 0) = 1. The value of

l(l+1)Cl

2π

determines the total ontribution of the angular moments of the same order.

The dependene of the angular power spetrum of the CMBR temperature anisotropy,

l(l+1)Cl

2π
T 2
0 , on the angular momentum, l, is shown in Fig. (4.4).

4.2.3 CMBR Primary Temperature Anisotropy

The temperature �utuations that our during the deoupling period in the reombination

epoh are alled the primary anisotropy.

Consider the angular power spetrum of the CMBR temperature anisotropy, whih is

presented in Fig. (4.5). The angular power spetrum of the CMBR temperature anisotropy

is mainly haraterized by three regions of the angular momentum values, l: l ≤ 100, l ≥ 100

and l ≥ 1000, see Fig. (4.5), Refs. (Hu & Okamoto (2002), Sott & Smoot (2010)).

For the �rst region with l ≤ 100, the funtion (2l + 1)/4π will be almost �at, if the

Harrison-Zeldovih power spetrum is onsidered in the alulations.

7

. The seond region

7

The power spetrum P (k) = kns
with ns = 1 is alled the Harrison-Zeldovih spetrum, where k is a
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Figure 4.4: The angular power spetrum of the CMBR temperature anisotropy obtained by

the experiments: WMAP 5 year, Abar, Boomerang, CBI. (Figure from Ref. (Nolta et al.

(2009)))

with l ≥ 100 ontains the peaks with the di�erent amplitudes. These peaks are aused

by the aousti osillations that arose in the baryon-photon plasma before deoupling of

the photons from the baryons during the reombination epoh. After the termination of

the reombination, their positions were shifted as a result of the expansion of the universe.

Therefore, the positions and the amplitudes of the aousti peaks ontain the important

information about the evolution of the universe. The �rst aousti peak de�nes the sound

horizon of the baryons, the value of whih serves as the standard ruler for determining the

distanes in osmology. On the other hand, the size of the sound horizon an be determined

by measuring the angular sale of the �rst sound peak. In the third region with l ≥ 2000,

the amplitude of the power anisotropy spetrum dereases sharply due to the Silk damping

(a desription of this e�et is given below).

4.2.4 Basi Mehanisms Causing the CMBR Primary Anisotropy

• Matter density �utuations in the primordial plasma, Refs. (Hu & Okamoto (2002),

Kosowsky (2001))

onformal momentum.
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Figure 4.5: The in�uene of the osmologial parameters on the CMBR angular power spe-

trum. The values of the square root of the angular power spetrum, ∆T =
√

l(l + 1)Cl/2πT0,
are plotted versus to the logarithmi sale of the angular momentum, l. (Figure from Ref. (Hu

& Okamoto (2002)))

The density of the baryons is diretly related to the energy density of dark matter.

On the sales larger than the event horizon during the reombination, the distribution

of the baryons follows the distribution of dark matter. On the smaller sale, the

pressure of the baryon-photon plasma is e�etive, sine before the reombination these

omponents were losely related to the Thompson sattering. In the regions with the

inreased dark matter density, the density of the baryons is also inreased. In suh

regions, the temperature of the baryons inreases due to their adiabati ompression,

whih leads to an inrease in the value of the temperature of the photons.

• Doppler e�et, Ref. (Shneider (2006))

The eletrons, whih satter the ÑÌÂR photons for the last time during the reom-

bination, have the additional peuliar veloities relative to the Hubble �ow. These

veloities are assoiated with the �utuations in the matter density and, aordingly,
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with the temperature �utuations. As a onsequene of the Doppler e�et, the ÑÌÂR

photons, whih move away from us at the veloities greater than the Hubble expan-

sion, experiene the additional redshift. This leads to the derease in the value of the

temperature measured in this diretion.

• Silk damping, Refs. (Hu & Okamoto (2002), Kosowsky (2001), Sott & Smoot (2010))

The Silk damping or, in other words, the photon di�usion damping is a physial proess

that redues the energy density anisotropy, Ref. (Silk (1968)). Sine the mean free path

of the photons is �nite, the baryons and the photons beome separated from eah other

on the small spatial sales. This means that on the small length sales (for l ≥ 1000),

the temperature �utuations an be smeared out by the di�usion of the photons, see

Fig. (4.5) (d).

• Integrated Sahs-Wolfe e�et, Refs. (Sahs & Wolfe (1967), White & Hu (1997), Hu &

Okamoto (2002), Sott & Smoot (2010))

The spatial distribution of the potential in the universe hanges at the radiation dom-

inated epoh or at the dark energy dominated epoh. When the ÑÌÂR photons pass

through this evolving potential, the energy of these photons hanges, i.e., the di�er-

ential gravitational redshift of the photons ours. This is the so-alled Integrated

Sahs-Wolfe e�et (ISW), Ref. (Sahs & Wolfe (1967)). The ISW e�et mainly a�ets

the low values of the CMBR multipoles, see Fig. (4.5) (a). On the large sales, the

CMBR temperature anisotropy is assoiated with the density �utuations owing to the

ISW e�et, Ref. (White & Hu (1997)).

• Primary metri tensor perturbations, Refs. (Hu &White (1997), Sott & Smoot (2010))

The ause of the CMBR primary temperature anisotropy is the metri perturbations.

These perturbations an generate the salar, vetor and tensor modes. The tensor

modes (the transverse metri perturbations with zero trae) or, the so-alled gravita-

tional waves generate the primary temperature anisotropies of the CMBR due to the

total e�et of the anisotropi expansion of spae, Ref. (Sott & Smoot (2010)). The

ontribution of the tensor modes to the angular power spetrum of the CMBR temper-

ature anisotropy an our at ϑ > 1, respetively, at l > 180. The tensor mode an be

distinguished from the angular power spetrum of the CMBR temperature anisotropy

using the polarization data of the CMBR (information about this is presented below).
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4.2.5 Seondary Anisotropy of the CMBR

Propagating through the universe, the CMBR photons an experiene a number of the

distortions, whih an hange the temperature distribution of the CMBR photons on the

sky. In the angular power spetrum of the CMBR temperature anisotropy, these e�ets

are onsidered as the seondary anisotropies. Consider the e�ets that ause the seondary

anisotropes:

• Thomson sattering of the CMBR photons, Refs. (Hu & Dodelson (2002),Shneider

(2006))

The Thomson sattering of the CMBR photons on the free eletrons ourred in the

redshift range, z ∈ (6; 20). These free eletrons appeared as a result of the reionization

of the neutral hydrogen atoms in the universe by the dwarf galaxies, and/or by the very

�rst generation of the stars (by the Population III stars), and/or by the �rst quasars.

The Thomson sattering is isotropi, so the diretion of the photons after sattering

beomes almost independent of their original diretions of the motion. The sattered

CMBR photons form the isotropi omponent of the radiation with the ÑÌÂR tem-

perature. As a result of this e�et, the primary temperature anisotropy is suppressed,

i.e., the measured CMBR temperature �utuations will derease due to the fration

of the photons that experiened the Thompson sattering. In addition to suppressing

of the primary temperature anisotropy, the re-sattering of the CMBR photons auses

the generation of the additional polarization at the large angles and the Doppler e�et

at the large angles, Ref. (Hu & Dodelson (2002)).

• Gravitational lensing of the CMBR photons, Refs. (Hu & Dodelson (2002), Shneider

(2006))

The gravitational �eld of the matter density �utuations in the universe auses the

gravitational lensing (the gravitational deviation) of the CMBR photons, whih leads

to the hange of the initial diretion of the motion of the photons. This means that

while at the present epoh we observe two photons separated by an angle, θ, the

physial separation between them during the deoupling epoh di�ered from the value

dA(zdec)θ due to the gravitational deviation of the photons. As a result of this e�et,

the orrelation funtion of the temperature �utuations beomes slightly blurred. The

in�uene of this e�et is signi�ant at the small angular sales.

• Sunyaev-Zeldovih e�et, Refs. (Sott & Smoot (2010), Yoo & Watanabe (2012))
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The galati lusters left an imprint on the CMBR photons, by the so-alled Sunyaev-

Zeldovih (SZ) e�et

8

, Ref. (Sunyaev & Zeldovih (1970)). If the CMBR photons

move through a luster of the galaxy, then they will experiene the inverse Compton

sattering on the high-energy eletrons in this luster. As a result of this sattering,

the energy and the temperature of the CMBR photons inrease. Thus, the spetrum

of the CMBR beomes distorted.

In�uene of the Cosmologial Parameters on the CMBR Angular Power Spe-

trum

The in�uene of the osmologial parameters on the angular power spetrum of the CMBR

is shown in Fig. (4.5). The dependene of the CMBR angular power spetrum on the spae

urvature of the universe is shown in Fig (4.5) (a). There are two e�ets assoiated with

the in�uene of the spae urvature on the CMBR angular power spetrum: the shift of the

minima and maxima of the Doppler peaks and the strong dependene of the angular power

spetrum in the region with l ≤ 100 on the total energy density parameter, Ωtot, Refs. (Hu

& Dodelson (2002), Shneider (2006)). The latter e�et is a onsequene of the ISW e�et,

sine an inrease in the values of the spae urvature leads to a greater time variation of the

gravitational potential. The shift of the aousti peak is due to the fat that the value of the

angular diameter distane, dA(zrec), is sensitive to the spae urvature variation, therefore,

the angular diameter distane sale, whih orresponds to the sound horizon, also hanges.

The in�uene of dark energy (the osmologial onstant Λ) on the CMBR angular power

spetrum in the ase of a �at universe is shown in Fig. (4.5) (b). The loation of the aousti

peaks is almost independent of the value of the dark energy density parameter, ΩΛ.

The dependene of the CMBR angular power spetrum on the baryons energy density is

shown in Fig. (4.5) (). An inrease in the value of the energy density parameter, Ωbh
2
, leads

to an inrease in the amplitude of the �rst aousti peak and a derease in the amplitude of

the seond aousti peak.

The in�uene of the value of the matter energy density parameter, Ωmh
2
, on the CMBR

angular power spetrum is presented in Fig. (4.5) (d). Changing in the value of this parameter

auses a hange in the aousti peaks amplitudes and the aousti peaks loations, Refs. (Hu

8

The SZ e�et is sattering and its value does not depend on redshift, so the lusters of the galaxies

an be found at any distanes. The measurements of the SZ e�et are used to searh for the lusters of

the galaxies in order to estimate their masses, as well as to larify the value of the Hubble onstant, H0,

Ref. (Sott & Smoot (2010)). In addition, in ombination with the aurate values of redshift and masses

for the lusters of the galaxies (for example, with the X-ray observations), the SZ e�et an be applied as

the standard ruler in osmology, Ref. (Cooray et al. (2001)).
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& Dodelson (2002), Shneider (2006)).

4.2.6 Polarization of the CMBR

The CMBR is polarized at the level of several mkK, Ref. (Hu & White (1997)). The ause of

both the temperature anisotropy and its polarization are the salar and tensor gravitational

perturbations of the metri

9

. Sine the soures of the CMBR temperature anisotropy and the

polarization are the same, their power spetra should be orrelated, Refs. (Kosowsky (2001),

Sott & Smoot (2010)). The ombination of the angular power spetrum of the CMBR

temperature anisotropy and the signal of the CMBR E-mode polarization aording to the

results of the experiments: BICEP, BOOMERANG, CBI, DASI and QUAD, are shown in

Fig. (4.6) (right panel).

Figure 4.6: Left panel: the predited polarization spetra of the E-mode (red urve) and B-

mode (blue urves) ombined with the results of the experiments: WMAP, Plank and EPIC.

(Figure from Ref. (Dodelson et al. (2009))) Right panel: the ombination of the angular

power spetrum of the temperature anisotropy and the signal of the E-mode polarization,

aording to the results of the experiments: BICEP, BOOMERANG, CBI, DASI and QUAD.

(Figure from Ref. (Sott & Smoot (2010)))

Stokes Parameters

Mathematially, the polarization vetor of the eletromagneti waves is desribed by the

Stokes parameters, Ref. (Kosowsky (1996)).

Suppose a plane monohromati wave, whih is haraterized by a frequeny of ω0, prop-

agates along the diretion of z. The projetions of the eletri �eld vetor,

~E, on the x and

9

The vetor perturbations are not usually taken into aount due to their absene in the standard os-

mologial senario.
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y axes have the form, respetively, Refs. (Kosowsky (1996), Kosowsky (2001)):

Ex = ax(t) cos(ω0t− βx(t)), Ey = ay(t) cos(ω0t− βy(t)), (4.14)

where the amplitudes of the projetions of the eletri �eld vetor ax and ay, as well as the

phase angles βx and βy, are the slowly varying funtions of time relative to inverse frequeny

of the eletromagneti wave.

The Stokes parameters are determined by the time-averaged values of the amplitudes

projetions and the phases of the eletri �eld vetor:

I ≡ 〈a2x〉+ 〈a2y〉, (4.15)

Q ≡ 〈a2x〉 − 〈a2y〉, (4.16)

U ≡ 〈2axay cos(ax − ay)〉, (4.17)

V ≡ 〈2axay sin(ax − ay)〉. (4.18)

The parameter I is the intensity of the eletromagneti radiation, therefore, this parameter

has a positive value. The sign and the values of the parameters Q, U and V haraterize

the polarization state of the eletromagneti wave. For the natural unpolarized light, these

parameters are equal to zero, Q = U = V = 0. The value of the parameter V determines

the di�erene between the intensities of the right and left-side irular (rotor) polarizations.

The parameter V depends on the rotation of the axes of the oordinate system, while the

parameters Q and U are invariant with respet to the rotation of the axes of the oordinate

system.

The linear polarization of the eletromagneti wave is determined by the parameters Q

and U . The linear polarization matrix is formed from these parameters as:

A =





Q U

U −Q



 . (4.19)

The determinant of this matrix is de�ned as:

det(A) = −(Q2 + U2). (4.20)

The linear polarization will be absent if the determinant of the matrix A is equal to zero.

Suppose that the eletromagneti radiation is linearly polarized, i.e., Q2 + U2 6= 0. Then it
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is possible to determine the degree of the linear polarization, p, and the value of the angle,

ψ, with respet to the axis, x, as:

p =

√

Q2 + U2

I
, ψ =

1

2
arctan

U

Q
, (4.21)

the value of the parameter, I, determines the intensity of the eletromagneti radiation,

Ref. (Kosowsky (1996)).

Divergene and Curl Components of the CMBR Polarization

The CMBR polarization an be deomposed into the divergene part (alled "E-mode") and

the url part (alled "B-mode"), Ref. (Kosowsky (1996)). The diretion of the polarization of

the B-mode is rotated by 45◦ relative to the diretion of the polarization of the E-mode, see

Fig. (4.7). The E-mode of the CMBR polarization has parity (−1)l, similar to the spherial

 

Figure 4.7: The divergene E-mode and the url B-mode of the polarized �eld. (Figure from

Ref. (Dodelson et al. (2009)))

harmonis, see Fig. (4.7), while the B-mode has parity (−1)l+1
. The salar perturbations

annot generate the B-mode of the polarization. The ontribution of the vetor perturbations

to the B-mode formation is a fator of 6 larger than to the E-mode formation, while the

ontribution of the tensor perturbations to the B-mode formation is a fator of 8/13 smaller
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than to the E-mode formation, Ref. (Hu & White (1997)). The appearane of the E-mode

is due to the Thomson sattering on the eletrons from the CMBR photons propagating in

an inhomogeneous plasma, Refs. (Kosowsky (1999), Kosowsky (2001)). In 2002, the E-mode

was registered by the Degree Angular Sale Interferometer (DASI) experiment, Ref. (Leith

et al. (2002)), see Fig. (4.6) (right panel).

The maximum amplitude of the ÑÌÂR polarization is of the order of 0.1 mkK, Ref. (Hu

& White (1997)). The osmologists predit the existene of two types of the B-mode of the

ÑÌÂR polarization. The emergene of the �rst type of the B-mode is assoiated with the

interation of the ÑÌÂR with the primordial gravitational waves (tensor mode), i.e., with

the rotational, vortiity perturbations (vetor mode

10

) arising during in�ation. The reli

gravitational waves are generated by the tensor perturbations of the metri.

The seond type of the B-mode is assoiated with the gravitational lensing of the E-mode

or, in other words, with the osmologial birefringene e�et, based on the interation of the

eletromagneti �eld with the salar �eld, Refs. (Lepora (1998), Galaverni et al. (2015)).

The seond type of the B-mode appeared at a later time than the �rst type of the B-

mode. In addition, the B-mode of polarization an also ause the interation of the CMBR

photons with the partiles of the bakground galati dust. The seond type of the B-mode

was disovered in 2013 by the South Pole Telesope and the Hershel Spae Observatory,

Ref. (Hanson et al. (2013)).

The disovery and the study of the �rst type of the B-mode is of the great interest for

osmologists. The amplitude of the �rst type of B-mode orresponds to the amplitude of

the primordial gravitational waves and, aordingly, determines the energy sale of in�ation,

Ref. (Gawiser & Silk (2000)). Therefore, the registration of this type of the B-mode, i.e.,

the registration of the primordial gravitational waves would be a diret evidene of the

orretness of the theory of in�ation. In Marh 2014, the registration of the �rst type of the

B-mode was announed by the BICEP2 experiment, Ref. (Ade et al. (2014a)). However, a

later analysis, published in September 2014 and provided by another group of researhers,

whih used data from the Plank Observatory, showed that the result obtained in the BICEP2

experiment was aused by the CMBR photons sattering on the partiles of the galati dust,

Ref. (Adam et al. (2016)). Unfortunately, so far the �rst type of the B-mode is not deteted.

The di�ulty in deteting of the �rst type of B-mode is due to the small value of the B-

10

In the standard osmology, the vetor mode already deays at the in�ation stage. The presene of the

neutrinos, Ref. (Lewis (2004)), or/and the primordial magneti �elds, Ref. (Kahniashvili & Ratra (2005)),

an ounterat to the vetor mode deay. Taking into aount these e�ets, the ontribution of the vetor

mode must be onsidered.
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mode amplitude of the CMBR polarization, as well as the in�uene of the birefringene e�et

on the B-mode, Ref. (Zhao & Li (2014)) and with the impat of the intergalati medium

(in partiular, with the in�uene of the galati dust). The birefringene e�et in�uenes

the vetor and tensor �utuations. As a result of this e�et, the B-mode is transformed into

the E-mode and the tensor perturbations, whih generate the B-mode and the E-mode, also

our, Ref. (Lepora (1998)).

In this thesis, we obtained the onstraints on the model parameters α and Ωm in the

φCDM Ratra-Peebles salar �eld model using the BAO/CMBR analysis. In the BAO/CMBR

analysis, we ompared the observational and theoretial values of the ratio of the omoving

angular diameter distane to the distane sale at the deoupling epoh. A more detailed

desription of the BAO/CMBR analysis and its results is presented in Chapter VIII.

4.3 Barion Aousti Osillations

Before the reombination epoh, the photons, the baryons and the eletrons were losely

interrelated. In the primary plasma, the regions of the over matter density, whih onsist

of dark matter and the baryons, an be randomly formed. Suh the regions attrat another

matter to themselves and, on the other hand, as a result of the baryons and the photons

interation, a strong radiation pressure is reated. Oppositely direted the gravitational

and radiation pressures indue the joint osillations of the baryons and the photons. These

osillations are alled the Baryon Aousti Osillations (BAO), whih are the sound waves,

and they are haraterized by the �utuations, δb, in the baryon-photon medium.

The radial pressure leads to the emergene of the spherial sound wave of both the

baryons and the photons moving outward from the region with the over matter density. The

baryon-photon medium before reombination is almost relativisti, i.e., the photons energy

density, ργ , is greater than the baryons energy density, ρb: ρb < ργ . The photons pressure,

Pγ, is related to the photons energy density, ργ, as Pγ = 1/3ργ. The value of the sound

speed in the primordial plasma is de�ned as, Ref. (Rubakov (2014)):

vs =
√

∂Pγ/∂ργ =
√

1/3 ≈ 0.58. (4.22)

Thus, the value of the sound speed (the speed of the sound wave) is no muh more than half

the speed of light

11

. Dark matter interats only gravitationally and, therefore, it remains at

11

Taking into aount the value of the speed of light, this formula has the form, vs ≈ 0.58c.
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the enter of the sound wave being the primary ause of the emergene of the regions with

the over matter density.

At the end of the reombination epoh, the deoupling of the photons and the baryons

ours at redshift zdec ≈ 1100. If before deoupling the baryons and the photons move from

the enter of the over matter density region together, then after deoupling the photons

will ease to interat with the baryons and dissipate. As a result, the radiation pressure in

the over matter density region dereases and, eventually, the over As a result, the radiation

pressure in the over matter density region dereases and, eventually, the over density region

with a �xed radius is formed density region with a �xed radius is formed, whih is alled

the sound horizon, rs. The omoving size of the sound horizon at the photons deoupling is

determined by the equation

12

:

rs =

∫ tdec

0

vs
dt′

a(t′)
. (4.23)

The energy distribution of BAO within the sound horizon is de�ned as, Ref. (Rubakov

(2014)):

δb ∼ cos (krs) = cos

(∫ tdec

0

vs
k

a(t′)
dt′

)

, (4.24)

here k is the onformal momentum

13

.

The energy distribution of BAO outside of the sound horizon, δb=onst, i.e., the baryon

�utuations are frozen. Aording to Eq. (4.24), before reombination, the baryon-photon

�utuations are the osillating funtion of the onformal momentum, k. The baryon density

�utuations, δρb, osillate as:

δρb(k) ≈ ρbδργ(k) ∼ ρb cos(krs). (4.25)

The baryon density osillations, δρb, are preserved to the present epoh. The baryon den-

sity osillations in the matter power spetrum, P (k), as the tiny �utuations are represented

in Fig. (4.8).

After reombination, the baryons remain at the distane of the sound horizon from eah

other, rs, and dark matter is loated at the enter of the over density region. Dark matter

and the baryoni matter attrat eah other

14

, whih ultimately leads to the formation of

the galaxies in the universe. Thus, the galaxies are separated from eah other by the sound

12

The physial size of the sound horizon at the photons deoupling is equal to a(tdec)rs.
13

The physial momentum is desribed by the equation, kphys = k/a(t).
14

Due to the dominane of dark matter, the gravitational potential, whih is formed by dark matter, is

also dominant. The baryoni matter follows this potential, rolling down into its potential well.
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Figure 4.8: Baryon Aousti Osillations in the matter power spetrum disovered in: (a)

2dFGRS and SDSS main galaxies, (b) SDSS LRG sample, () both samples. Solid urves

represent the best �t of the data. (Figure from Ref. (Perival et al. (2007)))

horizon or the BAO signal, the size of whih inreases over time due to the Hubble expansion,

Ref. (Rubakov (2014)). The theoretial preditions of the urrent omoving size of the BAO

sound horizon give the following results, Ref. (Yoo & Watanabe (2012)):

rs =

∫ ∞

tdec

csdt

a
=

∫ ∞

tdec

cs
H(z)

dz ∼ 150 Mpc ∼ 100h−1 Mpc, (4.26)

where h = 0.678, aording to Plank 2015, Ref. (Ade et al. (2016)).

Using the observational data on the large-sale struture of the galaxies, one an measure

the sound horizon sale and ompare the result obtained with the theoretial predited value

of this sale. The two-point orrelation funtion, ξ(s), depends on the omoving distane,

s, of the galaxy. This funtion desribes the probability that one galaxy will be found at a

given distane from another, Ref. (Rubakov (2014)). The Sloan Digital Sky Survey (SDSS)

provides the redshift distribution of the galaxies in the range up to the value z = 0.47,

Ref. (Eisenstein et al. (2005)). This information an be used to estimate the size of the BAO

signal. The two-point orrelation funtion �xes the BAO signal at the distane, 100h−1
Mp,
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Figure 4.9: The large-sale redshift-spae two-point orrelation funtion, ξ(s), of the SDSS
sample. (Figure from Ref. (Eisenstein et al. (2005)))

in the redshift range, z ∈ (0.16; 0.47), see Fig. (4.9). The size of the BAO signal is used

as the standard ruler to determine the distane sale in osmology, Ref. (Yoo & Watanabe

(2012)).

Comparing Fig. (4.4) and Fig. (4.9), we an onlude that the measurements of the

CMBR angular power spetrum of the temperature anisotropy and the measurements of the

BAO signal indiate that the urrent radius of the sound horizon is approximately 150 Mp.

This result oinides with the theoretially alulated value of the BAO signal in Eq. (4.26).

4.4 Statistis of the Large-Sale Struture of the Uni-

verse

The large-sale strutures, whih are observed at the present epoh in the universe, suh as

galaxies, lusters of galaxies and superlusters, were formed as a result of the evolution of the

small initial matter density �utuations in the expanding universe, Ref. (Lifshitz (1946)).
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4.4.1 In�uene of the Gravitational Instability on the Formation of

Large-Sale Strutures in the Universe.

The temperature �utuations of the CMBR, whih is deteted by the COBE satellite, are

aused by the inhomogeneities in the matter density that originated in the early universe,

Ref. (Kosowsky (2001)). The ause of the matter density �utuations ould be the quantum

�utuations of the salar �eld or the topologial defets resulting from the phase transitions

during in�ation, Ref. (Kamionkowski & Kosowsky (1998)). The theory that desribes the

formation and the growth of these inhomogeneities is based on the Jeans instability or, in

other words, on the gravitational instability of the matter density �utuations, Ref. (Jeans

(1902)). The matter density �utuations, being a soure of the additional gravitational �eld,

attrat the surrounding matter to themselves. As a result of this proess, an inrease in the

size of these �utuations ours, sine the fore of the radiation pressure prevails over the

fore of gravity, whih leads to the spread of the matter density �utuations in the medium.

The growth of the matter density �utuations ontinues until the equilibrium is reahed

between the fore of gravity and the fore of the radiation pressure. This equilibrium ours

at a ritial size of the matter density �utuations, at the so-alled Jeans wavelength, λJ .

The value of the Jeans wavelength is determined by the speed of the sound wave, vs, and

the average density of the medium, 〈ρ〉, in whih the matter density �utuations develop,

Ref. (Gorbunov & Rubakov (2011)):

λJ = vs

√

π

G〈ρ〉 . (4.27)

After reahing the Jeans wavelength, the fore of gravity prevails over the fore of the

radiation pressure. At the same time, the proess of an inrease in the size of the matter

density �utuations is replaed by the proess of the adiabati ompression. As a result,

the relaxation (the ollapse) of the matter density �utuations ours. The partiles tend to

a ommon gravitational enter, in the end, most partiles onentrate at the enter, and a

new objet, the protogalaxy, is formed. The emergene of the protogalaxies in the universe

ours at redshift z ∼ 10. The subsequent evolution of the protogalaxies led to the formation

of the large-sale strutures in the universe.
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4.4.2 Linear Perturbation Theory

Relative Density Contrast

The value of the matter density �utuations is determined by the relative ontrast of the

matter density:

δρ(~r, t) =
δρ(~r, t)

〈ρ〉 =
ρ(~r, t)− 〈ρ〉

〈ρ〉 , (4.28)

here ρ(~r, t) is the value of the density in the universe in the diretion, ~r, and at the moment

of time, t.

From Eq. (4.28), it follows that δ ≥ −1 beause ρ > 0. The small value of the temperature

anisotropy of the CMBR, δT/T0 = 1/3δρ/〈ρ〉 ∼ 10−5
assumes that |δ| ≪ 1 at redshift zdec.

The protogalaxies that arose in the universe are haraterized by a large density ontrast,

δρ/〈ρ〉 > 1.

The gravitational �eld formed by the average matter density, 〈ρ〉, determines the dynam-
is of the Hubble expansion of the universe. The �utuations of the matter density from the

average value, δρ(~r, t) = ρ(~r, t)− 〈ρ〉, generate the additional gravitational �eld.

Linear Perturbation Equation

Consider the growth of the matter density �utuations on the length sale, whih is sig-

ni�antly smaller than the Hubble radius

15

. Suppose that the matter in the universe is

approximated by the dust �uid. The dust �uid is haraterized by: the energy density,

ρ(~r, t); the three-dimensional veloity, v(~r, t), and the zero pressure, p.

The behavior of the dust �uid is desribed by the following equations:

1. The ontinuity equation, presented earlier, Eq. (2.42).

2. The Euler's equation

16

:

∂~v

∂t
+ (~v · ∇)~v +∇Φ +

∇p
ρ

= 0, (4.29)

where Φ is the Newton's gravitational potential orresponding to the Poisson's equation.

15

On these length sales, the growth of the strutures in the universe is desribed by the Newton's theory

of gravity. Considering the growth of the matter density �utuations on the length sales omparable or

more than the Hubble radius, it is neessary to take into aount the in�uene of the spaetime urvature

and, therefore, it is neessary to apply the GTR.

16

The Euler's equation expresses the onservation law of the momentum. This equation also desribes the

matter behavior under the ation of fores on it, whih are represented through the pressure gradient, ∇p,
and the gradient of the Newton's gravitational potential, ∇Φ.
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3. The Poisson's equation

17

:

∇2Φ = 4πG (ρ+ 3p) . (4.30)

As a result of solving the system of the aforementioned equations: the ontinuity equation,

Eq. (2.42), the Euler's equation, Eq. (4.29), and the Poisson's equation, Eq. (4.30), and then

linearizing this solution with |δ| ≪ 1, we an obtain a linear equation for the matter density

�utuations, the so-alled linear perturbation equation, Ref. (Pae et al. (2010)):

δ
′′

+
(3

a
+
E

′

E

)

δ
′ − 3Ωm0

2a5E2
δ = 0, (4.31)

here the prime means the derivative with respet to the sale fator,

′ = d/da.

The linear perturbation equation, Eq. (4.31), ompletely desribes the evolution of the

matter density �utuations in the universe.

Growth Rate Funtion of the Matter Density Flutuations

The evolution of the �utuations is expressed in terms of the linear growth fator, D(a),

whih is usually normalized arbitrarily. We hose the normalization in whih the value of

the linear growth fator is equal to unity at the present epoh, D(a0 = 1) = 1. Thereby, the

linear growth fator is de�ned as:

D(a) = δ(a)/δ(a0), (4.32)

where δ(a0) is a value of the matter density ontrast today. The relation D(a) = a for a≪ 1

is ful�lled for the matter dominated epoh.

The frational matter density is given as:

Ωm(a) = Ωm0a
−3/E2(a). (4.33)

The growth rate of the matter density �utuations is desribed by the logarithmi derivative

of the linear growth rate, or, in other words, by the the growth rate funtion, Ref. (Wang &

Steinhardt (1998)):

f(a) = d lnD(a)/d ln a. (4.34)

17

The Poisson's equation is given as the 0-0 omponent of the Einstein's equation, Eq. (2.52). Sine only

the matter is onsidered to study the growth of the matter density �utuations, in Eq. (4.30) the pressure

is equal to zero, p = 0.
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The growth rate funtion, f(a), is highly dependent on the frational matter density, Ωm(a),

and its dependene an be parametrized by the power law, Ref. (Wang & Steinhardt (1998)):

f(a) ≈ (Ωm(a))
γ(a), (4.35)

here γ(a) is the e�etive growth index, whih is a time-dependent funtion. The value of the

e�etive growth index depends on both the dark energy model and the theory of gravity.

The dependene of the e�etive growth index, γ(a), on the sale fator an be determined

by the expression presented in Eq. (4.35), Ref. (Wu et al. (2009)):

γ(a) =
lnf(a)

ln(Ωm(a))
. (4.36)

4.4.3 Linder γ-parametrization

Assuming that the GTR is a orret theory of gravity, the e�etive growth index, γ(a), an

be parametrized by the independent way, by the Linder γ-parametrization, Ref. (Linder &

Cahn (2007)):

γ =







0.55 + 0.05(1 + w0 + 0.5wa), if w0 ≥ −1;

0.55 + 0.02(1 + w0 + 0.5wa), if w0 < −1,
(4.37)

where w0 = w(z = 0) and wa = (dw/dz)|z=1. We determined that this parametrization is

preise up to redshift, z = 5 (a = 0.2), see Fig. (7.6) (right panel). The value of γ depends

on the harateristis of the dark energy model, for example, on the EoS parameter, w.

In the ΛCDM model based on the GTR, the value of the Linder γ-parametrization, γ,

is equal to 0.55, Ref. (Linder & Cahn (2007)). In the models based on a theory of gravity

di�erent from GTR, the value of the Linder γ-parametrization, γ, di�ers from the value of

the γ in the models based on GTR gravity. For example, in the Dvali-Gabadadze-Poratti

model, γ ≈ 0.68, Refs. (Dvali et al. (2000), Linder (2005), Linder & Cahn (2007)). The

value of the Linder γ-parametrization, γ, whih is obtained from the observations in the

ombination with the onstraints on other osmologial parameters, an be used to verify

the auray of GTR on the osmologial length sales, Refs. (Pouri et al. (2014), Taddei &

Amendola (2015)).
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Chapter 5

Elements of the Statistial Analysis

5.1 Gaussian Probability Distribution

5.1.1 De�nition of Gaussian Probability Distribution

The Gaussian or, in other words, the normal distribution of a random variable x is desribed

by the probability density:

f(x) =
1

σ
√
2π
e−(x−e)/2σ2 . (5.1)

The Gaussian distribution is determined by the parameters e and σ. The parameter e is

the mathematial expetation and the parameter σ is the standard deviation of the random

variable x. The value of σ2
is the variane of the random variable x. The values 1σ, 2σ and

3σ determine the probability of the event realization or the on�dene levels, respetively,

at 68.27%, 95.45%, 99.73%.

5.1.2 Funtion χ2
and the Likelihood Funtion

Funtion χ2
and the Likelihood Funtion for Independent Measurements

Suppose that the model parameters, p, are distributed aording to the Gaussian distri-

bution, Eq. (5.1). N independent measurements, Xobs(zi), were arried out to determine

the values of these model parameters. The standard deviation for eah measurement, σi, is

known. These measurements are obtained at redshifts zi. The theoretial model predits

the orresponding values, Xth(p, zi).
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The funtion χ2(p) is a funtion of the model parameters, p, is given as:

χ2(p) =

N
∑

i=1

[Xobs(zi)−Xth(p, zi)]
2

σ2
i

. (5.2)

The funtion χ2(p) determines the deviation of the theoretial preditions from the obser-

vations at the partiular values of the parameters, p. A small value of χ2(p) means a good

approximation by the hosen theory of the observations and, aordingly, a large value of

χ2(p) means a poor approximation by the theory of the observations.

The likelihood funtion, L(p), for the independent variables is de�ned as:

L(p) = exp
{

−1

2
χ2(p)

}

. (5.3)

The likelihood funtion, L(p), determines the probability that the theoretial preditions of
the parameters values, p, oinide with the observations. The large value of the likelihood

funtion, L(p), means a good approximation of the observations by this theory and the

parameter values, p, are the best �t values1. Conversely, the small value of the likelihood

funtion, L(p), means à poor approximation of the observations by this theory.

In the ase of the ombining of M types of the independent variables, p1, p2, ..., pM, the

resulting value of the funtion χ2(p) is alulated as a sum of the funtions χ2(p1), ..., χ
2(pM),

eah of whih haraterizes a spei� type of the independent variables:

χ2(p) = χ2(p1) + ... + χ2(pM−1) + χ2(pM). (5.4)

In this ase, the resulting probability funtion is alulated as the produt of the likelihood

funtions, L(p1),L(p2), ...,L(pM), eah of whih de�nes a spei� type of the independent

variables:

L(p) = L(p1) · L(p2)...L(pM−1) · L(pM). (5.5)

Funtion χ2
and the Likelihood Funtion for the Dependent Measurements

For the dependent measurements, funtion χ2(p) is de�ned as:

χ2(p) = [Xobs(zi)−Xth(p, zi)]
TC−1[Xobs(zi)−Xth(p, zi)], (5.6)

1

It is neessary to distinguish between the notions the best �t values of the parameters, p, and the

true values of the parameters, p. The likelihood funtion, L(p), determines the probability with whih the

values of the arbitrary parameters, p, will be the true values (whih are unknown to us). The best �t values

are the values of the parameters, p, whih are likely to be the true values.
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where C =ov[Xi, Xj] is a ovariane matrix of the dependent measurements; Xobs(zi) is a

vetor of the values of the dependent measurements; Xth(p, zi) is a vetor of the theoretially

predited values; the supersript T denotes a vetor transposition.

The likelihood funtion for the dependent measurements is:

L(p) = exp
{

−1

2

[

Xobs(zi)−Xth(p, zi)
]T

C−1
[

Xobs(zi)−Xth(p, zi)
]}

. (5.7)

5.1.3 Fisher Formalism

The inverse Fisher matrix, [F−1], is a matrix that is inverse to the ovariane matrix,

[C]:

[F ]−1 = [C] =







σ2
p1

σp1p2

σp1p2 σ2
p2






, (5.8)

where the standard deviations σ2
p1 and σ2

p2 are the 1σ unertainties of the parameters, p1

and p2, respetively; σp1p2 = ̺σp1σp2 ; ̺ is a orrelation oe�ient. The absolute value of the

orrelation oe�ient ̺ does not exeed unity, | ̺ |≤ 1. If ̺ = 0, then the parameters, p1 and

p2, are independent of eah other, i.e., they are mutually unorrelated. If | ̺ |= 1, then the

parameters will be ompletely orrelated with eah other. If | ̺ |< 1, then the parameters

will be partially orrelated with eah other.

Consider the funtion χ2(p1, p2), whih depends on two parameters, p1 and p2. The

elements of the Fisher matrix are the seond-order expansion oe�ients in the Taylor series

of the funtion χ2(p1, p2) near the minimum of this funtion.

The two-dimensional Fisher matrix, [F ], is alulated as:

[F ] =
1

2







∂2

∂p21

∂2

∂p1∂p2

∂2

∂p1∂p2
∂2

∂p22






χ2. (5.9)

In other words, the elements of the Fisher matrix, [F ], are alulated as the seond derivatives

of the funtion χ2
with respet to the parameters, p1 and p2:

Fp1p2 =
1

2

∂χ2

∂p1∂p2
. (5.10)

The ovariane matrix, [C], is de�ned through the Fisher matrix as: [C] = [F ]−1
.
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Transformation of the Variables

Formulation of the problem: the Fisher matrix, [F ], is de�ned via the variables

2

, p =

p1, p2, p3. In turn, these variables depend on the other variables, p
′ = p′1, p

′
2, p

′
3. It is neessary

to alulate the Fisher matrix, [F ′], with respet to the variables, p′ = p′1, p
′
2, p

′
3, based on

the information about the original Fisher matrix, [F ].

The elements of the Fisher matrix, [F ′
mn], are alulated aording to the derivative of

the omposition of two funtions:

F ′
mn =

∑

ij

∂pi
∂p′m

∂pj
∂p′n

Fij. (5.11)

The Fisher matrix, [F ′], an be obtained as, Ref. (Coe (2009)):

[F ′] = [M ]T [F ][M ]. (5.12)

The matrix, [M ], is de�ned as:

[M ] =















∂p1
∂p′1

∂p1
∂p′2

∂p1
∂p′3

∂p2
∂p′1

∂p2
∂p′2

∂p2
∂p′3

∂p3
∂p′1

∂p3
∂p′2

∂p3
∂p′3















. (5.13)

Thereby, the elements of the matrix, [M ], are alulated as: Mij = ∂pi/∂p
′
j .

5.1.4 Best Fit Model Parameters

Regardless of the type of the observations, the model parameters, p0, for whih the funtion

χ2(p) takes the minimum value, are alled the best �t model parameters for this theory. In

this ase, the minimum value of the funtion χ2(p0) determines the smallest value of the

variane, σ2
, for this theory. For the model with two parameters, the boundaries of the

on�dene intervals at 1σ, 2σ and 3σ are de�ned, respetively, as: χ2(p) = χ2(p0) + 2.3,

χ2(p) = χ2(p0) + 6.17 and χ2(p) = χ2(p0) + 11.8.

The likelihood funtion, L(p), has a maximum value with the best �t of the model

parameters, p0. The values of the model parameters, p0, for whih the likelihood funtion

is maximal, have the maximum probability of being the true parameters.

2

The number of the variables an be arbitrarily large, p = p1, p2...pN. In this ase, we limited ourselves

to the number of the variables N = 3.
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5.2 Elements of the Theory of Monte Carlo Markov Chains

The Monte Carlo Markov Chain (MCMC) method is used in onstruting the vetors for the

multidimensional distribution funtions. In the statistis, this method is applied to study

the posterior distributions of the model parameters.

5.2.1 De�nition of the Markov Chains. Transition Probabilities

In 1907, A. A. Markov developed a new type of the random proesses. In this proess, the

result of the experiment a�ets the result of the subsequent experiment. This type of proess

is alled a Markov hain.

The Markov hain an be desribed as follows. Consider a set of the states, S =

s1, s2, ..., sr. The proess begins in one of these states and sequentially moves from one

state to another. Eah movement is alled a step. If the hain is urrently in the si state,

then it will go to the sj state in the next step with the probability, denoted as pij, and

this probability does not depend on the states in whih the hain was loated before the

urrent state. The probabilities, pij, are alled the transition probabilities. The initial

probability distribution, S, determines the initial state3.

Transition Matrix. Homogeneous Markov Chain.

In the notation, pij, the �rst index indiates the number of the previous state i, and the

seond index indiates the number of the next state j. The proess an remain in the state

in whih it is loated, and this happens with the probability, pii.

Suppose that the number of the states is �nite and equals k. The transition matrix

of the system is a matrix, whih ontains all the transition probabilities of this system,

Ref. (Gmurman (2003)):

P1 =

















p11 p12 ... p1k

p21 p22 ... p2k

... ... ... ...

pk1 pk2 ... pkk

















. (5.14)

Sine the transition probabilities of the events from the state i to the state j plaed in eah

row of the matrix form a omplete group, the sum of the probabilities of these events is

3

Often the Markov hains are ompared to a frog jumping on a set of lily pads. The frog starts on one

of the lily pads and then jumps from a lily pad to a lily pad with the orresponding transition probabilities,

pij , Ref. (Howard (1971)).
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equal to unity. In other words, the sum of the transition probabilities for eah row in the

transition matrix is equal to unity:

k
∑

j=1

pij = 1, (i = 1, 2..., k). (5.15)

The Markov hain is alled the homogeneous hain, when the onditional probability, pij,

does not depend on the number of the test.

Markov Equality

Let's denote by Pij(n) the probability that the system S will transit from the state i to the

state j as a result of n steps (tests). For example, P25(10) is the transition probability from

the seond to the �fth state as a result of 10 steps. We emphasize that for n = 1 we get the

transition probability:

Pij(1) = pij. (5.16)

Markov problem: knowing the transition probabilities, pij, �nd the probabilities, Pij, of

the transition of the system from the state i to the state j in n steps.

Let's introdue the intermediate state r between the states i and j. In other words, we

assume that the system will move from the initial state i to the intermediate state r with the

probability, Pir(m), in m steps. After that, the system moves from the intermediate state r

to the �nal state j with the probability, Prj(n−m), in (n−m) steps.

The transition probability, Pij , of the system from the state i to the state j in n steps

an be found using the Markov equality:

Pij(n) =
k

∑

r=1

Pir(m)Prj(n−m). (5.17)

In our alulations, we apply the normal distribution of the random variable x, whih is

desribed by Eq. (5.1).

5.2.2 Monte Carlo Method

In 1949, N. Metropolis and S. Ulam published the paper entitled �Monte Carlo Method�

in whih this method was presented. The Monte Carlo method is a statistial method

for studying the problems based on using of the random numbers, similar to the numbers

generated in gambling. Applying the Monte Carlo method, it is required to �nd a set of the
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random numbers, whih orresponds to a ertain probability distribution.

Essene of the Monte Carlo Method

It is required to �nd the expetation value e of some random variable. For this purpose a

random variable is hosen X whose expetation is equal to e:

M(X) = e. (5.18)

In reality, n tests are performed, as a result of n possible values X are obtained, after whih

their arithmeti average is alulated:

x̄ =
(

∑

xi

)

/n. (5.19)

The value of x̄ is onsidered as an approximate value of e∗ of the number e:

e ≃ e∗ = x̄. (5.20)

Sine the Monte Carlo method requires a large number of the tests, it is often alled the

method of the statistial tests. To use the Monte Carlo method, a reliable set of the

random numbers is needed. Suh numbers are hard to get, so the pseudo-random numbers

are usually used. These numbers must be unorrelated and evenly distributed over a prior

range of the numbers.

Transformation Method

The transformation method is used to searh for the pseudo-random numbers from the known

probability distributions. It is required to reprodue a ontinuous random variables X , i.e.,

to obtain a sequene of its possible values, X = x1, x2, ..., xk, whih is haraterized by the

distribution funtion F (x).

Theorem: onsider a possible random value xi with the distribution funtion F (x). The

value of a random number ri will orrespond to the value of xi, if it is the solution of the

following equation:

F (xi) = ri. (5.21)

In other words, in order to �nd a possible value of xi a ontinuous random variable X ,

determined by the density distribution f(x), we must hoose a random number ri and solve
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one of the equations with respet to xi:

∫ xi

−∞
f(x)dx = ri or

∫ xi

b

f(x)dx = ri, (5.22)

where b is a �nite, smallest value of a random variable X .
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Chapter 6

Dark Energy

As it was desribed in Chapter I, our universe is in the state of the aelerated expansion.

One possible explanation of this phenomenon is the existene of so-alled dark energy. Dark

energy is haraterized by the value of the EoS parameter, w, whih is de�ned as a ratio

between the pressure, pDE, and the energy density, ρDE, w ≡ pDE/ρDE. The aelerated

expansion requires that w < −1/3. Dark energy is approximately 69% of the total energy

density in the universe, its distribution is highly spatially uniform and isotropi, Ref. (Ade

et al. (2016)). The negative e�etive pressure of dark energy auses an aelerated expan-

sion of the universe. The nature of dark energy still remains an unresolved mystery for

osmologists.

6.1 Cosmologial Constant Λ

The simplest model of dark energy is a onept of vauum energy or, in other words, a

time-independent osmologial onstant denoted as Λ, whih was �rst proposed by Albert

Einstein, Ref. (Einstein (1917)), for the review: Refs. (Carroll (2001), Peebles & Ratra

(2003), Martin (2012)). In 1917, in order to obtain a stati solution, ȧ = 0, Albert Einstein

introdued a new term, Λgµν , into the Einstein tensor, Eq. (2.38), Ref. (Einstein (1917)).

As a result, the Einstein's equation, Eq. (2.52), took the form:

Rµν −
1

2
gµνR − Λgµν = 8πGTµν , (6.1)

where Λ is alled the osmologial onstant. The addition of this term violates the ondition

for the transition of the strong gravitational �elds to the weak gravitational �elds (the transi-

tion to the Newtonian limit), imposed on the Einstein tensor in the equations Eq. (2.53) and
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Eq. (2.54). In order to ful�ll the onditions of this transition, the value of the osmologial

onstant must be negligible.

Einstein did not have a real physial interpretation of the osmologial onstant Λ. After

the disovery of the expansion of the universe by Edwin Hubble in 1929, Ref. (Hubble

(1929)), Einstein removed the osmologial onstant from his equations in 1931. He alled

the introdution of Λ into these equations his "biggest blunder", Ref. (Gamov (1956)). From

the 1930s to the end of the 1990s, the osmologists were not taken the osmologial onstant

into aount, assuming its value to be zero. After the disovery of the aelerated expansion

of the universe in 1998, Refs. (Riess et al. (1998), Perlmutter et al. (1999), Shmidt et al.

(1998)), the osmologists began to use the osmologial onstant with a positive nonzero

value to explain this phenomenon. Taking into aount the osmologial onstant Λ in the

Friedmann's equations, Eq. (2.97) and Eq. (2.98), a non-stati solution an be found. This

solution desribes an expanding universe.

It is now aepted that the osmologial onstant is equivalent to a �nal energy density

of the vauum, Ref. (Zeldovih (1968)). Suhwise, if the osmologial onstant is determined

by the vauum energy density, ρvac, then the energy density of the osmologial onstant,

ρΛ, will not depend on time:

ρΛ = ρvac = const. (6.2)

The energy density of the osmologial onstant is de�ned as:

ρΛ =
Λ

8πG
, (6.3)

where Λ = 4.33 · 10−66 eV2
.

The EoS for the osmologial onstant:

pΛ = −ρΛ = const. (6.4)

Therefore, the EoS parameter for the osmologial onstant is de�ned as:

wΛ = −1. (6.5)

The ation for the osmologial onstant:

S = − 1

16πG

∫

d4x
√
−g(R + 2Λ) + SM, (6.6)
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where SM is an ation for matter.

The Friedmann's equations with the osmologial onstant have the form:

ȧ2

a2
=

8πG

3
ρ− K

a2
+

Λ

3
(6.7)

and

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (6.8)

6.2 Cosmologial ΛCDM Model

The Lambda Cold Dark Matter (ΛCDM) model is the standard model of the universe.

This model desribes a spatially �at universe and it is the simplest parametrization of the

osmologial Big Bang model. In the ΛCDM model, dark energy is represented by the

osmologial onstant Λ, whih is assumed to be assoiated with the vauum energy density.

Dark matter is the old dark matter in the ΛCDM model. The ΛCDM model is based on

the GTR in order to desribe the gravity in the universe at the osmologial sales.

The ΛCDM model is a onordane model of the universe, sine this model is in a good

agreement with the urrently available osmologial observations, see Fig. (6.1). In addition,

Figure 6.1: The on�dene ontours at 68% and 95% as a result of the di�erent measure-

ments: SNIa (JLA) and SNIa (C11) ompilations, the ombination of the Plank temperature

and WMAP polarization (Plank + WP) and the ombination of the BAO sale. Left panel:

for the Ωm and ΩΛ osmologial parameters in the ΛCDM model. The blak dashed line

orresponds to a �at universe. Right panel: for the Ωm and w osmologial parameters in

the �at w−ΛCDM model. The blak dashed line orresponds to the osmologial onstant

hypothesis. (Figure from Ref. (Betoule et al. (2014)))

the ΛCDM model explains: the aelerated expansion of the universe; the large-sale stru-

ture in the distribution of the galaxies; the CMBR temperature anisotropy; the hemial
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omposition of the universe (the ontent of hydrogen, helium and lithium

1

), Ref. (Shneider

(2006)).

The ΛCDM model is haraterized by main six independent parameters: the physial

baryon density parameter, Ωbh
2
; the dark matter physial density parameter, Ωch

2
; the age

of the universe, t0; the salar spetral index, ns; the amplitude of the urvature �utuations,

∆2
R; the optial depth during the reionization period

2

, τ . In addition to these parameters,

the ΛCDM model is desribed by six extended �xed parameters: the total energy density

parameter, Ωtot; the EoS parameter, w; the total mass of three types of the neutrinos,
∑

mν ;

the e�etive number of the relativisti degrees of freedom, Neff ; the tensor/salar ratio, r;

the running salar index, dns/d ln k.

Aording to the ΛCDM model, our universe onsists of 69, 2% of dark energy; 26% of

dark matter; 4.8% of the ordinary baryoni matter; 0.1% of the neutrinos; 0.01% of the

photons, Ref. (Ade et al. (2016)).

The �rst Friedmann's equation, whih desribes the universe expansion in the spatially

�at ΛCDM model, is:

E(a) = (Ωr0a
−4 + Ωm0a

−3 + ΩΛ)
1/2, (6.9)

where Ωr0, Ωm0 and ΩΛ are the energy density parameters for the radiation, the matter

and vauum, respetively, at the present epoh. Until the moment of the neutrinos non-

relativization

3

, the neutrinos are the relativisti partiles, therefore, the neutrinos energy

density parameter, Ων , hanges with the dependene on the sale fator as a
−4
. Thus, before

the moment of the neutrinos non-relativization, the total radiation energy density onsists

of the energy densities of the relativisti partiles: the photons and the neutrinos. After

the moment of the neutrinos non-relativization, the neutrinos beome the non-relativisti

partiles and the energy density parameter of the neutrinos, Ων , evolves as a−3
. There-

fore, the total energy density parameter of the matter, Ωm, ontains all the non-relativisti

omponents, inluding the non-relativisti neutrinos.

1

The proess of the formation of these hemial elements began during the primordial nuleosynthesis

in the universe. This epoh began at the temperature of about 1 MeV when the age of the universe was

approximately 1 se. At this time, the following reations are terminated: e−+p ↔ n+νe and the "freezing"
of neutrons ours from these reations. Approximately from 10 seonds to 20 minutes after the Big Bang,

the thermonulear reations took plae, forming more omplex elements: p + n → 2H + γ, 2H + p →
3He+ γ, 3He+ 2H → 4He+ p, ..., up to

7Li, Ref. (Rubakov (2014)).

2

The reionization is the proess of the ionization of the neutral hydrogen atoms, whih happened in the

universe at the range of redshifts, z ∈ (6; 20).
3

The neutrino transition from the relativisti to the non-relativisti state ours at the matter dominated

epoh. The earlier this transition ours, the greater value of the mass aquired by the neutrino. The results

of this study are presented in Chapter X.
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6.2.1 Shortomings of the ΛCDM Model

If, indeed, the vauum energy is the origin of the osmologial onstant, then there is a

problem with the energy sale of the osmologial onstant. The theoretially predited

energy density of the osmologial onstant, ρΛ, is de�ned as:

ρΛ ∼ ~M4
pl ∼ 1072 Gev4 ∼ 2 · 10110 erg/cm3, (6.10)

where Mpl ∼ 1018 Gev is a Plank mass sale; ~ is a redued Plank onstant

4

. The result

obtained in Eq. (6.10) is on�rmed by the laboratorian measurements of the vauum �utu-

ations by the Casimir e�et, Ref. (Casimir (1948)). However, the osmologial observations

of the osmologial onstant, as dark energy, show a ompletely di�erent result:

ρobsΛ ∼ 10−48 Gev4 ∼ 2 · 10−10 erg/cm3. (6.11)

Thus, the observed value of the energy sale of the osmologial onstant is by 120 magnitudes

less than its value derived from the theoretial preditions. This disrepany in 120 values

of the energy sale is alled the osmologial onstant problem or the �ne turning problem,

Refs. (Carroll et al. (1992), Carroll (2001)).

The seond problem of the osmologial onstant is the so-alled oinidene problem.

The essene of this problem is that the energy density of dark energy is omparable with the

energy density of dark matter at the present epoh. The radiation energy density, the matter

energy density and dark energy depend on the sale fator by the di�erent laws, whih are

desribed in Eq. (2.101), Eq. (2.102) and Eq. (2.105), respetively: for the radiation it is

ρr ∼ a−4
, for the baryons and old dark matter it is ρm ∼ a−3

and for the osmologial

onstant it is ρΛ=onst. The preise osmologial observations show that the ratio between

the density of the matter and the density of dark energy today is of the order of unity,

ρm/ρΛ ≃ 1/3. This fat is a mystery, sine the standard ΛCDM model predits that this

ratio must be time-dependent, ρm/ρΛ ∝ a−3
.

Sine the vauum energy does not hange over time, it was insigni�ant during both at the

radiation domination epoh and at the matter domination epoh. While the vauum energy

has beome the dominant omponent only reently, at a ≈ 0.76 (or z ≈ 0.31), aording to

Plank 2015 data, Ref. (Ade et al. (2016)), and it will be the only omponent in the universe

in the future, see Fig. (6.2). The energy density of the matter and the energy density of

4

In aordane with our onvention, ~ = 1.
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Figure 6.2: The evolution of the radiation energy density, the matter energy density and the

osmologial onstant Λ. (Figure from Ref. (Samushia (2009)))

the osmologial onstant are omparable for a very short period of time, see Fig. (6.2),

therefore, the following question arises: "Why did it happen that we live in this short (by

the osmologial sale) period of time?" After all, this fat is in the ontradition with the

Copernian's priniple.

The so-alled anthropi priniple, proposed by Steven Weinberg in 1987, Ref. (Weinberg

(1987)), an explain the osmologial onstant problems and answer the questions: "Why

is the energy density of the osmologial onstant so small?" and "Why has the aelerated

expansion of the universe started reently?" Aording to the anthropi priniple, the energy

density of the osmologial onstant, observed today, ρΛ, must be suitable for the evolution

of the intelligent beings in the universe, Ref. (Barrow & Tipler (1988)).

6.3 Salar Field Models

There are the numerous alternative models for the ΛCDM model, Refs. (Copeland et al.

(2006b), Yoo & Watanabe (2012)). Despite the diversity of these models, the ΛCDM model

still remains the basi model, the model of the omparison with other dark energy models.

The main alternative to the ΛCDM model are the dynamial salar �eld models

5

or, in

other words, the so-alled φCDM models, Refs. (Wetterih (1988b), Ratra & Peebles (1988b),

Peebles & Ratra (2003)). In these models, dark energy is represented in the form of a slowly

5

A salar �eld is a �eld that is haraterized by a salar value, whih is de�ned at any point in this �eld.

This �eld is an invariant under the Lorentz transformations.
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varying osmologial uniform salar �eld, φ. The self-interating spatially uniform salar

�eld is minimally related to the gravity on the osmologial sales. The φCDM models do

not have the �ne tuning problem of the ΛCDM model. These models have a more natural

explanation for the observable low-energy sale of dark energy. If in the ΛCDM model the

EoS parameter is onstant, w = −1, then in the φCDM model the EoS parameter will be

time-dependent. When the energy density of the salar �eld begins to dominate over the

energy density of both the radiation and the matter, the universe begins the stage of the

aelerated expansion.

At the early epohs of the universe evolution (at large redshifts), the dynamial salar

�eld is di�erent from the behavior of the ΛCDM model. At the later epoh of the universe

evolution (at small redshifts), the dynamial salar �eld is almost indistinguishable from the

behavior of the osmologial onstant Λ.

The φCDM models are divided into two lasses: the quintessene models, Ref. (Zlatev

et al. (1999)), and the phantom models, Refs. (Caldwell (2002), Caldwell et al. (2003)). These

models di�er from eah other:

• By the value of the EoS parameter

In the quintessene �elds −1/3 < wφ < −1 and in the phantom �elds wφ < −1.

• In the sign of the kineti omponent in Lagrangian

The positive sign for the quintessene �elds and the negative sign for the phantom

�elds.

• In the dynamis of the salar �elds

The quintessene �eld rolls down to the minimum of its potential, the phantom �eld

rolls to the maximum of its potential.

• In the dynamis of dark energy

In the quintessene �elds, dark energy almost do not hange over time and in the

phantom �elds it inrease over time.

• In the foreasting the future of the universe

In the quintessene models, either the eternal expansion of the universe, or a repeated

ollapse is predited depending on the spatial urvature of the universe. In the phantom

models, the destrution of any gravitationally-related strutures in the universe is

predited. Depending on the asymptoti behavior of the Hubble parameter, H(t), the

future senarios of the universe are divided into: a big rip, for whih H(t) → ∞ for
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�nite time, t = onst; a little rip for whih H(t) → ∞ for in�nite time, t → ∞ and a

pseudo rip, for whih H(t) → onst for in�nite time, t→ ∞.

The full ation for the salar �eld is de�ned as:

S =

∫

d4x
√−g

[

−
M2

pl

16π
R + Lφ

]

+ SM, (6.12)

where Lφ is the Lagrangian density of the salar �eld, the shape of whih depends on the

type of the hosen model.

6.3.1 Quintessene Salar Field

The quintessene salar �eld is desribed by the Lagrangian density:

Lφ =
1

2
gµν∂µφ∂νφ− V (φ). (6.13)

There are many di�erent quintessene potentials, but so far no preferene has been given to

any of them. The inomplete list of the quintessene potentials

6

are presented in Table

7

6.1.

Name Form Referene

Ratra-Peebles V (φ) = V0M
2
plφ

−α
; α = const > 0 Ref. Ratra & Pee-

bles (1988b)

Ferreira-Joye V (φ) = V0 exp(−λφ/Mpl); λ = const > 0 Ref. Ferreira &

Joye (1998)

Zlatev-Wang-

Steinhardt

V (φ) = V0(exp(Mpl/φ)− 1) Ref. Zlatev et al.

(1999)

Sugra V (φ) = V0φ
−χ exp(γφ2/M2

pl); χ, γ = const >
0

Brax & Martin

(1999)

Sahni-Wang V (φ) = V0(cosh(ςφ) − 1)g; ς = const > 0,
g = const < 1/2

Ref. Sahni & Wang

(2000)

Barreiro-

Copeland-Nunes

V (φ) = V0(exp(νφ) + exp(υφ)); ν, υ =
const ≥ 0

Barreiro et al.

(2000)

Albreht-Skordis V (φ) = V0((φ−B)2 +A) exp(−µφ); A, B =
const ≥ 0, µ = const > 0

Albreht & Skordis

(2000)

Ur�ena-L�opez-

Matos

V (φ) = V0 sinh
m(ξMplφ); ξ = const > 0,

m = const < 0
Urena-Lopez &

Matos (2000)

Inverse exponent

potential

V (φ) = V0 exp(Mpl/φ) Caldwell & Linder

(2005)

Chang-Sherrer V (φ) = V0(1 + exp(−τφ)); τ = const > 0 Chang & Sherrer

(2016)

Table 6.1: The list of the dark energy quintessene potentials.
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The energy-momentum tensor of the quintessene salar �eld, Tµν , is de�ned as:

Tµν = 2
∂Lφ
∂gµν

− gµν∂Lφ. (6.14)

Substituting Eq. (6.13) into Eq. (6.14), we get:

Tµν = ∂µφ∂νφ− gµν

[

1

2
gαβ∂αφ∂βφ− V (φ)

]

. (6.15)

The omponents of the quintessene salar �eld energy-momentum tensor, Tµν , is de�ned as:

T00 ≡ ρφ =
1

2
φ̇2 + V (φ), (6.16)

T0i = 0, (6.17)

Tij = 0 (i 6= j), (6.18)

Tii ≡ pφ =
1

2
φ̇2 − V (φ), (6.19)

where ρφ and pφ are the energy density and the pressure of the salar �eld under the as-

sumption that this salar �eld is desribed by the ideal barotropi �uid model

8

.

The omponents of the salar �eld energy-momentum tensor an be represented in the

matrix form, as in Eq. (2.47). The EoS parameter for the quintessene salar �eld is de�ned

as:

wφ ≡ pφ
ρφ

=
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
. (6.20)

The Klein-Gordon equation of motion for the quintessene salar �eld an be obtained by

varying the ation in Eq. (6.12), where the Lagrangian density is de�ned by Eq. (6.13):

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= 0, (6.21)

here the overdots denote the derivatives with respet to physial time, t.

The in�uene of the salar �eld, φ, on the dynamis of the universe is re�eted in the

6

The Ferreira-Joye potential was investigated earlier by Luhin and Matarrese, Ref. (Luhin & Matar-

rese (1985)), as well as by Ratra and Peebles, Ref. (Ratra & Peebles (1988a)), although the omplete detailed

desription of the model was given by Ferreira and Joye, Ref. (Ferreira & Joye (1998)).

7

In Table 6.1 and in Table 6.2, the model parameter, V0, has a dimension of GeV4
. This model parameter

is related to the dark energy density parameter at the present epoh.

8

The barotropi �uid is a �uid whose density depends only on the pressure.
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�rst Friedmann's equation:

H = H0(Ωr0a
−4 + Ωm0a

−3 + Ωφ(a))
1/2, (6.22)

where Ωφ(a) is an energy density parameter of the salar �eld depending on time. In many

ways, the evolution of the funtion Ωφ(a) is determined by the form of the salar �eld

potential, V (φ).

Depending on the shape of the potentials, the quintessene models are subdivided into

the thawing models and the freezing models, Ref. (Caldwell & Linder (2005)). On the wφ −
dwφ/d ln a phase spae, the thawing and the freezing salar models an be loated at the

stritly designated regions for eah of them, see Fig. (6.3) (left panel). At the early stages of

Figure 6.3: Left panel: the oupation of the thawing and the freezing salar �elds in the

wφ − dwφ/d ln a phase spae. (Figure from Ref. (Caldwell & Linder (2005))) Right panel:

the regimes of the quik rolling down and the slow rolling down for the freezing salar �eld,

φ, to the minimum of its potential.

the evolution of the universe, the thawing salar �eld was too suppressed by the retarding

e�et of the Hubble expansion, whih represented by the term, 3Hφ̇, in Eq. (6.21)). Thereby,

the salar �eld evolution happened muh slower ompared to the Hubble expansion rate. The

result of the overwhelming e�et of the Hubble expansion on the thawing salar �eld is the

freezing of this salar �eld.

This �eld manifests itself as the vauum energy with the EoS parameter wφ = −1. The

Hubble expansion rate, H(a), is a dereasing funtion over time. After the Hubble expansion

rate reahes the value of H <
√

∂2V (φ)/∂t2, the salar �eld begins to roll to the minimum

of its potential. This leads to the fat that the value of the EoS parameter for the salar

�eld, wφ, inreases over time and beomes wφ > −1.
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The salar �eld in the freezing models is always suppressed (it is damped), i.e., H >
√

∂2V (φ)/∂t2. There are the fast and slow rolling regimes for the freezing models. The

salar �eld equation of motion, Eq. (6.21), desribes: the fast rolling regime (with 3Hφ̇ <

∂V (φ)/∂t), therefore, φ̈≫ V (φ)), or the slow rolling regime (for 3Hφ̇ < ∂V (φ)/∂t) depend-

ing on the ratio of the term 3Hφ̇ and the term ∂V (φ)/∂t. In the slow-roll regime, the

salar �eld tends to minimize its potential and almost does not hange over time, φ̈ ≪ V (φ),

therefore, from Eq. (6.20), it follows that wφ ≈ −1, see Fig. (6.3) (right panel).

The freezing salar �eld models have the so-alled traking solutions. Energy density for

the freezing salar �eld models is almost onstant over time. The ontribution of this energy

density to the total energy density of the universe, both at the radiation domination epoh

and at the matter domination epoh, is almost negligible. Therefore, the salar �eld energy

density remains subdominant at these epohs. It traks �rst the radiation energy density

and then the matter energy density. The radiation energy density and the matter energy

density derease over time due to the universe expansion. The salar �eld energy density

inreases over time. Eventually, it beomes the dominant omponent and begins to behave

as a omponent with the negative e�etive pressure. That is manifested in the aelerated

expansion of the universe at the later stages of the universe evolution.

6.3.2 Phantom Salar Field

The Lagrangian density for the phantom salar �elds is desribed by the equation:

Lφ = −1

2
gµν∂µφ∂νφ− V (φ). (6.23)

The inomplete list of the phantom potentials is given in Table 6.2.

The energy-momentum tensor for the phantom salar �eld, Tµν , is de�ned as:

Tµν = −2
∂Lφ
∂gµν

− gµν∂Lφ. (6.24)

Substituting Eq. (6.23) into Eq. (6.24), we get:

Tµν = −∂µφ∂νφ− gµν

[

1

2
gαβ∂αφ∂βφ− V (φ)

]

. (6.25)

The omponents of the energy-momentum tensor for the phantom salar �eld, Tµν , are
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Name Form Referene

Fifth power V (φ) = V0φ
5

Sherrer & Sen

(2008a)

Inverse square power V (φ) = V0φ
−2

Sherrer & Sen

(2008a)

Exponent V (φ) = V0 exp(βφ), β = const > 0 Sherrer & Sen

(2008a)

Quadrati V (φ) = V0φ
2

Dutta & Sherrer

(2009)

Gaussian V (φ) = V0(1− exp(φ2/σ2)),σ = const Dutta & Sherrer

(2009)

pseudo-Nambu-

Goldstone boson (pNGb)

V (φ) = V0(1−cos(φ/κ)), κ = const > 0 Frieman et al.

(1995)

Inverse hyperboli osine V (φ) = V0(cosh(ψφ))
−1
, ψ = const > 0 Dutta & Sherrer

(2009)

Table 6.2: The list of the dark energy phantom potentials.

represented as:

T00 ≡ ρφ = −1

2
φ̇2 + V (φ), (6.26)

T0i = 0, (6.27)

Tij = 0 (i 6= j), (6.28)

Tii ≡ pφ = −1

2
φ̇2 − V (φ). (6.29)

The EoS parameter for the phantom salar �eld is de�ned as:

wφ ≡
pφ
ρφ

=
−φ̇2/2− V (φ)

−φ̇2/2 + V (φ)
. (6.30)

The Klein-Gordon equation of motion for the phantom salar �eld:

φ̈+ 3Hφ̇− ∂V (φ)

∂φ
= 0. (6.31)

6.4 Coupled Models of Matter and Dark Energy

As it was mentioned earlier, one of the unresolved problems of modern osmology is the

problem of oinidene in the standard ΛCDM model. Due to the fat that the dark energy

density and the matter energy density in the modern universe have the same order, it an

be assumed that the matter and dark energy somehow interat with eah other.
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In the oupled models between the matter and dark energy, the transformation of dark

energy and the energy of the matter into eah other is onsidered. The interation between

the matter and dark energy is desribed by the following modi�ed ontinuity equations for

the matter and dark energy, respetively, as:

ρ̇m + 3Hρm = δcouple, (6.32)

ρ̇φ + 3H(ρφ + pφ) = −δcouple, (6.33)

where ρm is the matter energy density; ρφ and pφ are the energy density and the pressure

of dark energy represented as the salar �eld; δcouple is the oupling oe�ient between the

matter and dark energy.

In the interation models between the matter and dark energy, the following forms of the

oupling oe�ient, δcouple, are used, Refs. (Amendola (2000), Zimdahl & Pavon (2001)):

δcouple = nQρmφ̇, (6.34)

δcouple = αH(ρm + ρφ), (6.35)

where n =
√
8πG; α and Q are the dimensionless onstants. Aording to the Plank 2015

data, Ref. (Ade et al. (2016)), Q < 0.1.

The oupling models of the matter and dark energy are divided into two types.

6.4.1 Coupling First Type

The oupled models of the matter and dark energy of the �rst type are haraterized by the

exponential potential and the linear interation determined by the interation oe�ient,

whih is presented in Eq. (6.34), Ref. (Amendola (2000)).

The oupled quintessene salar �eld equation is:

φ̈+ 3Hφ̇− ∂V (φ)

∂φ
= −nQρmφ̇, (6.36)

where V (φ) = V0e
−nλφ

is a salar �eld potential and λ is a model parameter.

The oupled ontinuity equation for dark energy:

ρ̇φ + 3H(ρφ + pφ) = −nQρmφ̇. (6.37)
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The matter energy density evolves as:

ρ̇m + 3Hρm = nQρm ⇒ ρm = ρm0a
−3enQφ. (6.38)

6.4.2 Coupling Seond Type

For the seond type of the oupled models, the potential and the dynamis of the interation

between the matter and dark energy are onstruted under the ful�llment of the requirement

ρm/ρDE=onst, Ref. (Zimdahl & Pavon (2001)).

The oupled equation, Eq. (6.33), is equivalent to:

φ̇
[

φ̈+ 3Hφ̇− ∂V (φ)

∂φ

]

= −δcouple. (6.39)

The oupling oe�ient is de�ned as:

δcouple = −3HΠm = 3HΠφ, (6.40)

Πm = −Πφ =
ρmρφ
ρ

(γφ − 1), (6.41)

where γφ =
pφ+ρφ
ρφ

= φ̇2

ρφ
and ρ = ρm + ρφ.

The ontinuity equations for the matter and dark energy have the form:

ρ̇m + 3H(ρm +Πm) = 0, (6.42)

ρ̇φ + 3H(ρφ + pφ +Πφ) = 0. (6.43)

The form of the salar �eld potential is onstruted as follows:

V (φ) =
1

6πG

(

1− γφ
2

) 1 + r

(γφ + r)2
1

t2
⇒ ∂V (φ)

∂φ
= −λV (φ), (6.44)

where r ≡ ρm
ρφ

=onst and λ =
√

24πG
γφ(1+r)

.

From Eq. (6.44) it follows that the potential has the exponential form:

V (φ) = V0e
−λ(φ−φ0). (6.45)

The signi�ant drawbak of this model is the absene of the onvining explanation for the

onset of the interation of dark energy and the matter at the transition epoh from the
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deelerated to aelerated expansion of the universe.

6.5 Chevallier-Polarsky-Linder Parametrization

The EoS parameters in the time-dependent models of dark energy are modeled as: p = w(a)ρ.

This type of parametrization is alled the wCDM parametrization

9

. This parametrization

has no physial motivation. The appliation of the wCDM parametrization is typially used

as an ansatz in data analysis for the quantifying of the time-dependent dark energy models.

The parametrization of the EoS parameter, w(a), is used to distinguish the di�erent dark

energy models. In partiular, this approah an be used to distinguish the ΛCDM model

from the other dark energy models at the present epoh.

The time-dependent EoS parameter in the dark energy models is often haraterized by

the Chevallier-Polarsky-Linder (CPL) w0−wa parametrization, Refs. (Chevallier & Polarski

(2001), Linder (2003)):

w(a) = w0 + wa(1− a), (6.46)

here w0 = w(a = 1) and wa = (dw/dz)|z=1 = −a−2(dw/da)|a=1/2. Although this parametriza-

tion is very simple, it is �exible enough to aurately desribe the EoS parameters in the most

dark energy models. The CPL parametrization annot desribe the arbitrary dark energy

models with good auray (up to the several perent) in a wide redshift range, Ref. (Linder

(2003)).

The normalized Hubble parameter, expressed through the CPL parametrization of the

EoS parameter, w(a), an be written as:

E(a) = (Ωr0a
−4 + Ωm0a

−3 + ΩΛa
−3(1+w0+wa)e−3wa(1−a))1/2. (6.47)

9

Dark energy is sometimes haraterized only by the EoS parameter and the orresponding osmologial

models are alled the wCDM models, Ref. (Barger et al. (2007)).
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Chapter 7

Dynamis and Growth Rate in the

Ratra-Peebles φCDM Model

This hapter is based on the results of the researh presented in the papers, Ref. (Avsajan-

ishvili et al. (2014)) and Ref. (Avsajanishvili et al. (2017)).

In this hapter, the Ratra-Peebles inverse-power-law potential, V (φ) ∝ 1/φα, is inves-

tigated in detail. This potential was �rst onsidered by Jim Peebles and Bharat Ratra in

1988, Refs. (Ratra & Peebles (1988b), Ratra & Peebles (1988a)). The salar �eld model

with the Ratra-Peebles potential is the simplest quintessene salar �eld φCDM model of

the freezing type. This model was proposed to solve the �ne-tuning problem in the standard

ΛCDM model.

7.1 Basi Equations

The Ratra-Peebles potential has the form:

V =
κ

2
M2

plφ
−α, (7.1)

here α is a positive model parameter. The value of this parameter a�ets the steepness of

the potential, thereby determining the shape of the potential. In our studies, we onsider the

values of the α parameter in the range of 0 < α ≤ 0.7. This range orresponds to modern

osmologial observations, Ref. (Samushia (2009)). For the value of the model parameter,

α=0, the φCDM Ratre-Peebles model is redued to the ΛCDM model. The positive κ

parameter

1

is de�ned by the parameter α.

1

The alulation of the κ parameter is presented below.
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The parameter κ relates to the mass sale of the partiles, Mφ, as:

Mφ ∼
(κM2

pl

2

)
1

α+4
. (7.2)

We onsider a �at and isotropi universe, whih is desribed by the spaetime FLRW metri:

ds2 = dt2 − a(t)2dx2. (7.3)

The Klein-Gordon equation of motion in the Ratra-Peebles model has the form:

φ̈+ 3Hφ̇− 1

2
καM2

plφ
−(α+1) = 0. (7.4)

The energy density, the pressure and the EoS parameter in the Ratra-Peebles model are

de�ned, respetively, as:

ρφ =
M2

pl

32π

(

φ̇2 + κM2
plφ

−α
)

, (7.5)

pφ =
M2

pl

32π

(

φ̇2 − κM2
plφ

−α
)

, (7.6)

wφ =
φ̇2 − κM2

plφ
−α

φ̇2 + κM2
plφ

−α
. (7.7)

From Eq. (7.7) it follows that the requirement for the ful�llment of the ondition, w0 ≃ −1,

the following restrition imposes, φ̇2/2 ≪ V (φ). The Ratra-Peebles φCDM salar �eld model

has the traker solutions. This means that the salar �eld energy density, ρφ, at the early

epohs of the universe evolution, �rst traks the radiation energy density and then the matter

energy density, while remaining a subdominant. Only in late times the energy density of the

salar �eld, ρφ, beomes dominant.

The value of the EoS parameter for the salar �eld Ratra-Peebles model at the radiation

domination epoh or at the matter domination epoh an be approximately de�ned as,

Ref. (Zlatev et al. (1999)):

wφ ≈
α
2
wbac − 1

1 + α
2

, (7.8)

where wbac is the bakground EoS parameter at the radiation domination epoh or at the

matter domination epoh. For the radiation domination epoh wbac = 1/3 and for the matter

domination epoh wbac = 0. The approximation, whih is presented in Eq. (7.8), is true for

ρbac ≫ ρφ, where ρbac is a value of the bakground energy density.
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The salar �eld model with the Ratra-Peebles potential has both the traker solutions and

the attrator solutions

2

. This means that the evolution of the salar �eld energy density, ρφ,

in the Ratra-Peebles model is insensitive to the initial onditions, (φin, φ̇in), and the solutions

for the wide range of the initial onditions onverge into the same ommon solution at the

present epoh.

The energy density parameter and the �rst Friedmann's equation for the Ratra-Peebles

potential are de�ned, respetively, as:

Ωφ(a) =
1

12H2
0

(

φ̇2 + κM2
plφ

−α
)

, (7.9)

E(a) =
(

Ωr0a
−4 + Ωm0a

−3 +
1

12H2
0

(

φ̇2 + κM2
plφ

−α
))1/2

. (7.10)

7.1.1 Calulation of the Model Parameter κ and the Initial Condi-

tions

The alulations of the κ parameter and the initial onditions are based on: Ref. (Farooq

(2013), Se. 3.6.3,) and Ref. (Avsajanishvili et al. (2014), Appendix À).

In the salar �eld equation, Eq. (7.4), we represent the sale fator, a(t), and the salar

�eld, φ(t), in the form of the power law:

a(t) = a⋆

( t

t⋆

)n

, φ(t) = φ⋆

( t

t⋆

)p

, (7.11)

here a⋆ ≡ a(t⋆) and φ⋆ ≡ φ(t⋆) are the values of the sale fator and the salar �eld at time,

t = t⋆, respetively. A parameter, p, is assoiated with the parameter, α, by the following

expression, p = 2/(2 + α).

As a result:

φα+2
⋆ =

(α + 2)2

4(6n+ 3nα− α)
καM2

plt
2
⋆. (7.12)

Using the equations, Eq. (7.11), Eq. (7.12), Eq. (7.5) and Eq. (7.10), we �nd:

ρ =
3n

8π

(Mpl

t⋆

)2 φ2
⋆

α(α + 2)

( t

t⋆

)
−2α
α+2

, (7.13)

(n

t

)2

=
8π

3M2
pl

ρ, (7.14)

where ρ ≡ ρφ is the dark energy density that dominates in the universe at the moments of

2

An attrator is a set of the numerial values toward whih a system tends to evolve for a wide variety

of the starting onditions of this system.
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time, t < t⋆. Assuming ρ(t) = ρ⋆(t/t⋆)
β
, we get β = −2α/(α + 2). On the other hand,

onsidering that the dominant dark energy omponent is represented as ρ⋆, at the moment

of time a = a⋆:

ρ = ρ⋆

(a⋆
a

)
2
n
, (7.15)

where n = 1/2 and n = 2/3 are the values of the parameter n for the radiation domination

epoh and the matter domination epoh, respetively.

In order to get an expression for, φ2
⋆, we �nd 1/t2 from Eq. (7.14). Substituting Eq. (7.15)

into Eq. (7.13), assuming a = a⋆ and ρ = ρ⋆. Comparing the obtained result with Eq. (7.12),

we �nd:

κ =
32π

3nM4
pl

(6n+ 3nα− α

α+ 2

)

[nα(α+ 2)]
α
2 ρ⋆. (7.16)

Plugging Eq. (7.16) into Eq. (7.12) and using Eq. (7.14), we get:

φ⋆ = [nα(α + 2)]
1
2 , (7.17)

φ = [nα(α + 2)]
1
2

( a

a⋆

)
2

n(α+2)

. (7.18)

Substituting the value of n = 1/2 into Eq. (7.18) and assuming a⋆ = a0, we an obtain

the equations for the initial onditions at the radiation domination epoh, Eq. (7.22) and

Eq. (7.23).

Plugging Eq. (7.18) into Eq. (6.21):

κ =
4n

M2
plt

2
⋆

(6n+ 3nα− α

α + 2

)

[nα(α + 2)]α/2. (7.19)

Sine Eq. (7.16) must be true for an arbitrary moment of time, t⋆, we assume t⋆ =M−1
pl .

As a result, for the values n = 1/2 and n = 2/3, we get:

κ(n = 1/2) =
(α + 6

α + 2

)[1

2
α(α+ 2)

]α/2

, (7.20)

κ(n = 2/3) =
8

3

(α + 4

α + 2

)[2

3
α(α+ 2)

]α/2

. (7.21)

7.1.2 Initial Conditions

We numerially integrated the system of the equations, Eq. (7.4) and Eq. (7.10). The initial

onditions were established at the radiation domination epoh, for the moment ain = 5 ·10−5
.

The alulations were arried out to the present epoh, a0 = 1. Despite the fat that
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the Ratra-Peebles potential has an attrator solution, for the best numerial onvergene

we hose a spei� solution at the radiation dominated epoh with the following initial

onditions:

φin =

[

1

2
α(α+ 2)

]1/2

t
4

α+2

in , (7.22)

φ̇in =
( 8α

α + 2

)1/2

t
2−α
2+α

in . (7.23)

The value of the κ parameter was obtained from Eq. (7.20). In our alulations, we applied

the urrent values of the matter energy density parameter and the dark energy density pa-

rameter, the redued Hubble parameter, respetively: Ωm0 = 0.315, Ωφ0 = 0.685, h = 0.673.

These results were obtained by the Plank 2013 ollaboration, Ref. (Ade et al. (2014)).

7.2 Dynamis and Energy in the Ratra-Peebles φCDM

Model

We analyzed the dependene of the salar �eld, φ, and its time derivative, φ̇, depending

on the model parameter α. The results of this analysis are presented in Fig. (7.1) and in

Fig. (7.2). In the φCDM model, a larger value of the α parameter indues a stronger time

Figure 7.1: Left panel: dependene of the salar �eld, φ(a), on the value of the parameter

α. Right panel: dependene of the time derivative of the salar �eld, φ̇(a), on the value of

the parameter α.

dependene of the EoS parameter w and its sale fator derivatives, dw/da. As expeted, in

the ΛCDM model the value of w is equal to minus one and the values of φ, φ̇ and dw/da are

equal to zero.
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Figure 7.2: Left panel: dependene of the EoS parameter, w(a), on the value of the parameter
α. Right panel: dependene of the sale fator derivative of the EoS parameter, w′(a), on
the value of the parameter α.

We applied the CPL parametrization to the e�etive EoS parameter, w(a), in the Ratra-

Peebles φCDM model, Eq. (6.46). This parametrization provides a good approximation in

the sale fator range, a ∈ (0.98; 1), see Fig. (7.3) (left panel). We investigated the evolution

Figure 7.3: Left panel: the EoS parameter, w(a), for the di�erent values of the parameter α
along with the preditions omputed from the CPL parametrization with the orresponding

best �t values for w0 and wa. Right panel: the normalized Hubble expansion rate, E(a), for
the di�erent values of the parameter α.

of the normalized Hubble parameter, E(a), whih determines the expansion rate of the

universe for the di�erent values of the α parameter in the φCDM model. The results of

this study are presented in Fig.(7.3) (right panel). With an inrease in the value of the α

parameter, the universe is expanding faster. The slowest expansion rate orresponds to the

ΛCDM model.

The relationship between the dynamis and the energy omponents in the universe in
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Figure 7.4: Left panel: the seond derivative of the sale fator, ä, for the di�erent values of
the parameter α. Right panel: the matter energy density parameter, Ωm(a), (dashed lines)

and the salar �eld density parameter, Ωφ(a), (solid lines) as funtions of the sale fator for
the di�erent values of the parameter α.

the φCDM model is shown in Fig. (7.4). With the same value of the α parameter, the dy-

nami dominane of dark energy begins earlier, see Fig. (7.4) (left panel), than the energeti

dominane, see Fig. (7.4) (right panel). With an inrease in the value of the α parameter,

the energeti dominane of dark energy begins earlier, see Fig. (7.4) (right panel).

7.3 Struture Growth in the Ratra-Peebles φCDMModel

The evolution of the matter density �utuations depends on the given osmologial model

of dark energy. The in�uene of dark energy on the large-sale struture evolution in the

universe is due to its in�uene on the expansion rate of the universe, E(a). In turn, the

expansion rate of the universe a�ets the growth of the matter density �utuations. We

investigated the evolution of a large-sale struture in the expanding universe in the Ratra-

Peebles φCDM model. To alulate the growth of the matter density �utuations, we used

the linear perturbation equation, Eq. (4.31). The evolution of the linear growth rate funtion,

D(a) = δ(a)/δ(a0), depending on the α parameter is shown in Fig. (7.5) (left panel). With

an inrease in the value of the α parameter the linear growth fator, D(a), beomes more

dependent on time.

As it was disussed earlier, with an inrease in the value of the α parameter, the Hubble

expansion ours faster, see Fig. (7.3) (right panel), while the domination of the salar

�eld energy begins earlier, see Fig. (7.4) (right panel). The growth of the matter density

�utuations ours only during the matter dominated epoh, Ref. (Frieman et al. (2008)),
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Figure 7.5: Left panel: the linear growth rate, D(a), for the di�erent values of the parameter
α. Right panel: the growth rate, f(a), (solid lines) for the di�erent values of the parameter

α along with the preditions Ωγm(a) (dashed lines), omputed for the orresponding best �t

values of the parameter γ.

therefore, with an inrease in the value of the α parameter, less time remains for the growth

of the matter density �utuations. To ahieve the same amplitude of the matter density

�utuations at present epoh, δ(a0), in the salar �eld Ratra-Peebles φCDM model with a

larger value of the α parameter is required a larger initial amplitude for the matter density

�utuations. Thus, the salar �eld with the larger value of the α parameter indues a larger

amplitudes of the matter �utuations at the beginning of their formation and at the all

subsequent moments of their growth until the present epoh.

7.4 Growth Index in the Ratra-Peebles φCDM Model

We investigated how well the power-law parametrization of the growth rate of the mat-

ter density �utuations, f(a), and the frational matter density parameter, Ωm(a), whih

is desribed in Eq. (4.35), an be applied in the Ratra-Peebles φCDM model. Provided

that instead of the e�etive growth index, γ(a), we applied the value of the Linder γ-

parametrization, γ, whih is de�ned in Eq. (4.37).

The results of these investigations are shown in Fig. (7.5) (right panel). The value of the

Linder γ-parametrization, γ, in the φCDM model depends on the value of the α parameter,

herewith the value of the Linder γ-parametrization, γ, inreases with an inrease in the value

of the α parameter. The value of the Linder γ-parametrization, γ, is slightly higher in the

φCDM model than the value of the Linder γ-parametrization, γ, in the ΛCDM model, for

whih γ ≈ 0.55.
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The growth rate of the matter density �utuations ours slower with an inrease in the

value of the parameter α, see Fig. (7.5) (right panel). This is a result of the fat that the

Hubble expansion and the growth rate of the matter density �utuations are interrelated and

oppositely direted proesses. The faster Hubble expansion, whih orresponds to a larger

value of the α parameter, see Fig. (7.3) (right panel), leads to a greater suppression of the

growth rate of the matter density �utuations.

We explored the appliability of the Linder γ-parametrization for large redshifts. We

found, that this parametrization an be applied in the range of redshifts, z ∈ (0; 5) and it is

not appliable for the larger values of redshift, see Fig. (7.6) (left panel).

Figure 7.6: Left panel: the growth rate, f(a), for the di�erent values of the parameter α
(solid lines) along with the preditions Ωγm (dashed lines), omputed for the orresponding

best �t values of the γ parameter in the range of redshifts, z ∈ (0; 10). Right panel: the γ(a)
funtion for the di�erent values of the parameter α in the range of redshifts, z ∈ (0; 10).

We studied the behavior of the e�etive growth index funtion, γ(a), was presented in

Eq. (4.36), at large redshifts, see Fig. (7.6) (right panel). We found that in a ertain range of

salar fator values, the funtion of the e�etive growth index, γ(a), is almost independent

of the value of the salar fator. The weak dependene of the e�etive growth index funtion

on the value of the salar fator ours in the range of the values of the salar fator: in the

ΛCDM model, a ∈ (0.25; 1) (or z ∈ (0; 3)); in the Ratra-Peebles φCDM model, a ∈ (0.18; 1)

(or z ∈ (0; 5)). Suhwise, with an derease in the value of the parameter α, the weak

dependene of the e�etive growth index funtion eases later in the φCDM model. Thus, in

the ΛCDM model, the appliability of the Linder γ-parametrization is ompleted later than

in the φCDM model. Comparing Fig. (7.6) (left panel) and Fig. (7.6) (right panel), we see

that the essation of the Linder γ-parametrization for the di�erent values of the parameter α

oinides with the termination of the weak dependene of the e�etive growth index funtion,
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γ(a), on the salar fator. Thus, only in the range of the values of the salar fator at whih

the e�etive growth index funtion almost does not depend on the value of the salar fator,

the Linder γ-parametrization an be applied.

7.5 Conlusion

We srupulously investigated the various properties of the Ratra-Peebles φCDM model in

omparison with the ΛCDM model. In partiular, we studied the dynamis of the Ratra-

Peebles φCDM model with dependene on the model parameter α. Sine the larger value of

the parameter α inreases, the steepness of the potential and, thereby, it indues the stronger

time dependene of the salar �eld, φ, its time derivatives φ̇, as well as the EoS parameter,

w, and its sale fator derivatives, dw/da.

We showed that the Ratra-Peebles φCDM model di�ers from ΛCDM model in number

of harateristis. These harateristis are generi to a lass of the freezing quintessene

φCDM models, and these harateristis do not depend on the value of the model parameter

α:

• In the φCDM models, the expansion rate of the universe, E(a), is always greater than

the expansion rate of the universe in the ΛCDM model.

• The moment of dark energy domination in the φCDM models starts earlier than in the

ΛCDM model (provided that other osmologial model parameters are �xed).

• The Ratra-Peebles φCDM model and the ΛCDM model di�er in their preditions for

the growth rate of the matter density �utuations in the universe: the salar �eld model

predits a slower growth rate of the matter density �utuations than the ΛCDM model.

• We studied the appliability of the Linder γ- parametrization in the Ratra-Peebles

φCDM model. We found that this parametrization works well in this model. The

value of the growth index in the Linder γ-parametrization in the Ratra-Peebles φCDM

model inreases with an inrease in the value of the model parameter α. The value of

the growth index in the Linder γ-parametrization in the φCDM model is slightly larger

than in the ΛCDM model.

• We de�ned the boundaries of appliability in the Linder γ-parametrization in the

Ratra-Peebles φCDMmodel, z ∈ (0; 5). The appliability of the Linder γ-parametrization

eases later in the ΛCDM model than in the φCDM model.
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Chapter 8

Constraints on the Model Parameters in

the Ratra-Peebles Model

8.1 Constraints on the Model Parameters in the Ratra-

Peebles Model from the Growth Rate Data

We arried out the onstraints on the α and Ωm parameters in the Ratra-Peebles φCDM

model using a ompilation of the growth rate observations obtained from, Ref. (Gupta et al.

(2012)). These data are presented in Table 8.1:

fobs z σ

0.51 0.15 0.11

0.60 0.22 0.10

0.654 0.32 0.18

0.700 0.35 0.18

0.700 0.41 0.07

0.75 0.55 0.18

0.730 0.60 0.07

0.910 0.77 0.36

0.700 0.78 0.08

0.90 1.40 0.24

1.460 3.00 0.29

Table 8.1: Growth rate data, fobs; redshift z; 1σ unertainty of the growth rate data.

To get the theoretial values of the growth rate, fth, we numerially solved the linear

perturbation equation, Eq. (4.31), for a series values of α and Ωm parameters. After that we
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alulated the funtion χ2(α,Ωobs) as:

χ2(α,Ωobs) =
[fobs − fth(α,Ωm)]

2

σ2
, (8.1)

here σ is the standard deviation of the growth rate data. We alulated the likelihood

funtion, Lf(α,Ωm), assuming that it obeys the Gaussian distribution:

Lf(α,Ωm) ∝ exp[−χ2(α,Ωm)/2]. (8.2)

The results of these alulations are presented in Fig. (8.1). The 1σ and 2σ on�dene level

Ωm

α
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Figure 8.1: 1σ and 2σ on�dene level ontours on the parameters Ωm and α in the φCDM
model. This onstraints are obtained from the growth rate data, Ref. (Gupta et al. (2012)).

ontours in the α - Ωm phase spae are strongly degenerated with respet to the onstraint

on the α parameter. Thus, the observations on the growth rate alone annot simultaneously

restrit both parameters, α and Ωm, in the Ratra-Peebles φCDM model. However, we found

the onstraint on the Ωm parameter in the ΛCDM model and in the Ratra-Peebles φCDM

model, using only the growth rate observations. If we �x the ordinate with α = 0, see

Fig. (8.1), whih orresponds to the spatial �at ΛCDM model, we will obtain the best �t

value Ωm = 0.278± 0.03. This value is within of the 1σ on�dene level of the Plank 2013

data, Ref. (Ade et al. (2014)). In the ΛCDM model, the values of 0.18 ≤ Ωm ≤ 0.36 are
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ontained at the 2σ on�dene level, see Fig. (8.1). In the Ratra-Peebles φCDM model, the

values of Ωm < 0.18 are outside of the 2σ on�dene level, but the values of Ωm ≥ 0.36 are

still allowed for the large values of the model parameter α, see Fig. (8.1).

8.2 Constraints on the Model Parameters in the Ratra-

Peebles Model from the BAO Data

To eliminate the degeneration between the model parameters α and Ωm, whih was obtained

as a result of applying the onstraints from the growth rate data, f(a), we arried out

the additional onstraints using BAO data with small redshifts, whih were taken from,

Ref. (Giostri et al. (2012)). We also followed the approah used in the paper, Ref. (Giostri

et al. (2012)).

We alulated the angular diameter distanes:

dA(z, α,Ωm, H0) =

∫ z

0

dz′

H(z′, α,Ωm, H0)
(8.3)

and the distane sale (dilaton sale):

DV(z, α,Ωm, H0) = [d2A(z, α,Ωm, H0)z/H(z, α,Ωm, H0)]
1/3. (8.4)

We onstruted a ombination of the angular diameter distane, dA(zdec), and the distane

sale, DV(zBAO), Ref. (Eisenstein et al. (2005)):

η(z) ≡ dA(zrec)/DV(zBAO). (8.5)

The expression in Eq. (8.5) is the BAO/CMBR onstraints.

The BÀÎ and ÑÌÂR observations are dependent on eah other. Assuming that these

data obey the Gaussian distribution, we alulated the funtion χ2
B using the following

ovariant inverse matrix, C−1
:

χ2
B = XTC−1X. (8.6)

We also alulated the likelihood funtion by applying the results from Eq. (8.6):

LB(α,Ωm, H0) ∝ exp(−χ2
B/2), (8.7)
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where X = ηth − ηobs.

The value of a vetor, X, is alulated as:

X =















































dA(zrec)

DV(0.106)
− 30.95

dA(zrec)

DV(0.2)
− 17.55

dA(zrec)

DV(0.35)
− 10.11

dA(zrec)

DV(0.44)
− 8.44

dA(zrec)

DV(0.6)
− 6.69

dA(zrec)

DV(0.73)
− 5.45















































. (8.8)

The inverse ovariane matrix for the observations, C−1
, is de�ned as:

C−1 =





























0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738

−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751

−0.164945 −2.45497 9.55916 −0.128187 −0.410404 −0.447574

−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437

−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441

−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022





























.

(8.9)

In the Gaussian distribution, we used the prior value of the Hubble onstant, H0 = 74.3±2.1,

to restrit the H0 parameter in the likelihood funtion, LB
, Ref. (Freedman et al. (2012)).

The likelihood funtion obtained for the growth rate funtion, Lf
, and the likelihood funtion

obtained for BAO/CMBR onstraints, LB
, are independent of eah other, therefore, the

ombined likelihood funtion, L, is simply a multipliation of the given likelihood funtions,

aording to the results from Eq. (5.4): L = Lf · LB
.

The results of our alulations are presented in Fig. (8.2). After onduting the BAO/CMBR

analysis, we reeived the new onstraints on the Ωm and α model parameters. The model

parameter Ωm is restrited within 0.26 < Ωm < 0.34 at the 1σ on�dene level. For the

parameter α we got a range of the values, 0 ≤ α ≤ 1.30, at the 1σ on�dene level, see

Fig. (9.1).
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Figure 8.2: 1σ and 2σ on�dene level ontours on the parameters Ωm and α in the φCDM
model. These onstraints are obtained after adding BAO/CMBR measurements of the prior

distanes, Ref. (Giostri et al. (2012)).

8.3 Conlusion

To onstrain the parameters in the Ratra-Peebles φCDM salar �eld model, we used a

ompilation of the observations: the growth rate data and BAO data with the prior distanes

from the CMBR. Using only the growth rate data, there is a strong degeneray between the

values of the model parameters Ωm and α. It means that the larger values of the parameter α

are allowed with an inrease in the value of the parameter Ωm. The degeneray is eliminated

after ombining the onstraints on the growth rate data with the onstraints on the distane-

redshift ratio of the BAO data and the prior distane from the CMBR.

As a result, we reeived the onstraints on the model parameters in the Ratra-Peebles

φCDM model: Ωm = 0.30± 0.04 and 0 ≤ α ≤ 1.30 at the 1σ on�dene level. The best �t

value for the parameter α is α = 0.00.
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Chapter 9

Constraints on the Models Parameters

in the Quintessene and Phantom

φCDM Models

This hapter is based on the researh, whih was arried out in the paper, Ref. (Avsajanishvili

et al. (2018)).

We studied the quintessene (anonial salar �elds) and the phantom (non-anonial

salar �elds) salar �eld models in the ase of �at spaetime. There is still no �nal deision,

whih of these models is preferable, Refs. (Suzuki et al. (2012), Novosyadlyj et al. (2013),

Ade et al. (2014), Betoule et al. (2014), Ade et al. (2016)). We applied the predited

data, alulated for the upoming DESI experiment and studied the salar �elds models

ompared to the standard ΛCDM model. Our study is based on the omparison of data on

the expansion rate of the universe, the growth rate of the matter density �utuations and

the measurements of the angular diameter distane, whih will be obtained from the DESI

experiment.

9.1 De�nition of the Model Parameters and the Initial

Conditions

We studied the salar �eld models with 10 quintessential and 7 phantom potentials, a list

of whih is presented in Table 6.1 and in Table 6.2. All the salar �eld models presented in

these Tables have the same parameters Ωm0 and H0. In addition to these parameters, eah

salar �eld model has its own set of the extra model parameters that determine the shape
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and the strength of the potential, V (φ).

For eah potential, we numerially solved the system of the di�erential equations: the

Klein-Gordon equation of motion for the quintessene (the phantom) model, respetively

Eq. (6.21) (Eq. (6.31)), the �rst Friedmann's equation, Eq. (6.22) and then the perturbation

equation, Eq. (4.31), for a wide range of the free parameters and the initial onditions (φ0,

φ̇0) for the matter dominated epoh. Due to the fat that for all the potentials the ranges

of the initial onditions and the model parameters are unknown preisely, we developed a

method for de�ning these ranges. For eah potential, we found the plausible solutions, for

whih the following three riteria were simultaneously ful�lled:

1. The transition between the matter and dark energy equality (Ωm = Ωφ) happens relatively

reently, a ∈ (0.6; 0.8), see Fig. (7.4) (right panel).

2. The growth rate of the matter density �utuations, f(a), and the frational matter density,

Ωm(a), are parametrized by the Linder γ-parametrization, Eq. (4.37).

3. The EoS parameter predited by the di�erent dark energy models should be in the agree-

ment with the expeted urrent value of the EoS parameter (for the phantom models

w0 < −1; for the quintessene models −1 < w0 < −0.75, for the freezing type wa < 0

and for the thawing type wa > 0).

Despite the fat that the Ratra-Peebles potential has an attrator solution, for the best

numerial onvergene we hose a spei� solution at the matter dominated epoh with the

following initial onditions, Refs. (Ratra & Peebles (1988b), Farooq (2013), Avsajanishvili

et al. (2014)):

V0 =
8

3

(

α + 4

α + 2

)

[2

3
α(α + 2)

]α/2

, (9.1)

φin =

[

2

3
α(α+ 2)

]1/2

t
3

α+2

in , (9.2)

φ̇in =

[

6α

α + 2

]1/2

t
1−α
2+α

in . (9.3)

The initial value of the sale fator, ain ∝ t
2/3
in , was hosen at the matter domination epoh,

Eq. (2.101). In our alulations, we used the values of the model parameter α in the range,

α ≤ 0.7, Ref. (Samushia (2009)).

We applied the aforementioned phenomenologial method and found the following ranges

for eah potential: the allowed initial onditions and the model parameters, whih desribe
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the form and the strength of the potential. These ranges, along with the general free model

parameters Ωm0 and H0, are presented in Table 6.1 and Table 6.2. We used this data for

eah dark energy model as the initial onditions for the MCMC alulations.

Quintessene potentials Free parameters

V (φ) = V0M
2
plφ

−α H0(50÷ 90)
Ωm0(0.25÷ 0.32)

V0(3÷ 5)
α(10−6 ÷ 0.7)

V (φ) = V0 exp(−λφ/Mpl)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10÷ 103)

λ(10−7 ÷ 10−3)
φ0(0.2÷ 1.6)
φ̇0(79.8÷ 338.9)

V (φ) = V0(exp(Mpl/φ)− 1)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10÷ 102)

φ0(1.5÷ 10)
φ̇0(350÷ 850)

V (φ) = V0φ
−χ exp(γφ2/M2

pl)

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10

−2 ÷ 10−1)
χ(4÷ 8)

γ(6.5÷ 7)
φ0(5.78÷ 10.55)
φ̇0(680.6÷ 879)

V (φ) = V0(cosh(ςφ)− 1)g

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(5÷ 8)
ς(0.15÷ 1)

g(0.1÷ 0.49)
φ0(1.8÷ 5.8)
φ̇0(360÷ 685)

V (φ) = V0(exp(νφ) + exp(υφ))
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 12)

ν(6 ÷ 12)
φ0(0.014÷ 1.4)
φ̇0(9.4÷ 311)

V (φ) = V0((φ− B)2 + A) exp(−µφ)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(40÷ 70)
A(1÷ 40)

B(1÷ 60)
µ(0.2÷ 0.9)
φ0(5.8÷ 8.45)
φ̇0(681÷ 804.5)

V (φ) = V0 sinh
m(ξMplφ)

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 10)
m(−0.1 ÷−0.3)

ξ(10−2 ÷ 1)
φ0(0.5÷ 2.5)
φ̇0(190÷ 367)

V (φ) = V0 exp(Mpl/φ)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10

2 ÷ 103)

φ0(5.78÷ 10.55)
φ̇0(680.6÷ 879)

V (φ) = V0(1 + exp(−τφ))
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 102)

τ(10 ÷ 102)
φ0(0.01÷ 0.075)
φ̇0(9.4÷ 32)

Table 9.1: The list of the dark energy quintessene potentials and the free parameters.
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Phantom potentials Free parameters

V (φ) = V0φ
5

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10

−3 ÷ 10−2)

φ0(3.37÷ 3.94)
φ̇0(523÷ 563.6)

V (φ) = V0φ
−2

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(30÷ 50)

φ0(2.83÷ 5.15)
φ̇0(471.4÷ 600)

V (φ) = V0 exp(βφ)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 20)

β(0.08÷ 0.3)
φ0(0.2÷ 9.14)
φ̇0(79.8÷ 830.9)

V (φ) = V0φ
2

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 20)

φ0(0.67÷ 2.8)
φ̇0(191÷ 450)

V (φ) = V0(1− exp(φ2/σ2))
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(5÷ 30)

σ(5÷ 30)
φ0(0.67÷ 2.8)
φ̇0(191÷ 450)

V (φ) = V0(1− cos(φ/κ))
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 4)

κ(1.1÷ 2)
φ0(2.3÷ 3.37)
φ̇0(420÷ 500)

V (φ) = V0(cosh(ψφ))
−1

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10

−3 ÷ 102)

ψ(10−3 ÷ 1)
φ0(1.4÷ 2.3)
φ̇0(310÷ 420.7)

Table 9.2: The list of the dark energy phantom potentials and the free parameters.

9.2 MCMC Analysis for Study of the Dark Energy Mod-

els

We alulated the values of the normalized Hubble parameter for all the dark energy models,

the angular diameter distane and the growth rate in the redshift range, z ∈ (0.15; 1.85).

• The normalized Hubble parameter, E(z)

We alulated the values of the normalized Hubble parameter, E(z), from Eq. (6.22).

• The angular diameter distane, dA(z)

We omputed the angular diameter distanes using the equation:

dA(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
. (9.4)

This equation is a speial ase for the �at universe, it was obtained from Eq. (3.48).

• The ombination of the growth rate of the matter density �utuations and the matter

power spetrum amplitude, f(a)σ8(a)

The value of the growth rate of the matter density �utuations was found from Eq. (4.34).
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The matter power spetrum amplitude an be determined through the funtion σ8(a) ≡
D(a)σ8, where σ8 ≡ σ8(a0) is the rms linear �utuation in the mass density distribution

on the sale 8h−1
Mp. We �xed the value of σ8 to its urrent best �t ΛCDM value

of σ8 = 0.815 from the Plank 2015 data, Ref. (Ade et al. (2016)).

Sine the observations for the expansion rate of the universe, H(z), the growth rate of

the matter density �utuations, f(a)σ8(a), and the angular diameter distanes, DA(z), are

dependent on eah other, we alulated the ovariant matries for these measurements. We

followed the standard approah for alulating the Fisher matries, proposed in Ref. (Font-

Ribera et al. (2014)). We assumed 14000 sq. deg. of sky overage and the wavenumbers up

to kmax = 0.2 Mpc/h. Our varianes mathed the numbers in Table V of Ref. (Font-Ribera

et al. (2014)). We also aounted for the ovarianes between the measurements within

the same redshift bin. The DA(z) and H(z) measurements are negatively orrelated by

approximately 40%, while the orrelations with f(a)σ8(a) are below 10% for all the redshift

bins.

After onduting the MCMC analysis, we found that the values of the parameters or-

responding to the maximum probability are within of the prior ranges of these parameters

presented in Table 9.1 and Table 9.2. We found that there is no need to adjust the prior

ranges of the model parameters. The examples of the MCMC onstraints for the quintessene

Ratra-Peebles, the Golden-Wang-Steinhardt and the phantom pseudo-Nambu-Goldstone bo-

son potentials are shown in Figs. (9.1-9.3).

9.3 Bayesian Statistis

To assess the quality of the di�erent models and to distinguish them from eah other, we

applied the Akaike information riterion (AIC), Ref. (Akaike (1974)) and the Bayesian (or

Shwarz) information riterion (BIC), Ref. (Shwarz (1978)). The AIC and BIC infor-

mation riteria are the funtions of the number of estimated model parameters, N . The

information, whih is obtained by these riteria, omplement eah other.

The AIC and BIC are de�ned respetively as:

AIC = −2 lnLmax + 2k (9.5)

and

BIC = −2 lnLmax + k lnN, (9.6)
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Figure 9.1: The 2σ on�dene level ontour plots for various pairs of the free parameters (α,
Ωm0, h), for whih the φCDM model with the Ratra-Peebles potential V (φ) = V0M

2
plφ

−α
is

in the best �t with the ΛCDM model.

where Lmax ∝ exp(−χ2
min/2) is the maximum value of the probability funtion, k is the

number of observations.

We also onduted the Bayes evidene analysis. The Bayes evidene for the model with

a set of the parameters, p, is determined by the integral:

E =

∫

d3pP(p), (9.7)

where P is the posterior likelihood, whih is proportional to the loal density of the MCMC

points. The boundaries of the integration are given by the prior on the extra parameters,

i.e., from the previously found ranges of the model parameters shown in Table 6.1 and Table

6.2.

The models with the higher values of the Bayes evidene are preferable to the models

with the lower values of the Bayes evidene.
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Figure 9.2: The 2σ on�dene level ontour plots for various pairs of the free parameters

(V0, Ωm0, h, φ0, φ̇0), for whih the φCDM model with the Zlatev-Wang-Steinhardt potential

V (φ) = V0(exp(Mpl/φ)− 1) is in the best �t with the ΛCDM model.

Figure 9.3: The 2σ on�dene level ontour plots for various pairs of the free parameters (k,
Ωm0, h, V0, φ0, φ̇0), for whih the φCDM model with the phantom pseudo-Nambu-Goldstone

boson potential V (φ) = V0(1− cos(φ/κ)) is in the best �t with the ΛCDM model.
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Quintessene potentials AIC BIC Bayes fator

V (φ) = V0M
2
plφ

−α
10 18.7 0.5293

V (φ) = V0 exp(−λφ/Mpl) 12 22.4 0.0059

V (φ) = V0(exp(Mpl/φ)− 1) 10 18.7 0.0067

V (φ) = V0φ
−χ exp(γφ2/M2

pl) 14 26.2 0.0016

V (φ) = V0(cosh(ςφ)− 1)g 14 26.2 0.0012

V (φ) = V0(exp(νφ) + exp(υφ)) 14 26.2 0.0053

V (φ) = V0((φ− B)2 + A) exp(−µφ) 16 29.9 0.0034

V (φ) = V0 sinh
m(ξMplφ) 14 26.2 0.0014

V (φ) = V0 exp(Mpl/φ) 10 18.7 0.0077

V (φ) = V0(1 + exp(−τφ)) 12 22.4 0.0024

Table 9.3: The list of the dark energy quintessene potentials with the orresponding values

of AIC, BIC and Bayes fator.

Phantom potentials AIC BIC Bayes fator

V (φ) = V0φ
5

10.0 18.7 0.0921

V (φ) = V0φ
−2

10.0 18.7 0.0142

V (φ) = V0 exp(βφ) 22.4 12.0 0.0024

V (φ) = V0φ
2

10.0 18.7 0.0808

V (φ) = V0(1− exp(φ2/σ2)) 12.0 22.4 0.0113

V (φ) = V0(1− cos(φ/κ)) 12.0 22.4 0.0061

V (φ) = V0(cosh(ψφ))
−1

12.0 22.4 0.0056

Table 9.4: The list of the dark energy phantom potentials with the orresponding values of

AIC, BIC and Bayes fator.

We investigated how tight the prior on the extra model parameters should be for the

ompetitiveness of the dark energy models (in the sense of the Bayes evidene) with the

standard ΛCDM model. We heked that the priors ranges of the model parameters inlude

the values of the model parameters from the posterior ranges.

We numerially integrated the posterior probability for all the models, the results of this

integration are presented in Table 9.3 and Table 9.4. All these numbers are normalized

relative to the �duial ΛCDM model.
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9.4 φCDM Models in the CPL Phase Spae

To hek how well the CPL parametrization approximates the dark energy models, how

these models are onsistent with the ΛCDM model and how they di�er from eah other, we

presented a set of the possible values of the EoS parameters, w0 and wa, for eah dark energy

potential in the CPL - ΛCDM phase spae.

The mapping of the dark energy models on the w0 − wa plane is shown in Fig. (9.4)

for the quintessene models and in Fig. (9.5) for the phantom models. In these �gures, the

urves represent the maximum ranges of the values of the EoS parameters, w(a), for eah

dark energy model in the w0−wa plane. These CPL-ΛCDM ontours at the 1σ, 2σ, and 3σ

on�dene levels were obtained by �tting the data H(z), dA(z) and f(a)σ8(a) for eah dark

energy model under study and for the ΛCDM model of the CPL parametrization.

In order to hek how well the CPL parametrization, Eq. (6.46), desribes the dark energy

models, we �nd the best �t e�etive values of w0 − wa for a range of the free parameters

for eah model. For an easy visual representation of this information, we hose a parameter

with respet to whih the best �t w0 and wa values are the most sensitive and plotted these

ranges within priors. These results are presented in Fig. (9.4) for the quintessene models

and in Fig. (9.5) for the phantom models.

In Fig. (9.4) we show that some of the dark energy models are loated very lose to the

ΛCDM model for a wide range values of the EoS parameter within our priors. The range

of the values of the EoS parameters for the Ferreira-Joye, the inverse exponent and the

Sugra potentials is very small, it almost oinides with the value of the EoS parameter for

the ΛCDM model, (w0 = −1, wa = 0), therefore, these models are absolutely impossible

to distinguish from the ΛCDM model. The values of the EoS parameter for the Chang-

Sherrer, the Ur�ena-L�opez-Matos, and the Barreiro-Copeland-Nunes potentials are inside of

the 3σ on�dene levels of the CPL - ΛCDM ontours. Thus, these potentials annot be

distinguished from the standard ΛCDM model today. The values of the EoS parameter for

the Ratra-Peebles, the Zlatev-Wang-Steinhardt, the Albreht-Skordis, and the Sahni-Wang

potentials are beyond of the 3σ on�dene levels of the CPL - ΛCDM ontours. This means

that depending on the value of the EoS parameter at the present epoh, these models an

either be distinguished or they annot be distinguished from the ΛCDM model today.

The results obtained for the phantom potentials are presented in Fig. (9.5). Obviously,

the values of the EoS parameter for the phantom quadrati potential are outside of the

3σ on�dene levels of the CPL - ΛCDM ontours, so this potential annot imitate the
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ΛCDM model today. The EoS parameter urves for the pseudo-Nambu-Goldstone boson,

the inverse hyperboli osine, the exponent, the Gaussian, the inverse square power potentials

are partially at the 3σ on�dene levels of the CPL - ΛCDM ontours and partly outside

of these boundaries. Thus, these models either an mimi the ΛCDM model today or they

an also manifest themselves as the dark energy models with a faster hange of the EoS

parameter over time than the EoS parameter in the ΛCDM model. The urve of the EoS

parameter for the �fth power phantom potential is within the 3σ on�dene levels of the

CPL - ΛCDM ontours, so this model annot be distinguished from the ΛCDM model today.

For eah potential we investigated whether a hange in the value of one of the model

parameters (provided that the values of the other model parameters and the values of the

initial onditions are �xed) or a hange in the values of the initial onditions (provided that

the values of the model parameters are �xed) leads to the maximum range of the values

of the EoS parameter. The result of this study is that we an divide all the onsidered

potentials into two types: into the potentials whose evolution depends on the values of the

initial onditions and into the potentials whose evolution doesn't depend on the values of the

initial onditions, i.e., suh potentials have the attrator solutions. The �rst type inludes

the following quintessene potentials: the Zlatev-Wang-Steinhardt, the Sahni-Wang, as well

as the following phantom potentials: the quadrati, the Gaussian, the �fth power, the inverse

square power. The seond type inludes the following quintessene potentials

1

: the Sugra,

the Ur�ena-L�opez-Matos, the Albreht-Sordis, the Chang-Sherer, the Barreiro-Copeland-

Nunes, as well as the following phantom potentials: the pseudo-Nambu-Goldstone boson,

the inverse hyperboli osine, the exponent.

9.5 Conlusion

Applying the phenomenologial method developed by us, we reonstruted the dark energy

model of a salar �eld, listed in Table 6.1 and in Table 6.2. Thus, we found the prior ranges

for the initial onditions and the model parameters. The results are summarized in Table

9.1 and in Table 9.2.

The onstraints on the dark energy models were obtained by omparing H(z), dA(z),

f(a)σ8(a) data with the orresponding data generated for the �duial ΛCDM model. The

examples of the onstraints for the Ratra-Peebles, the Zlatev-Wang-Steinhardt quintessene

1

The Ratra-Peebles potential is in the privileged position in omparison with the other potentials, sine

for this potential we onsidered a solution with the �xed initial onditions, Eq. (9.1). Thus, this potential

was not onsidered in this study.
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Figure 9.4: The omparison of the possible w0 and wa values for the quintessene dark energy
potentials with the CPL-ΛCDM 3σ on�dene level ontours.

potentials and for the inverse hyperboli osine phantom potential are shown in Figs. (9.1-

9.3).

We applied the Bayes statistial riteria to ompare the models, suh as the Bayes fator,

as well as the AIC and BIC information riteria. To this end, we have integrated Eq. (9.7)

within the boundaries orresponding to the previously found ranges of the model parameters

given in Table 9.1 and in Table 9.2. The alulated values of AIC, BIC and Bayes fator

for all the dark energy models are summarized in Table 9.3 and in Table 9.4. These numbers

learly demonstrated that if the ΛCDM model is the true desription of dark energy, then

the full DESI data will be able to strongly disriminate most of the salar �eld dark energy

models urrently under onsideration.

We investigated how the dark energy models are mapped on the w0 −wa phase spae of

the CPL-ΛCDM ontours, see Fig. (9.4) and Fig. (9.5).

We found that the Ferreira-Joye, the inverse exponent, the Sugra, the Chang-Sherrer,

the Ur�ena-L�opez-Matos, the Barreiro-Copeland-Nunes quintessene models and the �fth
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Figure 9.5: The omparison of the possible w0 and wa values for the phantom dark energy

potentials with the CPL-ΛCDM 3σ on�dene level ontours.

power phantom model annot be distinguished from the ΛCDM model for the present time.

Whilst the Ratra-Peebles, the Zlatev-Wang-Steinhardt, the Albreht-Skordis, the Sahni-

Wang quintessene models and the pseudo-Nambu-Goldstone boson, the inverse hyperboli

osine, the exponent, the Gaussian, the inverse square power phantom models an either

be distinguished or annot be distinguished from the ΛCDM model today. The quadrati

phantom model an be absolutely distinguished from the ΛCDM model at the present epoh.

All the studied models an be divided into two types: on the models whose evolution de-

pends on the values of the initial onditions and into the models whose evolution doesn't de-

pend on the values of the initial onditions. The �rst type inludes the following quintessene

models: the Zlatev-Wang-Steinhardt, the Sahni-Wang and also the phantom models: the

quadrati, the Gaussian, the �fth power, the inverse square power. The seond type inludes

the following quintessene models: the Sugra, the Chang-Sherrer, the Albreht-Skordis, the

Ur�ena-L�opez-Matos, the Barreiro Copeland-Nunes, as well as the following phantom models:

the pseudo-Nambu-Goldstone boson, the inverse hyperboli osine, the exponent.
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Chapter 10

Mass Varying Neutrino Model

The oupled models of dark matter and dark energy were developed to resolve the oinidene

problem in the standard ΛCDM model. Based on the essene of this problem, it follows that

dark matter and dark energy interated with eah other during their evolution. At the same

time, the assumed dark matter partiles had the mass that varied over time.

One of the andidates for the role of dark matter an be onsidered the reli neutrinos.

The neutrinos belong to the lass of leptons and an partiipate only in the weak gravita-

tional interations. In addition, the neutrino has the mass. Aording to Plank 2015, the

value of the sum of neutrino masses at the present epoh is

∑

mν < 0.23 eV under the

assumption that the ΛCDM model is orret, Ref. (Ade et al. (2016)). Fardon, Nelson and

Weiner elaborated the mehanism of the Varying Mass Partiles (VAMPs). They applied

the VAMPs mehanism to the neutrinos, as a result of whih the model of Mass Varying

Neutrino (MaVaN) was reated, Ref. (Fardon et al. (2004)). In this model, the fermioni

�eld interats with the bosoni salar �eld via the Yukawa oupling. If initially (before in-

teration) the reli neutrino is massless, then interating with the salar �eld the neutrino

will aquire the mass, whih subsequently varies over time.

The MaVaN model is quite ompelling, sine the ause of the neutrino mass emergene

is explained in this model. In addition, the oinidene problem is resolved in this model,

i.e., the answer to the following question is given: "Why do the neutrinos (dark matter) and

dark energy have the omparable energy sales at the present epoh?"

The disadvantage of the MaVaN model is the instability of a �uid, whih onsists of the

neutrinos and dark energy. This instability is a onsequene of the negative value of the

square of the sound speed in this medium. A negative value of the square of the sound speed

arises due to the exponential growth of the salar �utuations, whih leads to the expo-

140



nential lustering of the neutrinos, Refs. (Afshordi et al. (2005), Kaplinghat & Rajaraman

(2007)). To get rid of this problem, the additional ompliations were introdued into the

MaVaN model, for example, a multiomponent salar �eld was onsidered, Ref. (Takahashi

& Tanimoto (2007)). In the paper Ref. (Chitov et al. (2011)), the authors studied the stable,

metastable and unstable phases of the MaVaN model and found a onsistent solution for the

equilibrium ondition.

In this work, we onsider the inverse-power Ratra-Peebles salar �eld potential. This

potential does not have a non-trivial minimum. The fermioni mass is generated due to the

violation of the hiral symmetry in the Dira setor of the Lagrangian. It is assumed that the

fermioni mass is obtained from the minimizing the total thermodynami potential. At the

same time, the evolution of the mass is slow enough, so that the oupled system (fermions

and dark energy) to be in the equilibrium at the temperature of T (a).

10.1 Interation of the Salar Field and Dira Field

The Hamiltonian of the bosoni salar �eld for the FLRW metri and the Eulidean ation

of the bosoni salar �eld are de�ned, respetively, as:

HB =

∫

a3d3x
[1

2
φ̇2 +

1

2a2
(∇φ)2 + V (φ)

]

(10.1)

and

SEB =

∫ β

0

dτ

∫

a(t)3d3x
[1

2

(∂τ

∂φ

)2

+
1

2a2
(∇φ)2 + V (φ)

]

, (10.2)

where

∫

d3x = V is a omoving volume; a3V = Vphys is a physial volume; V (φ) is a potential

of the salar �eld.

The Dira Hamiltonian for the FLRW metri and the Eulidean ation for the Dira �eld

are presented, respetively, as:

HD =

∫

a3d3x ψ̄
(

− ı

a
γ ·∇+mν

)

ψ (10.3)

and

SED =

∫ β

0

dτ

∫

a(t)3d3x ψ̄(x, τ)
(

γo
∂

∂τ
− ı

a
γ ·∇+mν − µγo

)

ψ(x, τ), (10.4)

where mν is the fermioni mass.
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The grand partition funtion is de�ned by the Grassmann funtional integral:

ZD ≡ Tr e−β(Ĥ−µQ̂) =

∫

Dψ̄Dψ e−S
E
D . (10.5)

Consider the interation of the bosoni salar �eld with the massless fermions via the Yukawa

oupling:

S = SEB + SED
∣

∣

mν=0
+ g

∫ β

0

dτ

∫

a3d3x φψ̄ψ, (10.6)

where g is the dimensionless Yukawa oupling onstant, g = 1.

The Lagrangian for the Yukawa oupling is de�ned as:

LYuk = −gψ̄φψ. (10.7)

The path integral for the partition funtion in the interation of the bosoni �eld with the

fermioni �eld:

Z =

∫

DφDψ̄Dψ e−S . (10.8)

The Grassmann �elds an be formally integrated, Ref. (Chitov et al. (2011)):

Z =

∫

Dφ e−S(φ) =

∫

Dφ exp
[

− SEB + logDetD̂(φ)
]

, (10.9)

where the Dira operator is de�ned as:

D̂(φ) = γo
∂

∂τ
− ı

a
γ ·∇+ gφ(x, τ)− µγo. (10.10)

10.2 Saddle Point Approximation

The thermodynami potential in the oupled model of the bosoni salar �eld and the

fermioni �eld, Eq. (10.6), an be found in the saddle point approximation, minimizing

the path integral, Eq. (10.9). We take into aount that the bosoni salar �eld at the

moment, φ = φc, minimizes the ation, S. This is the so-alled lassial �eld value:

φcr = 〈ϕ〉. (10.11)
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In this ase, we an preisely determine the value of log det D̂(φ), where the fermions aquire

the mass:

mν = gφcr. (10.12)

At the moment φ = φcr the partition funtion has the form:

Zφν = ZF e
−βV V (φcr). (10.13)

In this ase, the total thermodynami potential, Vφν(φcr), is de�ned as:

Vφν(φcr) = V (φcr) + Vν(φcr), (10.14)

where

Vφν = V0 −
1

3π2

∫ ∞

0

dp p4

ǫ(p)

[

nF (ǫ+) + nF (ǫ−)

]

, (10.15)

here V0 is a thermodynami potential for vauum
1

; nF (x) is a Fermi distribution funtion:

nF (x) =
1

eβx + 1
. (10.16)

Let's ñonsider the approximation in the saddle point, φ = φcr. This approximation will be

a self-onsistent if φcr minimizes the free energy. The onditions for the minimum of the

total thermodynami potential, Eq. (10.14), at the saddle point (at �xed temperature and

hemial potential):

∂Vφν(φ)

∂φ

∣

∣

∣

∣

µ,β;φ=φcr

= 0,
∂2Vφν(φ)

∂φ2

∣

∣

∣

∣

µ,β;φ=φcr

> 0. (10.17)

Applying the �rst ondition in Eq. (10.17) to the total thermodynami potential, Eq. (10.14),

we get:

V ′(φcr) + gρs = 0, (10.18)

where ρs is a fermioni density.

ρs ≡
〈N̂〉
V

=
∂Vν
∂m

, (10.19)

here N̂ =
∫

d3
√−g xψ̄ψ.

1

Heneforth, the values of the potential, the pressure and the energy density will be rede�ned with respet

to the orresponding vauum values as: Vφν 7→ Vφν − F0, Pν 7→ Pν − P0, ρs 7→ ρs − ρ0.
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The fermioni density is de�ned as:

ρs =
m

π2

∫ ∞

0

dp p2

ǫ(p)

[

nF (ǫ+) + nF (ǫ−)− 1

]

. (10.20)

10.2.1 Fermioni Potential

Consider the Dira fermions, for whih the number of the fermions and the antifermions

is the same, i.e., the hemial potential is zero, µ = 0. The fermions with zero hemial

potential are desribed by the Fermi distribution funtion, Eq. (10.16):

nF (E) =
1

eβE + 1
, (10.21)

where E is a physial fermioni energy, whih is de�ned as:

E(p) =
√

m2
ν + p2, (10.22)

here p is a fermioni momentum.

The fermioni potential, Vν , is ompletely determined by the fermioni pressure, pν :

Vν = −pν = −NF

3π2

∫ ∞

0

p4dp

E(p)
[nF (E−) + nF (E+)],

= −2NF

3π2

∫ ∞

0

p4dp

E(p)(eβE + 1)
, µ = 0, (10.23)

where NF is the number of the neutrinos speies, NF = 3; β = 1/T and T = Tν0/a,

Tν0 = 1.9454 eV is a neutrinos temperature at the present epoh

2

.

In Eq. (10.23), taking into aount that E± = E(p)±µ, if µ = 0, then nF (E−) = nF (E+).

Let's introdue the new variables to the integral, Eq. (10.23): E = βE, dE = βdE, where

E
2
= β2m2

ν + β2p2, Eq. (10.22); pdp = E
β
dE, p3 = (E

2−β2m2
ν)

3/2

β3 = (E
2−ϕ2)3/2

β3 . The new

boundaries of the integration: for p = 0, E = βmν = φ and for p = ∞, E = ∞.

Eventually, Eq. (10.23) an be rewritten as:

Vν = −pν = −2NF

3π2

∫ ∞

ϕ

(E
2 − ϕ2)3/2

β3E(eE + 1)

E

β
dE = − 2NF

3π2β4

∫ ∞

ϕ

(E
2 − ϕ2)3/2

eE + 1
dE. (10.24)

2

The neutrinos temperature at the present epoh an be obtained from the equation: Tν0 = (4/11)1/3Tγ0,

where Tγ0 = T0 is a photons temperature at the present epoh.
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10.2.2 Fermioni Energy Density

The total thermodynami potential, Vφν , is de�ned as:

Vφν = V (φ) + Vν(ϕ) = Vφ(φ)−
2NF

3π2β4

∫ ∞

ϕ

(E
2 − ϕ2)3/2

eE + 1
dE. (10.25)

We examine the Ratra-Peebles potential for the bosoni salar �eld:

V (φ) =
Mα+4

φ

φα
, (10.26)

where Mφ is a mass sale for the Ratra-Peebles potential.

From the ondition of the minimizing the total thermodynami potential, Eq. (10.18),

we have:

ρs =
∂Vν
∂mν

= −1

g

∂Vν
∂φ

. (10.27)

Di�erentiating Eq. (10.24), we obtain the equation for the fermioni density:

ρs = −∂Vν
∂ϕ

=
2NF

3π2β4

∫ ∞

βmν

3

2

2β2mν(E
2 − (βmν)

2)1/2

eE + 1
dE,

=
2NFmν

π2β2

∫ ∞

βmν

(E
2 − (βmν)

2)1/2

eE + 1
dE . (10.28)

Eq. (10.28) an be rewritten as:

ρs =
2NF

3π2β4

∫ ∞

φ

3

2

2φβ2(E
2 − φ

2
)1/2

eE + 1
dE =

2NFφ

π2β3

∫ ∞

φ

(E
2 − φ

2
)1/2

eE + 1
dE . (10.29)

10.3 Mass Equation

Plugging Eq. (10.26) into Eq. (10.18), we get:

αMα+4
φ

φα+1
= gρs ⇒ αMφ

α+4
gα = β3φ

α+1
ρs, (10.30)

here φ = βmν =
gφ
T
; Mφ ≡ Mφ

T
.

Substituting Eq. (10.29) into Eq. (10.30), we obtain the mass equation:

αMφ
α+4

gα = β3φ
(α+1) 2NFφ

π2β3

∫ ∞

φ

(E
2 − φ

2
)1/2

eE + 1
dE , (10.31)
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απ2gαMφ
α+4

2NF

= Iα(φ), Iα(φ) = φ
(α+2)

∫ ∞

φ

(E
2 − φ

2
)1/2

eE + 1
dE . (10.32)

The numerial solutions of Eq. (10.32), whih depend on the parameter α, are shown in

Fig. (10.1).
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Figure 10.1: The solutions of the mass equation, Eq. (10.32), for the di�erent values of the

α parameter.

10.4 Energy Balane in the Universe to the Critial Point

We are onsidering a �at universe, whih implies the equality of the total energy density and

the ritial density: ρtot = ρcr. Namely:

ρtot = ργ0a
−4 + ρm0a

−3 + ρcouple =
3H2

8πG
. (10.33)

Equally, the total energy density an be represented as:

ρtot =
7π2NF

60
T 4. (10.34)

The energy density for the photons is de�ned as:

ργ =
π2

15
T 4 =

π2

15
T 4
0 (1 + z)4. (10.35)
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From Eq. (10.35) and Eq. (10.34) we get

3

:

ρtot ≈ ργ + ρcouple ≈
π2

15

(

1 +
7NF

4

)

. (10.36)

Hene, we have:

Ωcouple =
7NF

4 + 7NF
= 0.84, Ωγ =

4

4 + 7NF
= 0.16. (10.37)

The energy density parameters for the photons, the matter and the neutrinos-dark energy

�uid depending on redshift are presented in Fig. (10.2). The evolution of the energy density

Figure 10.2: The dependene of the energy density parameters for the photons, the matter

and the neutrinos-dark energy �uid on redshift. The value of z⋆ denotes the epoh of the

matter and dark energy equality.

parameters was alulated from the moment 1+ z = 107, i.e., starting with the temperature

T ∼ 2.35 KeV to the present epoh. Thus, the values of the temperature are lower than the

value of the temperature at the epoh of the eletron-positron pairs annihilation, the value

of whih is Te = 0.5MeV, see Fig. (10.2).

3

At the high temperatures, the value of whih are in the range, Teq ≪ T < Te, where Teq is the tempera-

ture in the universe at the moment of the matter energy and dark energy equality; Te is the temperature at

the epoh of the eletron-positron annihilation. We an ignore the ontribution of the matter energy density

to the total energy density, sine the matter is a subdominant during this period of time.
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10.5 Joint Solution of the First Friedmann's and the Salar

Field Equations

10.5.1 Relativisti Neutrino Before the Critial Point

At the values of the sale fator a < acr, the fermioni and bosoni �elds do not interat

with eah other, therefore, the neutrinos remain relativisti and, aordingly, the neutrinos

have no mass,

∑

mν = 0.

For this period of time, the total potential, the energy density and the pressure for the

salar �eld and the relativisti neutrinos an be written, respetively, as:

V = Vφ −
2NF

3π2β4

∫ ∞

ϕβ

(E
2 − ϕ2β2)3/2

eE + 1
dE, (10.38)

ρ =
φ̇2

2
+ Vφ +

2NF

π2β4

∫ ∞

ϕβ

E
2
(E

2 − ϕ2β2)1/2

eE + 1
dE, (10.39)

p =
φ̇2

2
− Vφ +

2NF

3π2β4

∫ ∞

ϕβ

(E
2 − ϕ2β2)3/2

eE + 1
dE. (10.40)

The �rst Friedmann's equation and the salar �eld equation for the values of the sale fator

a < acr are presented, respetively, as:

( ȧ

a

)2

= H2
0

(

Ωr0a
−4 +Ωm0a

−3 +
1

ρcr

(

Vφ +
φ̇2

2
+

2NF

π2β4

∫ ∞

ϕβ

E
2
(E

2 − ϕ2β2)1/2

eE + 1
dE

))

, (10.41)

φ̈+ 3
ȧ

a
φ̇+

∂Vφ
∂φ

+
2ϕNF

π2β3

∫ ∞

ϕβ

(E
2 − ϕ2β2)1/2

eE + 1
dE = 0. (10.42)

Taking into aount that a < acr:

ϕ = mν = 0 and

∫ ∞

ϕ

E
2
(E

2 − ϕ2β2)1/2

eE + 1
dE =

∫ ∞

0

E
3

eE + 1
dE =

7π4

120
. (10.43)

Therefore, the equations, Eq. (10.41) and Eq. (10.42), an be rewritten as:

( ȧ

a

)2

= H2
0

(

Ωr0a
−4 + Ωm0a

−3 +
1

ρcr

(

Vφ +
φ̇2

2
+

7π2NF

60β4

))

, (10.44)

φ̈+ 3
ȧ

a
φ̇+

∂Vφ
∂φ

= 0. (10.45)
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10.5.2 Neutrino Masses Evolution after the Critial Point

At the ritial point, the total thermodynami potential reahes its equilibrium and, there-

fore, has a minimum value, as a result of whih the neutrinos aquire the mass. After this

point, the mass of the neutrinos varies over time. The behavior of the neutrinos obeys the

law of hange of the matter depending on the sale fator, i.e., the neutrinos energy density

varies as, ρν ∝ a−3
for a ≥ acr.

The total potential, the energy density and the pressure for the interation of the neu-

trinos and the salar �eld are presented, respetively, as:

Vcouple = Vφ + φρcr

(acr
a

)3

, (10.46)

ρcouple =
φ̇2

2
+ Vφ + φρcr

(acr
a

)3

, (10.47)

pcouple =
φ̇2

2
− Vφ − φρcr

(acr
a

)3

. (10.48)

The EoS for interation of the neutrinos and the salar �eld:

wcouple ≡
pcouple
ρcouple

=

φ̇2

2
− Vφ − φρcr

(

acr
a

)3

φ̇2

2
+ Vφ + φρcr

(

acr
a

)3 . (10.49)

The matter energy density parameter, Ωm, and the dark energy density parameter, Ωφ, are

de�ned, respetively, as:

Ωm(a) =
Ωm0a

−3

E2(a)
, (10.50)

Ωφ(a) =

φ̇2

2
+

Mα+4
φ

φα
+ φρcr

(

acr
a

)3

E2(a)ρcr0
. (10.51)

The �rst Friedmann's equation and the salar �eld equation are represented, respetively,

as:

H = H0

(

Ωm0a
−3 +

1

ρcr0

(

Vφ +
φ̇2

2
+ φρcr

(acr
a

)3))1/2

, (10.52)

φ̈+ 3Hφ̇+
∂Vφ
∂φ

+ ρcr

(acr
a

)3

= 0. (10.53)
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The mass sale, Mφ, is alulated as:

Mφ = (ναρφν)
α+1
α+4∆−α

cr T
−3α
α+4

0 , (10.54)

where ρφν is the energy density for the matter and the neutrinos-dark energy �uid at the

present epoh; ν ≈ φcr = mν(acr)
Tcr

, where ν = α + 5/2, mν(acr) is the value of the sum of

neutrino masses at the ritial point, Tcr is the value of the neutrinos temperature at the

ritial point.

The value of the neutrinos energy density at the ritial point is de�ned as:

ρcr =M3
φα

(νcr
ν

)α+1

, (10.55)

where

νcr =
(

√
2

απ3/2
νν exp−ν

) 1
α+4

(10.56)

and

∆cr =
(

√
2ννe−ν

απ3/2

) 1
α+4

. (10.57)

10.5.3 Results

We numerially integrated Eq. (10.52) and Eq. (10.53). The results of these alulations are

presented in Table 10.1 and in Fig. (10.3).

α acr mν(acr) eV mν(a0) eV

10−5 0.00440 0.13366 0.13541

10−4 0.00240 0.23779 0.23853

10−3 0.00140 0.42491 0.42525

10−2 0.00070 0.79610 0.79636

10−1 0.00020 2.44842 2.44891

0.2 0.00010 5.32040 5.32085

0.3 0.00006 10.57513 10.57546

0.4 0.00003 20.02527 20.02550

0.5 0.00002 36.60875 36.60890

Table 10.1: The value of the sale fator at the ritial point, acr, the value of the sum of

neutrino masses at the ritial point, mν(acr), the value of the sum of neutrino masses today,

mν(a0), depending on the value of the model parameter α.

In Table 10.1 we present the values of the sale fator at the ritial point, acr, the
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Figure 10.3: The evolution of the neutrino masses, mν , for the value of the parameter

α = 0.0001.

values of the sum of neutrino masses at the ritial point, mν(acr), the values of the sum of

neutrino masses today, mν(a0), depending on the value of the model parameter, α. With an

inrease in the value of the model parameter, α, i.e., with the strengthening of the salar

�eld potential: i) the value of the sale fator at the ritial point, acr, dereases, thus, the

moment of the salar and fermioni �elds interation ours at the earlier time; ii) the value

of the initial sum of neutrino masses and, aordingly, the �nal value of the sum of neutrino

masses inreases.

The evolution of the neutrino masses for the value of the model parameter α = 0.0001

is shown in Fig. (10.3). The evolution of the matter energy density parameter, Ωm, and

the energy density parameter of the neutrinos-dark energy �uid, Ωcouple, for the value of

the model parameter α = 0.0001 is presented in Fig. (10.4) (left panel). The moment of

the matter and dark energy equality ours at the value of the salar fator a = 0.75. The

evolution of the EoS parameter in the interation of the neutrinos and the salar �eld for

the value of the model parameter α = 0.0001 is shown in Fig. (10.4) (right panel). With the

given value of the model parameter α, the salar �eld is very weak. Therefore, after reahing

the ritial point, the value of the EoS parameter tends to wcouple ≈ −1.

10.6 Conlusion

Studying the MaVaN model:

1. The analysis was arried out and the approximation was found for the possible values
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Figure 10.4: Left panel: the evolution of the matter energy density parameter, Ωm, and

the neutrinos-dark energy density parameter, Ωcouple, for the value of the model parameter,

α = 0.0001. Right panel: the EoS parameter, wcouple(a), depending on the value of the sale

fator for the value of the model parameter α = 0.0001.

of the matter energy density parameter, the energy density parameter for the photons

and the energy density parameter for the �uid, whih onsists of the neutrinos and dark

energy.

2. The system of the di�erential equations, whih desribes the dynamis of the universe in

the MaVaN model, were obtained: i) until the moment of the neutrinos interation with

the salar �eld, ii) from the beginning of the neutrinos interation with the salar �eld to

the present epoh.

3. We alulated the value of the sale fator and the value of the sum of neutrino masses at

the ritial point, as well as the value of the sum of neutrino masses at the present epoh

depending on the value of the model parameter α of the Ratra-Peebles potential.

4. In our future researh, we are going to test this model using various observational data.
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Chapter 11

Conlusion

This thesis is devoted to the study of the salar �eld φCDM models. The detailed desription

of these investigations is presented below.

I. We investigated the various properties of the Ratra-Peebles φCDM model ompared to

the ΛCDM model:

1. We studied the dynamis of the universe in the Ratra-Peebles φCDM model depend-

ing on the value of the model parameter α. An inrease in the value of the parameter

α auses a stronger time dependene of the salar �eld, φ, its time derivative, φ̇, as

well as the EoS parameter, w, and its derivative with respet to the sale fator,

dw/da.

2. We found that the Ratra-Peebles φCDM model di�ers from the ΛCDM model in

number of harateristis that do not depend on the value of the model parameter,

α. These harateristis are generi to the lass of the φCDM quintessene models

of the freezing type:

a) In the φCDM models, the expansion rate of the universe is always greater than

the expansion rate in the ΛCDM model.

b) The domination of the dark energy epoh in the φCDMmodels begins earlier than

in the ΛCDM model (provided that the other osmologial model parameters are

�xed).

) The Ratra-Peebles φCDM model and the ΛCDM model di�er in their preditions

for the growth rate of the matter density �utuations in the universe: the φCDM

model predits a slower growth rate of the matter density �utuations than in

the ΛCDM model.
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d) The value of the Linder γ-parametrization in the φCDM model inreases with

an inrease in the value of the model parameter α. The value of the Linder

γ-parametrization in the φCDM model is greater than in the ΛCDM model.

e) We de�ned the boundaries of the appliability for the Linder γ-parametrization

in the Ratra-Peebles model, z ∈ (0; 5). The appliability of the Linder γ-

parametrization is terminated later in the ΛCDM model than in the φCDM

model.

II. We onstrained the Ωm and α model parameters in the Ratra-Peebles φCDM salar

�eld model using various observations:

a) Applying only the observations of the growth rate funtion, there is a strong degen-

eray between the model parameters Ωm and α. It means that with an inrease in

the value of the parameter Ωm, the larger values of α parameter are allowed. In this

ase, it is impossible to �nd a onstraint on the value of the parameter α.

b) The degeneray is eliminated after ombining the onstraints on the observations of

the growth rate funtion, the onstraints on the distane-redshift ratio of the BAO

observations and prior distane from CMBR.

) As a result, we obtained the onstraints on the model parameters in the Ratra-

Peebles φCDM salar �eld model: Ωm = 0.30 ± 0.04 and 0 ≤ α ≤ 1.30 at 1σ

on�dene level. The best �t value for the model parameter α is α = 0.00.

III. We studied the salar �eld φCDM models: ten quintessene models and seven phantom

models:

1. We reonstruted these models using the phenomenologial method developed by us.

Resulting in, for eah potential the following ranges were found: i) the model pa-

rameters, ii) the EoS parameters, iii) the initial onditions for di�erential equations,

whih desribe the dynamis of the universe.

2. Using the MCMC analysis, we obtained the onstraints on the salar �eld models

by omparing the observations for: the expansion rate of the universe, the angu-

lar diameter distane and the growth rate funtion with the orresponding data,

generated for the �duial ΛCDM model.

3. We applied the Bayes statistial riteria to ompare the salar �eld models. To this

end, we alulated the Bayes fator, as well as the AIC andBIC information riteria.
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The results of this analysis showed that the DESI data annot uniquely distinguish

between the salar �eld models under the assumption and that the ΛCDM model is

a true dark energy model.

4. We investigated the salar �eld models in the w0 − wa phase spae of the CPL-

ΛCDM ontours. We identi�ed the sublasses of the quintessene and the phantom

salar �eld models, whih at the present epoh: i) an be distinguishable from the

ΛCDM model, ii) annot be distinguishable from the ΛCDM model, iii) an be either

distinguishable or indistinguishable from the ΛCDM model.

5. Moreover, we found that all the studied models an be divided into two lasses: the

models that have the attrator solutions and the models whose evolution depends

on the initial onditions.

IV. Investigating the MaVaN model:

1. The analysis was arried out and the approximation was found for the possible

values of the matter energy density parameter, the energy density parameter for

the photons and the energy density parameter for the �uid, whih onsists of the

neutrinos and dark energy.

2. The di�erential equations, whih desribe the dynamis of the universe for the Ma-

VaN model, were obtained: i) until the moment of the neutrinos interation with

the salar �eld, ii) from the beginning of the neutrinos interation with the salar

�eld to the present epoh.

3. The value of the sale fator and the value of the sum of neutrino masses at the

ritial point, as well as the value of the sum of neutrino masses at the present

epoh were alulated depending on the value of the model parameter α in the

Ratra-Peebles potential.

155



Chapter 12

Future Projets

The future projets inlude:

1. The study of the neutrinos in�uene on the large-sale struture formation of the universe

in the MaVaN model. The investigation of the neutrinos lustering in the MaVaN model

in the interation of the neutrinos with the salar �eld.

2. The investigation of the non-�at in�ationary φCDM salar �eld models, Refs. (Ratra &

Peebles (1995), Ratra (2017)). Carrying out the Fisher matrix analysis and more ad-

vaned Dali matrix analysis to study these models.

3. The exploration of the modi�ed gravity models.

4. The investigation of the large-sale struture of the universe in the modi�ed gravity

models.
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