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აბსტრაქტი

თანამედროვე კოსმოლოგიური დაკვირვებები გვიჩვენებენ, რომ სამყარო ფართოვ-

დება აჩქარებულად. ამ აჩქარების მიზეზის დადგენა თანამედროვე კოსმოლოგიის

ერთ-ერთი უდიდესი გამოცანაა. არსებობს პრობლემის ახსნის ორი გზა. პირველი

გზა გულისხმობს, რომ სამყაროში არსებობს ე.წ. ფარული ენერგია (უარყოფითი

წნევის ფარული სითხე), ხოლო მეორე გზის მიხედვით შესაძლებელია ფარდობი-

თობის ზოგადი თეორიის დარღვევა დიდ მასშტაბებზე. ფარული ენერგიის უმარტი-

ვესი მოდელი გულისხმობს ვაკუუმის ენერგიის კონცეფციას, რომელიც აღიწერება

ლამბდა კონსტანტით. ეს მოდელი, რომელსაც ეწოდება ლამბდა ცივი ფარული მა-

სის მოდელი (Lambda Cold Dark Matter ΛCDM), წარმოადგენს სტანდარტულ კოსმო-

ლოგიურ მოდელს. ΛCDM მოდელის თეორიული წინასწარმეტყველებები გასაოცრად

კარგად ემთხვევიან დაკვირვებით მონაცემებს, თუმცა არსებობს რამდენიმე ამოუხ-

სნელი ამოცანაც (მათ შორისაა, მაგალითად, საწყისი პირობების არაბუნებრივად

ზუსტი შერჩევის პრობლემა). ΛCDM მოდელის ძირითად ალტერნატივას წარმოად-

გენს დინამიური სკალარული ველის მოდელი, ანუ φCDM მოდელი. ამ მოდელებში

სივრცულად ერთგვაროვანი კოსმოლოგიური სკალარული ველი მიილევა პოტენცი-

ალის მინიმუმისაკენ. ამ მოდელებში არ დგება პარამეტრების დამთხვევის პრობ-

ლემა, რაც უფრო ბუნებრივად ხსნის დაკვირვებული ფარული ენერგიის სიმკვრი-

ვის სიმცირეს. სამყაროს გაფართოების გვიანი ეპოქის აჩქარების ალტერნატიული

მიდგომა დაფუძვნებულია დაშვებაზე, რომ გრავიტაციის თეორია იცვლება კოსმო-

ლოგიურ მასშტაბებზე. ამ ნაშრომში ჩვენ Ratra-Peebles-ის პოტენციალით შევის-

წავლეთ სკალარული ველის მოდელებში მატერიის შეშფოთების ფონური გავრცელე-

ბა და ზრდის ტემპი. ზრდის ტემპისა და ბარიონულ-აკუსტიკური რხევების პიკის

პოზიციების ბოლოდროინდელი გაზომვებით ჩვენ შევიმუშავეთ ამ პოტენციალის მო-

დელის პარამეტრი α და მატერიის სიმკვრივის პარამეტრი Ωm. ასევე შევისწავლეთ

სკალარული ველის მოდელები და მათი შესაძლო განსხვავება საბაზისო მოდელების-

გან. ამ მიზნით, დაკვირვებითი მონაცემები, როგორიცაა გაფართოების სიჩქარე,

კუთხური მანძილი და ზრდის ტემპის გაზომვები გამოვიყენეთ შემომავალი ფარული

ენერგიის DESI-ს დაკვირვებიდან. ამ მოდელების ΛCDM მოდელთან შესადარებლად

ჩავატარეთ ბაიესის სტატისტიკური ანალიზი და ვიპოვეთ, რომ ბაიესის კოეფიცი-

ენტები დიდი ალბათობით ადასტურებენ ΛCDM მოდელს. ჩვენ ვიკვლევთ რამდენად

კარგად შეუძლია შევალიე-პოლარსკი-ლენდერის (CPL) პარამეტრიზაციას სხვადასხვა
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სკალარული ველის მოდელების მიახლოება. ვადგენთ სკალარული ველის მოდელის

ადგილს CPL პარამეტრიზაციის ფაზურ სივრცეში. ცვლადი მასის ნეიტრინოს მო-

დელში ვიკვლევთ ფერმიონული ველისა და სკალარული ველის ურთიერთქმედებას

რატრა-პიბლსის პოტენციალის გამოყენებით. გამოყვანილია განტოლება, რომელიც

აღწერს სამყაროს ევოლუციას ნეიტრინოების სკალარულ ველთან ურთიერთქმედე-

ბის მომენტამდე (ე.წ. კრიტიკულ წერტილამდე) და კრიტიკული წერტილიდან დღე-

ვანდელ ეპოქამდე. გამოთვლილია სკალარული მამარავლის მნიშვნელობა კრიტიკულ

წერტილში, ნეიტრინოს მასა კრიტიკულ წერტილში და ნეიტრინოს მასა დღევანდელ

ეპოქაში, რომელიც დამოკიდებულია რატრა-პიბლსის პოტენციალის α პარამეტრზე.

ძირითადი საძიებო სიტყვები: ფარული ენერგია, კოსმოლოგიური მუდმივა, სკალა-

რული ველი, მსხვილ მასშტაბოვანი სტრუქტურა, მატერიის ზრდის შეშფოთებები,

ნეიტრინო, ბაიესის სტატისტიკა, MCMC მონაცემთა ანალიზი.
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Abstra
t

The standard Lambda Cold Dark Matter (ΛCDM) 
osmologi
al model assumes that the

General Relativity is a 
orre
t theory of gravity on the 
osmologi
al spatial and temporal

s
ales, and the a

eleration of the universe is due to dark energy or the 
osmologi
al 
on-

stant Λ. Dark energy exerts the negative pressure on spa
e, i.e., it has the property of

"antigravity" and, thus, 
auses the a

elerated expansion of the universe. The energy den-

sity of the 
osmologi
al 
onstant does not depend on time and has re
ently be
ome dominant

(in parti
ular, the energy density asso
iated with the 
osmologi
al 
onstant is about 69%

of the total energy density of the universe today). In addition, around 26% of the total

energy density in the universe is presented in the form of 
old dark matter. Thereby, within

the framework of the standard ΛCDM model, about 95% of the universe energy density


ontent today is presented in the dark (invisible) form (dark energy and dark matter) with

unknown nature, and only 5% is presented in the form of the radiation and the ordinary

matter (baryons, leptons). The theoreti
al predi
tions of the ΛCDM model are in a good

agreement with the 
urrent observations, but there are several unresolved problems asso-


iated with this model. The so-
alled 
osmologi
al 
onstant problem (an extremely small

value of the 
osmologi
al 
onstant when 
ompared to the theoreti
al estimate of the va
uum

energy density), and the so-
alled problem of the 
oin
iden
e (order of) of the dark energy

density and the dark matter energy density. To over
ome these di�
ulties, the dynami
al

dark energy models have been proposed. In these models, dark energy is presented in the

form of the dynami
al s
alar �eld, in whi
h the density of dark energy varies over time. In

this thesis, we studied the various s
alar �eld models. In parti
ular, we investigated the

evolution of the ba
kground expansion and the growth rate of the matter density �u
tua-

tions in the s
alar �eld φCDM Ratra-Peebles model. We 
onstrained the model parameter

α and the matter density parameter Ωm using the re
ent measurements of the growth rate

of the matter density �u
tuations and the baryon a
ousti
 os
illation peak positions. In

addition, we studied a number of the φCDM s
alar �eld models in order to distinguish these

models from ea
h other and from the baseline ΛCDM model, using the predi
ted data for

the future Dark Energy Spe
tros
opi
 Instrument (DESI) observations. For this purpose, we


arried out the statisti
al Bayesian analysis, su
h as Bayes 
oe�
ients, as well as Akaike and

Bayesian information 
riteria. We found that the results of the Bayesian analysis provide

the 
ompelling eviden
e in favor of the ΛCDM model. We also 
ondu
ted the MCMC anal-

iv



ysis and obtained the 
onstraints on the parameters of the s
alar �eld models, 
omparing

the observational data for: the universe expansion rate, the angular diameter distan
e and

the growth rate fun
tion, with the 
orresponding data generated for the ΛCDM model. We

investigated how well the Chevallier-Polarsky-Linder (CPL) parametrization approximates

the various s
alar �eld models. We determined the lo
ation of s
alar �eld model in the

phase spa
e of the CPL parameters. In the Mass Varying Neutrino model, we investigated

the intera
tion of the fermion �eld and the s
alar �eld with the Ratra-Peebles potential. We

obtained the equations des
ribing the dynami
s of the universe: up to the moment of the

neutrinos intera
tion with the s
alar �eld (up to the so-
alled 
riti
al point) and from the


riti
al point up to the present epo
h. We 
al
ulated the value of the s
ale fa
tor and the

value of the sum of neutrino masses at the 
riti
al point, as well as the value of the sum of

neutrino masses at the present epo
h depending on the value of the model parameter α of

the Ratra-Peebles potential.

Key words: dark energy, 
osmologi
al 
onstant, s
alar �eld, large-s
ale stru
ture, growth

rate of the matter density �u
tuations, neutrinos, Bayesian statisti
s, Monte Carlo Markov

Chains (MCMC) analysis.
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Natural Units
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Energy 1 GeV = 1.6 · 10−3 erg
Mass 1 GeV = 1.8 · 10−24 g
Temperature 1 GeV = 1.16 · 1013 K
Length 1 GeV−1 = 2 · 10−14 cm
Time 1 GeV−1 = 6.6 · 10−25 c
Parti
le number density 1 GeV3 = 1.3 · 1041 cm−3

Energy density 1 GeV4 = 2.1 · 1038 erg cm−3

Mass density 1 GeV4 = 2.3 · 1017 erg cm−3

Parameters

Name Notation

Units

SGC Natural

Astronomo
al unit AU 1.4960 · 1013 cm 7.5812 · 1026 GeV−1

Criti
al density ρcrit 1.8791h2 · 10−29 g cm−3 8.0992h2 · 10−47 GeV4

Hubble 
onstant H0 3.241h · 10−18 sec−1 2.1332h · 10−42 GeV
Megaparse
 Mpc 3.0856 · 1024 cm 1.5637 · 1038 GeV−1

Newton's 
onstant G 6.672·10−8 cm3 g−1 sec
−2 6.707 · 10−39 GeV−2

Plan
k mass Mpl 2.1768 · 10−5 g 1.2211 · 1019 GeV
Parse
 pc 3.0856 · 1018 cm 1.5637 · 1032 GeV−1

Solar mass M⊙ 1.989 · 1033 g 1.116 · 1057 GeV
Speed of light c 2.9979 · 1010 cm sec−1 1
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Variables

Symbol Meaning

a S
ale fa
tor

al,m
Multipole 
oe�
ients of the de
omposition in the spheri
al

harmoni
s

cs Sound speed

ds2 Metri


dA Angular diameter distan
e

dL Luminosity distan
e

e Expe
tation

f(x) Density distribution

f(a) Growth rate fun
tion

g Yukawa 
oupling 
onstant

Ωm(a) Fra
tional matter density

h Normalised Hubble parameter

~ Redu
ed Plan
k 
onstant

k Conformal momentum

kphys Physi
al momentum

l Multiple moment

p Pressure of the perfe
t �uid

pφ S
alar �eld pressure

pij Transition probabilities

p̃ Parallax

q A

eleration parameter of the universe

q0 A

eleration parameter of the universe at the present epo
h

r Physi
al distan
e

rs Comoving size of the sound horizon

m Apparent magnitude

mch Chandrasekhar's mass

mν Neutrino mass

nF (x) Fermi distribution

r⊕ Radius of the Earth's orbit

t Physi
al time

v Radial velo
ity

vf Three dimensional velo
ity of the perfe
t �uid

w Equation of state parameter

w0 Current equation of state parameter

wa
Value of the s
ale fa
tor derivative of equation of state

parameter at a = 1/2
wvac Equation of state parameter for va
uum

wΛ Equation of state parameter for 
osmologi
al 
onstant

wφ S
alar �eld equation of state parameter

z Redshift

zdec Redshift at photon de
oupling epo
h

zrec Redshift at re
ombination epo
h

C−1
Covarian
e matrix

D Linear growth fa
tor

DV Distan
e s
ale

D̂ Dira
 operator
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Variables

Symbol Meaning

E Energy

E(a) Normalized Hubble parameter

E Integral of the Bayes' eviden
e

F Flux

G Newton 
onstant

H Hubble parameter

HB Bosoni
 Hamiltonian

HD Dira
 Hamiltonian

K Curvature parameter

L Luminosity

L Likelihood fun
tion

Lf
Likelihood fun
tion for the growth rate data

Lbao
Likelihood fun
tion for the BAO data

Lφ S
alar �eld lagrangian density

M Absolute magnitude

Mφ S
alar parti
les mass s
ale

P1 Transition matrix

Pl Legendre's polynomials

P (k) Power spe
trum

R Ri

i s
alar

R Radius

SM Matter a
tion

S A
tion

T0 The average 
urrent CMBR temperature

V (φ) S
alar �eld potential

V0 The parameter of the φCDM s
alar �eld model

ZD Grassmann fun
tional integral

Ylm Spheri
al harmoni
s

α
The parameter of the s
alar �eld φCDM Ratra-Peebles

model

δ Matter density �u
tuations

γ Linder γ-parametrization
γ(a) E�e
tive growth index

δρb Baryon density �u
tuations

δµν Krone
ker delta fun
tion

δTdipol Dipole temperature anisotropy

η Conformal time

λ Wavelenght

µ Distan
e modulus

ξ Spa
e 
urvature fun
tion

ρb Energy density of the baryons

ρb0 Energy density of the baryons at present epo
h

ρm Energy density of the matter �uid

ρph Energy density of the photons

ρφ S
alar �eld energy density

ρr Energy density of the relativisti
 �uid

ρs Fermioni
 energy density
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Variables

Symbol Meaning

ρK Energy density of the 
urvature

ρΛ Va
uum energy density

ρm0 Energy density of the matter �uid at present epo
h

ρr0 Energy density of the relativisti
 �uid at present

ρK0 Energy density of the 
urvature at present

σ Standard deviation

σ8
rms linear �u
tuation in the mass density distribution on

s
ales 8h−1
Mp


σ2
Varian
e

∆ρ Matter density �u
tuation

φ S
alar �eld

χ2 χ2
fun
tion

ω0 Frequen
y of the plane mono
hromati
 wave

Γλµν Christo�el symbols

Λ Cosmologi
al 
onstant

Ωm Density parameter for matter

Ωm0 Density parameter for matter at present

Ωr Density parameter for radiation

Ωr0 Density parameter for radiation at present

ΩK Density parameter for 
urvature

ΩK0 Density parameter for 
urvature at present

ΩΛ Density parameter for va
uum

Ωφ Density parameter for s
alar �eld
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Spe
ial Designations

Designation Meaning

(+,−,−,−) Spa
etime signature

Conventions for indi
es:

∗ (α, β, γ, µ, ν) run from 0 to 3 Greek letters

∗ (i, j, k, l,m, n) run from 1 to 3 Roman letters

(t, x, y, z) ≡ (x0, x1, x2, x3) = xµ Four dimensional 
oordinates

(x, y, z) ≡ (x1, x2, x3, ) = xi Three dimensional Cartesian 
oordinates

(r, ϕ) Polar 
oordinates

(r, ϕ, z) Cylindri
al 
oordinates

(r, θ, ϕ) Spheri
al 
oordinates

(̺, ς, ϕ) Pseudo spheri
al 
oordinates

Ve
tors:

Ai Covariant ve
tor

Ai Contravariant ve
tor

Tensors:

Aij Se
ond rank 
ovariant tensor

Aij Se
ond rank 
ontravariant tensor

Aij Se
ond rank mixed tensor

gµν Spa
etime metri
 tensor

uµ Four dimensional velo
ity

Gµν Einstein tensor

Rik Ri

i tensor

Riklm Riemann tensor

Tµν Stress-energy tensor
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Abbreviations

Symbol Full Form

AIC Akaike information 
riterion

BIC Bayesian information 
riterion

BAO Baryon A
ousti
 Os
illations

CDM Cold Dark Matter

CMBR Cosmi
 Mi
rowave Ba
kground Radiation

DESI Dark Energy Spe
tros
opi
 Instrument

ISW Integrated-Sa
hs-Wolfe

CPL Chevallier-Polarsky-Linder

EoS Equation of State

GTR General Theory of Relativity

FRII Fanaro�-Riley Type II

FLRW Friedmann-Lema��tre-Robertson-Walker

MCMC Markov Chain Monte Carlo

SDSS Sloan Digital Sky Survey

SZ Sunyaev-Zel'dovi
h

SNeIa Supernovae Ia

WMAP Wilkinson Mi
rowave Anisotropy Probe

WFIRST Wide-Field Infrared Survey Teles
ope

ΛCDM Lambda Cold Dark Matter

φCDM Phi Cold Dark Matter

2dFGRS 2dF Galaxy Redshift Survey

MaVaN Mass Varying Neutrino

VAMPs Varying Mass Parti
les
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Chapter 1

Introdu
tion

In 1998, the a

elerated expansion of our universe was dis
overed on the basis of the mea-

surements of the Supernovae type Ia magnitudes, Refs. (Riess et al. (1998), Perlmutter

et al. (1999), Riess et al. (2007)). In 2011, Saul Perlmutter, Brian S
hmidt and Adam

Riess were awarded the Nobel Prize in Physi
s for this dis
overy. The a

elerated expansion

of the universe is 
on�rmed by the other 
osmologi
al observations, in parti
ular: by the

measurements of the temperature anisotropy and the polarization in the 
osmi
 mi
rowave

ba
kground radiation, Refs. (Hinshaw et al. (2009), Nolta et al. (2009), Komatsu et al.

(2011), Ade et al. (2014
), Ade et al. (2016)); by the studies of the large-s
ale stru
ture of

the universe, Refs. (2dFGRS (2002), Eisenstein et al. (2005), Per
ival et al. (2007), SDSS

(2017)).

There are numerous models explaining the 
urrent a

elerated expansion of the universe,

Refs. (Frieman et al. (2008), Caldwell & Kamionkowski (2009), Yoo & Watanabe (2012)).

The most popular model suggests that a signi�
ant part of the universe is in the form of dark

energy or dark �uid, for a review Refs. (Peebles & Ratra (2003), Copeland et al. (2006a),

Tsujikawa (2010), Tsujikawa (2011)). The unusual property of dark energy is that it exerts

a negative pressure on spa
e, i.e., dark energy has the property of "antigravity". For the

time being, the nature and the origin of dark energy is one of the most important and still

unresolved issues of modern 
osmology.

The simplest des
ription of dark energy is the 
on
ept of the va
uum energy or the


osmologi
al 
onstant Λ, �rst introdu
ed by Albert Einstein, Refs. (Einstein (1915a), Ein-

stein (1915b)). The 
osmologi
al model based on su
h a des
ription of dark energy is 
alled

the Lambda Cold Dark Matter (ΛCDM) model, whi
h has been the standard model of the

universe sin
e 2003, Refs. (Zeldovi
h (1968), Blumenthal et al. (1984)); the monographs:
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Refs. (Peebles (1994), Dodelson (2003), Weinberg (2008)); for the reviews: Refs. (Carroll

et al. (1992), Carroll (2001), Peebles & Ratra (2003), Copeland et al. (2006b), Martin (2012),

Padilla (2015)). This model is based on the General Theory of Relativity (GTR), whi
h was

developed by Albert Einstein in order to des
ribe the gravity in the universe on the 
osmo-

logi
al length s
ales.

In addition, there is still an unresolved problem of dark matter in the universe, whi
h, in

parti
ular, manifests itself in the anomalously high velo
ity of rotation of the outer regions

of the galaxies, Ref. (Rubin et al. (1980)). The dark matter parti
les do not intera
t with

the ele
tromagneti
 radiation and weakly gravitationally intera
t with the ordinary baryoni


matter.

Based on GTR, about 95% of the energy in the universe is in the "dark" form, i.e., in

the form of dark energy and dark matter. Re
ent observations of the Plan
k spa
e teles
ope

show that the universe 
onsists of 4, 8% of ordinary matter, 26% of dark matter and 69, 2%

of dark energy, Ref. (Ade et al. (2016)).

The ΛCDM model is a 
on
ordan
e model of the universe, sin
e this model is in a good

agreement with the 
urrently available 
osmologi
al observations. However, the ΛCDM

model still has unsolved problems: the 
osmologi
al 
onstant problem or, in other words,

the �ne turning problem and the 
oin
iden
e problem, Refs. (Weinberg (1989), Weinberg

(2000), Padmanabhan (2003), Padilla (2015)). The 
osmologi
al 
onstant problem is that

the observed value of the 
osmologi
al 
onstant is 120 values less than its theoreti
ally

predi
ted value, Ref. (Weinberg (2000)). The 
oin
iden
e problem is that, based on the

pre
ise 
osmologi
al observations, the density of dark energy is 
omparable to the energy of

dark matter at the present epo
h: ρDM/ρDE ≃ 1/3, ρDE and ρDM are the dark energy density

and the dark matter energy density, respe
tively. This fa
t is a mystery, be
ause a

ording

to the standard ΛCDM model, the energy of the 
osmologi
al 
onstant does not depend on

time, ρDE = ρΛ=
onst, while the energy of dark matter varies over time as ρDM ∼ a−3(t), see

Fig. (6.2). Therefore, the ratio of these quantities should be time-dependent: ρDM/ρDE ∝
1/a3(t), a(t) and t are the s
ale fa
tor and physi
al time, respe
tively.

In order to solve the problems of the ΛCDM model, many alternative models have been

elaborated. These models are divided into two types: the models based on the gravity of

the GTR and the models with the di�erent gravity from the GTR on the 
osmologi
al s
ales

in the universe (i.e., on the s
ales 
omparable to the 
urrent size of the universe). The

�rst type of the models in
ludes the dynami
al s
alar �elds models of dark energy: the

quintessen
e models, Refs. (Ratra & Peebles (1988b), Ratra & Peebles (1988a), Wetteri
h
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(1988a)), the k-essen
e models, Refs. (Armendariz-Pi
on et al. (1999), Armendariz-Pi
on

et al. (2000), Armendariz-Pi
on et al. (2001)), the phantom s
alar �eld models, (Caldwell

(2002)); the 
oupled dark energy and matter models, Refs. (Amendola (2000), Zimdahl &

Pavon (2001)), in parti
ular, the mass varying neutrino model, Refs. (Farrar & Peebles

(2004), Fardon et al. (2004)); the uni�ed model of dark energy and matter, the so-
alled

Chaplygin gas model, Refs. (Kamensh
hik et al. (2001), Bento et al. (2002)) and the k-

essen
e model, as an uni�ed model of dark energy and matter, Ref. (S
herrer (2004)); the

heterogeneous model of Lema��tre-Tolman-Bondi, Refs. (Lemaitre (1933), Tolman (1934),

Bondi (1947), Tomita (2001)), and et
. The se
ond type of the models are: the models

with Lagrangian densities that are more 
omplex fun
tions of spa
etime 
urvature, the so-


alled f(R) models, Refs. (Capozziello et al. (2003), Carroll et al. (2004), Mukhanov (2005),

Nojiri & Odintsov (2006)); the warped brane world s
enarios, the so-
alled the model of

Dvali-Gabadadze-Poratti, Refs. (Dvali et al. (2001)), Gabadadze (2007)); the massive gravity

models, Refs. (Fierz & Pauli (1939), de Rham & Gabadadze (2010), de Rham et al. (2011),

Hassan & Rosen (2012)); quantum gravity and string-motivated modi�
ations of gravity,

Refs. (Pol
hinski (2007a), Pol
hinski (2007b), Mer
uri (2009)); the Galilean gravity models,

Ref. (Ni
olis et al. (2009)); the s
alar-tensor gravity models, Refs. (Brans & Di
ke (1961),

Mo�at (2006), Mishra & Singh (2013)); degravitation and 
as
ading gravity, Refs. (Arkani-

Hamed et al. (1998), Khoury & Wyman (2009), Dvali et al. (2003), de Rham et al. (2008),

Nojiri & Odintsov (2003)), the models with large extra spatial dimensions, Refs. (Shifman

(2010)) and et
.

The main alternative to the ΛCDMmodel is the dynami
al dark energy s
alar �eld φCDM

models, Refs. (Ratra & Peebles (1988a), Ratra & Peebles (1988b), Wetteri
h (1988a), Brax

& Martin (2002), Linder (2008), Cai et al. (2010), Bahamonde et al. (2017), Ryan et al.

(2019)). The s
alar �eld models avoid the 
osmologi
al 
onstant problem of the ΛCDM

model. In the s
alar �eld models, the equation of state (EoS) parameter, w, depends on time:

w ≡ pDE/ρDE, pDE - a dark energy pressure, whereas in the ΛCDM model the EoS parameter

is a 
onstant, w = −1. Depending on the value of the EoS parameter, the φCDM s
alar

�eld models are divided into: the quintessen
e models, with −1 < w < −1/3, Refs. (Peebles

& Ratra (2003), Caldwell & Linder (2005), S
himd et al. (2007)), and the phantom models,

with w < −1, Refs. (Caldwell (2002), Elizalde et al. (2004), S
herrer & Sen (2008a), Dutta

& S
herrer (2009), Frampton et al. (2012), Frampton et al. (2011), Ludwi
k (2017)). The

quintessen
e models are divided into two 
lasses: the tra
ker (freezing) models, in whi
h the

s
alar �eld evolves more slowly than the Hubble expansion rate, and the thawing models, in
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whi
h the s
alar �eld evolves faster than the Hubble expansion rate, Refs. (Steinhardt et al.

(1999), Caldwell & Linder (2005), Dutta & S
herrer (2009), Chiba et al. (2013), Lima et al.

(2015)).

In the quintessen
e tra
ker models, the energy density of the s
alar �eld �rst tra
ks the

radiation energy density and then the matter energy density, while it remains a subdominant,

Ref. (Zlatev et al. (1999)). Only re
ently the s
alar �eld be
omes dominant and begins to

behave as a 
omponent with the negative pressure, whi
h leads to the a

elerated expansion

of the universe, Refs. (S
himd et al. (2007), Linder (2015), Bag et al. (2017)). For the 
ertain

shape of the potential, the quintessen
e tra
ker models have an attra
tor solution that is

insensitive to the initial 
onditions, Ref. (Zlatev et al. (1999)). The simplest example of

the tra
ker s
alar �eld models with an attra
tor solution is the s
alar �eld model with the

inverse-power-law Ratra-Peebles potential. This model was for the �rst time proposed by

Bharat Ratra and Jim Peebles in 1988, Refs. (Ratra & Peebles (1988a), Ratra & Peebles

(1988b)).

The study of the quintessen
e φCDM s
alar �eld model with the Ratra-Peebles potential

is one of the main obje
tives of this thesis. In parti
ular, we investigated the dynami
s of

the s
alar �eld with this potential, the in�uen
e of the s
alar �eld with the Ratra-Peebles

potential on the dynami
s of the universe and its energy 
omponents. We also studied the

in�uen
e of the dark energy s
alar �eld Ratra-Peebles model on the large-s
ale stru
ture

evolution of the universe.

The interest to the dark energy phantom models among the 
osmologists has in
reased

re
ently, due to the fa
t that some modern observations are 
onsistent with these models,

Refs. (Hinshaw et al. (2013), Ade et al. (2016)). The dark energy phantom models have

a negative non-
anoni
al kineti
 
omponent in the a
tion, as a result of whi
h the energy

density in these models in
reases over time, Refs. (Caldwell (2002), S
herrer & Sen (2008b),

S
herrer & Sen (2008a), Ludwi
k (2017)). During the a

elerated expansion of the universe,

driven by the phantom s
alar �eld, the rip 
an o

ur between all gravitationally bound stru
-

tures (from the disruption of super
lusters and 
lusters of galaxies to the disruption of atomi


nu
lei), Refs. (Caldwell et al. (2003), Nojiri et al. (2005), Frampton et al. (2011), Frampton

et al. (2012)). To study the history of the universe expansion, the large-s
ale stru
ture of

the universe, the nature of dark energy and dark matter, the Wide-Field Infrared Teles
ope

(WFIRST), the Dark Energy Spe
tros
opi
 Instrument (DESI) and the Eu
lidean Spa
e

Teles
ope (Eu
lid) will be laun
hed in the next de
ade, Refs. (Amendola et al. (2013), Levi

et al. (2013), Font-Ribera et al. (2014), Spergel et al. (2015), Aghamousa et al. (2016)).
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After 
ompleting these missions, very pre
ise measurements of the expansion rate of the

universe, the angular diameter distan
es and the growth rate of the matter density �u
tua-

tions in the universe will be performed to redshifts z ∼ 2. These pre
ise measurements 
an


onstrain the numerous dark energy models and some of them 
an be dis
arded. We studied

10 quintessen
e and 7 phantom φÑDM s
alar �eld models, whi
h were �rst presented in the

papers: Refs. (Frieman et al. (1995), Ferreira & Joy
e (1998), Zlatev et al. (1999), Brax

& Martin (1999), Sahni & Wang (2000), Barreiro et al. (2000), Albre
ht & Skordis (2000),

Urena-Lopez & Matos (2000), Caldwell & Linder (2005), S
herrer & Sen (2008a), Dutta &

S
herrer (2009), Rakhi & Indulekha (2009), Chang & S
herrer (2016), Bag et al. (2017)).

We proposed a phenomenologi
al method for studying the potentials in these models. As a

result, for ea
h potential the following ranges were found: the model parameters, the EoS

parameters, the initial 
onditions for di�erential equations des
ribing the dynami
s of the

universe. We also investigated how the various s
alar �eld models 
an be approximated by

the Chevallier-Polarsky-Linder (CPL) parametrization. We determined the lo
ation of ea
h

model in the phase spa
e of the CPL parameters. One of the obje
tives of this study is to

answer the question: "Is it possible to distinguish these models from the standard ΛCDM

model at the present epo
h using the predi
ted data from the future DESI observations?"

For this purpose the expansion rate, the angular diameter distan
e and the measurements

of the matter density �u
tuations growth rate were 
al
ulated both for ea
h φÑDM model

under investigation and the ΛCDM model. We also applied the 
omparison 
riteria in the

Bayesian statisti
s, su
h as Bayes 
oe�
ients, as well as Akaike and Bayesian information


riteria.

The 
oupled models of matter and dark energy were developed to resolve the problems in

the standard ΛCDM model, Refs. (Amendola (2000), Zimdahl & Pavon (2001)). In the Mass

Varying Neutrino model, the intera
tion of the bosoni
 s
alar �eld with the fermioni
 �eld

(massless neutrino) is 
onsidered. As a 
onsequen
e of this intera
tion, the neutrino a
quires

a mass that varies over time, Ref. (Fardon et al. (2004)). In the Mass Varying Neutrino

model, we investigated the intera
tion of the fermioni
 �eld and the bosoni
 s
alar �eld

with the Ratra-Peebles potential. The equations des
ribing the dynami
s of the universe are

obtained: before the moment of neutrinos intera
tion with the s
alar �eld (before a 
riti
al

point) and after the 
riti
al point to the present epo
h. We 
al
ulated the value of the s
ale

fa
tor and the value of the sum of neutrino masses at the 
riti
al point, as well as the value

of the sum of neutrino masses at the present epo
h depending on the value of the model

parameter α of the Ratra-Peebles potential.
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This thesis is organized as follows: the theoreti
al foundations of 
osmology are dis-


ussed in Chapter II; the various types of distan
es used in 
osmology are des
ribed in

Chapter III; the di�erent 
osmologi
al observations are presented in Chapter IV; Chapter V

is devoted to the basi
s of the statisti
al analysis; the various dark energy models are 
on-

sidered in Chapter VI; the investigations of the Ratra-Peebles φCDM s
alar �eld model

are des
ribed in Chapter VII; the observational 
onstraints on the model parameters in the

Ratra-Peebles φCDM model are 
onsidered in Chapter VIII; the observational 
onstraints

in the �at quintessen
e and in the phantom s
alar �eld φCDM models are dis
ussed in

Chapter IX; the Mass Varying Neutrino model is des
ribed in Chapter X; the 
on
lusion is


ontained in Chapter XI; a plan for the future resear
h is presented in Chapter XII.

In this thesis, we used the natural system of units: c = ~ = kB = 1.
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Chapter 2

Cosmology as a S
ien
e

Sin
e an
ient times, people have always been interested in the stru
ture of the world in

whi
h they live. Staring into the night sky, they asked themselves the questions: "How did

the universe originate and how is it arranged? Will the universe exist forever, and if not,

how will it 
ease its existen
e? Is the universe �nite and what is its size or is it in�nite?"

Namely, the 
uriosity of people to learn more about the universe 
aused the emergen
e and

development of the s
ien
e 
osmology.

Cosmology studies the universe as a whole (as a single system), explores its origin, evolu-

tion, dynami
s, stru
ture and ultimate fate. The pe
uliarity of this s
ien
e is that the obje
t

of resear
h is ex
lusive and, apparently, exists in a single instan
e. The study of the universe

also presents a 
onsiderable di�
ulty, sin
e it is very di�
ult for the resear
her to draw the

obje
tive 
on
lusions about the universe (about the system) part of whi
h he is. While the

empiri
al foundation of 
osmology is an extragala
ti
 astronomy, the theoreti
al foundation

is the basi
 physi
al theories, su
h as the general theory of relativity, �eld theory, et
.

Cosmology is based on the results of a study of the most 
ommon properties su
h as the

homogeneity, the isotropy

1

and the expansion of the part of the universe that is available

for the astronomi
al observations. Due to the fa
t that the speed of light has a �nite value,

we 
an observe only a 
ertain part of the expanding universe, whose radius is approximately

14.25 Gp
. On the 
osmologi
al length s
ale, the average value of whi
h is more than

100 Mp
, the large-s
ale stru
tures su
h as galaxies, 
lusters and super 
lusters are not

observable in the universe. The prin
iple of relativity or the so-
alled Coperni
us's prin
iple

1

The 
on
ept of the homogeneity implies that the universe looks the same at every point in spa
e; the


on
ept of the isotropy means that the universe looks the same in all dire
tions. The ful�llment of the

isotropy 
ondition does not automati
ally follow from the ful�llment of the homogeneity 
ondition and vi
e

versa. The homogeneity 
ondition follows only from the requirement that the isotropy 
ondition is satis�ed

with respe
t to ea
h point in spa
e.
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is appli
able on these length s
ales. A

ording to this prin
iple, the privileged points do not

exist in the universe, and the human beings are not privileged observers in it. Thus, our

universe 
an be 
onsidered as isotropi
 and homogeneous on the 
osmologi
al length s
ales.

The spatial distribution of the nearby galaxies a

ording to the Two-degree-Field (2dF)

Galaxy Redshift Survey is presented in Fig. (2.1). Our Milky Way galaxy is lo
ated at

the 
enter. With an in
rease of the distan
e (or redshift respe
tively) from our galaxy, the

distribution stru
ture of the galaxies be
omes less 
lear. At the large distan
es (or large

redshifts respe
tively), the galaxies are randomly arranged, i.e., the isotropi
 and uniform

distribution of the galaxies is observed on these length s
ales. Based on the theoreti
al

Figure 2.1: The spatial distribution of the galaxies in the Two-degree-Field (2dF) Galaxy

Redshift Survey. The es
ape velo
ities (redshifts) are plotted in the radial dire
tion, the

polar angle is a right as
ension. This distribution is obtained for 200 000 galaxies using 350

000 spe
tra. (Figure from Ref. (Colless et al. (2003)))

and experimental results, Vesto Slipher, George Lemaitre, and Edwin Hubble dis
overed

that the universe is expanding, and this expansion is an essential feature of our universe.

A

ording to the model of the hot universe, that is the most 
ommon in modern 
osmology,

the universe began its evolution or, in other words, expansion about 13.7 billion years ago

as a result of the Big Bang. At early stages of the universe development the matter and the

radiation had a very high temperature and density. The expansion of the universe led to

its gradual 
ooling, the formation of the atoms, and, an 
onsequen
e, stars, protogalaxies,

galaxies, 
lusters of galaxies, super
lusters and other 
osmi
 bodies that exist today.
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2.1 Expansion of the Universe

In 1917, while the Ameri
an astronomer Vesto Slipher was studying the spe
tra of the

galaxies, he dis
overed a shift in the spe
tral lines of these galaxies to the red end of the

spe
trum

2

. Based on these data, Vesto Slipher 
on
luded that the galaxies are moving away

from us.

In 1929, the Ameri
an s
ientist Edwin Hubble dis
overed that the radial velo
ities of the

galaxies, v, measured by the Doppler shift of the spe
tral lines, proportionally in
rease with

the physi
al distan
es to them, d = |~d|, Ref. (Hubble (1929)). Hubble identi�ed a linear

relationship between the radial velo
ities and the physi
al distan
es

3

between the galaxies,

v ∝ d, 
alled the Hubble's law.

The mathemati
al form of this law is:

~v = H0
~d, (2.1)

where H0 is a 
oe�
ient of the proportionality, 
alled the Hubble 
onstant

4

. The values

of the radial velo
ities as a fun
tion of the physi
al distan
es, d, are shown in the Hubble

diagram, see Fig. (2.2). In this �gure, the points are approximated by a straight line, whose

slope is determined by the value of the Hubble 
onstant, H0. The linear in
rease in the

value of the radial velo
ities of the galaxies with an in
rease in the value of the physi
al

distan
es to them 
an be interpreted as the moving away of the galaxies from ea
h other as

a result of the expansion of the universe. With su
h an interpretation, the radial velo
ities

are the re
essional velo
ities of the galaxies from ea
h other (the explanation of this logi
al


on
lusion is given below). The expansion of the universe, 
alled the Hubble expansion, is

one of the main features of our universe.

Let's introdu
e the following terminology

5

:

2

Redshift o

urs due to the Doppler e�e
t. This e�e
t is asso
iated with a 
hange in the frequen
y and,

a

ordingly, in the wavelength of the radiation, per
eived by the observer, due to the motion of the sour
e of

radiation. When the sour
e of radiation moves away from the observer, the wavelength in
reases. Conversely,

when the sour
e of radiation moves towards the observer, the wavelength de
reases.

3

The de�nition of the notion of the physi
al distan
e is given below.

4

The 
oe�
ient of the proportionality in the Hubble's law, H0, is a 
onstant at the present epo
h. In the

general 
ase, this 
oe�
ient is a fun
tion depending on time (a more detailed des
ription of this fun
tion is

presented below).

5

The detailed information about the di�erent types of the distan
es, used in 
osmology, is 
ontained in

Chapter III.
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Figure 2.2: The Hubble diagram, whi
h is based on the observations of the remote Cepheids

from Hubble Spa
e Teles
ope. The solid line 
orresponds to the Hubble's law with H0 =
75 km c−1 Mpc

−1
. (Figure from Ref. (Freedman et al. (2001)))

Proper (physi
al) distan
e

The physi
al distan
e,

~d(t), is a real, measured distan
e between two obje
ts in spa
e, where

t is 
osmologi
al or physi
al time.

Comoving Distan
e

Let's 
onsider a radially expanding or 
ontra
ting homogeneous sphere

6

. We 
hoose a mo-

ment of time, t = t0, whi
h 
orresponds to the present moment of time, and we introdu
e a

referen
e frame, ~x, with the origin that 
oin
ides with the 
enter of this sphere. As a result

of the expansion or 
ontra
tion of the sphere, at the present moment of time, t0, a parti
le

will be in the position,

~d(t0). At the arbitrary moment of time, t, the parti
le will be in the

position,

~d(t). Due to the fa
t that the expansion or 
ontra
tion is radial, the dire
tion, ~d(t),

will remain the 
onstant.

Sin
e

~d(t0) = ~x, this means that:

~d(t) = a(t)~x, (2.2)

where a fun
tion a(t) is 
alled a s
ale fa
tor. This fun
tion depends only on time. The

s
ale fa
tor des
ribes the 
hange in the spatial separation between the obje
ts over time and

6

The expansion or 
ontra
tion of a homogeneous sphere 
an serve as a model of an expanding (or 
on-

tra
ting) universe.
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hara
terizes the expansion or the 
ontra
tion of the universe. At the present moment of

time, the value of the s
ale fa
tor is usually represented in the normalized form. In this

thesis, we 
hose the normalization in whi
h the value of the s
ale fa
tor is equal to unity,

a(t0) ≡ a0 = 1.

The observers who move in a

ordan
e with the equation, Eq. (2.2), are referred to the


omoving observers, where ~x are the 
omoving 
oordinates that form the 
omoving referen
e

frame.

In the expanding or 
ontra
ting universe, the physi
al distan
e between two 
omoving

obje
ts in
reases or de
reases over time, while the 
omoving distan
e between obje
ts does

not 
hange over time.

Conformal Time

Conformal (
omoving) time is time elapsed sin
e the Big Bang in a

ordan
e with the 
lo
k of

the 
omoving observer. The di�erential of physi
al time, t, and the di�erential of 
onformal

time, η, are interrelated as follows:

dt = a(t)dη. (2.3)

The value of 
onformal time, η, 
an be obtained from Eq. (2.3):

η =

∫ t

0

dt′

a(t′)
. (2.4)

Eq. (2.4) 
an be rewritten as:

η =

∫ a

0

1

a′H(a′)

da′

a′
. (2.5)

2.2 Hubble's Law

The velo
ity of the 
omoving observer 
an be found as a time derivative from the 
omoving

distan
e:

~v(d, t) =
d

dt
~d(t) =

da

dt
~x ≡ ȧ

a
~d(t) ≡ H~d(t), (2.6)

where the fun
tion H is 
alled the Hubble parameter or the expansion rate of the universe

7

:

H =
ȧ

a
. (2.7)

7

Georges Lema��tre, based on the results of Vesto Slipher's resear
h, suggested that the universe is expand-

ing and �rst introdu
ed the 
on
ept of the expansion rate of the universe, H . The results of his theoreti
al

studies were presented in the paper, Ref. (Lema��tre (1927)). This paper was published in 1927, two years

before the Edwin Hubble's publi
ation.
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The Hubble's law 
an be written in the general form for an arbitrary moment of time.

Consider the relative velo
ity of two 
omoving obje
ts lo
ated in the positions,

~d and ~d+d~d,

respe
tively:

d~v(t) = ~v(~d+ d~d(t))− ~v(~d, t) = Hd~d(t). (2.8)

Consequently, the relative velo
ity is proportional to the spatial separation of the 
omov-

ing obje
ts. The 
oe�
ient of proportionality, H , does not depend on the position of the

observers but depends only on time.

The Hubble parameter for the present moment of time, t = t0, is 
alled the Hubble


onstant, H(t0) ≡ H0. The Hubble 
onstant is usually represented in the parametrized

form, H0 = 100h km −1 Mpc−1
, where h is a dimensionless parameter.

At the present time, the universe is expanding with an a

eleration, and the gravitation-

ally un
oupled astronomi
al obje
ts are moving away from ea
h other, therefore, ȧ(t0) > 0,

i.e., the s
ale fa
tor is an in
reasing time-dependent fun
tion.

The value of the Hubble 
onstant, H0, is very important in 
osmology, as it determines

the age and the expansion rate of the universe at the present epo
h. The Hubble 
onstant is

determined by the so-
alled Hubble distan
e or by the radius of the Hubble sphere, rHS. The

radius of the Hubble sphere is the distan
e to the obje
ts moving away from the observer

at the speed of light. This radius determines the boundary between the obje
ts that move

slower and faster than the motion of the obje
ts at the speed of light relative to the observer

at the present time. In the general 
ase, the radius of the Hubble sphere, rHS, is 
al
ulated

as

8

, rHS(t) = c/H . Consequently, at the present time, the radius of the Hubble sphere is

de�ned as: rHS(t0) = c/H0 and its value is 4.1 Gp
.

A

ording to the Hubble's law, Eq. (2.8), there are no privileged points in the homoge-

neous and isotropi
 universe, and the expansion will be the same at any point in spa
e, see

Fig. (2.3). This assumption is 
onsistent with the Coperni
an's prin
iple. Therefore, being a

generalized 
hara
teristi
 of the universe, the value of the Hubble 
onstant, H0, is the same

for all the galaxies and does not depend on the dire
tion to the galaxy in the sky or the

distan
e to it.

We �nd the time derivative of the physi
al distan
e to a galaxy,

~d, represented in Eq. (2.2):

~̇d(t) =
ȧ

a
~d(t) + ~up(~x, t), (2.9)

here ~up(~x, t) is a pe
uliar velo
ity, determining the random motions of the galaxy in spa
e.

8

Here the speed of light, 
, reintrodu
ed for 
larity.
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Figure 2.3: Hubble expansion. (Figure from https://www.nature.
om)

The pe
uliar velo
ity 
hara
terizes the deviation of the motion of the nearby galaxy from the

homogeneous Hubble expansion. On the length s
ales that are smaller than the 
osmologi
al

s
ales, the value of the pe
uliar velo
ity, ~up(~x, t) in Eq. (2.9), ex
eeds the value of the galaxy

velo
ity under the in�uen
e of the Hubble expansion, ~v =
ȧ

a
~d. On these length s
ales, the

motion of the galaxies are determined to a greater extent by their random motion than by

the in�uen
e of the Hubble expansion, therefore, this de�nition is not exa
t on these length

s
ales. On the other hand, the motion of the distant galaxies is 
ompletely determined by the

Hubble expansion on the 
osmologi
al s
ales, sin
e the pe
uliar velo
ities of the galaxies are

negligible in the 
omparison with the Hubble expansion rate. The motion of the astronomi
al

obje
ts, solely due to this expansion, is 
alled the motion in a

ordan
e with the Hubble �ow.

The dis
overies of Vesto Slipher, George Lema��tre, and Edwin Hubble are the foundation

on whi
h modern physi
al 
osmology is built. These dis
overies are marked by the beginning

of the transition of 
osmology from the des
riptive philosophi
al s
ien
e to the exa
t s
ien
e,

in whi
h ea
h proposed theory is veri�ed by the results of the observational experiments.

2.3 Short Review of the General Theory of Relativity

2.3.1 Spa
etime Metri
 for Curvilinear Coordinates

The GTR is the theoreti
al basis of modern 
osmology, Refs. (Einstein (1915a), Einstein

(1915b); the monographs: Refs. (Landau & Lifshitz (1971), Weinberg (1972), Misner et al.

(1973), Carroll (2004)). In GTR, spa
etime with the four-dimensional 
urvilinear 
oordinates

is 
onsidered as, xµ = (x0, x1, x2, x3). The spatial part of spa
etime is denoted as, x1, x2, x3,

while the temporary part as, x0 = t. The distan
e between two nearby points with the
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oordinates, xµ and xµ + dxµ, is given by a linear element, whose square in the 
urvilinear


oordinates is a quadrati
 form of the di�erentials, dxµ, or by a metri
:

ds2 ≡ gµνdx
µdxν , (2.10)

where gµν is a 
ovariant spa
etime metri
 tensor, whi
h is a fun
tion of the 
oordinates. The

value of the metri
 is an invariant during the transition from one referen
e frame to another.

The 
ovariant metri
 tensor, gµν , is symmetri
al in the indexes µ and ν, gµν = gνµ. The


ovariant metri
 tensor is inverse to the 
ontravariant metri
 tensor, gµν :

gmµg
µν = δνm, (2.11)

where δνm is a Krone
ker delta fun
tion.

Krone
ker Delta Fun
tion

The Krone
ker delta fun
tion is a single four-dimensional tensor, whi
h is de�ned as:

δνmx
m = xν . (2.12)

In the matrix form this expression 
an be represented as:

δνm =











1, m = l

0, m 6= 1

(2.13)

A tra
e

9

of the Krone
ker delta fun
tion is equal to

∑

i δ
i
i = 4. The Krone
ker delta fun
tion

has the following property: the 
omponents of this fun
tion are the same in any referen
e

frame.

2.3.2 Transformation of Curvilinear Coordinates

Consider the s
alar, ve
tor and tensor transformation from one 
urvilinear referen
e frame,

x0, x1, x2, x3, to another, x
′0, x

′1, x
′2, x

′3
.

9

A tra
e (or Spur-Germ.) of the matrix is a sum of the elements on the main diagonal. If bij are the

elements of the matrix B, then the tra
e of this matrix will be de�ned as, tr(B) =
∑

i bii.
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S
alar (Zero Rank Tensor)

A s
alar is a value that in any referen
e frame is 
ompletely determined by a single number

(or a fun
tion). The value of the s
alar does not 
hange during the transition from one

referen
e frame to another. If ϕ is a s
alar value in one referen
e frame, x0, x1, x2, x3, and

ϕ′
is a s
alar value in another referen
e frame, x

′0, x
′1, x

′2, x
′3
, then:

ϕ′(x
′0, x

′1, x
′2, x

′3) = ϕ(x0, x1, x2, x3). (2.14)

Usually a s
alar has one 
omponent. Examples of the s
alars: pressure, density, temperature,

volume, length, area, et
.

Ve
tor (First Rank Tensor)

A four-dimensional ve
tor is de�ned in the four-dimensional 
urvilinear referen
e frame by

four numbers in the 
ase of a 
ontravariant ve
tor as: Ai = A0, A1, A2, A3
; in the 
ase of a


ovariant ve
tor as: Ai = A0, A1, A2, A3.

For example, during a Lorentz transformation from a four-dimensional referen
e frame

to another, the 
ontravariant 
omponents of the four-dimensional ve
tors, Ai, are 
onverted

as follows

10

:

A0 =
A

′0 + (V/c)A
′1

√

1− V 2/c2
, A1 =

A
′1 + (V/c)A

′0

√

1− V 2/c2
, A2 = A

′2, A3 = A
′3′ , (2.15)

where V is a speed of motion of one inertial referen
e frame relative to another.

The 
ovariant ve
tor, Ai, is the 
ove
tor of the 
ontravariant ve
tor, A
i
. The elements

of the 
ovariant ve
tor, Ai, and the 
ontravariant ve
tor, Ai, are interrelated as follows:

A0 = A0, A1 = −A1, A2 = −A2, A3 = −A3. (2.16)

The 
omponents of the four-dimensional ve
tor 
an be written as:

Ai = (A0, ~A), Ai = (A0,− ~A), (2.17)

where A0
is a temporal 
oordinate whi
h is a s
alar;

~A is a three-dimensional ve
tor, whi
h

10

Here the speed of light, 
, reintrodu
ed for 
larity.
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ontains the spatial 
oordinates. The square of the four-dimensional ve
tor is de�ned as

11

:

3
∑

i=0

= AiAi = A0A0 + A1A1 + A2A2 + A3A3. (2.18)

The 
onne
tion between the 
ovariant ve
tor and the 
ontravariant one is 
arried out through

the metri
 tensor, gµν , whi
h is used to in
rease or de
rease the indi
es of both the ve
tors

and the tensors

12

:

gikAk = Ai, gikA
k = Ai. (2.19)

In general, in the 
urvilinear 
oordinates, a 
ontravariant four-dimensional ve
tor, Ai, and

à 
ovariant one, Ai, are transformed as follows:

Ai =
∂xi

∂x′k
A

′k, Ai =
∂x

′k

∂xi
A

′

k. (2.20)

Tensors (Se
ond and Higher Rank Tensors)

A four-dimensional se
ond-rank tensor is 
alled a set of the 42 = 16 
omponents of this tensor.

In the transition from one referen
e frame to another, these 
omponents are transformed as

a produ
t of the 
omponents of two four-dimensional ve
tors. Similarly, one 
an de�ne the

four-dimensional tensors of the third rank (with 43 = 64 
omponents) and the tensors of the

higher N-th rank, 
onstituting 4N 
omponents.

The 
omponents of the four-dimensional tensor 
an be represented as: 
ontravariant, Aik,


ovariant, Aik, and mixed, Aik.

A 
ontravariant se
ond-rank tensor, Aik, is formed as a result of the produ
t of two four-

dimensional 
ontravariant ve
tors, Ai =
∂xi

∂x′l
A

′l
, and, Ak =

∂xk

∂x′m
A

′m
. In the transition from

one referen
e frame to another, the 
omponents of the se
ond-rank 
ontravariant tensor are

transformed as:

Aik = Ai · Ak = ∂xi

∂x′l

∂xk

∂x′m
A

′lm. (2.21)

A 
ovariant se
ond-rank tensor, Aik, is formed as a result of the produ
t of two four-

dimensional 
ovariant ve
tors, Ai =
∂x

′l

∂xi
A

′

l, and, Ak =
∂x

′m

∂xk
A

′

m. In the transition from

one referen
e frame to another, the 
omponents of the se
ond-rank 
ovariant tensor are

11

In the tensor analysis, the Einstein rule is applied, a

ording to whi
h: the repeating indi
es twi
e in

the expression (one of them is at the top and the other is at the bottom) means summation, and the sign of

the sum is omitted.

12

In the parti
ular 
ase, 
onsidering the Minkowski spa
e, a Krone
ker symbol, δνm, is used for raising or

lowering the indi
es.
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transformed as:

Aik = Ai · Ak =
∂x

′l

∂xi
∂x

′m

∂xk
A

′

lm. (2.22)

A mixed se
ond-rank tensor, Aik, is formed as a result of the produ
t of the four-dimensional


ontravariant ve
tor, Ai =
∂xi

∂x′l
A

′l
, and the four-dimensional 
ovariant ve
tor, Ak =

∂x
′m

∂xk
A

′

m.

In the transition from one referen
e frame to another, the 
omponents of the se
ond-rank

mixed tensor are transformed as

13

:

Aik = Ai · Ak =
∂xi

∂x′l

∂x
′m

∂xk
A

′l
m. (2.23)

The four-dimensional tensors (
ontravariant, 
ovariant, mixed) of the N-th rank are trans-

formed as a result of the produ
t of N four-dimensional (
ontravariant, 
ovariant, mixed)

ve
tors, respe
tively. In the transition from one referen
e frame to another, the 
omponents

of the tensors (
ontravariant, 
ovariant, mixed) of N-th rank are transformed, respe
tively,

as:

Aβ1...βN =
∂xβ1

∂x′γ1
...
∂xβN

∂x′γN
A

′γ1...γN , (2.24)

Aβ1...βN =
∂x

′γ1

∂xβ1
...
∂x

′γN

∂x′βN
A′γ1...′γN , (2.25)

Aβ1...βlβ1+1...βN
=
∂xβ1

∂x′γ1
...
∂xβl

∂x′γl

∂x
′γl+1

∂xβl+1
...
∂x

′γN

∂x′βN
A

′γ1...′γl
′γl+1...′γN

. (2.26)

Tensors Operations

• Addition: Aαβγδ +Bαβ
γδ = Cαβ

γδ

• Subtra
tion: Aαβγδ − Bαβ
γδ = F αβ

γδ

• Produ
t: AαβγδB
ην
γδ = Cαβην

γδγδ

• Contra
tion of the tensors as a result of summing over the identi
al indi
es: Bλχ
χξ = Hλ

ξ

• Inner produ
t: F αβ
φσK

σψ
γω =Mαβσψ

φσγω = Nαβψ
φγω

2.3.3 Covariant Derivatives

Consider a ve
tor, Ai, in the 
urvilinear 
oordinates. The di�erential, dAi, of this ve
tor is

not a ve
tor and the derivative, ∂Ai/∂x
k
, is not a tensor too. This is due to the fa
t that

the di�erential, dAi, is the di�eren
e of the ve
tors lo
ated at the di�erent points of 
urved

13

Here and above the following notations are used: A
′lm = A

′lA
′m
, A

′

lm = A
′

lA
′

m, A
′l
m = A

′lA
′

m.
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spa
e. The ve
tors in 
urved spa
e at the di�erent points are transformed a

ording to the

di�erent laws, so a spe
ial type of the derivatives is used for the 
urvilinear 
oordinates -

the 
ovariant or 
ontravariant derivatives.

The 
ovariant derivatives for the 
ontravariant and 
ovariant ve
tors are de�ned as:

Ai;j =
∂Ai

∂xj
+ ΓikjA

k, Ai;j =
∂Ai
∂xj

− ΓkijAk, (2.27)

where the fun
tions, Γλµν , are 
alled the Christo�el symbols or the a�ne 
onne
tion. They

are expressed in the terms of the derivatives of the metri
 tensor as follows:

Γλµν =
1

2
gλκ

(

∂gκµ
∂xν

+
∂gκν
∂xµ

− ∂gµν
∂xκ

)

. (2.28)

The 
ovariant derivatives for the se
ond-rank tensors: 
ontravariant, Aik, 
ovariant, Aik, and

mixed type, Aik, are de�ned as:

Aik;j =
∂Aik

∂xj
+ ΓimjA

mk + ΓkmjA
im, (2.29)

Aik;j =
∂Aik
∂xj

− ΓmijAkm − ΓmkjAim, (2.30)

Aik;j =
∂Aik
∂xj

− ΓmkjA
i
m + ΓimjA

m
k . (2.31)

The 
ontravariant derivatives 
an be formed from the 
ovariant ones by the raising the index,

whi
h means the di�erentiation. This 
an be done using a 
ontravariant metri
 tensor:

A;k
i = gkjAi;j, Ai;k = gkjAi;j. (2.32)

2.4 Riemann-Christo�el Tensor, Ri

i Tensor, Einstein

Tensor. Ri

i S
alar.

Riemann-Christo�el Tensor

The 
ombination of the Christo�el symbols and their derivatives form the 
urvature tensor,

or the so-
alled fourth-rank Riemann-Christo�el tensor, Ri
klm:

Ri
klm =

∂Γikm
∂xl

− ∂Γikl
∂xm

+ ΓinlΓ
n
km − ΓinmΓ

n
kl. (2.33)
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The Riemann-Christo�el tensor has the following properties:

• Cy
li
ality: Ri
klm +Ri

mkl +Ri
lmk = 0

• Antisymmetry of l and m indi
es: Ri
klm = −Ri

kml

• Symmetry: Riklm = Rlmik

• Asymmetry: Riklm = −Rkilm = −Rikml

• First Bian
hi identity: Riklm +Rimkl +Rilmk = 0

• Se
ond Bian
hi identity: Rn
ikl;m +Rn

imk;l +Rilm;k = 0

The equality or non-equality to zero of the 
urvature Riemann � Christo�el tensor, Ri
klm,

is a 
riterion for determining, whether four-dimensional spa
etime is �at or 
urved. At the

same time, the dire
t theorem is true: four-dimensional spa
etime will be �at (
urved) if

the 
urvature tensor is zero (non-zero) and the inverse theorem is also true: if the 
urvature

tensor is zero (non-zero), then four-dimensional spa
etime will be �at (
urved).

Ri

i Tensor

The se
ond-rank Ri

i tensor, Rik, is obtained by the 
ontra
tion of the Riemann-Christo�el

tensor:

Rik = glmRlimk = Rl
ilk. (2.34)

The Ri

i tensor is de�ned as:

Rik =
∂Γlik
∂xl

− ∂Γlil
∂xk

+ ΓlikΓ
m
lm − Γmil Γ

l
km. (2.35)

The symmetry of the Ri

i tensor is obvious from Eq. (2.35): Rik = Rki.

Ri

i S
alar

Contra
ting the Ri

i tensor, Rik, we get a s
alar value, R, whi
h is 
alled a Ri

i s
alar or

the s
alar 
urvature:

R = gikRik = gilgkmRiklm. (2.36)

The Ri

i s
alar is a tra
e of the Ri

i tensor, Rik: R =
∑

iRii.

In the GTR, the a
tion for the gravitational �eld, SG, is expressed through the integral

over the four-dimensional volume, dΩ, from the s
alar 
urvature density, R
√−g, as follows:

SG = 8πG

∫

M

R
√−gdΩ, (2.37)
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where g is a determinant, whi
h 
omposed from the matrix elements of the metri
 tensor,

gµν .

Einstein Tensor

The 
ombination of the Ri

i tensor, Rµν , the Ri

i s
alar, R, and the metri
 tensor, gµν ,

de�nes the Einstein tensor:

Gµν = Rµν −
1

2
gµνR. (2.38)

The Einstein tensor, Gµν , is a se
ond-rank tensor in N-dimensional spa
etime. The Einstein

tensor 
ontains N(N + 1)/2 independent 
omponents. This tensor 
an be 
onstru
ted only

from the quadrati
 (in the �rst derivatives from the metri
) or the linear (in the se
ond

derivative from the metri
) terms.

The Einstein tensor is symmetri
 due to the symmetry of the Ri

i tensor, Rµν , and the

metri
 tensor, gµν , that form it:

Gµν = Gνµ. (2.39)

The Einstein tensor is an invariant under the 
ovariant di�erentiation, i.e., the 
ovariant

divergen
e of the Einstein tensor identi
ally equals to zero:

Gµν;λ = 0. (2.40)

2.4.1 Energy-Momentum Tensor

In the GTR, the notion of an energy-momentum tensor or a stress-energy tensor, Tµν , in-


ludes all the possible forms of matter and energy

14

, that 
an distort spa
etime. The energy-

momentum tensor 
hara
terizes everything that 
an be 
ontained in a spe
i�
 region of

spa
etime: the energy �uid and the momentum �uid, the energy density and the momentum

density, as well as energy and mass. The energy-momentum tensor is de�ned as the �ux

of a four-dimensional momentum, whi
h passes through a three-dimensional surfa
e of the


onstant 
oordinates.

The energy-momentum tensor, Tµν , is a se
ond-rank tensor. Its properties are identi
al to

the properties of the Einstein tensor, Gνµ, su
h as, the symmetry of the energy-momentum

tensor:

Tµν = Tνµ, (2.41)

14

In a

ordan
e with the prin
iple of the equivalen
e of mass and energy in the GTR.
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and the equality to zero of the 
ovariant divergen
e of the energy-momentum tensor or the

ful�llment of the 
onservation law for the energy-momentum tensor:

Tµν;ν = 0. (2.42)

In the limiting 
ase of the Minkowski metri
 (that is des
ribed below in Eq. (2.71)), the


ovariant derivative is transformed into the ordinary derivative:

Tµν
∂xν

= 0. (2.43)

In the presen
e of the gravitational �eld, the 
onservation law takes the form:

Tµν;ν =
∂Tµν
∂xν

+ ΓkµνTkν + ΓkkνTµν = 0. (2.44)

Consider the di�erent forms of the energy-momentum tensor, Tµν , for the following 
ases:

perfe
t �uid, va
uum and dust.

Perfe
t Fluid

The perfe
t �uid is isotropi
 with respe
t to the referen
e frame in whi
h it is at rest. The

perfe
t �uid 
an be 
ompletely 
hara
terized by its energy density, ρ, and the isotropi


pressure, p, that are 
onne
ted by the equation of state (EoS), p = f(ρ). This �uid has no

vis
osity or heat 
ondu
tion. In 
osmology, the perfe
t �uid model is used to des
ribe the

early universe at the radiation dominated epo
h.

For any referen
e frame the energy-momentum, tensor for the perfe
t �uid has the form:

Tµν = (ρ+ p)uµuν − pgµν , (2.45)

here uµ is a four-dimensional velo
ity.

The four-dimensional velo
ity is determined as:

uµ ≡ dxµ
ds

. (2.46)

The four-dimensional velo
ity is normalized as, uµuµ ≡ 1.15 Hen
e, for the observer in

the 
omoving referen
e frame, relative to whi
h the perfe
t �uid is at the rest, the four-

15

In the geometri
 representation, uµ is an unit four-dimensional ve
tor, that is a tangent to the world

line of the parti
le.
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dimensional velo
ity, uµ, has the form, ~u = (1, 0, 0, 0).

In the 
omoving referen
e frame, the energy-momentum tensor for the perfe
t �uid 
an

be written as:

Tµν =

















ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

















. (2.47)

From the energy-momentum 
onservation equation, Eq. (2.42), the 
ontinuity equation fol-

lows:

∂ρ

∂t
+∇(ρ~vf) = 0, (2.48)

where ~vf is the three-dimension velo
ity of the �uid.

This equation des
ribes the behavior of the perfe
t �uid and expresses the fa
t of the

matter 
onservation. Indeed, the 
onverging velo
ity �eld leads to an in
rease of the density.

Conversely, the diverging velo
ity �eld leads to the de
rease of the density.

Va
uum

There are no �elds, energy, matter in a 
ertain region of spa
etime in this 
ase. The 
om-

ponents of the energy-momentum tensor, Tµν , for this region are equal to zero:

Tµν = 0. (2.49)

Dust

In 
osmology, the matter in the universe is approximated by a dust �uid model or a dust

matter model

16

, 
onsisting of the identi
al, ele
tri
ally neutral, non-intera
ting massive par-

ti
les. These parti
les move with the identi
al velo
ities, whi
h are mu
h smaller than the

speed of light, u ≪ c. The dust �uid is 
hara
terized by the zero pressure, the rest density,

ρ, and the four-dimensional velo
ity, u(~r, t)17.

In this 
ase, the energy-momentum tensor for any referen
e frame is de�ned as:

Tµν = ρuµuν. (2.50)

16

The validity of this approximation is related to the fa
t that in the astrophysi
al and 
osmologi
al

gravitational issues, matter undergoes very high stresses, so it be
omes the �uid.

17

The real universe 
ontains the multi
omponent �ows of the dust matter.
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In the 
omoving referen
e frame, the energy-momentum tensor for the dust �uid takes the

form:

Tµν =

















ρ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















. (2.51)

In the limiting 
ase of the low velo
ity and zero pressure, a perfe
t �uid model is redu
ed

to a dust �uid model. The dust �uid model is used for des
ription of the universe at the

matter dominated epo
h.

2.4.2 Matter in the Universe

The nonrelativisti
 parti
les 
onsisting of the baryons, the massive neutrinos and dark matter

form matter in the universe. A general property of these parti
les is that they 
an a

umulate

under the a
tion of the gravitational for
es.

The observable universe 
ontains 26% of dark matter; 4.8% of the ordinary baryoni


matter; 0.1% of neutrino, a

ording to Plan
k 2015 data, Ref. (Ade et al. (2016)).

The number density of these parti
les, n(t), and the energy density of the matter, ρ(t),


hange over time in the same way as

18

: ρ(t) ∼ n(t) ∝ a−3
(t).

Baryoni
 Matter

The baryoni
 matter 
onsists of the baryons. A

ording to the Standard Model of parti
le

physi
s, the baryons belong to the family of the hadrons. The baryons are formed from

the odd number of the quarks. At the same time, the baryons are the fermions, due to the

fa
t that they have a half-integer spin. The lightest baryons are the nu
leons: protons and

neutrons. The protons 
onsist of one down (or d) quark and two up (or u) quarks, p = uud,

and the neutrons 
onsist of one u quark and two d quarks, n = ddu, Ref. (Okun (1988)).

The baryons are the 
omponents of the atomi
 nu
lei of the ordinary matter, they 
onsti-

tute most of the visible matter in the universe and 
an also form the invisible baryoni
 dark

matter. The energy density of the baryons at the present epo
h is ρb0 ≈ 2.4 ·10−7
GeV/
m

3
.

At the late stage of the evolution of the universe, whi
h is 
hara
terized by the average

temperature 〈T 〉 ≤ 100 KeV, the ratio of the number density of the baryons to the number

density of the photons remains 
onstant, ηb ≡ nb/nγ ≈ 6.1 · 10−10
, Ref. (Rubakov (2014)).

18

This result is valid only for 
old dark matter.
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Massive Neutrino

The neutrinos belong to the leptons family. The neutrinos, being leptons, 
an parti
ipate

only in the weak gravitational intera
tions. The leptons are the fermions, their spin is 1/2.

The leptons have no stru
ture, so they are really the elementary parti
les. Being the neutral

elementary parti
les, the neutrinos have three �avors: the ele
tron neutrinos, νe, the muon

neutrinos, νµ, and the tau neutrinos, ντ . If the neutrinos are the Dira
 fermions, then

there will be the anti-neutrinos, respe
tively: ν̃e, ν̃µ, ν̃τ . If the neutrinos are the Majorana

fermions, then they will not have their antiparti
le and, like the photons, they will be the

really neutral parti
les.

The present number density for ea
h type of the neutrinos is nνα0 = 110 
m

−3
, where

nνα = νe, νµ, ντ . The energy density for all the types of neutrinos is ρν,total ∼ 6·10−7
GeV/
m

3
.

The total mass of all the types of neutrinos is

∑

mν,total < 0.23 eV, Ref. (Ade et al. (2016)).

Dark Matter

Presumably, dark matter 
onsists of the stable massive parti
les, the nature of whi
h is not

known yet. The dark matter parti
les do not intera
t with the observed ele
tromagneti


radiation and weakly gravitationally intera
t with the ordinary baryoni
 matter.

Dark matter is lo
ated in the galaxies, as well as in the 
lusters of galaxies. The term

"dark matter" was �rst introdu
ed by Fritz Zwi
ky in 1933. He measured the radial velo
ity

for eight galaxies in the 
onstellation Coma, v(R), whi
h depends on the distan
e from the


enter of the galaxy, R. Zwi
ky 
on
luded that for maintaining the stability of the galaxy,

its total mass must be ten times more than the mass of the stars in
luded in it.

Vera Rubin and Kent Ford were the �rst who presented the a

urate 
al
ulations indi
at-

ing the dark matter existen
e in the galaxies, Ref. (Rubin et al. (1980)). They found that in

the spiral galaxies most of the stars, that are not too 
lose to the 
enter of the galaxies, move

in the orbits with the same radial velo
ity, v(R) =
onst, see Fig. (2.4) (left panel). For the

regions, whi
h 
ontain the visible matter (
onsidering only the visible matter), v(R) ∝
√
R,

see Fig. (2.4) (left panel). For the large distan
es from the 
enter of the galaxies, i.e., for the

peripheral regions of the galaxies, v(R) ∝ 1/
√
R, see Fig. (2.4) (left panel). This dis
repan
y

in the radial velo
ities of the stars 
an be explained by assuming that the visible matter of

the galaxies is immersed in a mu
h larger 
loud � in the gala
ti
 halo. The gala
ti
 halo


ontains the signi�
ant mass of the invisible matter, the parti
les of whi
h do not intera
t

with the photons.
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In the early stages of the evolution of the universe, the dark matter parti
les were in the

thermodynami
 equilibrium with the parti
les of the primordial plasma. During the universe

expansion, at a 
ertain moment of time, the temperature of the primordial plasma de
reased

so mu
h that the intera
tion of the dark matter parti
les with the baryoni
 matter 
eased,

and the dark matter parti
les de
oupled from the primordial plasma, see Fig. (2.4) (right

panel).

Depending on the temperature at whi
h this de
oupling o

urred (or depending on the

mass of the dark matter parti
les at that moment), dark matter is subdivided on Cold Dark

Matter (CDM), Warm Dark Matter (WDM) and Hot Dark Matter (HDM).

CDM 
onsists of the heavy parti
les with the mass, mCDM ≥ 100 KeV. The 
andidates for

CDM are the slowly moving hypotheti
al parti
les, the so-
alled weakly intera
ting massive

parti
les (WIMPs). The parti
les that form WDM have the mass, mWDM ≈ 3 − 30 KeV.

At the time of going out of the equilibrium with the primordial plasma, these parti
les were

relativisti
. During the de
oupling of the HDM parti
les from the primordial plasma, their

energy far ex
eeded their mass, i.e., these parti
les were ultrarelativisti
. Ñonsequently,

HDM may 
onsist of the light parti
les su
h as the neutrinos.

Figure 2.4: Left panel: the �at 
urve of the spiral galaxy NGC 3198 rotation (upper 
urve),

whi
h is a 
ombination of the visible matter rotation (
urve "disk") and dark matter (
urve

"halo"). (Figure from Ref. (Begeman et al. (1991))) Right panel: the evolution of the

Newton's potential, Φ, and the relative density 
ontrast for: dark matter, δDM, the baryons,

δB, and the photons, δγ . teq is the transition from the radiation domination epo
h to the

matter domination epo
h; trec is the beginning of the re
ombination epo
h; tΛ is the transition
from the de
elerated to a

elerated expansion of the universe. (Figure from Ref. (Rubakov

(2014)))

Dark matter plays a very important role in the large-s
ale stru
tures formation of the

universe. The formation of the galaxies happened in the regions with over density of dark

matter. The de
oupling of the dark matter parti
les from the primordial plasma o

urred
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mu
h earlier than the de
oupling of the baryons. As a 
onsequen
e of this, the growth of

the dark matter density �u
tuations happened mu
h earlier than the growth of the baryoni


matter density �u
tuations, see Fig. (2.4) (right panel). The baryons fell into a potential

well formed by dark matter, ñonsequently, after re
ombination, the dark matter density

�u
tuations and the baryons density �u
tuations developed together, inseparable from ea
h

other, see Fig. (2.4) (right panel).

There are numerous possible 
andidates for the role of dark matter. Dark matter 
an

have of the baryoni
 or non-baryoni
 origin. Baryoni
 dark matter, the so-
alled Massive

Compa
t Halo Obje
ts (MACHOs), have low luminosity. Baryoni
 dark matter 
an be the

brown dwarfs, the dark gala
ti
 halos, the massive planets, the 
ompa
t obje
ts at the �nal

stages of the evolution: the neutron stars, the white and bla
k dwarfs, the bla
k holes. Non-

barioni
 dark matter 
an be light or heavy neutrinos, axions, the supersymmetri
 parti
les.

In addition, dark matter 
an be the primordial bla
k holes and the topologi
al defe
ts of

spa
etime.

2.4.3 Einstein's Field Equations

The basi
 equations of the GTR are the gravitation �eld equations, whi
h are 
alled the

Einstein's �eld equations:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν . (2.52)

The Einstein's �eld equations 
onne
t the metri
 of 
urved spa
etime, gµν , the Ri

i 
urva-

ture tensor, Rµν , the Ri

i s
alar, R, with the properties of the matter that �lls this spa
e,

whi
h is 
hara
terized by an energy-momentum tensor, Tµν . These equations establish the

interrelation between the 
urvature (geometry) of spa
etime (left side of the equation) and

matter, as well as its motion (right side of the equation). Thus, the Einstein's �eld equations

des
ribe how the 
urvature of spa
etime a�e
ts matter in the universe, and vi
e versa, how

matter in the universe a�e
ts the 
urvature (geometry) of spa
etime.

The gravitational �eld equations are the nonlinear se
ond-order partial di�erential equa-

tions. This nonlinearity is asso
iated with the e�e
t of the gravity on itself, sin
e the gravi-

tational �eld 
arries the energy and the momentum. Due to the fa
t that the Einstein's �eld

equations are nonlinear, the superposition prin
iple is not valid for the gravitational �elds.

Linearization of the Einstein's �eld equations is possible in the 
ase of the 
onsideration of

the gravitational waves with low amplitude or for the weak gravitational �elds (for exam-

ple, for the gravitational �elds in the Newtonian limit). For su
h �elds the deviations of
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the metri
 
omponents of the equation from their values for �at spa
etime are insigni�
ant

and, a

ordingly, the spa
etime 
urvature generated by them is also small. In this 
ase, the

superposition prin
iple of the �elds 
an be applied.

In the 
ase of the weak gravitational �elds 
reated by a nonrelativisti
 moving substan
e,

the zero 
omponent of the Einstein tensor, G00, is de�ned as:

G00 ≈ ∇2g00, (2.53)

for the Newtonian limit, the Einstein's �eld equations take the form:

G00 = −8πGT00. (2.54)

We obtain an alternative form of the Einstein's �eld equations, Eq. (2.52), 
ontra
ting both

sides by the 
ontravariant metri
 tensor, gµν :

R = −8πGT. (2.55)

Substituting Eq. (2.52) into Eq. (2.55), we get another form of the Einstein's �eld equations:

Rµν = 8πG(Tµν −
1

2
gµνT ). (2.56)

The value of the energy-momentum tensor is equal to zero for va
uum, Eq. (2.49). From

Eq. (2.56) it follows that the following equation is ful�lled for va
uum:

Rµν = 0. (2.57)

The result obtained in Eq. (2.57) does not mean that empty spa
e is �at, and

there are no gravitational �elds in it. This statement requires the additional


ondition: the Riemann-Christo�el tensor must be equal to zero, Ri
klm = 0. In

spa
etime with two or three dimensions, the 
ondition Rµν = 0 means that the Riemann-

Christo�el tensor is zero and, a

ordingly, it means the absen
e of the gravitational �elds

there.

The full Riemann-Christo�el tensor 
an be non-zero under the ful�llment of the 
ondition,

Rµν = 0, in va
uum spa
etime with four and higher dimensions. Therefore, in this 
ase, the

gravitational �elds 
an exist.
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2.5 Spatial Metri
s

2.5.1 Flat Eu
lidean Spa
e

The Eu
lidean geometry is based on �ve axioms:

1. Axiom of belonging

2. Axiom of order

3. Axiom of equality of segments and angles

4. Axiom of the parallel lines

5. Axiom of the 
ontinuity (Ar
himedes' axiom)

Figure 2.5: Left panel: the three-dimensional Cartesian 
oordinates. Right panel: the

spheri
al 
oordinates. (Figure from Ref. (Dubrovin et al. (1979)))

From the "Axiom of the parallel lines" it follows the statement "The sum of the interior

angles of the triangle is equal to 180◦", whi
h is very important feature of Eu
lidean spa
e.

Eu
lidian spa
e is three-dimensional �at spa
e. Ea
h point in this spa
e is de�ned by the

orthogonal Cartesian 
oordinates, (x1, x2, x3 = x, y, z), see Fig. (2.5) (left panel).

The invariant metri
 in the Cartesian 
oordinates is de�ned as:

ds2 =

3
∑

i=1

dxi = (x1)2 + (x2)2 + (x3)2. (2.58)
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The 
ompa
t form of this metri
 is:

ds2 = gµνdx
µdxν , (2.59)

where gµν = δµν .

The metri
 tensor for Eu
lidean spa
e in the Cartesian 
oordinates has the form

19

:

gµν = δµν =











1 0 0

0 1 0

0 0 1











. (2.60)

The invariant metri
 in the Cartesian 
oordinates, (dxµ, dxν), 
an be expressed in the arbi-

trary 
oordinates, (dxm
′

, dxn
′

), as:

ds2 = δµνdx
µdxν = δµν

( ∂xi

∂xm′
dxm

′

)( ∂xj

∂xk′
dxk

′

)

= gm′k′dx
m′

dxk
′

, (2.61)

here gm′k′ is the spatial metri
 tensor in an arbitrary referen
e frame.

Consider the Eu
lidean metri
 in the polar, 
ylindri
al and spheri
al 
oordinates:

The polar 
oordinates

The Cartesian 
oordinates, (x1, x2), on the plane are expressed through the polar 
oor-

dinates, (y1 = r, y2 = ϕ), as:

x1 = r cosϕ, x2 = r sinϕ (2.62)

and

gm′k′ = δµν =





1 0

0 r2



 . (2.63)

The metri
 in the polar 
oordinates is given by:

ds2 = (dr)2 + r2(dϕ)2. (2.64)

The 
ylindri
al 
oordinates

19

The isotropy and the homogeneity of spa
e is expressed in the diagonal form of the metri
 tensor and

vi
e versa, the metri
 tensor for isotropi
 and homogeneous spa
e must be diagonal.
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The Cartesian 
oordinates, (x1, x2, x3), are expressed through the 
ylindri
al 
oordinates,

(y1 = r, y2 = ϕ, y3 = z), as:

x1 = r cosϕ, x2 = r sinϕ, x3 = z (2.65)

and

gm′k′ =











1 0 0

0 r2 0

0 0 1











. (2.66)

The metri
 in the 
ylindri
al 
oordinates is given by:

ds2 = (dr)2 + r2(dϕ)2 + sin2(dϕ)2. (2.67)

The spheri
al 
oordinates

The Cartesian 
oordinates, (x1, x2, x3), are expressed through the spheri
al 
oordinates,

(y1 = r, y2 = θ, y3 = ϕ), see Fig. (2.5) (right panel) as:

x1 = r cosϕ sin θ, x2 = r sinϕ sin θ, x3 = r cos θ (2.68)

and

gm′k′ =











1 0 0

0 r2 0

0 0 r2 sin2 ϕ











. (2.69)

The metri
 in the spheri
al 
oordinates is given by:

ds2 = dr2 + r2[(dθ)2 + r2 sin2 θ(dϕ)2]. (2.70)

2.5.2 Minkowski Spa
etime

In 1908, HermannMinkovski �rst introdu
ed four 
oordinates for des
ription of four-dimensional

ve
tor spa
e or the spa
etime 
ontinuum. The points of this spa
etime are 
alled the events

or the world points. Ea
h event 
orresponds to a set of four numbers (x0, x1, x2, x3), where

x0 = t is a moment of time when the event o

urred and (x1, x2, x3) is the lo
ation of the

event. In four-dimensional spa
e, the pro
ess of life for ea
h obje
t is identi�ed by the line

xi(t) (i = 1, 2, 3), whi
h is 
alled the world line. The values of (t, x1, x2, x3) 
an be regarded
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Figure 2.6: Left panel: two-dimensional Minkovski diagram. Right panel: three-dimensional

light 
one.

as the Cartesian 
oordinates in the spa
etime 
ontinuum. Thereby, the spa
etime 
ontinuum


an be 
onsidered as four-dimensional Cartesian spa
e. On the 
ontrary, three-dimensional

spa
e, in whi
h the 
lassi
al geometry unfolds, will be a surfa
e of the 
onstant level (where

t=
onst).

The metri
 tensor of Minkowski spa
etime is de�ned as

20

:

ηµν = δµν =

















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

















. (2.71)

This metri
 tensor des
ribes �at four-dimensional isotropi
 and homogeneous spa
etime.

The metri
 for the Minkovski metri
 tensor is represented as:

ds2 = ηµνdx
µdxν . (2.72)

The metri
, ds2, 
an take the following values in four-dimensional spa
etime: to be equal

to zero, to be positive or negative. The metri
, ds2 = 0, 
orresponds to the propagation

of a signal with the speed of light or a motion of the massless parti
les in four-dimensional

20

Hereinafter, the metri
 signature is used, (1,−1,−1,−1).
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spa
etime. The zero metri
, ds2 = 0, des
ribes the lightlike events. The positive metri
,

ds2 > 0, des
ribes the timelike events. For the timelike events, there is a frame of referen
e in

whi
h these events 
an o

ur in the same pla
e. In this 
ase, the linear interval between two

events, ds, is a real number. A negative metri
, ds2 < 0, des
ribes the spa
elike events.

There is a frame of referen
e for the spa
elike events, in whi
h these events 
an o

ur

simultaneously. In this 
ase, the linear interval between two events, ds, is an imaginary

number.

The above-mentioned types of the events are presented on the two-dimensional, (x0, x1),

Minkovski diagram, see Fig. (2.6) (left panel). The origin of the 
oordinate, O, 
orresponds

to the present point in time. The lines ab and cd are 
onsistent with two di�erent signals,

whi
h propagate at the speed of light, so ds2 = 0 for them. The spa
elike events are 
ontained

in the dOa and cOb regions with ds2 < 0, while the regions aOc and dOb 
orrespond to the

timelike events with ds2 > 0.

Sin
e the time from the aOc region has a positive value, t > 0, the events from this region

will happen in the future with respe
t to the present moment of time, O. The time from the

dOb region has a negative value, t < 0, 
onsequently, the events from this region happened

in the past with respe
t to the present point in time, O. In other words, the events from

the aOc region 
an be 
alled the "absolutely future", 
onsequently, the events from the dOb

region 
an be 
alled the "absolutely past" with respe
t to the present point in time, O. Sin
e

it 
an be unambiguously determined whi
h of the events with a timelike interval o

urred

earlier and whi
h later, these events 
an be 
ausally-related to ea
h other.

The metri
 for the Minkowski spa
etime, Eq. (2.72), is timelike, so it 
an be lo
ated in

the aOc and dOb regions on the Minkowski diagram. This metri
 
an be written in the

extended form:

ds2 = (x0)2 − (x1)2 − (x2)2 − (x3)2. (2.73)

Eq. (2.73) des
ribes a so-
alled light 
one or, in other words, a 
one of the 
ausal events.

The three-dimensional Minkowski 
oordinates, (x0, x1, x2), 
an be expressed in the terms of

the pseudospheri
al 
oordinates, (̺, ς, ϕ):

χ(r) =



















x0 = ̺ cosh ς

x1 = ̺ sinh ς

x2 = ̺ sinh ς sinϕ

(2.74)
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From Eq. (2.74) it follows:

(x0)2 − (x1)2 − (x2)2 = ̺2 > 0. (2.75)

Therefore, the 
oordinates, (̺, ς, ϕ), are de�ned only in the region, (x0)2− (x1)2− (x2)2 > 0.

This region is lo
ated inside of the light 
one in three-dimensional spa
etime, (x0)2 = (x1)2+

(x2)2, see Fig. (2.6) (right panel). The metri
 for this region has the form:

ds2 = d̺2 − ̺2[(dχ)2 + sinh2 χ(dϕ)2]. (2.76)

2.5.3 Geodesi
 Equation

Suppose that a point with the 
oordinates xi moves along a 
ertain traje
tory with the

four-dimensional velo
ity, ui = xi/ds. A

ording to the GTR, a free material point moves

in the gravitational �eld in four-dimensional spa
etime, so its world line is extremal. This

extremal world line is 
alled the geodesi
 line between two given world points.

The motion of the parti
le in the gravitational �eld is determined by the prin
iple of

least a
tion, a

ording to whi
h the a
tion fun
tional takes the minimum value:

δS = δ

∫

ds = 0, (2.77)

where ds2 = gikdx
idxk is a metri
 in four-dimensional 
urved spa
etime.

Applying the prin
iple of least a
tion, we obtain the equation of motion of the parti
le

in the gravitational �eld.

Due to the fa
t that:

δds2 = 2dsδds = δ(gikdx
idxk) = dxidxk

∂gik
dxl

δxl + 2gikdx
idδxk. (2.78)

Substituting this result into Eq. (2.77), we get:

S =

∫

(dxi

ds

dxk

ds

dgik
dxl

δxl + gik
dxi

ds

dδxk

ds

)

ds = 0. (2.79)

While we integrate Eq. (2.79) by parts and take into a

ount that in the se
ond term at the

boundaries of integration δxk = 0, we obtain:

S =

∫

(1

2

dxi

ds

dxk

ds

dgik
dxl

δxl − d

ds

(

gik
dxi

ds

)

δxk
)

ds = 0. (2.80)
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Repla
ing the index k with the index l, in the se
ond term of Eq. (2.80):

1

2
uiuk

dgik
dxl

− d

ds
(dgilu

i) =
1

2
uiuk

dgik
dxl

− gil
dui

ds
− uiuk

dgil
dxk

= 0. (2.81)

We represent the third term in Eq. (2.81) as:

uiuk
dgil
dxk

=
1

2
uiuk

(dgil
dxk

+
dgkl
dxi

)

. (2.82)

Multiplying the left and right sides of Eq. (2.81) by gim:

gimgil
dui

ds
+

1

2
gimuiuk

(dgil
dxk

+
dgkl
dxi

− dgik
dxl

)

= 0. (2.83)

Considering that gimgil = δml , we repla
e the index l with the index m in the expression

lo
ated in the parentheses, Eq. (2.83):

dui

ds
+

1

2
gimuiuk

(dgil
dxk

+
dgkm
dxi

− dgik
dxm

)

= 0. (2.84)

As a result of repla
ing the index i to the index l in the expression lo
ated in the parentheses,

Eq. (2.84), and introdu
ing the Christo�el symbols, Γikl = 1
2
gim

(

∂gmk

∂xl
+ ∂gml

∂xk
− ∂gkl

∂xm

)

, we

obtain the equation of motion of a material point in the gravitational �eld along the geodesi


line:

d2xi

ds2
+ Γikl

dxk

ds

dxl

ds
= 0. (2.85)

The geodesi
 line has a 
urved shape in four-dimensional spa
etime, (x0, x1, x2, x3), and the

motion of the parti
le is not uniform and re
tilinear.

2.5.4 Isotropi
 Four-Dimensional Spa
etime Metri


The metri
 tensor for four-dimensional homogeneous and isotropi
 spa
etime, whi
h is spa-

tially expanding or 
ontra
ting with dependen
e on the s
ale fa
tor, a(t)21, is de�ned as

follows:

gµν =

















1 0 0 0

0 −a2(t) 0 0

0 0 −a2(t) 0

0 0 0 −a2(t)

















. (2.86)

21

This metri
 tensor des
ribes the expanding spa
etime, sin
e a s
ale fa
tor is the time-dependent in
reas-

ing fun
tion,

˙a(t) > 0.
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The metri
 for this spa
etime is:

ds2 ≡ gµνdx
µdxν = dt2 − a2(t)γijdx

idxj , (2.87)

where γij is a metri
 of three-dimensional spa
e.

The fun
tion γij in the spheri
al 
oordinates, (r, θ, ϕ), Eq. (2.87), is represented as:

γij = dr2 + χ(r)2(dθ2 + sin2 θdϕ2), (2.88)

here χ(r) is a spa
e 
urvature fun
tion, whi
h is de�ned as:

χ(r) =



















1√
K
sin

(√
K r

)

for K > 0

r for K = 0

1√
−K

sinh
(√

−K r
)

for K < 0

, (2.89)

here K is a 
urvature parameter.

Repla
ing the variable x = ξ in Eq. (2.89) and expressing the variable r through x, we

�nd the square of the di�erential dr2:

dr2 =























1
1−Kx2

dx2 for K > 0

dx2 for K = 0

1
1−Kx2

dx2 for K < 0

. (2.90)

Substituting Eq. (2.89) and Eq. (2.90) into Eq. (2.87), we get the expression for the Friedmann-

Lema��tre-Robertson-Walker (FLRW) spa
etime metri
:

ds2 = dt2 − a2(t)

[

dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]

. (2.91)

This metri
 des
ribes the homogeneous and isotropi
 expanding spa
e. The 
oordinates,

(r, θ, ϕ), are the 
omoving 
oordinates, i.e., the moving obje
t is at rest relative to these


oordinates.

The FLRW metri
 in the Cartesian 
oordinates 
an be written as:

ds2 = dt2 − a2(t)
1

(1 + K
4
r2)2

δijdx
idxj . (2.92)

Depending on the sign of the 
urvature parameter, K, Eq. (2.91) des
ribes the geometri
ally
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Figure 2.7: The examples of 
losed, �at and open two-dimensional spa
es. (Figure from

http://www.astro.
ornell.edu/a
ademi
s/
ourses/astro201/)

di�erent types of the universe. The 
ase K > 0 
orresponds to the so-
alled 
losed universe

(to spheri
al three-dimensional spa
e). The two-dimensional analogue of this universe is

the surfa
e of a sphere, see Fig. (2.7), and the fun
tion, 1/
√
K, 
an be interpreted as its


urvature radius. The 
ase K = 0 
orresponds to the so-
alled �at universe (to Eu
lidean

three-dimensional spa
e), see Fig. (2.7). The 
ase K < 0 
orresponds to the so-
alled open

universe (to three-dimensional hyperboli
 spa
e). The two-dimensional analogue of this

universe is the surfa
e of a saddle, see Fig. (2.7).

The 
urvature of the universe 
an be negle
ted in the study of the 
ertain pro
esses.

For example, when a photon moves freely in the homogeneous and isotropi
 universe, the

wavelength of the photon will be mu
h smaller than the radius of the spatial 
urvature of

the universe (in the 
ase of an open or 
losed universe). In this 
ase, the universe 
an be


onsidered as spatially �at and the metri
 presented in Eq. (2.87) 
an be used.

In the terms of 
onformal time, whi
h is de�ned in Eq. (2.4), the Eq. (2.87) takes the

form:

ds2 = a2(η)dη2 − a2(η)γijdx
idxj = a2(η)[η2 − γijdx

idxj ]. (2.93)

From Eq. (2.93), it follows the relation between the Minkowski metri
 tensor ηµν and the

metri
 tensor gµν :

gµν = a2(η)ηµν . (2.94)

Hen
e, the metri
 tensor, gµν , has a 
onformally �at form in the 
oordinates, (η, xµ).
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For the di�erent types of the 
urvature, Eq. (2.93) has the form:

ds2 = a2(η)(dη2 − dξ2 −̟2(dθ2 + sin2 θdϕ2)), (2.95)

where the variable ̟ is de�ned as:

̟ =























sin ξ for K > 0, r = a(η) sin ξ, ξ ∈ [0, π]

ξ for K = 0, r = a(η)ξ, ξ ∈ [0,∞]

sinh ξ for K < 0, r = a(η) sinh ξ, ξ ∈ [0,∞]

(2.96)

2.5.5 Friedmann's Equations

Substituting the FLRW metri
, Eq. (2.91), and the energy-momentum tensor, Eq. (2.45),

into the Einstein's equations, Eq. (2.52), the �rst and the se
ond Friedmann's equations 
an

be derived:

ȧ2

a2
=

8πG

3
ρ− K

a2
(2.97)

and

ä

a
= −4πG

3
(ρ+ 3p). (2.98)

If we know the evolution of the s
ale fa
tor, a(t), whi
h 
hara
terizes the expansion history

of the universe, we will be able to determine the value of the 
urvature parameter and the

mass-energy 
omposition of the universe using the Friedmann's equations. Conversely, if we

know the value of the 
urvature parameter and the matter-energy 
ontent of the universe, we

will be able to 
al
ulate the evolution of the s
ale fa
tor, a(t). For example: the expansion

history of the universe depends on the value of the 
urvature parameter, K: for K < 0 (the

open universe), the universe will expand forever, see Fig. (2.8); for K = 0 (the �at universe),

the universe will expand forever either, but for t → ∞, the expansion will o

ur with the


onstant velo
ity, i.e., ȧ→ 0, see Fig. (2.8); for K > 0 (the 
lose universe), the universe will

expand till 
ertain moment, after that the expansion will turn into a 
ontra
tion and the

universe will re-
ollapse, see Fig. (2.8).

As mentioned previously, all the matter-energy 
omponents of the universe on the 
osmo-

logi
al s
ales 
an be modeled as the perfe
t �uid. The relation between the energy density

and the pressure for the perfe
t �uid is de�ned by the EoS:

p = wρ, (2.99)
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Figure 2.8: The evolution of the s
ale fa
tor, a(t), for the di�erent signs of the 
urvature

parameter, K. (Figure from https://wmap.gsf
.nasa.gov/universe/)

where w is an EoS parameter, the value of whi
h is di�erent for ea
h matter-energy 
ompo-

nent in the universe.

If we solve the 
ontinuity equation, Eq. (2.48), and the Friedmann's equation, Eq. (2.97),

for a �at universe, K = 0, we will get the following equations:

ρ ∝ a−3(1+w), a(t) ∝ t
2

3(1+w) ⇒ H =
2

3(1 + w)t
, (2.100)

where the value of the EoS parameter, w, is time-independent and w 6= 1.

The equations, whi
h are determined in Eq. (2.100), des
ribe the evolution of the energy

density, ρ, the s
ale fa
tor, a, and the Hubble parameter, H , in dependen
e on the value of

the EoS parameter, w, and the physi
al time, t. Let's analyze Eq. (2.100) for the di�erent

values of the EoS parameter, w. We suppose that only one matter-energy 
omponent is


ontained in the universe, whi
h is des
ribed by the given EoS parameter.

The EoS parameter, w = 1/3, 
orresponds to the perfe
t �uid of the relativisti
 parti
les

(the photons and the neutrinos), whi
h is 
alled the radiation. For this 
ase Eq. (2.100)

takes the form:

ρr ∝ a−4, a(t) ∝ t
1
2 ⇒ H =

1

2t
. (2.101)

The EoS parameter, w = 0, 
orresponds to the perfe
t �uid of the non-relativisti
 parti
les

or the dust (matter), whi
h 
onsists of CDM and the baryons. A

ordingly, in this 
ase,
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Eq. (2.100) takes the form:

ρm ∝ a−3, a(t) ∝ t
2
3 ⇒ H =

2

3t
. (2.102)

The EoS parameter, w = −1/3, 
orresponds to the universe with the nonzero spatial 
urva-

ture, i.e., for the 
lose or open universe. In this 
ase, Eq. (2.100) takes the form:

ρK ∝ a−2, a(t) ∝ t ⇒ H =
1

t
. (2.103)

If we substitute the EoS, whi
h is de�ned in Eq. (2.99), in the se
ond Friedmann's equation,

Eq. (2.98), we will get:

ä

a
= −4πGρ

3
(1 + 3w). (2.104)

If the value of the EoS parameter, w, satis�es the 
ondition,−1 ≤ w < −1

3
, then ä ≤ −1, i.e.,

the universe will expand with an a

eleration. The a

elerated expansion of the universe is

explained by the presen
e of dark energy in it. The 
ase w = −1 
orresponds to the simplest

model of dark energy, the so-
alled va
uum energy or the 
osmologi
al 
onstant Λ. In this


ase, the universe is a

elerating with a 
onstant energy density, ρΛ, and with a 
onstant

Hubble parameter, whereas the s
ale fa
tor 
hanges exponentially over time:

ρΛ = const, a(t) ∝ eHt ⇒ H = const. (2.105)

The total energy density of the universe in
ludes the following 
omponents: the radiation,

the matter, the 
urvature and dark energy:

ρ = ρr + ρm + ρK + ρΛ. (2.106)

If we 
onsider the dependen
e of the energy density 
omponents on the s
ale fa
tor, whi
h

is presented in the equations, Eq. (2.101)- Eq. (2.105), we will get:

ρ = ρr0a
−4 + ρm0a

−3 + ρK0a
−2 + ρΛ, (2.107)

where ρr0, ρm0, ρK0 = −K/H2
0 , and ρΛ are the values for the energy densities at the present

epo
h: for the radiation, the matter, the 
urvature and dark energy, respe
tively.
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The equation for the total energy density, ρ0, at the present epo
h, a = a0 = 1:

ρ0 = ρr0 + ρm0 + ρK0 + ρΛ. (2.108)

Eq. (2.107) 
an be represented in more 
onvenient form through the dimensionless density

parameters. The dimensionless density parameters are usually applied for the des
ription of

the matter-energy 
ontent in the universe:

Ω = ρ/ρcr = Ωr0a
−4 + Ωm0a

−3 + ΩK0a
−2 + ΩΛ, (2.109)

where Ω is a total energy density parameter, whi
h is de�ned for an arbitrary moment

of time; Ωi0 is an energy density parameter for the 'i' 
omponent at the present epo
h,

whi
h is 
hara
terized by the 
orresponding energy density, ρi0; ρcr is a 
riti
al density in

the universe at the present epo
h

22

. The value of the 
riti
al energy today is equal to

ρcr = 3H2
0/8πG = 1.8791h2 · 10−29 g cm−3

At the present epo
h, Eq. (2.109) has the form:

Ω0 = ρi0/ρcr =
∑

i

Ωi0 =
∑

i

Ωi0 = Ωr0 + Ωm0 + ΩK0 + ΩΛ, (2.110)

where Ω0 is a total energy density parameter at the present epo
h. This parameter is one of

the most important 
osmologi
al parameters.

The �rst Friedmann's equation, whi
h is de�ned in Eq. (2.97), 
an be expressed in the

terms of the 
urrent energy density parameters, Ωi0, as:

H(a) = H0(Ωr0a
−4 + Ωm0a

−3 + ΩK0a
−2 + ΩΛ)

1/2. (2.111)

Eq. (2.111) 
an be represented as:

E(a) = (Ωr0a
−4 + Ωm0a

−3 + ΩK0a
−2 + ΩΛ)

1/2, (2.112)

where E(a) = H(a)/H0 is a dimensionless Hubble parameter.

If we rewrite Eq. (2.111) at the present epo
h, we will get:

Ω0 − 1 =
K

H2
0

. (2.113)

22

The 
riti
al density is a total energy density in the universe whi
h is ne
essary for the universe to be

spatially �at.
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From Eq. (2.113) it follows that the value of the total density parameter, Ω0 > 1, 
orresponds

to the 
losed universe with the positive 
urvature parameter, K > 0, see Fig. (2.8). The

value of the total density parameter, Ω0 < 1, 
orresponds to the open universe, where the


urvature parameter is negative, K < 0, see Fig. (2.8). The value of the total density

parameter, Ω0 = 1, 
orresponds to the �at universe with the zero 
urvature parameter,

K = 0, see Fig. (2.8). A

ording to Plan
k 2015, Ref. (Ade et al. (2016)), the 
urrent


urvature density parameter is ΩK0 = 0.006 (at the 68% 
on�den
e level). Thus, the 
riti
al

density in the universe 
orresponds to the average energy density in the universe, 〈ρ〉, i.e.,
ρcr = 〈ρ〉, with an a

ura
y of the order of 1%.

2.5.6 A

eleration Parameter

Take a time derivative from the Hubble parameter whi
h is de�ned in Eq. (2.7):

Ḣ =
aä− ȧ2

a2
= −H2 +

ä

a
= −H2

(

1− ä

H2a

)

= −H2(1− q), (2.114)

and

q ≡ ä

aH2
, (2.115)

where a dimensionless parameter, q, is 
alled an a

eleration parameter

23

. The 
urrent value

of the a

eleration parameter, q0, is de�ned as:

q0 ≡
1

H2
0

( ä

a

)

0
. (2.116)

The a

eleration parameter 
hara
terizes the state of the a

eleration or de
eleration of the

universe. A positive value of this parameter, q > 0, 
orresponds to the a

eleration expansion

of the universe, for whi
h ä > 0, and a negative value, q < 0, 
orresponds to the de
eleration

expansion of the universe, for whi
h ä < 0.

The a

eleration parameter 
an be expressed in terms of the values of the EoS parameter,

wi, and the energy density parameter, Ωi:

q(t) = −1

2

∑

i

(1 + 3wi)Ωi(t), (2.117)

here, the index "i" indi
ates a 
ertain 
omponent of the energy density in the universe and

23

In the literature, the so-
alled de
eleration parameter is the most 
ommonly mentioned, whi
h is de�ned

as, q ≡ −ä/aH2
. Here we use the designation "a

eleration parameter" be
ause this designation better

des
ribes the 
urrent state of the universe.
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the 
orresponding EoS parameter. If we use the values of the EoS parameter for the matter,

the radiation and va
uum, respe
tively: wm = 0, wr = 1/3, wΛ = −1, we will get:

q(t) = −(Ωm/2 + Ωr − ΩΛ). (2.118)

By applying the data from Plan
k 2015, Ref. (Ade et al. (2016)), we 
an 
al
ulate the value

of the 
urrent a

eleration parameter of the universe:

[q0]Planck ≈ 0.54. (2.119)

A positive sign of the 
urrent a

eleration parameter, q0, indi
ates that our universe is in

the a

elerated state nowadays. This state began at the value of the s
ale fa
tor, a ≈ 0.60,

or at redshift, z ≈ 0.65, a

ording to Plan
k 2015 data, Ref. (Ade et al. (2016)).
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Chapter 3

Distan
e in Cosmology

3.1 Con
ept of Distan
e in Cosmology

The de�nition of the distan
es between the astronomi
al obje
ts in the expanding universe

is one of the main and most di�
ult problems in 
osmology.

There is no 
on
ept of a single distan
e in 
osmology. The di�erent types of the 
os-

mologi
al distan
es are used, su
h as: the physi
al distan
e, the 
omoving distan
e

1

, the

luminosity distan
e, the angular diameter distan
e, et
. These distan
es di�er from ea
h

other in the methods of their determination and measurement.

In 
osmology, the 
on
ept of the "exa
t distan
e" to a remote obje
t is vague. The

values of the 
osmologi
al distan
es depend on the 
hosen 
osmologi
al model and, therefore,

they are the fun
tions of the model parameters. Thus, the a

ura
y in the determining

the distan
es depends on the 
orre
tness of the 
onsidering 
osmologi
al model and on the

a

ura
y of determining the model parameters

2

.

The above-mentioned 
osmologi
al distan
es are united by the fa
t that these distan
es

are a measure of the separation of two obje
ts lo
ated on a radial traje
tory from ea
h other.

A vivid example of the importan
e of the exa
t 
osmologi
al distan
es de�nition is the

eviden
e of the existen
e of dark energy in the universe. This de�nition is largely based on

the measured luminosity distan
es to the type Ia supernovae. The position of an obje
t on

a sphere gives us the two-dimensional pi
ture. To obtain the three-dimensional information,

very pre
ise distan
e measurements are required. In addition, the knowledge of the distan
es

1

The de�nition of the physi
al distan
e and the 
omoving distan
e (length s
ales) was given in Chapter II.

2

In 
osmology, all the values obtained from the observations (the distan
es, the model parameters, et
.)

are found using the statisti
al methods or the probability theory (for more information, see Chapter V).

Therefore, when a 
al
ulated value is mentioned, it is always ne
essary to indi
ate the a

ura
y with whi
h

it was obtained. Usually the 
on�den
e level are indi
ated, 1σ, 2σ, 3σ, or the 
orresponding a

ura
y levels,
68.27%, 95.45%, 99.73%, where σ is a standard deviation in the Gaussian distribution.

49



to the remote astronomi
al obje
ts is ne
essary to determine the physi
al parameters of the

universe.

3.2 Trigonometri
 Parallax

The trigonometri
 parallax is one of the most important distan
e measurement methods

used in astronomy. This method is based on a geometri
al e�e
t. Due to the rotation of

the Earth around the Sun, for an observer lo
ated on the surfa
e of the Earth, the positions

of the nearby stars 
hange against the ba
kground of the distant obje
ts, see Fig. (3.1).

During the year, the visible position of the nearby star follows an ellipse on the sphere, see

Figure 3.1: Illustration of the parallax e�e
t. (Figure from Ref. (S
hneider (2006)))

Fig. (3.1). The semimajor axis of this ellipse is 
alled a parallax, p̃. The value of the parallax,

p̃, depends on the physi
al distan
e to the star, d, and the radius of the Earth's orbit, r⊕,

whi
h is equal to one astronomi
al unit (AU)3, see Fig. (3.1). The value of the parallax is

de�ned as:

r⊕

d
= tan p̃ ≈ p̃, (3.1)

where p̃≪ 1 and p̃ are measured in the radians.

3

More pre
isely, 1AU = 1.496 · 1013 
m is a semimajor axis of the Earth's ellipsoidal orbit.
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The physi
al distan
e to the obje
t 
orresponding to the measured parallax, p̃, 
an be

found as:

d =

(

p̃

1′′

)−1

pc. (3.2)

The trigonometri
 parallax is also applied to determine one of the basi
 units of the distan
e

in astronomy, the parse
. The parse
 (p
)

4

is the distan
e to the obje
t for whi
h the parallax

is one se
ond, p̃ = 1′′, where 1′′ ≈ 4.8484 · 10−6
radian and p̃/1′′ = 206265 p
, so:

1 pc = 206265 AU = 3.086 · 1018 cm. (3.3)

The trigonometri
 parallax is a very a

urate method for determining distan
es, but it 
an

be used only for the nearby stars. Using this method, the distan
es to the stars 
an be

de�ned only within a distan
e ∼ 5 Kp
, Refs. (Gaia (2013), Brown et al. (2018)).

3.3 Cosmologi
al Redshift

Relativisti
 Doppler Shift

5

Consider a distant sour
e of light that emits the 
onsequent light signals at the time

moments, tem and tem + ∆tem, respe
tively. The measurements were 
arried out a

ording

to the 
lo
k, whi
h was at rest relative to the sour
e. This sour
e of light moves relative to

the observer with the velo
ity, ~u, see Fig. (2.8). The time interval between two 
onsequent

light signals, whi
h were emitted by the sour
e, ∆tobs, will be a�e
ted: by the relativisti


e�e
t of time dilation asso
iated with the motion of the sour
e, ∆tem/
√

1− u2/c2, and by

the e�e
t asso
iated with the di�eren
e of the distan
es traveled by two signals from the

moving sour
e of light to the observer, ∆d = u cos θ∆tem/
√

1− u2/c2, see Fig. (3.2).

Thus, the time interval between two signals registered by the observer is:

∆tobs =
∆tem

√

1− u2/c2
+
u/c∆tem cos θ
√

1− u2/c2
=

∆tem
√

1− u2/c2
(1 + u/c cos θ). (3.4)

Suppose that a photon with the wavelength, λem, (or the frequen
y, νem)
6

, was emitted at

the moment of time, tem. This photon is observed at the moment of time, tobs, with the

wavelength, λobs, (or with the frequen
y, νobs). The time interval between two 
onsequent

4

The s
ales of the greater length are 
onsidered in 
osmology, so 1 Mpc = 106 pc is used as an unit of

the measurement.

5

In this se
tion, the speed of light, 
, is reintrodu
ed for 
larity.

6

The wavelength and the frequen
y of the ele
tromagneti
 radiation are inter
onne
ted as, λν = c
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Figure 3.2: Illustration of the relativisti
 Doppler shift. (Figure from Ref. (Carroll & Ostlie

(2007)))

light signals emitted by the sour
e, ∆tem, and registered by the observer, ∆tobs, is related

to the frequen
y of the emitted photons, ∆tobs, and the frequen
y of the registered photons,

νem, like νem = c/∆tem and νobs = c/∆tobs. Using these relationships, Eq. (3.4) 
an be

rewritten as:

νobs =
νem

√

1− u2/c2
(1 + u/c cos θ), (3.5)

this equation des
ribes the relativisti
 Doppler shift.

Consider the velo
ity proje
tion of the obje
t in two perpendi
ular dire
tions: transverse

and radial (longitudinal) to the line of sight. In Eq. (3.5), setting θ = 90◦, we get the

equation for the transverse relativisti
 Doppler shift:

νobs = νem
√

1− u2/c2. (3.6)

The transverse relativisti
 Doppler shift o

urs due to the e�e
t of time dilation asso
iated

with the motion of the sour
e of light relative to an observer.

In Eq. (3.5), if the sour
e moves away from the observer, we will assume, θ = 0◦, and

if the sour
e moves toward the observer, we will assume, θ = 180◦. As a result, we obtain

the equation of the radial relativisti
 Doppler shift, in whi
h v = u cos θ is the radial
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velo
ity of the sour
e relative to the observer:

νobs = νem

√

1− u2/c2

1 + u/c cos θ
= νem

√

1− u2/c2

1 + v/c
. (3.7)

A

ordingly, Eq. (3.7), for the wavelengths λobs and λem, has the form:

λobs = λem

√

1 + v/c

1− v/c
. (3.8)

Determination of Redshift

Redshift (or blueshift), z, is de�ned by the relative di�eren
e between the observed and

emitted wavelengths (or the frequen
y):

z =
λobs − λem

λem
=
νem − νobs

νobs
. (3.9)

For the redshift, with z > 0, the sour
e of light moves away from the observer, and the

emitted energy of light, registered by the observer, shifts to the lower values. For the

blueshift, with z < 0, the sour
e of light moves to the observer, and the emitted energy of

light, whi
h is registered by the observer, shifts to the higher values.

From Eq. (3.9) we get:

1 + z =
λobs
λem

=
νem
νobs

. (3.10)

Relativisti
 Redshift

Substituting the obtained results from Eq. (3.7) or from Eq. (3.8) into Eq. (3.9), we get the

relativisti
 redshift equation:

z =

√

1 + v/c

1− v/c
− 1, (3.11)
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Redshift at Low Velo
ities of the Sour
e of Light

Consider the limiting 
ase of a small radial velo
ity of the sour
e, v ≪ c, in Eq. (3.11):

z = lim
v/c→0

(

√

1 + v/c

1− v/c
− 1

)

= lim
v/c→0

(

√

1 +
2v/c

1− v/c
− 1

)

≈ v/c

1− v/c
≈ v/c. (3.12)

Relation of Cosmologi
al Redshift with S
ale Fa
tor

Consider a referen
e frame des
ribed by the FLRW metri
. An observer is at the 
enter of

this referen
e frame. The light ray moves towards the observer in the radial dire
tion along

the zero geodesi
 line, whi
h is des
ribed by the metri
, ds2 = 0, for dθ = dφ = 0.

From Eq. (2.91) we get:

dt = ±a(t) dr√
1−Kr2

. (3.13)

We 
hoose a negative sign in Eq. (3.13) due to the fa
t that a ray of light 
omes from a

sour
e of light lo
ated at the distan
e, r = rem. This ray of light moves in the dire
tion of

the 
enter of the referen
e frame, r = robs = 0, therefore, dr < 0 and dt > 0:

∫ tobs

tem

dt

a(t)
=

∫ rem

0

dr√
1−Kr2

. (3.14)

Di�erentiating Eq. (3.14) and 
onsidering that a radial 
oordinate, rem, of the 
omoving

sour
es does not depend on time:

∆tem
a(tem)

=
∆tobs
a(tobs)

. (3.15)

Assuming that the light signals are the su

essive wave 
rests, the emitted frequen
y and

the observed frequen
y are de�ned as νem = 1/∆tem and νobs = 1/∆tobs, respe
tively.

Rewritting Eq. (3.15), as:

νobs/νem = a(tem)/a(tobs). (3.16)

A s
ale fa
tor, a(t), is an in
reasing time-dependent fun
tion, while the frequen
y, ν(t),
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is a de
reasing fun
tion by the fa
tor (1 + z) a

ording to Eq. (3.10). By 
ombining the

equations, Eq. (3.10) and Eq. (3.16), we get:

1 + z = a(tobs)/a(tem) = a0/a(tem). (3.17)

The relation between the redshift and the s
ale fa
tor, whi
h is spe
i�ed in Eq. (3.17), is

very important in 
osmology. The redshift 
an be measured and it is sometimes the only

information about the distan
es of the most distant obje
ts.

3.4 Comoving Distan
e

The 
omoving distan
e is a distan
e between two astronomi
al obje
ts, measured along the

geodesi
 line (along the radial dire
tion) at the present epo
h of the 
osmologi
al time.

The 
omoving distan
es and the 
onformal time form the 
omoving referen
e frame. The


omoving distan
e between two obje
ts in the 
omoving referen
e frame remains 
onstant

provided that these obje
ts move only with the Hubble �ow

7

.

Based on the symmetry of the issue, we use the four-dimensional Minkowski metri
,

presented in the spheri
al 
oordinates:

ds2 = gµνdx
µdxν = dt2 − a2(t)[dr2 + r2(dθ)2 + r2 sin2 θ(dϕ)2]. (3.18)

In Eq. (3.18) we assume ds2 = 0 and dθ = dφ = 0. The 
omoving distan
e from the distant

obje
t to the observer is determined as:

r =

∫ t0

tem

dt′

a(t′)
=

∫ a0

aem

da

aȧ
=

1

a0H0

∫ z

0

dz′

E(z′)
, (3.19)

where tem, aem and zem are the 
osmologi
al time, the s
ale fa
tor and redshift of the sour
e

of light registered by the observer at the moment of time, t0, respe
tively; a0 is the s
ale

fa
tor at the time of observation, t0.

Consider the dependen
e of the 
omoving distan
e on the di�erent values of the 
urvature

parameter, K, for the FLRW metri
, Eq. (2.91). Assuming ds2 = 0 and dθ = dφ = 0 in

7

The solar system moves with a pe
uliar velo
ity of 370.6± 0.4 km c−1
relative to the Hubble �ow in the

dire
tion of the Leo 
onstellation, whi
h is determined by the equatorial 
oordinates, (α, δ) = (11.2h,−7◦).
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Eq. (2.91):

r =































1√
K
sin

( √
K

a0H0

∫ z

0
dz′

E(z′)

)

for K > 0

1
a0H0

∫ z

0
dz′

E(z′)
for K = 0

1√
−K

sinh
(√

−K
a0H0

∫ z

0
dz′

E(z′)

)

for K < 0

. (3.20)

In Eq. (3.20) we express the 
urvature parameter, K, through the 
urvature density param-

eter, ΩK0:

r(z) =































1
H0

√
ΩK0

sin
(√

ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 > 0

1
a0H0

∫ z

0
dz′

E(z′)
for ΩK0 = 0

1
H0

√
−ΩK0

sinh
(√

−ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 < 0

. (3.21)

3.5 Physi
al Distan
e

A physi
al distan
e is a distan
e to the distant obje
t, whi
h 
an be measured at some

moment of the 
osmologi
al time, t, with a physi
al ruler. The value of the physi
al distan
e

varies due to the universe expansion.

To determine the distan
es to the astronomi
al obje
ts with a small redshift value, z ≪ 1,

the following method 
an be applied. For small redshifts, the relation between the radial

velo
ity and redshift of the obje
t is

8

, v ≈ z, Eq. (3.12). In this 
ase, the Hubble' law,

des
ribed in Eq. (2.1), is transformed into the lo
al Hubble's law:

z ≈ H0d ⇒ d ≈ z

H0
for z ≪ 1. (3.22)

The physi
al distan
e obtained by this method is 
alled the distan
e determined from red-

shift.

The following expression establishes the relationship between the physi
al distan
e, d(t),

and the 
omoving distan
e, r:

d(t) = a(t)r. (3.23)

A

ording to the expression, Eq. (3.23), the values of the physi
al and 
omoving distan
es

are equal to ea
h other only at the present epo
h:

d(t0) = a(t0)r ⇒ d(t0) = r =
1

H0

∫ z

0

dz′

E(z′)
. (3.24)

8

For small redshifts, v ≈ cz, but in our 
onvention c = 1.
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Let's de
ompose the integral in Eq. (3.19) into a Taylor series near z = 0. We also apply the

relation, Ḣ0 = −H2
0 (1− q0), from Eq. (2.114), where q0 is an a

eleration parameter de�ned

in Eq. (2.116):

d(t0) =
z

H0

∫ z

0

[

1− (1− q0)z
′ +

(1

2
+ 2q0 −

3

2
q20 +

1

2
ΩK0

)

z′2
]

dz′ + .... (3.25)

As a result of the integrating in Eq. (3.25), we get:

d(t0) =
1

H0

[

z − (1− q0)z
2 +

(1

6
− 2

3
q0 −

1

2
q20 +

1

6
ΩK0

)

z3
]

+ .... (3.26)

Restri
ting Eq. (3.26) by the �rst two terms of the Taylor expansion:

d(t0) ≃
z

H0

[

1− (1− q0)z
]

for z ≪ 1. (3.27)

Eq. (3.27) is an approximate expression for determining the physi
al distan
e to an obje
t

taking into a

ount the a

eleration of the universe. The se
ond term in this equation

is a deviation from a 
lassi
al de�nition of the physi
al distan
e using the Hubble's law,

Eq. (3.22). With an in
rease in the value of the mass energy density parameter, Ωm0, the

value of the a

eleration parameter, q0 = −(Ωm0/2+Ωr0−ΩΛ), de
reases, i.e., an in
rease in

the value of the mass in the universe leads to a slower a

elerated expansion of the universe.

In turn, it leads to de
rease in the value of the physi
al distan
e to an obje
t, Eq. (3.27).

3.6 Interval of the Cosmologi
al Time Between Two Events

A photon with a redshift, z, was emitted by the sour
e of light and then registered by the

observer at z = 0. A photon traveled for the time, ∆t = d/c, where d is the physi
al distan
e.

Consider the FLRW referen
e frame and the observer is at its 
enter. Light propagates

along the zero geodesi
 line, whi
h is des
ribed by the zero lightlike metri
, ds2 = 0, see

Fig. (2.5) (left panel). In Eq. (2.91) we set ds2 = 0 and dθ = dφ = 0. From Eq. (2.91), we

�nd the time, whi
h is elapsed between two moments of the 
osmologi
al time, t(z) and t(0),

respe
tively:

∆t = t(z)− t(0) =

∫ t(z)

t(0)

dt =

∫ a(z)

a0

d(d(t)) =

∫ a(z)

a0

adr. (3.28)

In the equations, Eq. (2.111) and Eq. (3.19), we go over to the di�erential, da = −dza0/(1+
z)2, for a = a0/(1 + z).
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Su
hwise, Eq. (3.28) 
an be rewritten as:

∆t =
1

a0H0

∫ z

0

dz′

(1 + z)E(z′)
,

=
1

a0H0

∫ z

0

dz′

(1 + z)
√

Ωr0(1 + z′)4 + Ωm0(1 + z′)3 + ΩK0(1 + z′)2 + ΩΛ

.

(3.29)

From Eq. (3.29) it follows that the interval of the 
osmologi
al time between two events is

uniquely related to the value of redshift. The value of the interval of the 
osmologi
al time

depends on the 
hosen 
osmologi
al model and on its model parameters.

The age of the universe 
an be determined from Eq. (3.29), provided that the upper

boundary of the integration tends to in�nity, z → ∞:

∆t =
1

a0H0

∫ ∞

0

dz′

(1 + z)
√

Ωr0(1 + z′)4 + Ωm0(1 + z′)3 + ΩK0(1 + z′)2 + ΩΛ

. (3.30)

A

ording to Plan
k 2015 under the assumption that the model with the 
osmologi
al 
on-

stant Λ is 
orre
t, the age of our universe is t0 = 13.799±0.038 billion years, at the 
on�den
e

level at 68%, Ref. (Ade et al. (2016)).

3.7 Luminosity Distan
e

A luminosity distan
e, dL, is a distan
e from whi
h an astronomi
al obje
t at redshift, z,

and with a bolometri
 luminosity

9

, L, 
reates a bolometri
 (i.e., it is integrated over all the

frequen
ies) �ux, F , under the assumption that the following relation between the luminosity

and the �ux is ful�lled:

F =
L

4πd2L
. (3.31)

Thereby, the luminosity distan
e to an obje
t is de�ned as:

dL =

√

L

4πF
. (3.32)

The luminan
e distan
e, dL, is a measure of the value of the energy �ux, F , 
reated by an

obje
t with a known luminosity, L.

Due to the universe expansion, the absolute bolometri
 luminosity, L, whi
h is 
reated

by the sour
e of light at redshift, z, di�ers from the luminosity, Lobs, whi
h is registered by

9

A bolometri
 luminosity is the total radiation power measured in Watts.
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the re
eiver of light at redshift, z = 0. The absolute bolometri
 luminosity, L, is de�ned as

an energy, Eem, whi
h is emitted by a sour
e of light at redshift, z, for the time interval,

∆tem:

L =
Eem

∆tem
. (3.33)

Respe
tively, the observed bolometri
 luminosity, Lobs, is determined as an energy registered

by the re
eiver of light, Eobs, for the time interval, ∆tobs:

Lobs =
Eobs

∆tobs
. (3.34)

Consider the ratio of the absolute bolometri
 luminosity, L, to the observed bolometri


luminosity, Lobs:

L

Lobs
=

Eem

∆tem
· ∆tobs
Eobs

=
Eem

Eobs
· ∆tobs
∆tem

. (3.35)

Owing to the fa
t that the energy of the photon is proportional to its frequen
y, and taking

into a

ount the results obtained in Eq. (3.16) and Eq. (3.17):

Eem

Eobs
=
νem
νobs

= 1 + z. (3.36)

The obtained result re�e
ts the fa
t of the de
rease in the photon energy by virtue of redshift

as a 
onsequen
e of the universe expansion.

On the 
ontrary, 
onsidering the relations obtained in Eq. (3.15) and Eq. (3.17), we get:

∆tobs
∆tem

= 1 + z. (3.37)

This result illustrates the fa
t, that due to the universe expansion, there is an in
rease of the

propagation time of the photons, whi
h leads to the de
rease in the intensity of the photons,

registered by the re
eiver of light.

Thereby, based on the results obtained in Eq. (3.36) and Eq. (3.37), we 
an rewrite

Eq. (3.35) as:

L

Lobs

= (1 + z)2. (3.38)

The energy �ux is de�ned as an energy, Eem, transferred per unit of time and per unit of

the area of a 
ertain surfa
e, S. A

ording to this de�nition, we 
an write F = Lobs/S.

The energy, Eem, emitted by the sour
e of light, was distributed over a spheri
al surfa
e of

a radius, R = a0r, at time of registration by the re
eiver of light at z = 0. Thus, the energy
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�ux re
eived from the sour
e of light is de�ned as:

F =
L

4πd2L
=

Lobs

4π(a0r)2
. (3.39)

From this equation it follows:

d2L = (a0r)
2 L

Lobs
. (3.40)

If we substitute Eq. (3.38) in Eq. (3.40), we will get:

d2L = (a0r)
2(1 + z)2,

⇒ dL = a0r(1 + z). (3.41)

Let's substitute the expressions, Eq. (3.21), for the 
omoving distan
e, r, in Eq. (3.41). As

a result, the expression for the luminosity distan
e, whi
h is represented in terms of the


osmologi
al parameters

10

, 
an be obtained:

dL(z) =































(1+z)

H0
√
ΩK0

sin
(√

ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 > 0

(1+z)
a0H0

∫ z

0
dz′

E(z′)
for ΩK0 = 0

(1+z)

H0
√
−ΩK0

sinh
(√

−ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 < 0

. (3.42)

The 
oe�
ient (1+z) 
hara
terizes the loss of the energy �ux be
ause of the e�e
ts, asso
iated

with the universe expansion: i) de
rease of the intensity of the photons due to the extension

of the propagation time of the photons; ii) de
rease of the energy of the photons due to

redshift. Therefore, an obje
t with the luminosity, Lobs, seems more distant than it really is.

For the small values of redshift, z, the luminosity distan
e 
an be de�ned as:

dL ≃ z

H0

[

1 +
1

2
(1 + q0)z

]

for z ≪ 1. (3.43)

By 
omparing Eq. (3.26) and Eq. (3.43), we 
an 
on
lude, that the physi
al distan
e to an

obje
t at present time and the luminosity distan
e to this obje
t are equal only for very

small redshifts. This o

urs with the domination of the �rst term in these equations. For

larger redshifts, the luminosity distan
e is greater than the physi
al distan
e, dL > d(t0).

The values of the luminosity of the type Ia supernovae have the small dispersions. In


osmology, these obje
ts are the standard 
andles for determining the distan
es to the distant

10

Assuming that dark energy is represented by the 
osmologi
al 
onstant, Λ.
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obje
ts. By measuring the energy �ux, whi
h is obtained from the type Ia supernovae for

di�erent redshifts, z, it is possible to determine the luminosity distan
es to these obje
ts by

the di�erent way and to re�ne the values of the model parameters for 
onsidered 
osmologi
al

model from Eq. (3.42).

3.8 Angular Diameter Distan
e

Consider an astronomi
al obje
t at redshift, z, with a linear transverse diameter, R, and

with an apparent angular diameter, θ, measured in radians. The angular diameter distan
e

to this obje
t, denoted as, dA, is de�ned as the ratio of its linear transverse diameter, R, to

the apparent angular diameter, θ:

dA =
R

θ
. (3.44)

We introdu
e the FLRW referen
e frame with the observer at the 
enter. In the FLRW

referen
e frame an astronomi
al obje
t at redshift, z, has a 
omoving 
oordinate, r. The

linear transverse diameter of this obje
t is the physi
al distan
e between two events at the

same redshift, z, and separated in spa
e by a small angle, dθ. Assuming dt = dr = dφ = 0

in the FLRW metri
, Eq. (2.91). As a result, we get:

ds2 = a(t)2r(t)2dθ2,

⇒ ds = dR = a(t)r(t)dθ. (3.45)

Integrating the FLRW metri
 in the transverse dire
tion to the line of sight dire
tion in

Eq. (3.45):

R = a(t)r(t)θ. (3.46)

Substituting the result obtained in Eq. (3.46) into Eq. (3.44):

dA(z) =
ar(z)θ

θ
=

r(z)

(1 + z)
. (3.47)
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Plugging the values of the 
omoving distan
e, r, from Eq. (3.21) into Eq. (3.47), we obtain

the values of the angular diameter distan
e depending on the model parameters:

dA(z) =































1
(1+z)H0

√
ΩK0

sin
(√

ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 > 0

1
(1+z)H0

∫ z

0
dz′

E(z′)
for ΩK0 = 0

1
(1+z)H0

√
−ΩK0

sinh
(√

−ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 < 0

. (3.48)

The relationship between the luminosity distan
e and the angular diameter distan
e is ex-

pressed through the equation:

dL(z) = (1 + z)2dA(z). (3.49)

The luminosity distan
e and the angular diameter distan
e de�ned in Eq. (3.42) and Eq. (3.48)

depend on the 
hosen 
osmologi
al model. These distan
es 
oin
ide at small redshifts, z ≪ 1,

at whi
h the spa
etime 
urvature 
an be negle
ted. At large redshifts (respe
tively, at large

distan
es), the spe
i�
 
osmologi
al e�e
ts, su
h as the nonstationarity and the spa
etime


urvature, already appear. Therefore, the 
on
ept of an unambiguous distan
e to an obje
t

be
omes inappli
able.

The radio galaxies Fanaro�-Riley Type II (FRII) have the small dispersions in their

linear transverse diameters, so these obje
ts 
an serve as the standard ruler for determining

the distan
es to the distant obje
ts in 
osmology, Ref. (Bu
halter et al. (1998)). Knowing

the angular size, θ, and redshift of these obje
ts, z, it is possible to determine the angular

diameter distan
e to these obje
ts in the di�erent way and, using Eq. (3.48), to re�ne the

values of the model parameters in the given 
osmologi
al model.
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Chapter 4

Observational Probes

4.1 Type Ia Supernovae

A supernova explosion is observed as a sudden in
rease in the brightness of the star by

about 10 orders of the magnitude. As a result of this explosion, the supernova shines at the

maximum of the light 
urve like all the stars of a galaxy.

The supernovae are re
orded from the distant galaxies up to redshift, z ≈ 1.7. Depending

on the spe
tral properties, the supernovae are divided into two main types: I - there are no

hydrogen lines in the spe
tra and II - there are hydrogen lines in the spe
tra. Type I

supernovae (SNeIa) are in turn subdivided into: Ia - light 
urves have an universal form,

Ib - light 
urves are similar to the light 
urves of the supernovae type II and I
 - there are

no helium lines in the spe
tra and their light 
urves are similar to the light 
urves of the

supernovae type II.

The most plausible model of SNeIa is 
onsidered to be a model of a white dwarf ther-

monu
lear explosion with the radius of R ∼ 103 km, whose mass rea
hed Chandrasekhar's

mass, mch ≈ 1.44 M⊙, as a result of the mass a

retion from a satellite-star with the energy

release, E ≈ 2 · 1052 erg. This explosion is 
aused by the thermonu
lear 
arbon fusion and

the radioa
tive de
ay of ni
kel,

56Ni ( 56Ni → 56Co → 56Fe). The radioa
tive de
ay of

56Ni

is the main sour
e of the observed light 
urves of SNeIa and determines the shape of these

light 
urves. The luminosity in the maximum of the light 
urves depends only on the mass

of the eje
ted ni
kel,

56Ni, (Lmax ≈ 1.4 · 1043 erg/se
, for ni
kel mass mNi = 0.5 M⊙). This

luminosity 
orresponds to the absolute magnitude, Mmax = −19m.21. It 
an be expe
ted

that all the SNeIa emit the same amount of light, assuming that the white dwarf is 
om-

1

The de�nition of the absolute magnitude is given below.
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pletely burned out. Sin
e the explosion me
hanism is universal, all the SNeIa lo
ated at the

same distan
e from us should have approximately the same luminosity at the maximum, so

these obje
ts are used as the standard 
andles for determining the distan
es to the distant

galaxies. The furthest galaxy, in whi
h the Type Ia supernova (1997�) was registered, has

redshift z = 1.7.

Figure 4.1: Left panel: B-band light 
urves for the di�erent SNeIa from the Calan-Tolono

survey. (Figures from Ref. (Heitmann et al. (2006))). The right panel: the same light 
urves

after one-parameter 
orre
tion. (Figures from Ref. (Kim et al. (2004)))

Among the various samples of the SNeIa light 
urves, there is a dispersion in the shapes

of the 
urves, as well as in the maximum luminosity values (the dispersion rea
hes of 0.4

magnitudes in the blue light range), see Fig. (4.1) (left panel). This e�e
t is 
aused by

the e�e
t of the redshift on the observed spe
tra of the obje
ts in the expanding universe,

sin
e these observations were made in the spe
i�
 wavelength range. These 
urves 
an be

normalized by applying an empiri
ally found 
orrelation, the so-
alled K-
orre
tion, between

the maximum luminosity and the width of the light 
urve, see Fig. (4.1) (right panel). After


arrying out this 
orre
tion, the SNeIa light 
urves 
an be used as the standard 
andles.

Distan
e Modulus

A distan
e modulus is a method for determining the distan
es to the distant obje
ts based

on the logarithmi
 s
ale of the magnitudes 
omparison.

The distan
e modulus, µ, is de�ned as a di�eren
e between the apparent magnitude, m,

and the absolute magnitude,M , of a distant obje
t with the 
orresponding bolometri
 energy

�uxes, Fm and FM . The apparent magnitude, m, is the magnitude of an obje
t lo
ated at

the luminosity distan
e, dL, and the absolute magnitude, M , is de�ned as the apparent

magnitude that the obje
t would have if it were lo
ated at a distan
e, dL = 10 p
. From the
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Pogson's law, Ref. (Pogson (1857)), 
onne
ting the apparent magnitude of an astronomi
al

obje
t and the bolometri
 energy �ux re
orded from it, 10m ∝ F−2.5
, we get:

µ = m−M = −2.5 log10

(Fm
FM

)

= 5 log10

( dL
10 pc

)

,

= 5 log10(H0dL)− 5 log10H0 + 25. (4.1)

From Eq. (4.1), it follows that the distan
e modulus, µ, is determined by the luminosity

distan
e, dL, of the obje
t. In this equation, the Hubble 
onstant, H0, is 
onsidered as a

nuisan
e parameter, and it is the reason for the un
ertainty in the determination of the

absolute magnitude of the SNeIa.

The value of the speed of light, c = 3 · 105 km ñ

−1
, should be taken into a

ount to

determine the a
tual distan
e modulus. Su
hwise, to 
al
ulate the luminosity distan
e, the

expression c · dL is assumed, where dL is obtained from Eq. (3.42). In this 
ase, applying

Eq. (4.1), we get an expression for the distan
e modulus, µ, depending on redshift and the

model parameters:

µ = 42.3856−5 log10(h)+5 log10(1+z)+5 log10































1√
ΩK0

sin
(√

ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 > 0

∫ z

0
dz′

E(z′)
for ΩK0 = 0

1√
−ΩK0

sinh
(√

−ΩK0

H0

∫ z

0
dz′

E(z′)

)

for ΩK0 < 0

.

(4.2)

Distan
e modulus is a fun
tion of the 
osmologi
al parameters, Eq. (4.2), therefore, the value

of the distan
e modulus is very sensitive to the 
hanges in the values of the 
osmologi
al

parameters, see Fig. (4.2) (left panel). The SNeIa data 
orrespond to the values of the

distan
e modulus for the ΛCDM model by the best way, as shown in Fig. (4.2) (right panel).

In the mid-1990's, two independent astronomi
al groups: the Supernova Cosmology

Proje
t (SCP), led by Saul Perlmutter, Refs. (Riess et al. (1998), Perlmutter et al. (1999))

and the High-Z Supernova Cosmology Team (HZSNS Team), headed by Brian S
hmidt,

Ref. (S
hmidt et al. (1998)), observed the SNeIa to determine the distan
es to these distant

obje
ts. Starting pro
essing the gathered information, the s
ientists hoped to get the 
on�r-

mation of the slowing expansion of the universe. Both groups of resear
hers independently

dis
overed that SNeIa at redshift, z = 0.5, were dimmer by 0.25 of the magnitude 
ompared

to the magnitude predi
ted by the open model with the 
osmologi
al parameters: Ωm0 = 0.3
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Figure 4.2: Left panel: Hubble diagram for the 307 SNeIa of the Union 
ompilation. (The

�gures from Ref. (Kowalski et al. (2008))). The top panel: the red line 
orresponds to the

ΛCDM universe (Ωm = 0.28, ΩΛ = 0.72); the green line 
orresponds to the open universe

(Ωm = 0.28, ΩΛ = 0) and the blue line 
orresponds to the Einstein-de Sitter universe

(Ωm = 1, ΩΛ = 0). The bottom panel: the residuals of the distan
e modulus from the

best �tting 
osmology for the ΛCDM model. Right panel: Hubble diagram for the Union2.1


ompilation. The best �t 
osmology for the ΛCDM model is represented as a bla
k solid

line. (The �gure from Ref. (Suzuki et al. (2012)))

and ΩΛ = 0, whi
h des
ribes the slowing down universe. The so-
alled Einstein-de Sitter

model with the 
osmologi
al parameters: Ωm0 = 1 and ΩΛ = 0, whi
h des
ribes a �at slowing

down universe, also failed to 
orre
tly approximate the obtained results. Thus, the SNeIa

were at a greater distan
e than it was predi
ted by the 
osmologi
al models, whi
h des
ribe

the open and �at slowing down universe.

The 
osmologi
al model of a �at a

elerating universe with the 
osmologi
al parameters,

Ωm0 = 0.3 and ΩΛ = 0.7, predi
ts well the results obtained by these observers. Thereby, the

dis
overy of the a

elerated expansion of our universe a

ording to the SNeIa data was made

by these two groups of resear
hers. In 2011, Saul Perlmutter, Brian S
hmidt and Adam

Riess were awarded the Nobel Prize in Physi
s for this dis
overy.
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4.2 Cosmi
 Mi
rowave Ba
kground Radiation

4.2.1 Des
ription of the CMBR

Origination of the CMBR

In the universe, the re
ombination epo
h began approximately trec = 350000 years after

the Big Bang

2

at redshift zrec ≈ 1400, at the average temperature in the universe, 〈T 〉rec ≈
3800K, Ref. (Rubakov & Gorbunov (2017)). Due to the expansion and, therefore, the 
ooling

of the universe, at the re
ombination epo
h the 
harged ele
trons and protons be
ome bound,

forming the ele
tri
ally neutral hydrogen atoms

3

, Ref. (Peebles (1968)). At the same time,

the matter from the plasma state, whi
h is opaque for the most part of the ele
tromagneti


radiation, passes into a gaseous and an ele
tri
ally neutral state.

The CMBR appeared at the end of the re
ombination epo
h, in the period of the last

s
attering of the photons on the ele
trons, in the so-
alled period of the photon de
oupling

from the hydrogen atoms. The last photon s
attering o

urred tdec ≈ 379000 years after the

Big Bang at redshift zdec ≈ 1100, at an average temperature in the universe, 〈T 〉dec ≈ 3100 K.

As a 
onsequen
e of the de
oupling of the radiation and the matter, the reli
 photons no

longer intera
ted with the neutral hydrogen atoms. The free path of the reli
 photons

be
omes larger than the size of the Hubble horizon, and these photons begin to spread freely

in the universe. Thus, at the present epo
h, an observer registers the reli
 photons that last

intera
ted with the matter at redshift zdec.

A

ording to the Big Bang model, the CMBR photons began its propagation in the

2

In 1946, George Gamow developed the "hot universe" theory, also known as the Big Bang theory,

Ref. (Gamov (1946)). Based on this theory, George Gamow, Ralph Alfer and Robert Herman predi
ted

the existen
e of the mi
rowave ba
kground radiation (CMBR), Refs. (Alpher & Herman (1948a), Alpher &

Herman (1948b)). In 1965, the Ameri
an radio astronomers Arno Penzias and Robert Wilson absolutely

a

identally re
orded this isotropi
 radiation, Ref. (Penzias & Wilson (1965)). Dete
tion of CMBR, whi
h

was originated at the epo
h of the primordial re
ombination of hydrogen, is one of the main eviden
e of the


orre
tness of the Big Bang theory. In 1978, Arno Penzias and Robert Wilson were awarded the Nobel Prize

in Physi
s for the dis
overy of the CMBR.

3

Before re
ombination, the baryoni
 matter 
onsisted of 75% of the protons and 25% of the α-parti
les
or, in other words, the helium nu
lei,

4He. The ionization energy of the helium is greater than the ionization

energy of the hydrogen; therefore, the helium re
ombination o

urred mu
h earlier, Ref. (Peebles (1966)).

The �rst helium re
ombination, He++ + e− → He+ + γ, happened at redshift, z ≈ 6000. The se
ond helium

re
ombination, He+ + e− → He + γ, o

urred at redshift, z ≈ 2500, Ref. (Hu (1995)). Despite the fa
t that

after the re
ombination of the helium the universe is still opti
ally opaque, the re
ombination of the helium

a�e
ts the temperature power spe
trum of the CMBR, whi
h in
reases in the height of the 2nd, 3rd and 4th

peaks by 0.2%, 0.4% and 1%, respe
tively, Refs. (Hu et al. (1995), Hu (1995)).
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universe from the surfa
e of a sphere 
alled the surfa
e of last s
attering, whose radius is

4

:

rdec =
1

a0H0

∫ zdec

0

dz′

E(z′)
. (4.3)

CMBR Properties

In 1989, the Cosmi
 Ba
kground Explorer (COBE) satellite was laun
hed to study the

CMBR. The results of the measurements obtained from this satellite are: the dis
overy

of the CMBR Plan
k spe
trum (the proje
t Di�erential Mi
rowave Radiometer (DMR)),

Refs. (Mather et al. (1994), Mather et al. (1999)) and the dis
overy of the CMBR temperature

anisotropy

5

(the proje
t Far-InfraRed Absolute Spe
trophotometer (FIRAS)), Ref. (Bennett

et al. (1996)). In 2006, the leaders of these proje
ts, George Smoot (the DMR proje
t) and

John Mather (the FIRAS proje
t) re
eived the Nobel Prize in Physi
s.

The CMBR is a thermal radiation, its spe
trum 
orresponds to the spe
trum of the

absolutely bla
k body with a temperature at the present epo
h T0 ≃ 2, 72548± 0, 00057 K,

see Fig. (4.2) (left panel). This temperature a

ords to the average temperature of the

CMBR at the present epo
h, 〈Tγ〉 = T0. The maximum of the Plan
k's spe
trum a

ords

to the frequen
y 160, 4 GHz, whi
h 
orresponds to a wavelength 1, 9 mm, see Fig. (4.2) (left

panel). The energy density of the CMBR is approximately equal to ργ = (π2/15)T 4
0 ≃

4.64 ·10−34
g 
m

−3 ≃ 0.26 eV 
m

−3
. The mass density of the CMBR is nγ = (2ζ(3)/π2)T 3

0 ≃
411 
m−3

, where the ζ is a Riemann fun
tion, ζ(3) = 1.202, Ref. (S
ott & Smoot (2010)).

CMBR Temperature Anisotropy

The temperature of the CMBR, whi
h was registered in the dire
tion in the sky, (θ, ϕ), as

T (θ, ϕ) is the main measurement in the investigation of the CMBR. The value of θ determines

the polar angle on the sphere and the value of ϕ is the azimuth angle. The dimensionless

value of the CMBR temperature anisotropy is de�ned as:

δT (θ, ϕ)

T0
=
T (θ, ϕ)− T0

T0
. (4.4)

4

By virtue of the fa
t that the re
ombination is not an instantaneous pro
ess and takes pla
e over a

�nite range of redshifts, the CMBR photons are s
attered for the last time inside the surfa
e of the �nite

thi
kness. The thi
kness of this surfa
e during the re
ombination is approximately equal to the photons

di�usion length, therefore, this e�e
t is signi�
ant on the same length s
ales as the Silk damping (the Silk

damping e�e
t is des
ribed below), Ref. (S
hneider (2006)).

5

In 1983, the RELICT-1 experiment was 
arried out from the spa
e
raft PROGNOZ-9 in the USSR. The

purpose of this experiment was to study the CMBR temperature anisotropy. The Soviet s
ientists failed to

register the temperature anisotropy of the CMBR.

68



The CMBR is isotropi
 and uniform at the level of the temperature �u
tuation, δT (θ, ϕ)/T0 ≃
10−4

, see Fig. (4.3) (right panel).

The map of the temperature anisotropies of the CMBR is presented in Fig. (4.3) (right

panel). This map is obtained by the proje
t Plan
k 2013, Ref. (Ade et al. (2014b)). At the

present epo
h, the temperature anisotropy of the CMBR is δT (θ, ϕ)/T0 ≃ 10−5
.

Figure 4.3: Left panel: the Plan
k spe
trum of the CMBR, whi
h is obtained by the exper-

iments: FIRAS, DMR, UBC, LBL-Italy, Prin
eton, Cyanogen. (Figure from Ref. (Smoot

& S
ott (1997))) Right panel: the temperature �u
tuations of the CMBR relative to the

average temperature based on the results of the Plan
k 2013. (Figure from Ref. (Ade et al.

(2014b))) The dipole anisotropy, whi
h related with the motion of the solar system rela-

tive to the rest frame of the CMBR and the non-Plan
kian emission from the Gala
ti
 disk

are subtra
ted. The amplitude of the temperature �u
tuations relative to the ba
kground

temperature is ∆T/T0 ∼ 10−5
.

4.2.2 CMBRAngular Power Spe
trum of the Temperature Anisotropy

Sin
e the temperature anisotropy of the CMBR depends on the dire
tion of the observation,

the value of the temperature anisotropy 
an be represented as the de
omposition in the

spheri
al orthonormal harmoni
s, Y m
l (θ, ϕ). This de
omposition is the analogous to the

Fourier de
omposition on a spheri
al surfa
e:

δT (θ, ϕ)

T0
=

∞
∑

l=1

l
∑

m=−l

al,mY
m
l (θ, ϕ), (4.5)

where al,m are the multipole 
oe�
ients of the de
omposition in the spheri
al harmoni
s,

Y m
l (θ, ϕ). The 
oe�
ients al,m 
hara
terize the amplitude of the temperature �u
tuations

at the di�erent angular s
ales and have the following property, a∗l,m = (−1)mal,−m.

The study of the statisti
al properties of the 
oe�
ients al,m are very important for

the analysis of the distribution of the CMBR temperature anisotropy. The 
oe�
ients al,m
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an have both positive and negative values. The value |al,m|2 determines the deviation of

the 
oe�
ient al,m from zero and, a

ordingly, determines the amplitude of the tempera-

ture anisotropy. A

ording to the observations, the distribution of the CMBR temperature

�u
tuations forms a random Gaussian �eld.

Assuming an isotropi
 and homogeneous universe, the 
oe�
ients al,m for the di�erent

values of the indi
es l and m are statisti
ally independent of ea
h other, Ref. (Mukhanov

(2005)):

〈al,ma∗l′,m′〉 = Clmδll′δmm′ . (4.6)

The value of the 
oe�
ients Clm determines the temperature angular power spe
trum

anisotropy of the CMBR.

The requirement of the independen
e of the statisti
al properties of the 
oe�
ients al,m

on the 
hoi
e of the origin for any dire
tion of the observation or the so-
alled requirement of

the rotational invarian
e leads to the fa
t that the value of the angular power spe
trum Cl,m

does not depend on the value of the index m but depends only on the index l, i.e., Cl,m = Cl,

Ref. (Durrer et al. (1998)). Therefore, Eq. (4.6) with the 
oin
iden
e of the indi
es, l = l′,


an be rewritten as, Ref. (Mukhanov (2005)):

〈|al,m|2〉 = Cl. (4.7)

The angle bra
kets, 〈〉, in Eq. (4.6) and in Eq. (4.7), denote the averaging over a hypotheti
al
ensemble of the universes like our. Assuming that our universe is an ergodi
 dynami
 system

6

,

these angle bra
kets 
an be interpreted as averaging over all the possible observers in our

universe. The fa
t is that ea
h observer in the universe 
an observe only one realization of

all the possible observable universes. For example, the observers from the Earth 
an study

the CMBR, whi
h is visible only from the Earth. In the universe, ea
h observer registers the

photons of the CMBR with their own distribution of the temperature �u
tuations, whi
h

di�ers from ea
h other. The di�eren
e between our region of the observable universe in


omparison with the averaged region of the observable universe is 
alled the 
osmi
 varian
e.

The value of the 
osmi
 varian
e for ea
h measurement, Cl, is de�ned as, Ref. (S
ott & Smoot

(2010)):

(∆Cl)
2 =

2

2l + 1
C2
l . (4.8)

The value of the 
osmi
 varian
e is negligible on the small angular s
ales, it be
omes sig-

6

The ergodi
 systems are 
hara
terized by the 
oin
iden
e of the expe
tation of the time series with the

expe
tation of the spatial series.
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ni�
ant for the angular s
ales ϑ ≥ 10◦. The value of the angular power spe
trum, Cl,


hara
terizes the size of temperature �u
tuations on the angular s
ale ϑ = 180◦/l. The

index l determines the value of the angular s
ale. A small value of the index l 
orresponds to

a large angular s
ale and vi
e versa, a large value of l 
orresponds to a small angular s
ale.

With an in
rease in the value of the index l, the spheri
al harmoni
s have the variations

on the smaller angular s
ales. The values of the index l in the range from one to several

thousand are applied in the 
urrent observations.

The value of the index l = 1 determines the properties of the CMBR, 
alled the dipole.

In 1969, the dipole 
omponent was dete
ted in the CMBR. It manifests itself in the fa
t that

in the dire
tion of the 
onstellation Leo the temperature of this radiation is 0.1 K, above the

average temperature of the CMBR, respe
tively, in the opposite dire
tion the temperature

of this radiation is on the same value below. This temperature anisotropy is explained

by the Doppler e�e
t due to the motion of the solar system relative to the CMBR in the

dire
tion of the 
onstellation Leo with the velo
ity 370.6± 0.4 km ñ

−1
. The velo
ity of this

motion determines the value of the dipole 
omponent of the temperature anisotropy, δTdipol =

3.355 ± 0.008 mK, Ref. (Hinshaw et al. (2009)). The maximum value of the temperature

�u
tuations for the dipole 
omponent, whi
h is averaged over a year, is δT/T0 ≃ 1.23 · 10−3
.

The observations of the dipole 
omponent do not 
ontain the information about the intrinsi


properties of the CMBR. In this regard, the dipole is 
onsidered separately, and the study of

the CMBR begins with the minimum value of the index l = 2, with the so-
alled quadrupole

anisotropy.

Consider the analysis of the temperature anisotropy of the CMBR without taking into

a

ount the dipole:

δT (θ, ϕ)

T0
≡ T (θ, ϕ)− T0 − δTdipol

T0
=

∞
∑

l=2

l
∑

m=−l

al,mY
m
l (θ, ϕ). (4.9)

The spheri
al harmoni
s, Y m
l (θ, ϕ), are expressed in terms of the Legendre fun
tions, Pm

l (cosϑ),

as, Ref. (Arfken (1985)):

Y m
l (θ, ϕ) = (−1)m

√

2l + 1

2

(l −m)!

(l +m)!
Pm
l (cosϑ)eimϕ. (4.10)

The requirement for ful�llment of the rotational invarian
e or the ful�llment of the 
onditions

of the isotropy relative to the value of the azimuth angle, ϕ, is equivalent the equality to
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zero the value of m, m = 0. In this 
ase, Eq. (4.10) takes the form:

Yl(θ, ϕ) =

√

2l + 1

2
Pl(cosϑ). (4.11)

Thus, in Eq. (4.11), the spheri
al harmoni
s are redu
ed to the ordinary Legendre's polyno-

mials, Pl(cosϑ).

In this 
ase, the temperature 
orrelation fun
tion between two dire
tions is:

〈δT (θ1, ϕ1)

T0
· δT (θ2, ϕ2)

T0

〉

=
∑

l

2l + 1

4π
ClPl(cos ϑ), (4.12)

where ϑ is the value of the polar angle between the dire
tions (θ1, ϕ1) and (θ2, ϕ2). The


oe�
ients Cl set the 
orrelation between the temperature �u
tuations in the di�erent di-

re
tions.

The expression for the square of the value of the temperature �u
tuations is a parti
ular


ase of Eq. (4.12):

〈δT (θ1, ϕ1)

T0
· δT (θ2, ϕ2)

T0

〉

=
∑

l

2l + 1

4π
Cl ≈

∫

l(l + 1)

2π
Cld ln l. (4.13)

Under the derivation of this formula, it was taken into a

ount that the polar angle between

two 
ollinear 
o-dire
tional ve
tors is zero, ϑ = 0, and Pl(cos 0) = 1. The value of

l(l+1)Cl

2π

determines the total 
ontribution of the angular moments of the same order.

The dependen
e of the angular power spe
trum of the CMBR temperature anisotropy,

l(l+1)Cl

2π
T 2
0 , on the angular momentum, l, is shown in Fig. (4.4).

4.2.3 CMBR Primary Temperature Anisotropy

The temperature �u
tuations that o

ur during the de
oupling period in the re
ombination

epo
h are 
alled the primary anisotropy.

Consider the angular power spe
trum of the CMBR temperature anisotropy, whi
h is

presented in Fig. (4.5). The angular power spe
trum of the CMBR temperature anisotropy

is mainly 
hara
terized by three regions of the angular momentum values, l: l ≤ 100, l ≥ 100

and l ≥ 1000, see Fig. (4.5), Refs. (Hu & Okamoto (2002), S
ott & Smoot (2010)).

For the �rst region with l ≤ 100, the fun
tion (2l + 1)/4π will be almost �at, if the

Harrison-Zeldovi
h power spe
trum is 
onsidered in the 
al
ulations.

7

. The se
ond region

7

The power spe
trum P (k) = kns
with ns = 1 is 
alled the Harrison-Zeldovi
h spe
trum, where k is a
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Figure 4.4: The angular power spe
trum of the CMBR temperature anisotropy obtained by

the experiments: WMAP 5 year, A
bar, Boomerang, CBI. (Figure from Ref. (Nolta et al.

(2009)))

with l ≥ 100 
ontains the peaks with the di�erent amplitudes. These peaks are 
aused

by the a
ousti
 os
illations that arose in the baryon-photon plasma before de
oupling of

the photons from the baryons during the re
ombination epo
h. After the termination of

the re
ombination, their positions were shifted as a result of the expansion of the universe.

Therefore, the positions and the amplitudes of the a
ousti
 peaks 
ontain the important

information about the evolution of the universe. The �rst a
ousti
 peak de�nes the sound

horizon of the baryons, the value of whi
h serves as the standard ruler for determining the

distan
es in 
osmology. On the other hand, the size of the sound horizon 
an be determined

by measuring the angular s
ale of the �rst sound peak. In the third region with l ≥ 2000,

the amplitude of the power anisotropy spe
trum de
reases sharply due to the Silk damping

(a des
ription of this e�e
t is given below).

4.2.4 Basi
 Me
hanisms Causing the CMBR Primary Anisotropy

• Matter density �u
tuations in the primordial plasma, Refs. (Hu & Okamoto (2002),

Kosowsky (2001))


onformal momentum.
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Figure 4.5: The in�uen
e of the 
osmologi
al parameters on the CMBR angular power spe
-

trum. The values of the square root of the angular power spe
trum, ∆T =
√

l(l + 1)Cl/2πT0,
are plotted versus to the logarithmi
 s
ale of the angular momentum, l. (Figure from Ref. (Hu

& Okamoto (2002)))

The density of the baryons is dire
tly related to the energy density of dark matter.

On the s
ales larger than the event horizon during the re
ombination, the distribution

of the baryons follows the distribution of dark matter. On the smaller s
ale, the

pressure of the baryon-photon plasma is e�e
tive, sin
e before the re
ombination these


omponents were 
losely related to the Thompson s
attering. In the regions with the

in
reased dark matter density, the density of the baryons is also in
reased. In su
h

regions, the temperature of the baryons in
reases due to their adiabati
 
ompression,

whi
h leads to an in
rease in the value of the temperature of the photons.

• Doppler e�e
t, Ref. (S
hneider (2006))

The ele
trons, whi
h s
atter the ÑÌÂR photons for the last time during the re
om-

bination, have the additional pe
uliar velo
ities relative to the Hubble �ow. These

velo
ities are asso
iated with the �u
tuations in the matter density and, a

ordingly,
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with the temperature �u
tuations. As a 
onsequen
e of the Doppler e�e
t, the ÑÌÂR

photons, whi
h move away from us at the velo
ities greater than the Hubble expan-

sion, experien
e the additional redshift. This leads to the de
rease in the value of the

temperature measured in this dire
tion.

• Silk damping, Refs. (Hu & Okamoto (2002), Kosowsky (2001), S
ott & Smoot (2010))

The Silk damping or, in other words, the photon di�usion damping is a physi
al pro
ess

that redu
es the energy density anisotropy, Ref. (Silk (1968)). Sin
e the mean free path

of the photons is �nite, the baryons and the photons be
ome separated from ea
h other

on the small spatial s
ales. This means that on the small length s
ales (for l ≥ 1000),

the temperature �u
tuations 
an be smeared out by the di�usion of the photons, see

Fig. (4.5) (d).

• Integrated Sa
hs-Wolfe e�e
t, Refs. (Sa
hs & Wolfe (1967), White & Hu (1997), Hu &

Okamoto (2002), S
ott & Smoot (2010))

The spatial distribution of the potential in the universe 
hanges at the radiation dom-

inated epo
h or at the dark energy dominated epo
h. When the ÑÌÂR photons pass

through this evolving potential, the energy of these photons 
hanges, i.e., the di�er-

ential gravitational redshift of the photons o

urs. This is the so-
alled Integrated

Sa
hs-Wolfe e�e
t (ISW), Ref. (Sa
hs & Wolfe (1967)). The ISW e�e
t mainly a�e
ts

the low values of the CMBR multipoles, see Fig. (4.5) (a). On the large s
ales, the

CMBR temperature anisotropy is asso
iated with the density �u
tuations owing to the

ISW e�e
t, Ref. (White & Hu (1997)).

• Primary metri
 tensor perturbations, Refs. (Hu &White (1997), S
ott & Smoot (2010))

The 
ause of the CMBR primary temperature anisotropy is the metri
 perturbations.

These perturbations 
an generate the s
alar, ve
tor and tensor modes. The tensor

modes (the transverse metri
 perturbations with zero tra
e) or, the so-
alled gravita-

tional waves generate the primary temperature anisotropies of the CMBR due to the

total e�e
t of the anisotropi
 expansion of spa
e, Ref. (S
ott & Smoot (2010)). The


ontribution of the tensor modes to the angular power spe
trum of the CMBR temper-

ature anisotropy 
an o

ur at ϑ > 1, respe
tively, at l > 180. The tensor mode 
an be

distinguished from the angular power spe
trum of the CMBR temperature anisotropy

using the polarization data of the CMBR (information about this is presented below).
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4.2.5 Se
ondary Anisotropy of the CMBR

Propagating through the universe, the CMBR photons 
an experien
e a number of the

distortions, whi
h 
an 
hange the temperature distribution of the CMBR photons on the

sky. In the angular power spe
trum of the CMBR temperature anisotropy, these e�e
ts

are 
onsidered as the se
ondary anisotropies. Consider the e�e
ts that 
ause the se
ondary

anisotropes:

• Thomson s
attering of the CMBR photons, Refs. (Hu & Dodelson (2002),S
hneider

(2006))

The Thomson s
attering of the CMBR photons on the free ele
trons o

urred in the

redshift range, z ∈ (6; 20). These free ele
trons appeared as a result of the reionization

of the neutral hydrogen atoms in the universe by the dwarf galaxies, and/or by the very

�rst generation of the stars (by the Population III stars), and/or by the �rst quasars.

The Thomson s
attering is isotropi
, so the dire
tion of the photons after s
attering

be
omes almost independent of their original dire
tions of the motion. The s
attered

CMBR photons form the isotropi
 
omponent of the radiation with the ÑÌÂR tem-

perature. As a result of this e�e
t, the primary temperature anisotropy is suppressed,

i.e., the measured CMBR temperature �u
tuations will de
rease due to the fra
tion

of the photons that experien
ed the Thompson s
attering. In addition to suppressing

of the primary temperature anisotropy, the re-s
attering of the CMBR photons 
auses

the generation of the additional polarization at the large angles and the Doppler e�e
t

at the large angles, Ref. (Hu & Dodelson (2002)).

• Gravitational lensing of the CMBR photons, Refs. (Hu & Dodelson (2002), S
hneider

(2006))

The gravitational �eld of the matter density �u
tuations in the universe 
auses the

gravitational lensing (the gravitational deviation) of the CMBR photons, whi
h leads

to the 
hange of the initial dire
tion of the motion of the photons. This means that

while at the present epo
h we observe two photons separated by an angle, θ, the

physi
al separation between them during the de
oupling epo
h di�ered from the value

dA(zdec)θ due to the gravitational deviation of the photons. As a result of this e�e
t,

the 
orrelation fun
tion of the temperature �u
tuations be
omes slightly blurred. The

in�uen
e of this e�e
t is signi�
ant at the small angular s
ales.

• Sunyaev-Zeldovi
h e�e
t, Refs. (S
ott & Smoot (2010), Yoo & Watanabe (2012))

76



The gala
ti
 
lusters left an imprint on the CMBR photons, by the so-
alled Sunyaev-

Zeldovi
h (SZ) e�e
t

8

, Ref. (Sunyaev & Zeldovi
h (1970)). If the CMBR photons

move through a 
luster of the galaxy, then they will experien
e the inverse Compton

s
attering on the high-energy ele
trons in this 
luster. As a result of this s
attering,

the energy and the temperature of the CMBR photons in
rease. Thus, the spe
trum

of the CMBR be
omes distorted.

In�uen
e of the Cosmologi
al Parameters on the CMBR Angular Power Spe
-

trum

The in�uen
e of the 
osmologi
al parameters on the angular power spe
trum of the CMBR

is shown in Fig. (4.5). The dependen
e of the CMBR angular power spe
trum on the spa
e


urvature of the universe is shown in Fig (4.5) (a). There are two e�e
ts asso
iated with

the in�uen
e of the spa
e 
urvature on the CMBR angular power spe
trum: the shift of the

minima and maxima of the Doppler peaks and the strong dependen
e of the angular power

spe
trum in the region with l ≤ 100 on the total energy density parameter, Ωtot, Refs. (Hu

& Dodelson (2002), S
hneider (2006)). The latter e�e
t is a 
onsequen
e of the ISW e�e
t,

sin
e an in
rease in the values of the spa
e 
urvature leads to a greater time variation of the

gravitational potential. The shift of the a
ousti
 peak is due to the fa
t that the value of the

angular diameter distan
e, dA(zrec), is sensitive to the spa
e 
urvature variation, therefore,

the angular diameter distan
e s
ale, whi
h 
orresponds to the sound horizon, also 
hanges.

The in�uen
e of dark energy (the 
osmologi
al 
onstant Λ) on the CMBR angular power

spe
trum in the 
ase of a �at universe is shown in Fig. (4.5) (b). The lo
ation of the a
ousti


peaks is almost independent of the value of the dark energy density parameter, ΩΛ.

The dependen
e of the CMBR angular power spe
trum on the baryons energy density is

shown in Fig. (4.5) (
). An in
rease in the value of the energy density parameter, Ωbh
2
, leads

to an in
rease in the amplitude of the �rst a
ousti
 peak and a de
rease in the amplitude of

the se
ond a
ousti
 peak.

The in�uen
e of the value of the matter energy density parameter, Ωmh
2
, on the CMBR

angular power spe
trum is presented in Fig. (4.5) (d). Changing in the value of this parameter


auses a 
hange in the a
ousti
 peaks amplitudes and the a
ousti
 peaks lo
ations, Refs. (Hu

8

The SZ e�e
t is s
attering and its value does not depend on redshift, so the 
lusters of the galaxies


an be found at any distan
es. The measurements of the SZ e�e
t are used to sear
h for the 
lusters of

the galaxies in order to estimate their masses, as well as to 
larify the value of the Hubble 
onstant, H0,

Ref. (S
ott & Smoot (2010)). In addition, in 
ombination with the a

urate values of redshift and masses

for the 
lusters of the galaxies (for example, with the X-ray observations), the SZ e�e
t 
an be applied as

the standard ruler in 
osmology, Ref. (Cooray et al. (2001)).
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& Dodelson (2002), S
hneider (2006)).

4.2.6 Polarization of the CMBR

The CMBR is polarized at the level of several mkK, Ref. (Hu & White (1997)). The 
ause of

both the temperature anisotropy and its polarization are the s
alar and tensor gravitational

perturbations of the metri


9

. Sin
e the sour
es of the CMBR temperature anisotropy and the

polarization are the same, their power spe
tra should be 
orrelated, Refs. (Kosowsky (2001),

S
ott & Smoot (2010)). The 
ombination of the angular power spe
trum of the CMBR

temperature anisotropy and the signal of the CMBR E-mode polarization a

ording to the

results of the experiments: BICEP, BOOMERANG, CBI, DASI and QUAD, are shown in

Fig. (4.6) (right panel).

Figure 4.6: Left panel: the predi
ted polarization spe
tra of the E-mode (red 
urve) and B-

mode (blue 
urves) 
ombined with the results of the experiments: WMAP, Plan
k and EPIC.

(Figure from Ref. (Dodelson et al. (2009))) Right panel: the 
ombination of the angular

power spe
trum of the temperature anisotropy and the signal of the E-mode polarization,

a

ording to the results of the experiments: BICEP, BOOMERANG, CBI, DASI and QUAD.

(Figure from Ref. (S
ott & Smoot (2010)))

Stokes Parameters

Mathemati
ally, the polarization ve
tor of the ele
tromagneti
 waves is des
ribed by the

Stokes parameters, Ref. (Kosowsky (1996)).

Suppose a plane mono
hromati
 wave, whi
h is 
hara
terized by a frequen
y of ω0, prop-

agates along the dire
tion of z. The proje
tions of the ele
tri
 �eld ve
tor,

~E, on the x and

9

The ve
tor perturbations are not usually taken into a

ount due to their absen
e in the standard 
os-

mologi
al s
enario.
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y axes have the form, respe
tively, Refs. (Kosowsky (1996), Kosowsky (2001)):

Ex = ax(t) cos(ω0t− βx(t)), Ey = ay(t) cos(ω0t− βy(t)), (4.14)

where the amplitudes of the proje
tions of the ele
tri
 �eld ve
tor ax and ay, as well as the

phase angles βx and βy, are the slowly varying fun
tions of time relative to inverse frequen
y

of the ele
tromagneti
 wave.

The Stokes parameters are determined by the time-averaged values of the amplitudes

proje
tions and the phases of the ele
tri
 �eld ve
tor:

I ≡ 〈a2x〉+ 〈a2y〉, (4.15)

Q ≡ 〈a2x〉 − 〈a2y〉, (4.16)

U ≡ 〈2axay cos(ax − ay)〉, (4.17)

V ≡ 〈2axay sin(ax − ay)〉. (4.18)

The parameter I is the intensity of the ele
tromagneti
 radiation, therefore, this parameter

has a positive value. The sign and the values of the parameters Q, U and V 
hara
terize

the polarization state of the ele
tromagneti
 wave. For the natural unpolarized light, these

parameters are equal to zero, Q = U = V = 0. The value of the parameter V determines

the di�eren
e between the intensities of the right and left-side 
ir
ular (rotor) polarizations.

The parameter V depends on the rotation of the axes of the 
oordinate system, while the

parameters Q and U are invariant with respe
t to the rotation of the axes of the 
oordinate

system.

The linear polarization of the ele
tromagneti
 wave is determined by the parameters Q

and U . The linear polarization matrix is formed from these parameters as:

A =





Q U

U −Q



 . (4.19)

The determinant of this matrix is de�ned as:

det(A) = −(Q2 + U2). (4.20)

The linear polarization will be absent if the determinant of the matrix A is equal to zero.

Suppose that the ele
tromagneti
 radiation is linearly polarized, i.e., Q2 + U2 6= 0. Then it
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is possible to determine the degree of the linear polarization, p, and the value of the angle,

ψ, with respe
t to the axis, x, as:

p =

√

Q2 + U2

I
, ψ =

1

2
arctan

U

Q
, (4.21)

the value of the parameter, I, determines the intensity of the ele
tromagneti
 radiation,

Ref. (Kosowsky (1996)).

Divergen
e and Curl Components of the CMBR Polarization

The CMBR polarization 
an be de
omposed into the divergen
e part (
alled "E-mode") and

the 
url part (
alled "B-mode"), Ref. (Kosowsky (1996)). The dire
tion of the polarization of

the B-mode is rotated by 45◦ relative to the dire
tion of the polarization of the E-mode, see

Fig. (4.7). The E-mode of the CMBR polarization has parity (−1)l, similar to the spheri
al

 

Figure 4.7: The divergen
e E-mode and the 
url B-mode of the polarized �eld. (Figure from

Ref. (Dodelson et al. (2009)))

harmoni
s, see Fig. (4.7), while the B-mode has parity (−1)l+1
. The s
alar perturbations


annot generate the B-mode of the polarization. The 
ontribution of the ve
tor perturbations

to the B-mode formation is a fa
tor of 6 larger than to the E-mode formation, while the


ontribution of the tensor perturbations to the B-mode formation is a fa
tor of 8/13 smaller
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than to the E-mode formation, Ref. (Hu & White (1997)). The appearan
e of the E-mode

is due to the Thomson s
attering on the ele
trons from the CMBR photons propagating in

an inhomogeneous plasma, Refs. (Kosowsky (1999), Kosowsky (2001)). In 2002, the E-mode

was registered by the Degree Angular S
ale Interferometer (DASI) experiment, Ref. (Leit
h

et al. (2002)), see Fig. (4.6) (right panel).

The maximum amplitude of the ÑÌÂR polarization is of the order of 0.1 mkK, Ref. (Hu

& White (1997)). The 
osmologists predi
t the existen
e of two types of the B-mode of the

ÑÌÂR polarization. The emergen
e of the �rst type of the B-mode is asso
iated with the

intera
tion of the ÑÌÂR with the primordial gravitational waves (tensor mode), i.e., with

the rotational, vorti
ity perturbations (ve
tor mode

10

) arising during in�ation. The reli


gravitational waves are generated by the tensor perturbations of the metri
.

The se
ond type of the B-mode is asso
iated with the gravitational lensing of the E-mode

or, in other words, with the 
osmologi
al birefringen
e e�e
t, based on the intera
tion of the

ele
tromagneti
 �eld with the s
alar �eld, Refs. (Lepora (1998), Galaverni et al. (2015)).

The se
ond type of the B-mode appeared at a later time than the �rst type of the B-

mode. In addition, the B-mode of polarization 
an also 
ause the intera
tion of the CMBR

photons with the parti
les of the ba
kground gala
ti
 dust. The se
ond type of the B-mode

was dis
overed in 2013 by the South Pole Teles
ope and the Hers
hel Spa
e Observatory,

Ref. (Hanson et al. (2013)).

The dis
overy and the study of the �rst type of the B-mode is of the great interest for


osmologists. The amplitude of the �rst type of B-mode 
orresponds to the amplitude of

the primordial gravitational waves and, a

ordingly, determines the energy s
ale of in�ation,

Ref. (Gawiser & Silk (2000)). Therefore, the registration of this type of the B-mode, i.e.,

the registration of the primordial gravitational waves would be a dire
t eviden
e of the


orre
tness of the theory of in�ation. In Mar
h 2014, the registration of the �rst type of the

B-mode was announ
ed by the BICEP2 experiment, Ref. (Ade et al. (2014a)). However, a

later analysis, published in September 2014 and provided by another group of resear
hers,

whi
h used data from the Plan
k Observatory, showed that the result obtained in the BICEP2

experiment was 
aused by the CMBR photons s
attering on the parti
les of the gala
ti
 dust,

Ref. (Adam et al. (2016)). Unfortunately, so far the �rst type of the B-mode is not dete
ted.

The di�
ulty in dete
ting of the �rst type of B-mode is due to the small value of the B-

10

In the standard 
osmology, the ve
tor mode already de
ays at the in�ation stage. The presen
e of the

neutrinos, Ref. (Lewis (2004)), or/and the primordial magneti
 �elds, Ref. (Kahniashvili & Ratra (2005)),


an 
ountera
t to the ve
tor mode de
ay. Taking into a

ount these e�e
ts, the 
ontribution of the ve
tor

mode must be 
onsidered.
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mode amplitude of the CMBR polarization, as well as the in�uen
e of the birefringen
e e�e
t

on the B-mode, Ref. (Zhao & Li (2014)) and with the impa
t of the intergala
ti
 medium

(in parti
ular, with the in�uen
e of the gala
ti
 dust). The birefringen
e e�e
t in�uen
es

the ve
tor and tensor �u
tuations. As a result of this e�e
t, the B-mode is transformed into

the E-mode and the tensor perturbations, whi
h generate the B-mode and the E-mode, also

o

ur, Ref. (Lepora (1998)).

In this thesis, we obtained the 
onstraints on the model parameters α and Ωm in the

φCDM Ratra-Peebles s
alar �eld model using the BAO/CMBR analysis. In the BAO/CMBR

analysis, we 
ompared the observational and theoreti
al values of the ratio of the 
omoving

angular diameter distan
e to the distan
e s
ale at the de
oupling epo
h. A more detailed

des
ription of the BAO/CMBR analysis and its results is presented in Chapter VIII.

4.3 Barion A
ousti
 Os
illations

Before the re
ombination epo
h, the photons, the baryons and the ele
trons were 
losely

interrelated. In the primary plasma, the regions of the over matter density, whi
h 
onsist

of dark matter and the baryons, 
an be randomly formed. Su
h the regions attra
t another

matter to themselves and, on the other hand, as a result of the baryons and the photons

intera
tion, a strong radiation pressure is 
reated. Oppositely dire
ted the gravitational

and radiation pressures indu
e the joint os
illations of the baryons and the photons. These

os
illations are 
alled the Baryon A
ousti
 Os
illations (BAO), whi
h are the sound waves,

and they are 
hara
terized by the �u
tuations, δb, in the baryon-photon medium.

The radial pressure leads to the emergen
e of the spheri
al sound wave of both the

baryons and the photons moving outward from the region with the over matter density. The

baryon-photon medium before re
ombination is almost relativisti
, i.e., the photons energy

density, ργ , is greater than the baryons energy density, ρb: ρb < ργ . The photons pressure,

Pγ, is related to the photons energy density, ργ, as Pγ = 1/3ργ. The value of the sound

speed in the primordial plasma is de�ned as, Ref. (Rubakov (2014)):

vs =
√

∂Pγ/∂ργ =
√

1/3 ≈ 0.58. (4.22)

Thus, the value of the sound speed (the speed of the sound wave) is no mu
h more than half

the speed of light

11

. Dark matter intera
ts only gravitationally and, therefore, it remains at

11

Taking into a

ount the value of the speed of light, this formula has the form, vs ≈ 0.58c.
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the 
enter of the sound wave being the primary 
ause of the emergen
e of the regions with

the over matter density.

At the end of the re
ombination epo
h, the de
oupling of the photons and the baryons

o

urs at redshift zdec ≈ 1100. If before de
oupling the baryons and the photons move from

the 
enter of the over matter density region together, then after de
oupling the photons

will 
ease to intera
t with the baryons and dissipate. As a result, the radiation pressure in

the over matter density region de
reases and, eventually, the over As a result, the radiation

pressure in the over matter density region de
reases and, eventually, the over density region

with a �xed radius is formed density region with a �xed radius is formed, whi
h is 
alled

the sound horizon, rs. The 
omoving size of the sound horizon at the photons de
oupling is

determined by the equation

12

:

rs =

∫ tdec

0

vs
dt′

a(t′)
. (4.23)

The energy distribution of BAO within the sound horizon is de�ned as, Ref. (Rubakov

(2014)):

δb ∼ cos (krs) = cos

(∫ tdec

0

vs
k

a(t′)
dt′

)

, (4.24)

here k is the 
onformal momentum

13

.

The energy distribution of BAO outside of the sound horizon, δb=
onst, i.e., the baryon

�u
tuations are frozen. A

ording to Eq. (4.24), before re
ombination, the baryon-photon

�u
tuations are the os
illating fun
tion of the 
onformal momentum, k. The baryon density

�u
tuations, δρb, os
illate as:

δρb(k) ≈ ρbδργ(k) ∼ ρb cos(krs). (4.25)

The baryon density os
illations, δρb, are preserved to the present epo
h. The baryon den-

sity os
illations in the matter power spe
trum, P (k), as the tiny �u
tuations are represented

in Fig. (4.8).

After re
ombination, the baryons remain at the distan
e of the sound horizon from ea
h

other, rs, and dark matter is lo
ated at the 
enter of the over density region. Dark matter

and the baryoni
 matter attra
t ea
h other

14

, whi
h ultimately leads to the formation of

the galaxies in the universe. Thus, the galaxies are separated from ea
h other by the sound

12

The physi
al size of the sound horizon at the photons de
oupling is equal to a(tdec)rs.
13

The physi
al momentum is des
ribed by the equation, kphys = k/a(t).
14

Due to the dominan
e of dark matter, the gravitational potential, whi
h is formed by dark matter, is

also dominant. The baryoni
 matter follows this potential, rolling down into its potential well.

83



Figure 4.8: Baryon A
ousti
 Os
illations in the matter power spe
trum dis
overed in: (a)

2dFGRS and SDSS main galaxies, (b) SDSS LRG sample, (
) both samples. Solid 
urves

represent the best �t of the data. (Figure from Ref. (Per
ival et al. (2007)))

horizon or the BAO signal, the size of whi
h in
reases over time due to the Hubble expansion,

Ref. (Rubakov (2014)). The theoreti
al predi
tions of the 
urrent 
omoving size of the BAO

sound horizon give the following results, Ref. (Yoo & Watanabe (2012)):

rs =

∫ ∞

tdec

csdt

a
=

∫ ∞

tdec

cs
H(z)

dz ∼ 150 Mpc ∼ 100h−1 Mpc, (4.26)

where h = 0.678, a

ording to Plank 2015, Ref. (Ade et al. (2016)).

Using the observational data on the large-s
ale stru
ture of the galaxies, one 
an measure

the sound horizon s
ale and 
ompare the result obtained with the theoreti
al predi
ted value

of this s
ale. The two-point 
orrelation fun
tion, ξ(s), depends on the 
omoving distan
e,

s, of the galaxy. This fun
tion des
ribes the probability that one galaxy will be found at a

given distan
e from another, Ref. (Rubakov (2014)). The Sloan Digital Sky Survey (SDSS)

provides the redshift distribution of the galaxies in the range up to the value z = 0.47,

Ref. (Eisenstein et al. (2005)). This information 
an be used to estimate the size of the BAO

signal. The two-point 
orrelation fun
tion �xes the BAO signal at the distan
e, 100h−1
Mp
,
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Figure 4.9: The large-s
ale redshift-spa
e two-point 
orrelation fun
tion, ξ(s), of the SDSS
sample. (Figure from Ref. (Eisenstein et al. (2005)))

in the redshift range, z ∈ (0.16; 0.47), see Fig. (4.9). The size of the BAO signal is used

as the standard ruler to determine the distan
e s
ale in 
osmology, Ref. (Yoo & Watanabe

(2012)).

Comparing Fig. (4.4) and Fig. (4.9), we 
an 
on
lude that the measurements of the

CMBR angular power spe
trum of the temperature anisotropy and the measurements of the

BAO signal indi
ate that the 
urrent radius of the sound horizon is approximately 150 Mp
.

This result 
oin
ides with the theoreti
ally 
al
ulated value of the BAO signal in Eq. (4.26).

4.4 Statisti
s of the Large-S
ale Stru
ture of the Uni-

verse

The large-s
ale stru
tures, whi
h are observed at the present epo
h in the universe, su
h as

galaxies, 
lusters of galaxies and super
lusters, were formed as a result of the evolution of the

small initial matter density �u
tuations in the expanding universe, Ref. (Lifshitz (1946)).
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4.4.1 In�uen
e of the Gravitational Instability on the Formation of

Large-S
ale Stru
tures in the Universe.

The temperature �u
tuations of the CMBR, whi
h is dete
ted by the COBE satellite, are


aused by the inhomogeneities in the matter density that originated in the early universe,

Ref. (Kosowsky (2001)). The 
ause of the matter density �u
tuations 
ould be the quantum

�u
tuations of the s
alar �eld or the topologi
al defe
ts resulting from the phase transitions

during in�ation, Ref. (Kamionkowski & Kosowsky (1998)). The theory that des
ribes the

formation and the growth of these inhomogeneities is based on the Jeans instability or, in

other words, on the gravitational instability of the matter density �u
tuations, Ref. (Jeans

(1902)). The matter density �u
tuations, being a sour
e of the additional gravitational �eld,

attra
t the surrounding matter to themselves. As a result of this pro
ess, an in
rease in the

size of these �u
tuations o

urs, sin
e the for
e of the radiation pressure prevails over the

for
e of gravity, whi
h leads to the spread of the matter density �u
tuations in the medium.

The growth of the matter density �u
tuations 
ontinues until the equilibrium is rea
hed

between the for
e of gravity and the for
e of the radiation pressure. This equilibrium o

urs

at a 
riti
al size of the matter density �u
tuations, at the so-
alled Jeans wavelength, λJ .

The value of the Jeans wavelength is determined by the speed of the sound wave, vs, and

the average density of the medium, 〈ρ〉, in whi
h the matter density �u
tuations develop,

Ref. (Gorbunov & Rubakov (2011)):

λJ = vs

√

π

G〈ρ〉 . (4.27)

After rea
hing the Jeans wavelength, the for
e of gravity prevails over the for
e of the

radiation pressure. At the same time, the pro
ess of an in
rease in the size of the matter

density �u
tuations is repla
ed by the pro
ess of the adiabati
 
ompression. As a result,

the relaxation (the 
ollapse) of the matter density �u
tuations o

urs. The parti
les tend to

a 
ommon gravitational 
enter, in the end, most parti
les 
on
entrate at the 
enter, and a

new obje
t, the protogalaxy, is formed. The emergen
e of the protogalaxies in the universe

o

urs at redshift z ∼ 10. The subsequent evolution of the protogalaxies led to the formation

of the large-s
ale stru
tures in the universe.
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4.4.2 Linear Perturbation Theory

Relative Density Contrast

The value of the matter density �u
tuations is determined by the relative 
ontrast of the

matter density:

δρ(~r, t) =
δρ(~r, t)

〈ρ〉 =
ρ(~r, t)− 〈ρ〉

〈ρ〉 , (4.28)

here ρ(~r, t) is the value of the density in the universe in the dire
tion, ~r, and at the moment

of time, t.

From Eq. (4.28), it follows that δ ≥ −1 be
ause ρ > 0. The small value of the temperature

anisotropy of the CMBR, δT/T0 = 1/3δρ/〈ρ〉 ∼ 10−5
assumes that |δ| ≪ 1 at redshift zdec.

The protogalaxies that arose in the universe are 
hara
terized by a large density 
ontrast,

δρ/〈ρ〉 > 1.

The gravitational �eld formed by the average matter density, 〈ρ〉, determines the dynam-
i
s of the Hubble expansion of the universe. The �u
tuations of the matter density from the

average value, δρ(~r, t) = ρ(~r, t)− 〈ρ〉, generate the additional gravitational �eld.

Linear Perturbation Equation

Consider the growth of the matter density �u
tuations on the length s
ale, whi
h is sig-

ni�
antly smaller than the Hubble radius

15

. Suppose that the matter in the universe is

approximated by the dust �uid. The dust �uid is 
hara
terized by: the energy density,

ρ(~r, t); the three-dimensional velo
ity, v(~r, t), and the zero pressure, p.

The behavior of the dust �uid is des
ribed by the following equations:

1. The 
ontinuity equation, presented earlier, Eq. (2.42).

2. The Euler's equation

16

:

∂~v

∂t
+ (~v · ∇)~v +∇Φ +

∇p
ρ

= 0, (4.29)

where Φ is the Newton's gravitational potential 
orresponding to the Poisson's equation.

15

On these length s
ales, the growth of the stru
tures in the universe is des
ribed by the Newton's theory

of gravity. Considering the growth of the matter density �u
tuations on the length s
ales 
omparable or

more than the Hubble radius, it is ne
essary to take into a

ount the in�uen
e of the spa
etime 
urvature

and, therefore, it is ne
essary to apply the GTR.

16

The Euler's equation expresses the 
onservation law of the momentum. This equation also des
ribes the

matter behavior under the a
tion of for
es on it, whi
h are represented through the pressure gradient, ∇p,
and the gradient of the Newton's gravitational potential, ∇Φ.
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3. The Poisson's equation

17

:

∇2Φ = 4πG (ρ+ 3p) . (4.30)

As a result of solving the system of the aforementioned equations: the 
ontinuity equation,

Eq. (2.42), the Euler's equation, Eq. (4.29), and the Poisson's equation, Eq. (4.30), and then

linearizing this solution with |δ| ≪ 1, we 
an obtain a linear equation for the matter density

�u
tuations, the so-
alled linear perturbation equation, Ref. (Pa
e et al. (2010)):

δ
′′

+
(3

a
+
E

′

E

)

δ
′ − 3Ωm0

2a5E2
δ = 0, (4.31)

here the prime means the derivative with respe
t to the s
ale fa
tor,

′ = d/da.

The linear perturbation equation, Eq. (4.31), 
ompletely des
ribes the evolution of the

matter density �u
tuations in the universe.

Growth Rate Fun
tion of the Matter Density Flu
tuations

The evolution of the �u
tuations is expressed in terms of the linear growth fa
tor, D(a),

whi
h is usually normalized arbitrarily. We 
hose the normalization in whi
h the value of

the linear growth fa
tor is equal to unity at the present epo
h, D(a0 = 1) = 1. Thereby, the

linear growth fa
tor is de�ned as:

D(a) = δ(a)/δ(a0), (4.32)

where δ(a0) is a value of the matter density 
ontrast today. The relation D(a) = a for a≪ 1

is ful�lled for the matter dominated epo
h.

The fra
tional matter density is given as:

Ωm(a) = Ωm0a
−3/E2(a). (4.33)

The growth rate of the matter density �u
tuations is des
ribed by the logarithmi
 derivative

of the linear growth rate, or, in other words, by the the growth rate fun
tion, Ref. (Wang &

Steinhardt (1998)):

f(a) = d lnD(a)/d ln a. (4.34)

17

The Poisson's equation is given as the 0-0 
omponent of the Einstein's equation, Eq. (2.52). Sin
e only

the matter is 
onsidered to study the growth of the matter density �u
tuations, in Eq. (4.30) the pressure

is equal to zero, p = 0.
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The growth rate fun
tion, f(a), is highly dependent on the fra
tional matter density, Ωm(a),

and its dependen
e 
an be parametrized by the power law, Ref. (Wang & Steinhardt (1998)):

f(a) ≈ (Ωm(a))
γ(a), (4.35)

here γ(a) is the e�e
tive growth index, whi
h is a time-dependent fun
tion. The value of the

e�e
tive growth index depends on both the dark energy model and the theory of gravity.

The dependen
e of the e�e
tive growth index, γ(a), on the s
ale fa
tor 
an be determined

by the expression presented in Eq. (4.35), Ref. (Wu et al. (2009)):

γ(a) =
lnf(a)

ln(Ωm(a))
. (4.36)

4.4.3 Linder γ-parametrization

Assuming that the GTR is a 
orre
t theory of gravity, the e�e
tive growth index, γ(a), 
an

be parametrized by the independent way, by the Linder γ-parametrization, Ref. (Linder &

Cahn (2007)):

γ =







0.55 + 0.05(1 + w0 + 0.5wa), if w0 ≥ −1;

0.55 + 0.02(1 + w0 + 0.5wa), if w0 < −1,
(4.37)

where w0 = w(z = 0) and wa = (dw/dz)|z=1. We determined that this parametrization is

pre
ise up to redshift, z = 5 (a = 0.2), see Fig. (7.6) (right panel). The value of γ depends

on the 
hara
teristi
s of the dark energy model, for example, on the EoS parameter, w.

In the ΛCDM model based on the GTR, the value of the Linder γ-parametrization, γ,

is equal to 0.55, Ref. (Linder & Cahn (2007)). In the models based on a theory of gravity

di�erent from GTR, the value of the Linder γ-parametrization, γ, di�ers from the value of

the γ in the models based on GTR gravity. For example, in the Dvali-Gabadadze-Poratti

model, γ ≈ 0.68, Refs. (Dvali et al. (2000), Linder (2005), Linder & Cahn (2007)). The

value of the Linder γ-parametrization, γ, whi
h is obtained from the observations in the


ombination with the 
onstraints on other 
osmologi
al parameters, 
an be used to verify

the a

ura
y of GTR on the 
osmologi
al length s
ales, Refs. (Pouri et al. (2014), Taddei &

Amendola (2015)).
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Chapter 5

Elements of the Statisti
al Analysis

5.1 Gaussian Probability Distribution

5.1.1 De�nition of Gaussian Probability Distribution

The Gaussian or, in other words, the normal distribution of a random variable x is des
ribed

by the probability density:

f(x) =
1

σ
√
2π
e−(x−e)/2σ2 . (5.1)

The Gaussian distribution is determined by the parameters e and σ. The parameter e is

the mathemati
al expe
tation and the parameter σ is the standard deviation of the random

variable x. The value of σ2
is the varian
e of the random variable x. The values 1σ, 2σ and

3σ determine the probability of the event realization or the 
on�den
e levels, respe
tively,

at 68.27%, 95.45%, 99.73%.

5.1.2 Fun
tion χ2
and the Likelihood Fun
tion

Fun
tion χ2
and the Likelihood Fun
tion for Independent Measurements

Suppose that the model parameters, p, are distributed a

ording to the Gaussian distri-

bution, Eq. (5.1). N independent measurements, Xobs(zi), were 
arried out to determine

the values of these model parameters. The standard deviation for ea
h measurement, σi, is

known. These measurements are obtained at redshifts zi. The theoreti
al model predi
ts

the 
orresponding values, Xth(p, zi).
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The fun
tion χ2(p) is a fun
tion of the model parameters, p, is given as:

χ2(p) =

N
∑

i=1

[Xobs(zi)−Xth(p, zi)]
2

σ2
i

. (5.2)

The fun
tion χ2(p) determines the deviation of the theoreti
al predi
tions from the obser-

vations at the parti
ular values of the parameters, p. A small value of χ2(p) means a good

approximation by the 
hosen theory of the observations and, a

ordingly, a large value of

χ2(p) means a poor approximation by the theory of the observations.

The likelihood fun
tion, L(p), for the independent variables is de�ned as:

L(p) = exp
{

−1

2
χ2(p)

}

. (5.3)

The likelihood fun
tion, L(p), determines the probability that the theoreti
al predi
tions of
the parameters values, p, 
oin
ide with the observations. The large value of the likelihood

fun
tion, L(p), means a good approximation of the observations by this theory and the

parameter values, p, are the best �t values1. Conversely, the small value of the likelihood

fun
tion, L(p), means à poor approximation of the observations by this theory.

In the 
ase of the 
ombining of M types of the independent variables, p1, p2, ..., pM, the

resulting value of the fun
tion χ2(p) is 
al
ulated as a sum of the fun
tions χ2(p1), ..., χ
2(pM),

ea
h of whi
h 
hara
terizes a spe
i�
 type of the independent variables:

χ2(p) = χ2(p1) + ... + χ2(pM−1) + χ2(pM). (5.4)

In this 
ase, the resulting probability fun
tion is 
al
ulated as the produ
t of the likelihood

fun
tions, L(p1),L(p2), ...,L(pM), ea
h of whi
h de�nes a spe
i�
 type of the independent

variables:

L(p) = L(p1) · L(p2)...L(pM−1) · L(pM). (5.5)

Fun
tion χ2
and the Likelihood Fun
tion for the Dependent Measurements

For the dependent measurements, fun
tion χ2(p) is de�ned as:

χ2(p) = [Xobs(zi)−Xth(p, zi)]
TC−1[Xobs(zi)−Xth(p, zi)], (5.6)

1

It is ne
essary to distinguish between the notions the best �t values of the parameters, p, and the

true values of the parameters, p. The likelihood fun
tion, L(p), determines the probability with whi
h the

values of the arbitrary parameters, p, will be the true values (whi
h are unknown to us). The best �t values

are the values of the parameters, p, whi
h are likely to be the true values.
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where C =
ov[Xi, Xj] is a 
ovarian
e matrix of the dependent measurements; Xobs(zi) is a

ve
tor of the values of the dependent measurements; Xth(p, zi) is a ve
tor of the theoreti
ally

predi
ted values; the supers
ript T denotes a ve
tor transposition.

The likelihood fun
tion for the dependent measurements is:

L(p) = exp
{

−1

2

[

Xobs(zi)−Xth(p, zi)
]T

C−1
[

Xobs(zi)−Xth(p, zi)
]}

. (5.7)

5.1.3 Fisher Formalism

The inverse Fisher matrix, [F−1], is a matrix that is inverse to the 
ovarian
e matrix,

[C]:

[F ]−1 = [C] =







σ2
p1

σp1p2

σp1p2 σ2
p2






, (5.8)

where the standard deviations σ2
p1 and σ2

p2 are the 1σ un
ertainties of the parameters, p1

and p2, respe
tively; σp1p2 = ̺σp1σp2 ; ̺ is a 
orrelation 
oe�
ient. The absolute value of the


orrelation 
oe�
ient ̺ does not ex
eed unity, | ̺ |≤ 1. If ̺ = 0, then the parameters, p1 and

p2, are independent of ea
h other, i.e., they are mutually un
orrelated. If | ̺ |= 1, then the

parameters will be 
ompletely 
orrelated with ea
h other. If | ̺ |< 1, then the parameters

will be partially 
orrelated with ea
h other.

Consider the fun
tion χ2(p1, p2), whi
h depends on two parameters, p1 and p2. The

elements of the Fisher matrix are the se
ond-order expansion 
oe�
ients in the Taylor series

of the fun
tion χ2(p1, p2) near the minimum of this fun
tion.

The two-dimensional Fisher matrix, [F ], is 
al
ulated as:

[F ] =
1

2







∂2

∂p21

∂2

∂p1∂p2

∂2

∂p1∂p2
∂2

∂p22






χ2. (5.9)

In other words, the elements of the Fisher matrix, [F ], are 
al
ulated as the se
ond derivatives

of the fun
tion χ2
with respe
t to the parameters, p1 and p2:

Fp1p2 =
1

2

∂χ2

∂p1∂p2
. (5.10)

The 
ovarian
e matrix, [C], is de�ned through the Fisher matrix as: [C] = [F ]−1
.
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Transformation of the Variables

Formulation of the problem: the Fisher matrix, [F ], is de�ned via the variables

2

, p =

p1, p2, p3. In turn, these variables depend on the other variables, p
′ = p′1, p

′
2, p

′
3. It is ne
essary

to 
al
ulate the Fisher matrix, [F ′], with respe
t to the variables, p′ = p′1, p
′
2, p

′
3, based on

the information about the original Fisher matrix, [F ].

The elements of the Fisher matrix, [F ′
mn], are 
al
ulated a

ording to the derivative of

the 
omposition of two fun
tions:

F ′
mn =

∑

ij

∂pi
∂p′m

∂pj
∂p′n

Fij. (5.11)

The Fisher matrix, [F ′], 
an be obtained as, Ref. (Coe (2009)):

[F ′] = [M ]T [F ][M ]. (5.12)

The matrix, [M ], is de�ned as:

[M ] =















∂p1
∂p′1

∂p1
∂p′2

∂p1
∂p′3

∂p2
∂p′1

∂p2
∂p′2

∂p2
∂p′3

∂p3
∂p′1

∂p3
∂p′2

∂p3
∂p′3















. (5.13)

Thereby, the elements of the matrix, [M ], are 
al
ulated as: Mij = ∂pi/∂p
′
j .

5.1.4 Best Fit Model Parameters

Regardless of the type of the observations, the model parameters, p0, for whi
h the fun
tion

χ2(p) takes the minimum value, are 
alled the best �t model parameters for this theory. In

this 
ase, the minimum value of the fun
tion χ2(p0) determines the smallest value of the

varian
e, σ2
, for this theory. For the model with two parameters, the boundaries of the


on�den
e intervals at 1σ, 2σ and 3σ are de�ned, respe
tively, as: χ2(p) = χ2(p0) + 2.3,

χ2(p) = χ2(p0) + 6.17 and χ2(p) = χ2(p0) + 11.8.

The likelihood fun
tion, L(p), has a maximum value with the best �t of the model

parameters, p0. The values of the model parameters, p0, for whi
h the likelihood fun
tion

is maximal, have the maximum probability of being the true parameters.

2

The number of the variables 
an be arbitrarily large, p = p1, p2...pN. In this 
ase, we limited ourselves

to the number of the variables N = 3.
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5.2 Elements of the Theory of Monte Carlo Markov Chains

The Monte Carlo Markov Chain (MCMC) method is used in 
onstru
ting the ve
tors for the

multidimensional distribution fun
tions. In the statisti
s, this method is applied to study

the posterior distributions of the model parameters.

5.2.1 De�nition of the Markov Chains. Transition Probabilities

In 1907, A. A. Markov developed a new type of the random pro
esses. In this pro
ess, the

result of the experiment a�e
ts the result of the subsequent experiment. This type of pro
ess

is 
alled a Markov 
hain.

The Markov 
hain 
an be des
ribed as follows. Consider a set of the states, S =

s1, s2, ..., sr. The pro
ess begins in one of these states and sequentially moves from one

state to another. Ea
h movement is 
alled a step. If the 
hain is 
urrently in the si state,

then it will go to the sj state in the next step with the probability, denoted as pij, and

this probability does not depend on the states in whi
h the 
hain was lo
ated before the


urrent state. The probabilities, pij, are 
alled the transition probabilities. The initial

probability distribution, S, determines the initial state3.

Transition Matrix. Homogeneous Markov Chain.

In the notation, pij, the �rst index indi
ates the number of the previous state i, and the

se
ond index indi
ates the number of the next state j. The pro
ess 
an remain in the state

in whi
h it is lo
ated, and this happens with the probability, pii.

Suppose that the number of the states is �nite and equals k. The transition matrix

of the system is a matrix, whi
h 
ontains all the transition probabilities of this system,

Ref. (Gmurman (2003)):

P1 =

















p11 p12 ... p1k

p21 p22 ... p2k

... ... ... ...

pk1 pk2 ... pkk

















. (5.14)

Sin
e the transition probabilities of the events from the state i to the state j pla
ed in ea
h

row of the matrix form a 
omplete group, the sum of the probabilities of these events is

3

Often the Markov 
hains are 
ompared to a frog jumping on a set of lily pads. The frog starts on one

of the lily pads and then jumps from a lily pad to a lily pad with the 
orresponding transition probabilities,

pij , Ref. (Howard (1971)).
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equal to unity. In other words, the sum of the transition probabilities for ea
h row in the

transition matrix is equal to unity:

k
∑

j=1

pij = 1, (i = 1, 2..., k). (5.15)

The Markov 
hain is 
alled the homogeneous 
hain, when the 
onditional probability, pij,

does not depend on the number of the test.

Markov Equality

Let's denote by Pij(n) the probability that the system S will transit from the state i to the

state j as a result of n steps (tests). For example, P25(10) is the transition probability from

the se
ond to the �fth state as a result of 10 steps. We emphasize that for n = 1 we get the

transition probability:

Pij(1) = pij. (5.16)

Markov problem: knowing the transition probabilities, pij, �nd the probabilities, Pij, of

the transition of the system from the state i to the state j in n steps.

Let's introdu
e the intermediate state r between the states i and j. In other words, we

assume that the system will move from the initial state i to the intermediate state r with the

probability, Pir(m), in m steps. After that, the system moves from the intermediate state r

to the �nal state j with the probability, Prj(n−m), in (n−m) steps.

The transition probability, Pij , of the system from the state i to the state j in n steps


an be found using the Markov equality:

Pij(n) =
k

∑

r=1

Pir(m)Prj(n−m). (5.17)

In our 
al
ulations, we apply the normal distribution of the random variable x, whi
h is

des
ribed by Eq. (5.1).

5.2.2 Monte Carlo Method

In 1949, N. Metropolis and S. Ulam published the paper entitled �Monte Carlo Method�

in whi
h this method was presented. The Monte Carlo method is a statisti
al method

for studying the problems based on using of the random numbers, similar to the numbers

generated in gambling. Applying the Monte Carlo method, it is required to �nd a set of the
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random numbers, whi
h 
orresponds to a 
ertain probability distribution.

Essen
e of the Monte Carlo Method

It is required to �nd the expe
tation value e of some random variable. For this purpose a

random variable is 
hosen X whose expe
tation is equal to e:

M(X) = e. (5.18)

In reality, n tests are performed, as a result of n possible values X are obtained, after whi
h

their arithmeti
 average is 
al
ulated:

x̄ =
(

∑

xi

)

/n. (5.19)

The value of x̄ is 
onsidered as an approximate value of e∗ of the number e:

e ≃ e∗ = x̄. (5.20)

Sin
e the Monte Carlo method requires a large number of the tests, it is often 
alled the

method of the statisti
al tests. To use the Monte Carlo method, a reliable set of the

random numbers is needed. Su
h numbers are hard to get, so the pseudo-random numbers

are usually used. These numbers must be un
orrelated and evenly distributed over a prior

range of the numbers.

Transformation Method

The transformation method is used to sear
h for the pseudo-random numbers from the known

probability distributions. It is required to reprodu
e a 
ontinuous random variables X , i.e.,

to obtain a sequen
e of its possible values, X = x1, x2, ..., xk, whi
h is 
hara
terized by the

distribution fun
tion F (x).

Theorem: 
onsider a possible random value xi with the distribution fun
tion F (x). The

value of a random number ri will 
orrespond to the value of xi, if it is the solution of the

following equation:

F (xi) = ri. (5.21)

In other words, in order to �nd a possible value of xi a 
ontinuous random variable X ,

determined by the density distribution f(x), we must 
hoose a random number ri and solve
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one of the equations with respe
t to xi:

∫ xi

−∞
f(x)dx = ri or

∫ xi

b

f(x)dx = ri, (5.22)

where b is a �nite, smallest value of a random variable X .
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Chapter 6

Dark Energy

As it was des
ribed in Chapter I, our universe is in the state of the a

elerated expansion.

One possible explanation of this phenomenon is the existen
e of so-
alled dark energy. Dark

energy is 
hara
terized by the value of the EoS parameter, w, whi
h is de�ned as a ratio

between the pressure, pDE, and the energy density, ρDE, w ≡ pDE/ρDE. The a

elerated

expansion requires that w < −1/3. Dark energy is approximately 69% of the total energy

density in the universe, its distribution is highly spatially uniform and isotropi
, Ref. (Ade

et al. (2016)). The negative e�e
tive pressure of dark energy 
auses an a

elerated expan-

sion of the universe. The nature of dark energy still remains an unresolved mystery for


osmologists.

6.1 Cosmologi
al Constant Λ

The simplest model of dark energy is a 
on
ept of va
uum energy or, in other words, a

time-independent 
osmologi
al 
onstant denoted as Λ, whi
h was �rst proposed by Albert

Einstein, Ref. (Einstein (1917)), for the review: Refs. (Carroll (2001), Peebles & Ratra

(2003), Martin (2012)). In 1917, in order to obtain a stati
 solution, ȧ = 0, Albert Einstein

introdu
ed a new term, Λgµν , into the Einstein tensor, Eq. (2.38), Ref. (Einstein (1917)).

As a result, the Einstein's equation, Eq. (2.52), took the form:

Rµν −
1

2
gµνR − Λgµν = 8πGTµν , (6.1)

where Λ is 
alled the 
osmologi
al 
onstant. The addition of this term violates the 
ondition

for the transition of the strong gravitational �elds to the weak gravitational �elds (the transi-

tion to the Newtonian limit), imposed on the Einstein tensor in the equations Eq. (2.53) and
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Eq. (2.54). In order to ful�ll the 
onditions of this transition, the value of the 
osmologi
al


onstant must be negligible.

Einstein did not have a real physi
al interpretation of the 
osmologi
al 
onstant Λ. After

the dis
overy of the expansion of the universe by Edwin Hubble in 1929, Ref. (Hubble

(1929)), Einstein removed the 
osmologi
al 
onstant from his equations in 1931. He 
alled

the introdu
tion of Λ into these equations his "biggest blunder", Ref. (Gamov (1956)). From

the 1930s to the end of the 1990s, the 
osmologists were not taken the 
osmologi
al 
onstant

into a

ount, assuming its value to be zero. After the dis
overy of the a

elerated expansion

of the universe in 1998, Refs. (Riess et al. (1998), Perlmutter et al. (1999), S
hmidt et al.

(1998)), the 
osmologists began to use the 
osmologi
al 
onstant with a positive nonzero

value to explain this phenomenon. Taking into a

ount the 
osmologi
al 
onstant Λ in the

Friedmann's equations, Eq. (2.97) and Eq. (2.98), a non-stati
 solution 
an be found. This

solution des
ribes an expanding universe.

It is now a

epted that the 
osmologi
al 
onstant is equivalent to a �nal energy density

of the va
uum, Ref. (Zeldovi
h (1968)). Su
hwise, if the 
osmologi
al 
onstant is determined

by the va
uum energy density, ρvac, then the energy density of the 
osmologi
al 
onstant,

ρΛ, will not depend on time:

ρΛ = ρvac = const. (6.2)

The energy density of the 
osmologi
al 
onstant is de�ned as:

ρΛ =
Λ

8πG
, (6.3)

where Λ = 4.33 · 10−66 eV2
.

The EoS for the 
osmologi
al 
onstant:

pΛ = −ρΛ = const. (6.4)

Therefore, the EoS parameter for the 
osmologi
al 
onstant is de�ned as:

wΛ = −1. (6.5)

The a
tion for the 
osmologi
al 
onstant:

S = − 1

16πG

∫

d4x
√
−g(R + 2Λ) + SM, (6.6)
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where SM is an a
tion for matter.

The Friedmann's equations with the 
osmologi
al 
onstant have the form:

ȧ2

a2
=

8πG

3
ρ− K

a2
+

Λ

3
(6.7)

and

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (6.8)

6.2 Cosmologi
al ΛCDM Model

The Lambda Cold Dark Matter (ΛCDM) model is the standard model of the universe.

This model des
ribes a spatially �at universe and it is the simplest parametrization of the


osmologi
al Big Bang model. In the ΛCDM model, dark energy is represented by the


osmologi
al 
onstant Λ, whi
h is assumed to be asso
iated with the va
uum energy density.

Dark matter is the 
old dark matter in the ΛCDM model. The ΛCDM model is based on

the GTR in order to des
ribe the gravity in the universe at the 
osmologi
al s
ales.

The ΛCDM model is a 
on
ordan
e model of the universe, sin
e this model is in a good

agreement with the 
urrently available 
osmologi
al observations, see Fig. (6.1). In addition,

Figure 6.1: The 
on�den
e 
ontours at 68% and 95% as a result of the di�erent measure-

ments: SNIa (JLA) and SNIa (C11) 
ompilations, the 
ombination of the Plan
k temperature

and WMAP polarization (Plan
k + WP) and the 
ombination of the BAO s
ale. Left panel:

for the Ωm and ΩΛ 
osmologi
al parameters in the ΛCDM model. The bla
k dashed line


orresponds to a �at universe. Right panel: for the Ωm and w 
osmologi
al parameters in

the �at w−ΛCDM model. The bla
k dashed line 
orresponds to the 
osmologi
al 
onstant

hypothesis. (Figure from Ref. (Betoule et al. (2014)))

the ΛCDM model explains: the a

elerated expansion of the universe; the large-s
ale stru
-

ture in the distribution of the galaxies; the CMBR temperature anisotropy; the 
hemi
al
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omposition of the universe (the 
ontent of hydrogen, helium and lithium

1

), Ref. (S
hneider

(2006)).

The ΛCDM model is 
hara
terized by main six independent parameters: the physi
al

baryon density parameter, Ωbh
2
; the dark matter physi
al density parameter, Ωch

2
; the age

of the universe, t0; the s
alar spe
tral index, ns; the amplitude of the 
urvature �u
tuations,

∆2
R; the opti
al depth during the reionization period

2

, τ . In addition to these parameters,

the ΛCDM model is des
ribed by six extended �xed parameters: the total energy density

parameter, Ωtot; the EoS parameter, w; the total mass of three types of the neutrinos,
∑

mν ;

the e�e
tive number of the relativisti
 degrees of freedom, Neff ; the tensor/s
alar ratio, r;

the running s
alar index, dns/d ln k.

A

ording to the ΛCDM model, our universe 
onsists of 69, 2% of dark energy; 26% of

dark matter; 4.8% of the ordinary baryoni
 matter; 0.1% of the neutrinos; 0.01% of the

photons, Ref. (Ade et al. (2016)).

The �rst Friedmann's equation, whi
h des
ribes the universe expansion in the spatially

�at ΛCDM model, is:

E(a) = (Ωr0a
−4 + Ωm0a

−3 + ΩΛ)
1/2, (6.9)

where Ωr0, Ωm0 and ΩΛ are the energy density parameters for the radiation, the matter

and va
uum, respe
tively, at the present epo
h. Until the moment of the neutrinos non-

relativization

3

, the neutrinos are the relativisti
 parti
les, therefore, the neutrinos energy

density parameter, Ων , 
hanges with the dependen
e on the s
ale fa
tor as a
−4
. Thus, before

the moment of the neutrinos non-relativization, the total radiation energy density 
onsists

of the energy densities of the relativisti
 parti
les: the photons and the neutrinos. After

the moment of the neutrinos non-relativization, the neutrinos be
ome the non-relativisti


parti
les and the energy density parameter of the neutrinos, Ων , evolves as a−3
. There-

fore, the total energy density parameter of the matter, Ωm, 
ontains all the non-relativisti



omponents, in
luding the non-relativisti
 neutrinos.

1

The pro
ess of the formation of these 
hemi
al elements began during the primordial nu
leosynthesis

in the universe. This epo
h began at the temperature of about 1 MeV when the age of the universe was

approximately 1 se
. At this time, the following rea
tions are terminated: e−+p ↔ n+νe and the "freezing"
of neutrons o

urs from these rea
tions. Approximately from 10 se
onds to 20 minutes after the Big Bang,

the thermonu
lear rea
tions took pla
e, forming more 
omplex elements: p + n → 2H + γ, 2H + p →
3He+ γ, 3He+ 2H → 4He+ p, ..., up to

7Li, Ref. (Rubakov (2014)).

2

The reionization is the pro
ess of the ionization of the neutral hydrogen atoms, whi
h happened in the

universe at the range of redshifts, z ∈ (6; 20).
3

The neutrino transition from the relativisti
 to the non-relativisti
 state o

urs at the matter dominated

epo
h. The earlier this transition o

urs, the greater value of the mass a
quired by the neutrino. The results

of this study are presented in Chapter X.
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6.2.1 Short
omings of the ΛCDM Model

If, indeed, the va
uum energy is the origin of the 
osmologi
al 
onstant, then there is a

problem with the energy s
ale of the 
osmologi
al 
onstant. The theoreti
ally predi
ted

energy density of the 
osmologi
al 
onstant, ρΛ, is de�ned as:

ρΛ ∼ ~M4
pl ∼ 1072 Gev4 ∼ 2 · 10110 erg/cm3, (6.10)

where Mpl ∼ 1018 Gev is a Plan
k mass s
ale; ~ is a redu
ed Plan
k 
onstant

4

. The result

obtained in Eq. (6.10) is 
on�rmed by the laboratorian measurements of the va
uum �u
tu-

ations by the Casimir e�e
t, Ref. (Casimir (1948)). However, the 
osmologi
al observations

of the 
osmologi
al 
onstant, as dark energy, show a 
ompletely di�erent result:

ρobsΛ ∼ 10−48 Gev4 ∼ 2 · 10−10 erg/cm3. (6.11)

Thus, the observed value of the energy s
ale of the 
osmologi
al 
onstant is by 120 magnitudes

less than its value derived from the theoreti
al predi
tions. This dis
repan
y in 120 values

of the energy s
ale is 
alled the 
osmologi
al 
onstant problem or the �ne turning problem,

Refs. (Carroll et al. (1992), Carroll (2001)).

The se
ond problem of the 
osmologi
al 
onstant is the so-
alled 
oin
iden
e problem.

The essen
e of this problem is that the energy density of dark energy is 
omparable with the

energy density of dark matter at the present epo
h. The radiation energy density, the matter

energy density and dark energy depend on the s
ale fa
tor by the di�erent laws, whi
h are

des
ribed in Eq. (2.101), Eq. (2.102) and Eq. (2.105), respe
tively: for the radiation it is

ρr ∼ a−4
, for the baryons and 
old dark matter it is ρm ∼ a−3

and for the 
osmologi
al


onstant it is ρΛ=
onst. The pre
ise 
osmologi
al observations show that the ratio between

the density of the matter and the density of dark energy today is of the order of unity,

ρm/ρΛ ≃ 1/3. This fa
t is a mystery, sin
e the standard ΛCDM model predi
ts that this

ratio must be time-dependent, ρm/ρΛ ∝ a−3
.

Sin
e the va
uum energy does not 
hange over time, it was insigni�
ant during both at the

radiation domination epo
h and at the matter domination epo
h. While the va
uum energy

has be
ome the dominant 
omponent only re
ently, at a ≈ 0.76 (or z ≈ 0.31), a

ording to

Plan
k 2015 data, Ref. (Ade et al. (2016)), and it will be the only 
omponent in the universe

in the future, see Fig. (6.2). The energy density of the matter and the energy density of

4

In a

ordan
e with our 
onvention, ~ = 1.

102



Figure 6.2: The evolution of the radiation energy density, the matter energy density and the


osmologi
al 
onstant Λ. (Figure from Ref. (Samushia (2009)))

the 
osmologi
al 
onstant are 
omparable for a very short period of time, see Fig. (6.2),

therefore, the following question arises: "Why did it happen that we live in this short (by

the 
osmologi
al s
ale) period of time?" After all, this fa
t is in the 
ontradi
tion with the

Coperni
an's prin
iple.

The so-
alled anthropi
 prin
iple, proposed by Steven Weinberg in 1987, Ref. (Weinberg

(1987)), 
an explain the 
osmologi
al 
onstant problems and answer the questions: "Why

is the energy density of the 
osmologi
al 
onstant so small?" and "Why has the a

elerated

expansion of the universe started re
ently?" A

ording to the anthropi
 prin
iple, the energy

density of the 
osmologi
al 
onstant, observed today, ρΛ, must be suitable for the evolution

of the intelligent beings in the universe, Ref. (Barrow & Tipler (1988)).

6.3 S
alar Field Models

There are the numerous alternative models for the ΛCDM model, Refs. (Copeland et al.

(2006b), Yoo & Watanabe (2012)). Despite the diversity of these models, the ΛCDM model

still remains the basi
 model, the model of the 
omparison with other dark energy models.

The main alternative to the ΛCDM model are the dynami
al s
alar �eld models

5

or, in

other words, the so-
alled φCDM models, Refs. (Wetteri
h (1988b), Ratra & Peebles (1988b),

Peebles & Ratra (2003)). In these models, dark energy is represented in the form of a slowly

5

A s
alar �eld is a �eld that is 
hara
terized by a s
alar value, whi
h is de�ned at any point in this �eld.

This �eld is an invariant under the Lorentz transformations.
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varying 
osmologi
al uniform s
alar �eld, φ. The self-intera
ting spatially uniform s
alar

�eld is minimally related to the gravity on the 
osmologi
al s
ales. The φCDM models do

not have the �ne tuning problem of the ΛCDM model. These models have a more natural

explanation for the observable low-energy s
ale of dark energy. If in the ΛCDM model the

EoS parameter is 
onstant, w = −1, then in the φCDM model the EoS parameter will be

time-dependent. When the energy density of the s
alar �eld begins to dominate over the

energy density of both the radiation and the matter, the universe begins the stage of the

a

elerated expansion.

At the early epo
hs of the universe evolution (at large redshifts), the dynami
al s
alar

�eld is di�erent from the behavior of the ΛCDM model. At the later epo
h of the universe

evolution (at small redshifts), the dynami
al s
alar �eld is almost indistinguishable from the

behavior of the 
osmologi
al 
onstant Λ.

The φCDM models are divided into two 
lasses: the quintessen
e models, Ref. (Zlatev

et al. (1999)), and the phantom models, Refs. (Caldwell (2002), Caldwell et al. (2003)). These

models di�er from ea
h other:

• By the value of the EoS parameter

In the quintessen
e �elds −1/3 < wφ < −1 and in the phantom �elds wφ < −1.

• In the sign of the kineti
 
omponent in Lagrangian

The positive sign for the quintessen
e �elds and the negative sign for the phantom

�elds.

• In the dynami
s of the s
alar �elds

The quintessen
e �eld rolls down to the minimum of its potential, the phantom �eld

rolls to the maximum of its potential.

• In the dynami
s of dark energy

In the quintessen
e �elds, dark energy almost do not 
hange over time and in the

phantom �elds it in
rease over time.

• In the fore
asting the future of the universe

In the quintessen
e models, either the eternal expansion of the universe, or a repeated


ollapse is predi
ted depending on the spatial 
urvature of the universe. In the phantom

models, the destru
tion of any gravitationally-related stru
tures in the universe is

predi
ted. Depending on the asymptoti
 behavior of the Hubble parameter, H(t), the

future s
enarios of the universe are divided into: a big rip, for whi
h H(t) → ∞ for
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�nite time, t = 
onst; a little rip for whi
h H(t) → ∞ for in�nite time, t → ∞ and a

pseudo rip, for whi
h H(t) → 
onst for in�nite time, t→ ∞.

The full a
tion for the s
alar �eld is de�ned as:

S =

∫

d4x
√−g

[

−
M2

pl

16π
R + Lφ

]

+ SM, (6.12)

where Lφ is the Lagrangian density of the s
alar �eld, the shape of whi
h depends on the

type of the 
hosen model.

6.3.1 Quintessen
e S
alar Field

The quintessen
e s
alar �eld is des
ribed by the Lagrangian density:

Lφ =
1

2
gµν∂µφ∂νφ− V (φ). (6.13)

There are many di�erent quintessen
e potentials, but so far no preferen
e has been given to

any of them. The in
omplete list of the quintessen
e potentials

6

are presented in Table

7

6.1.

Name Form Referen
e

Ratra-Peebles V (φ) = V0M
2
plφ

−α
; α = const > 0 Ref. Ratra & Pee-

bles (1988b)

Ferreira-Joy
e V (φ) = V0 exp(−λφ/Mpl); λ = const > 0 Ref. Ferreira &

Joy
e (1998)

Zlatev-Wang-

Steinhardt

V (φ) = V0(exp(Mpl/φ)− 1) Ref. Zlatev et al.

(1999)

Sugra V (φ) = V0φ
−χ exp(γφ2/M2

pl); χ, γ = const >
0

Brax & Martin

(1999)

Sahni-Wang V (φ) = V0(cosh(ςφ) − 1)g; ς = const > 0,
g = const < 1/2

Ref. Sahni & Wang

(2000)

Barreiro-

Copeland-Nunes

V (φ) = V0(exp(νφ) + exp(υφ)); ν, υ =
const ≥ 0

Barreiro et al.

(2000)

Albre
ht-Skordis V (φ) = V0((φ−B)2 +A) exp(−µφ); A, B =
const ≥ 0, µ = const > 0

Albre
ht & Skordis

(2000)

Ur�ena-L�opez-

Matos

V (φ) = V0 sinh
m(ξMplφ); ξ = const > 0,

m = const < 0
Urena-Lopez &

Matos (2000)

Inverse exponent

potential

V (φ) = V0 exp(Mpl/φ) Caldwell & Linder

(2005)

Chang-S
herrer V (φ) = V0(1 + exp(−τφ)); τ = const > 0 Chang & S
herrer

(2016)

Table 6.1: The list of the dark energy quintessen
e potentials.
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The energy-momentum tensor of the quintessen
e s
alar �eld, Tµν , is de�ned as:

Tµν = 2
∂Lφ
∂gµν

− gµν∂Lφ. (6.14)

Substituting Eq. (6.13) into Eq. (6.14), we get:

Tµν = ∂µφ∂νφ− gµν

[

1

2
gαβ∂αφ∂βφ− V (φ)

]

. (6.15)

The 
omponents of the quintessen
e s
alar �eld energy-momentum tensor, Tµν , is de�ned as:

T00 ≡ ρφ =
1

2
φ̇2 + V (φ), (6.16)

T0i = 0, (6.17)

Tij = 0 (i 6= j), (6.18)

Tii ≡ pφ =
1

2
φ̇2 − V (φ), (6.19)

where ρφ and pφ are the energy density and the pressure of the s
alar �eld under the as-

sumption that this s
alar �eld is des
ribed by the ideal barotropi
 �uid model

8

.

The 
omponents of the s
alar �eld energy-momentum tensor 
an be represented in the

matrix form, as in Eq. (2.47). The EoS parameter for the quintessen
e s
alar �eld is de�ned

as:

wφ ≡ pφ
ρφ

=
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
. (6.20)

The Klein-Gordon equation of motion for the quintessen
e s
alar �eld 
an be obtained by

varying the a
tion in Eq. (6.12), where the Lagrangian density is de�ned by Eq. (6.13):

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= 0, (6.21)

here the overdots denote the derivatives with respe
t to physi
al time, t.

The in�uen
e of the s
alar �eld, φ, on the dynami
s of the universe is re�e
ted in the

6

The Ferreira-Joy
e potential was investigated earlier by Lu

hin and Matarrese, Ref. (Lu

hin & Matar-

rese (1985)), as well as by Ratra and Peebles, Ref. (Ratra & Peebles (1988a)), although the 
omplete detailed

des
ription of the model was given by Ferreira and Joy
e, Ref. (Ferreira & Joy
e (1998)).

7

In Table 6.1 and in Table 6.2, the model parameter, V0, has a dimension of GeV4
. This model parameter

is related to the dark energy density parameter at the present epo
h.

8

The barotropi
 �uid is a �uid whose density depends only on the pressure.

106



�rst Friedmann's equation:

H = H0(Ωr0a
−4 + Ωm0a

−3 + Ωφ(a))
1/2, (6.22)

where Ωφ(a) is an energy density parameter of the s
alar �eld depending on time. In many

ways, the evolution of the fun
tion Ωφ(a) is determined by the form of the s
alar �eld

potential, V (φ).

Depending on the shape of the potentials, the quintessen
e models are subdivided into

the thawing models and the freezing models, Ref. (Caldwell & Linder (2005)). On the wφ −
dwφ/d ln a phase spa
e, the thawing and the freezing s
alar models 
an be lo
ated at the

stri
tly designated regions for ea
h of them, see Fig. (6.3) (left panel). At the early stages of

Figure 6.3: Left panel: the o

upation of the thawing and the freezing s
alar �elds in the

wφ − dwφ/d ln a phase spa
e. (Figure from Ref. (Caldwell & Linder (2005))) Right panel:

the regimes of the qui
k rolling down and the slow rolling down for the freezing s
alar �eld,

φ, to the minimum of its potential.

the evolution of the universe, the thawing s
alar �eld was too suppressed by the retarding

e�e
t of the Hubble expansion, whi
h represented by the term, 3Hφ̇, in Eq. (6.21)). Thereby,

the s
alar �eld evolution happened mu
h slower 
ompared to the Hubble expansion rate. The

result of the overwhelming e�e
t of the Hubble expansion on the thawing s
alar �eld is the

freezing of this s
alar �eld.

This �eld manifests itself as the va
uum energy with the EoS parameter wφ = −1. The

Hubble expansion rate, H(a), is a de
reasing fun
tion over time. After the Hubble expansion

rate rea
hes the value of H <
√

∂2V (φ)/∂t2, the s
alar �eld begins to roll to the minimum

of its potential. This leads to the fa
t that the value of the EoS parameter for the s
alar

�eld, wφ, in
reases over time and be
omes wφ > −1.
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The s
alar �eld in the freezing models is always suppressed (it is damped), i.e., H >
√

∂2V (φ)/∂t2. There are the fast and slow rolling regimes for the freezing models. The

s
alar �eld equation of motion, Eq. (6.21), des
ribes: the fast rolling regime (with 3Hφ̇ <

∂V (φ)/∂t), therefore, φ̈≫ V (φ)), or the slow rolling regime (for 3Hφ̇ < ∂V (φ)/∂t) depend-

ing on the ratio of the term 3Hφ̇ and the term ∂V (φ)/∂t. In the slow-roll regime, the

s
alar �eld tends to minimize its potential and almost does not 
hange over time, φ̈ ≪ V (φ),

therefore, from Eq. (6.20), it follows that wφ ≈ −1, see Fig. (6.3) (right panel).

The freezing s
alar �eld models have the so-
alled tra
king solutions. Energy density for

the freezing s
alar �eld models is almost 
onstant over time. The 
ontribution of this energy

density to the total energy density of the universe, both at the radiation domination epo
h

and at the matter domination epo
h, is almost negligible. Therefore, the s
alar �eld energy

density remains subdominant at these epo
hs. It tra
ks �rst the radiation energy density

and then the matter energy density. The radiation energy density and the matter energy

density de
rease over time due to the universe expansion. The s
alar �eld energy density

in
reases over time. Eventually, it be
omes the dominant 
omponent and begins to behave

as a 
omponent with the negative e�e
tive pressure. That is manifested in the a

elerated

expansion of the universe at the later stages of the universe evolution.

6.3.2 Phantom S
alar Field

The Lagrangian density for the phantom s
alar �elds is des
ribed by the equation:

Lφ = −1

2
gµν∂µφ∂νφ− V (φ). (6.23)

The in
omplete list of the phantom potentials is given in Table 6.2.

The energy-momentum tensor for the phantom s
alar �eld, Tµν , is de�ned as:

Tµν = −2
∂Lφ
∂gµν

− gµν∂Lφ. (6.24)

Substituting Eq. (6.23) into Eq. (6.24), we get:

Tµν = −∂µφ∂νφ− gµν

[

1

2
gαβ∂αφ∂βφ− V (φ)

]

. (6.25)

The 
omponents of the energy-momentum tensor for the phantom s
alar �eld, Tµν , are
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Name Form Referen
e

Fifth power V (φ) = V0φ
5

S
herrer & Sen

(2008a)

Inverse square power V (φ) = V0φ
−2

S
herrer & Sen

(2008a)

Exponent V (φ) = V0 exp(βφ), β = const > 0 S
herrer & Sen

(2008a)

Quadrati
 V (φ) = V0φ
2

Dutta & S
herrer

(2009)

Gaussian V (φ) = V0(1− exp(φ2/σ2)),σ = const Dutta & S
herrer

(2009)

pseudo-Nambu-

Goldstone boson (pNGb)

V (φ) = V0(1−cos(φ/κ)), κ = const > 0 Frieman et al.

(1995)

Inverse hyperboli
 
osine V (φ) = V0(cosh(ψφ))
−1
, ψ = const > 0 Dutta & S
herrer

(2009)

Table 6.2: The list of the dark energy phantom potentials.

represented as:

T00 ≡ ρφ = −1

2
φ̇2 + V (φ), (6.26)

T0i = 0, (6.27)

Tij = 0 (i 6= j), (6.28)

Tii ≡ pφ = −1

2
φ̇2 − V (φ). (6.29)

The EoS parameter for the phantom s
alar �eld is de�ned as:

wφ ≡
pφ
ρφ

=
−φ̇2/2− V (φ)

−φ̇2/2 + V (φ)
. (6.30)

The Klein-Gordon equation of motion for the phantom s
alar �eld:

φ̈+ 3Hφ̇− ∂V (φ)

∂φ
= 0. (6.31)

6.4 Coupled Models of Matter and Dark Energy

As it was mentioned earlier, one of the unresolved problems of modern 
osmology is the

problem of 
oin
iden
e in the standard ΛCDM model. Due to the fa
t that the dark energy

density and the matter energy density in the modern universe have the same order, it 
an

be assumed that the matter and dark energy somehow intera
t with ea
h other.
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In the 
oupled models between the matter and dark energy, the transformation of dark

energy and the energy of the matter into ea
h other is 
onsidered. The intera
tion between

the matter and dark energy is des
ribed by the following modi�ed 
ontinuity equations for

the matter and dark energy, respe
tively, as:

ρ̇m + 3Hρm = δcouple, (6.32)

ρ̇φ + 3H(ρφ + pφ) = −δcouple, (6.33)

where ρm is the matter energy density; ρφ and pφ are the energy density and the pressure

of dark energy represented as the s
alar �eld; δcouple is the 
oupling 
oe�
ient between the

matter and dark energy.

In the intera
tion models between the matter and dark energy, the following forms of the


oupling 
oe�
ient, δcouple, are used, Refs. (Amendola (2000), Zimdahl & Pavon (2001)):

δcouple = nQρmφ̇, (6.34)

δcouple = αH(ρm + ρφ), (6.35)

where n =
√
8πG; α and Q are the dimensionless 
onstants. A

ording to the Plan
k 2015

data, Ref. (Ade et al. (2016)), Q < 0.1.

The 
oupling models of the matter and dark energy are divided into two types.

6.4.1 Coupling First Type

The 
oupled models of the matter and dark energy of the �rst type are 
hara
terized by the

exponential potential and the linear intera
tion determined by the intera
tion 
oe�
ient,

whi
h is presented in Eq. (6.34), Ref. (Amendola (2000)).

The 
oupled quintessen
e s
alar �eld equation is:

φ̈+ 3Hφ̇− ∂V (φ)

∂φ
= −nQρmφ̇, (6.36)

where V (φ) = V0e
−nλφ

is a s
alar �eld potential and λ is a model parameter.

The 
oupled 
ontinuity equation for dark energy:

ρ̇φ + 3H(ρφ + pφ) = −nQρmφ̇. (6.37)
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The matter energy density evolves as:

ρ̇m + 3Hρm = nQρm ⇒ ρm = ρm0a
−3enQφ. (6.38)

6.4.2 Coupling Se
ond Type

For the se
ond type of the 
oupled models, the potential and the dynami
s of the intera
tion

between the matter and dark energy are 
onstru
ted under the ful�llment of the requirement

ρm/ρDE=
onst, Ref. (Zimdahl & Pavon (2001)).

The 
oupled equation, Eq. (6.33), is equivalent to:

φ̇
[

φ̈+ 3Hφ̇− ∂V (φ)

∂φ

]

= −δcouple. (6.39)

The 
oupling 
oe�
ient is de�ned as:

δcouple = −3HΠm = 3HΠφ, (6.40)

Πm = −Πφ =
ρmρφ
ρ

(γφ − 1), (6.41)

where γφ =
pφ+ρφ
ρφ

= φ̇2

ρφ
and ρ = ρm + ρφ.

The 
ontinuity equations for the matter and dark energy have the form:

ρ̇m + 3H(ρm +Πm) = 0, (6.42)

ρ̇φ + 3H(ρφ + pφ +Πφ) = 0. (6.43)

The form of the s
alar �eld potential is 
onstru
ted as follows:

V (φ) =
1

6πG

(

1− γφ
2

) 1 + r

(γφ + r)2
1

t2
⇒ ∂V (φ)

∂φ
= −λV (φ), (6.44)

where r ≡ ρm
ρφ

=
onst and λ =
√

24πG
γφ(1+r)

.

From Eq. (6.44) it follows that the potential has the exponential form:

V (φ) = V0e
−λ(φ−φ0). (6.45)

The signi�
ant drawba
k of this model is the absen
e of the 
onvin
ing explanation for the

onset of the intera
tion of dark energy and the matter at the transition epo
h from the
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de
elerated to a

elerated expansion of the universe.

6.5 Chevallier-Polarsky-Linder Parametrization

The EoS parameters in the time-dependent models of dark energy are modeled as: p = w(a)ρ.

This type of parametrization is 
alled the wCDM parametrization

9

. This parametrization

has no physi
al motivation. The appli
ation of the wCDM parametrization is typi
ally used

as an ansatz in data analysis for the quantifying of the time-dependent dark energy models.

The parametrization of the EoS parameter, w(a), is used to distinguish the di�erent dark

energy models. In parti
ular, this approa
h 
an be used to distinguish the ΛCDM model

from the other dark energy models at the present epo
h.

The time-dependent EoS parameter in the dark energy models is often 
hara
terized by

the Chevallier-Polarsky-Linder (CPL) w0−wa parametrization, Refs. (Chevallier & Polarski

(2001), Linder (2003)):

w(a) = w0 + wa(1− a), (6.46)

here w0 = w(a = 1) and wa = (dw/dz)|z=1 = −a−2(dw/da)|a=1/2. Although this parametriza-

tion is very simple, it is �exible enough to a

urately des
ribe the EoS parameters in the most

dark energy models. The CPL parametrization 
annot des
ribe the arbitrary dark energy

models with good a

ura
y (up to the several per
ent) in a wide redshift range, Ref. (Linder

(2003)).

The normalized Hubble parameter, expressed through the CPL parametrization of the

EoS parameter, w(a), 
an be written as:

E(a) = (Ωr0a
−4 + Ωm0a

−3 + ΩΛa
−3(1+w0+wa)e−3wa(1−a))1/2. (6.47)

9

Dark energy is sometimes 
hara
terized only by the EoS parameter and the 
orresponding 
osmologi
al

models are 
alled the wCDM models, Ref. (Barger et al. (2007)).
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Chapter 7

Dynami
s and Growth Rate in the

Ratra-Peebles φCDM Model

This 
hapter is based on the results of the resear
h presented in the papers, Ref. (Avsajan-

ishvili et al. (2014)) and Ref. (Avsajanishvili et al. (2017)).

In this 
hapter, the Ratra-Peebles inverse-power-law potential, V (φ) ∝ 1/φα, is inves-

tigated in detail. This potential was �rst 
onsidered by Jim Peebles and Bharat Ratra in

1988, Refs. (Ratra & Peebles (1988b), Ratra & Peebles (1988a)). The s
alar �eld model

with the Ratra-Peebles potential is the simplest quintessen
e s
alar �eld φCDM model of

the freezing type. This model was proposed to solve the �ne-tuning problem in the standard

ΛCDM model.

7.1 Basi
 Equations

The Ratra-Peebles potential has the form:

V =
κ

2
M2

plφ
−α, (7.1)

here α is a positive model parameter. The value of this parameter a�e
ts the steepness of

the potential, thereby determining the shape of the potential. In our studies, we 
onsider the

values of the α parameter in the range of 0 < α ≤ 0.7. This range 
orresponds to modern


osmologi
al observations, Ref. (Samushia (2009)). For the value of the model parameter,

α=0, the φCDM Ratre-Peebles model is redu
ed to the ΛCDM model. The positive κ

parameter

1

is de�ned by the parameter α.

1

The 
al
ulation of the κ parameter is presented below.
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The parameter κ relates to the mass s
ale of the parti
les, Mφ, as:

Mφ ∼
(κM2

pl

2

)
1

α+4
. (7.2)

We 
onsider a �at and isotropi
 universe, whi
h is des
ribed by the spa
etime FLRW metri
:

ds2 = dt2 − a(t)2dx2. (7.3)

The Klein-Gordon equation of motion in the Ratra-Peebles model has the form:

φ̈+ 3Hφ̇− 1

2
καM2

plφ
−(α+1) = 0. (7.4)

The energy density, the pressure and the EoS parameter in the Ratra-Peebles model are

de�ned, respe
tively, as:

ρφ =
M2

pl

32π

(

φ̇2 + κM2
plφ

−α
)

, (7.5)

pφ =
M2

pl

32π

(

φ̇2 − κM2
plφ

−α
)

, (7.6)

wφ =
φ̇2 − κM2

plφ
−α

φ̇2 + κM2
plφ

−α
. (7.7)

From Eq. (7.7) it follows that the requirement for the ful�llment of the 
ondition, w0 ≃ −1,

the following restri
tion imposes, φ̇2/2 ≪ V (φ). The Ratra-Peebles φCDM s
alar �eld model

has the tra
ker solutions. This means that the s
alar �eld energy density, ρφ, at the early

epo
hs of the universe evolution, �rst tra
ks the radiation energy density and then the matter

energy density, while remaining a subdominant. Only in late times the energy density of the

s
alar �eld, ρφ, be
omes dominant.

The value of the EoS parameter for the s
alar �eld Ratra-Peebles model at the radiation

domination epo
h or at the matter domination epo
h 
an be approximately de�ned as,

Ref. (Zlatev et al. (1999)):

wφ ≈
α
2
wbac − 1

1 + α
2

, (7.8)

where wbac is the ba
kground EoS parameter at the radiation domination epo
h or at the

matter domination epo
h. For the radiation domination epo
h wbac = 1/3 and for the matter

domination epo
h wbac = 0. The approximation, whi
h is presented in Eq. (7.8), is true for

ρbac ≫ ρφ, where ρbac is a value of the ba
kground energy density.
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The s
alar �eld model with the Ratra-Peebles potential has both the tra
ker solutions and

the attra
tor solutions

2

. This means that the evolution of the s
alar �eld energy density, ρφ,

in the Ratra-Peebles model is insensitive to the initial 
onditions, (φin, φ̇in), and the solutions

for the wide range of the initial 
onditions 
onverge into the same 
ommon solution at the

present epo
h.

The energy density parameter and the �rst Friedmann's equation for the Ratra-Peebles

potential are de�ned, respe
tively, as:

Ωφ(a) =
1

12H2
0

(

φ̇2 + κM2
plφ

−α
)

, (7.9)

E(a) =
(

Ωr0a
−4 + Ωm0a

−3 +
1

12H2
0

(

φ̇2 + κM2
plφ

−α
))1/2

. (7.10)

7.1.1 Cal
ulation of the Model Parameter κ and the Initial Condi-

tions

The 
al
ulations of the κ parameter and the initial 
onditions are based on: Ref. (Farooq

(2013), Se
. 3.6.3,) and Ref. (Avsajanishvili et al. (2014), Appendix À).

In the s
alar �eld equation, Eq. (7.4), we represent the s
ale fa
tor, a(t), and the s
alar

�eld, φ(t), in the form of the power law:

a(t) = a⋆

( t

t⋆

)n

, φ(t) = φ⋆

( t

t⋆

)p

, (7.11)

here a⋆ ≡ a(t⋆) and φ⋆ ≡ φ(t⋆) are the values of the s
ale fa
tor and the s
alar �eld at time,

t = t⋆, respe
tively. A parameter, p, is asso
iated with the parameter, α, by the following

expression, p = 2/(2 + α).

As a result:

φα+2
⋆ =

(α + 2)2

4(6n+ 3nα− α)
καM2

plt
2
⋆. (7.12)

Using the equations, Eq. (7.11), Eq. (7.12), Eq. (7.5) and Eq. (7.10), we �nd:

ρ =
3n

8π

(Mpl

t⋆

)2 φ2
⋆

α(α + 2)

( t

t⋆

)
−2α
α+2

, (7.13)

(n

t

)2

=
8π

3M2
pl

ρ, (7.14)

where ρ ≡ ρφ is the dark energy density that dominates in the universe at the moments of

2

An attra
tor is a set of the numeri
al values toward whi
h a system tends to evolve for a wide variety

of the starting 
onditions of this system.
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time, t < t⋆. Assuming ρ(t) = ρ⋆(t/t⋆)
β
, we get β = −2α/(α + 2). On the other hand,


onsidering that the dominant dark energy 
omponent is represented as ρ⋆, at the moment

of time a = a⋆:

ρ = ρ⋆

(a⋆
a

)
2
n
, (7.15)

where n = 1/2 and n = 2/3 are the values of the parameter n for the radiation domination

epo
h and the matter domination epo
h, respe
tively.

In order to get an expression for, φ2
⋆, we �nd 1/t2 from Eq. (7.14). Substituting Eq. (7.15)

into Eq. (7.13), assuming a = a⋆ and ρ = ρ⋆. Comparing the obtained result with Eq. (7.12),

we �nd:

κ =
32π

3nM4
pl

(6n+ 3nα− α

α+ 2

)

[nα(α+ 2)]
α
2 ρ⋆. (7.16)

Plugging Eq. (7.16) into Eq. (7.12) and using Eq. (7.14), we get:

φ⋆ = [nα(α + 2)]
1
2 , (7.17)

φ = [nα(α + 2)]
1
2

( a

a⋆

)
2

n(α+2)

. (7.18)

Substituting the value of n = 1/2 into Eq. (7.18) and assuming a⋆ = a0, we 
an obtain

the equations for the initial 
onditions at the radiation domination epo
h, Eq. (7.22) and

Eq. (7.23).

Plugging Eq. (7.18) into Eq. (6.21):

κ =
4n

M2
plt

2
⋆

(6n+ 3nα− α

α + 2

)

[nα(α + 2)]α/2. (7.19)

Sin
e Eq. (7.16) must be true for an arbitrary moment of time, t⋆, we assume t⋆ =M−1
pl .

As a result, for the values n = 1/2 and n = 2/3, we get:

κ(n = 1/2) =
(α + 6

α + 2

)[1

2
α(α+ 2)

]α/2

, (7.20)

κ(n = 2/3) =
8

3

(α + 4

α + 2

)[2

3
α(α+ 2)

]α/2

. (7.21)

7.1.2 Initial Conditions

We numeri
ally integrated the system of the equations, Eq. (7.4) and Eq. (7.10). The initial


onditions were established at the radiation domination epo
h, for the moment ain = 5 ·10−5
.

The 
al
ulations were 
arried out to the present epo
h, a0 = 1. Despite the fa
t that
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the Ratra-Peebles potential has an attra
tor solution, for the best numeri
al 
onvergen
e

we 
hose a spe
i�
 solution at the radiation dominated epo
h with the following initial


onditions:

φin =

[

1

2
α(α+ 2)

]1/2

t
4

α+2

in , (7.22)

φ̇in =
( 8α

α + 2

)1/2

t
2−α
2+α

in . (7.23)

The value of the κ parameter was obtained from Eq. (7.20). In our 
al
ulations, we applied

the 
urrent values of the matter energy density parameter and the dark energy density pa-

rameter, the redu
ed Hubble parameter, respe
tively: Ωm0 = 0.315, Ωφ0 = 0.685, h = 0.673.

These results were obtained by the Plan
k 2013 
ollaboration, Ref. (Ade et al. (2014
)).

7.2 Dynami
s and Energy in the Ratra-Peebles φCDM

Model

We analyzed the dependen
e of the s
alar �eld, φ, and its time derivative, φ̇, depending

on the model parameter α. The results of this analysis are presented in Fig. (7.1) and in

Fig. (7.2). In the φCDM model, a larger value of the α parameter indu
es a stronger time

Figure 7.1: Left panel: dependen
e of the s
alar �eld, φ(a), on the value of the parameter

α. Right panel: dependen
e of the time derivative of the s
alar �eld, φ̇(a), on the value of

the parameter α.

dependen
e of the EoS parameter w and its s
ale fa
tor derivatives, dw/da. As expe
ted, in

the ΛCDM model the value of w is equal to minus one and the values of φ, φ̇ and dw/da are

equal to zero.
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Figure 7.2: Left panel: dependen
e of the EoS parameter, w(a), on the value of the parameter
α. Right panel: dependen
e of the s
ale fa
tor derivative of the EoS parameter, w′(a), on
the value of the parameter α.

We applied the CPL parametrization to the e�e
tive EoS parameter, w(a), in the Ratra-

Peebles φCDM model, Eq. (6.46). This parametrization provides a good approximation in

the s
ale fa
tor range, a ∈ (0.98; 1), see Fig. (7.3) (left panel). We investigated the evolution

Figure 7.3: Left panel: the EoS parameter, w(a), for the di�erent values of the parameter α
along with the predi
tions 
omputed from the CPL parametrization with the 
orresponding

best �t values for w0 and wa. Right panel: the normalized Hubble expansion rate, E(a), for
the di�erent values of the parameter α.

of the normalized Hubble parameter, E(a), whi
h determines the expansion rate of the

universe for the di�erent values of the α parameter in the φCDM model. The results of

this study are presented in Fig.(7.3) (right panel). With an in
rease in the value of the α

parameter, the universe is expanding faster. The slowest expansion rate 
orresponds to the

ΛCDM model.

The relationship between the dynami
s and the energy 
omponents in the universe in

118



Figure 7.4: Left panel: the se
ond derivative of the s
ale fa
tor, ä, for the di�erent values of
the parameter α. Right panel: the matter energy density parameter, Ωm(a), (dashed lines)

and the s
alar �eld density parameter, Ωφ(a), (solid lines) as fun
tions of the s
ale fa
tor for
the di�erent values of the parameter α.

the φCDM model is shown in Fig. (7.4). With the same value of the α parameter, the dy-

nami
 dominan
e of dark energy begins earlier, see Fig. (7.4) (left panel), than the energeti


dominan
e, see Fig. (7.4) (right panel). With an in
rease in the value of the α parameter,

the energeti
 dominan
e of dark energy begins earlier, see Fig. (7.4) (right panel).

7.3 Stru
ture Growth in the Ratra-Peebles φCDMModel

The evolution of the matter density �u
tuations depends on the given 
osmologi
al model

of dark energy. The in�uen
e of dark energy on the large-s
ale stru
ture evolution in the

universe is due to its in�uen
e on the expansion rate of the universe, E(a). In turn, the

expansion rate of the universe a�e
ts the growth of the matter density �u
tuations. We

investigated the evolution of a large-s
ale stru
ture in the expanding universe in the Ratra-

Peebles φCDM model. To 
al
ulate the growth of the matter density �u
tuations, we used

the linear perturbation equation, Eq. (4.31). The evolution of the linear growth rate fun
tion,

D(a) = δ(a)/δ(a0), depending on the α parameter is shown in Fig. (7.5) (left panel). With

an in
rease in the value of the α parameter the linear growth fa
tor, D(a), be
omes more

dependent on time.

As it was dis
ussed earlier, with an in
rease in the value of the α parameter, the Hubble

expansion o

urs faster, see Fig. (7.3) (right panel), while the domination of the s
alar

�eld energy begins earlier, see Fig. (7.4) (right panel). The growth of the matter density

�u
tuations o

urs only during the matter dominated epo
h, Ref. (Frieman et al. (2008)),
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Figure 7.5: Left panel: the linear growth rate, D(a), for the di�erent values of the parameter
α. Right panel: the growth rate, f(a), (solid lines) for the di�erent values of the parameter

α along with the predi
tions Ωγm(a) (dashed lines), 
omputed for the 
orresponding best �t

values of the parameter γ.

therefore, with an in
rease in the value of the α parameter, less time remains for the growth

of the matter density �u
tuations. To a
hieve the same amplitude of the matter density

�u
tuations at present epo
h, δ(a0), in the s
alar �eld Ratra-Peebles φCDM model with a

larger value of the α parameter is required a larger initial amplitude for the matter density

�u
tuations. Thus, the s
alar �eld with the larger value of the α parameter indu
es a larger

amplitudes of the matter �u
tuations at the beginning of their formation and at the all

subsequent moments of their growth until the present epo
h.

7.4 Growth Index in the Ratra-Peebles φCDM Model

We investigated how well the power-law parametrization of the growth rate of the mat-

ter density �u
tuations, f(a), and the fra
tional matter density parameter, Ωm(a), whi
h

is des
ribed in Eq. (4.35), 
an be applied in the Ratra-Peebles φCDM model. Provided

that instead of the e�e
tive growth index, γ(a), we applied the value of the Linder γ-

parametrization, γ, whi
h is de�ned in Eq. (4.37).

The results of these investigations are shown in Fig. (7.5) (right panel). The value of the

Linder γ-parametrization, γ, in the φCDM model depends on the value of the α parameter,

herewith the value of the Linder γ-parametrization, γ, in
reases with an in
rease in the value

of the α parameter. The value of the Linder γ-parametrization, γ, is slightly higher in the

φCDM model than the value of the Linder γ-parametrization, γ, in the ΛCDM model, for

whi
h γ ≈ 0.55.
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The growth rate of the matter density �u
tuations o

urs slower with an in
rease in the

value of the parameter α, see Fig. (7.5) (right panel). This is a result of the fa
t that the

Hubble expansion and the growth rate of the matter density �u
tuations are interrelated and

oppositely dire
ted pro
esses. The faster Hubble expansion, whi
h 
orresponds to a larger

value of the α parameter, see Fig. (7.3) (right panel), leads to a greater suppression of the

growth rate of the matter density �u
tuations.

We explored the appli
ability of the Linder γ-parametrization for large redshifts. We

found, that this parametrization 
an be applied in the range of redshifts, z ∈ (0; 5) and it is

not appli
able for the larger values of redshift, see Fig. (7.6) (left panel).

Figure 7.6: Left panel: the growth rate, f(a), for the di�erent values of the parameter α
(solid lines) along with the predi
tions Ωγm (dashed lines), 
omputed for the 
orresponding

best �t values of the γ parameter in the range of redshifts, z ∈ (0; 10). Right panel: the γ(a)
fun
tion for the di�erent values of the parameter α in the range of redshifts, z ∈ (0; 10).

We studied the behavior of the e�e
tive growth index fun
tion, γ(a), was presented in

Eq. (4.36), at large redshifts, see Fig. (7.6) (right panel). We found that in a 
ertain range of

s
alar fa
tor values, the fun
tion of the e�e
tive growth index, γ(a), is almost independent

of the value of the s
alar fa
tor. The weak dependen
e of the e�e
tive growth index fun
tion

on the value of the s
alar fa
tor o

urs in the range of the values of the s
alar fa
tor: in the

ΛCDM model, a ∈ (0.25; 1) (or z ∈ (0; 3)); in the Ratra-Peebles φCDM model, a ∈ (0.18; 1)

(or z ∈ (0; 5)). Su
hwise, with an de
rease in the value of the parameter α, the weak

dependen
e of the e�e
tive growth index fun
tion 
eases later in the φCDM model. Thus, in

the ΛCDM model, the appli
ability of the Linder γ-parametrization is 
ompleted later than

in the φCDM model. Comparing Fig. (7.6) (left panel) and Fig. (7.6) (right panel), we see

that the 
essation of the Linder γ-parametrization for the di�erent values of the parameter α


oin
ides with the termination of the weak dependen
e of the e�e
tive growth index fun
tion,
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γ(a), on the s
alar fa
tor. Thus, only in the range of the values of the s
alar fa
tor at whi
h

the e�e
tive growth index fun
tion almost does not depend on the value of the s
alar fa
tor,

the Linder γ-parametrization 
an be applied.

7.5 Con
lusion

We s
rupulously investigated the various properties of the Ratra-Peebles φCDM model in


omparison with the ΛCDM model. In parti
ular, we studied the dynami
s of the Ratra-

Peebles φCDM model with dependen
e on the model parameter α. Sin
e the larger value of

the parameter α in
reases, the steepness of the potential and, thereby, it indu
es the stronger

time dependen
e of the s
alar �eld, φ, its time derivatives φ̇, as well as the EoS parameter,

w, and its s
ale fa
tor derivatives, dw/da.

We showed that the Ratra-Peebles φCDM model di�ers from ΛCDM model in number

of 
hara
teristi
s. These 
hara
teristi
s are generi
 to a 
lass of the freezing quintessen
e

φCDM models, and these 
hara
teristi
s do not depend on the value of the model parameter

α:

• In the φCDM models, the expansion rate of the universe, E(a), is always greater than

the expansion rate of the universe in the ΛCDM model.

• The moment of dark energy domination in the φCDM models starts earlier than in the

ΛCDM model (provided that other 
osmologi
al model parameters are �xed).

• The Ratra-Peebles φCDM model and the ΛCDM model di�er in their predi
tions for

the growth rate of the matter density �u
tuations in the universe: the s
alar �eld model

predi
ts a slower growth rate of the matter density �u
tuations than the ΛCDM model.

• We studied the appli
ability of the Linder γ- parametrization in the Ratra-Peebles

φCDM model. We found that this parametrization works well in this model. The

value of the growth index in the Linder γ-parametrization in the Ratra-Peebles φCDM

model in
reases with an in
rease in the value of the model parameter α. The value of

the growth index in the Linder γ-parametrization in the φCDM model is slightly larger

than in the ΛCDM model.

• We de�ned the boundaries of appli
ability in the Linder γ-parametrization in the

Ratra-Peebles φCDMmodel, z ∈ (0; 5). The appli
ability of the Linder γ-parametrization


eases later in the ΛCDM model than in the φCDM model.
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Chapter 8

Constraints on the Model Parameters in

the Ratra-Peebles Model

8.1 Constraints on the Model Parameters in the Ratra-

Peebles Model from the Growth Rate Data

We 
arried out the 
onstraints on the α and Ωm parameters in the Ratra-Peebles φCDM

model using a 
ompilation of the growth rate observations obtained from, Ref. (Gupta et al.

(2012)). These data are presented in Table 8.1:

fobs z σ

0.51 0.15 0.11

0.60 0.22 0.10

0.654 0.32 0.18

0.700 0.35 0.18

0.700 0.41 0.07

0.75 0.55 0.18

0.730 0.60 0.07

0.910 0.77 0.36

0.700 0.78 0.08

0.90 1.40 0.24

1.460 3.00 0.29

Table 8.1: Growth rate data, fobs; redshift z; 1σ un
ertainty of the growth rate data.

To get the theoreti
al values of the growth rate, fth, we numeri
ally solved the linear

perturbation equation, Eq. (4.31), for a series values of α and Ωm parameters. After that we
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al
ulated the fun
tion χ2(α,Ωobs) as:

χ2(α,Ωobs) =
[fobs − fth(α,Ωm)]

2

σ2
, (8.1)

here σ is the standard deviation of the growth rate data. We 
al
ulated the likelihood

fun
tion, Lf(α,Ωm), assuming that it obeys the Gaussian distribution:

Lf(α,Ωm) ∝ exp[−χ2(α,Ωm)/2]. (8.2)

The results of these 
al
ulations are presented in Fig. (8.1). The 1σ and 2σ 
on�den
e level

Ωm

α
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Figure 8.1: 1σ and 2σ 
on�den
e level 
ontours on the parameters Ωm and α in the φCDM
model. This 
onstraints are obtained from the growth rate data, Ref. (Gupta et al. (2012)).


ontours in the α - Ωm phase spa
e are strongly degenerated with respe
t to the 
onstraint

on the α parameter. Thus, the observations on the growth rate alone 
annot simultaneously

restri
t both parameters, α and Ωm, in the Ratra-Peebles φCDM model. However, we found

the 
onstraint on the Ωm parameter in the ΛCDM model and in the Ratra-Peebles φCDM

model, using only the growth rate observations. If we �x the ordinate with α = 0, see

Fig. (8.1), whi
h 
orresponds to the spatial �at ΛCDM model, we will obtain the best �t

value Ωm = 0.278± 0.03. This value is within of the 1σ 
on�den
e level of the Plan
k 2013

data, Ref. (Ade et al. (2014
)). In the ΛCDM model, the values of 0.18 ≤ Ωm ≤ 0.36 are
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ontained at the 2σ 
on�den
e level, see Fig. (8.1). In the Ratra-Peebles φCDM model, the

values of Ωm < 0.18 are outside of the 2σ 
on�den
e level, but the values of Ωm ≥ 0.36 are

still allowed for the large values of the model parameter α, see Fig. (8.1).

8.2 Constraints on the Model Parameters in the Ratra-

Peebles Model from the BAO Data

To eliminate the degeneration between the model parameters α and Ωm, whi
h was obtained

as a result of applying the 
onstraints from the growth rate data, f(a), we 
arried out

the additional 
onstraints using BAO data with small redshifts, whi
h were taken from,

Ref. (Giostri et al. (2012)). We also followed the approa
h used in the paper, Ref. (Giostri

et al. (2012)).

We 
al
ulated the angular diameter distan
es:

dA(z, α,Ωm, H0) =

∫ z

0

dz′

H(z′, α,Ωm, H0)
(8.3)

and the distan
e s
ale (dilaton s
ale):

DV(z, α,Ωm, H0) = [d2A(z, α,Ωm, H0)z/H(z, α,Ωm, H0)]
1/3. (8.4)

We 
onstru
ted a 
ombination of the angular diameter distan
e, dA(zdec), and the distan
e

s
ale, DV(zBAO), Ref. (Eisenstein et al. (2005)):

η(z) ≡ dA(zrec)/DV(zBAO). (8.5)

The expression in Eq. (8.5) is the BAO/CMBR 
onstraints.

The BÀÎ and ÑÌÂR observations are dependent on ea
h other. Assuming that these

data obey the Gaussian distribution, we 
al
ulated the fun
tion χ2
B using the following


ovariant inverse matrix, C−1
:

χ2
B = XTC−1X. (8.6)

We also 
al
ulated the likelihood fun
tion by applying the results from Eq. (8.6):

LB(α,Ωm, H0) ∝ exp(−χ2
B/2), (8.7)
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where X = ηth − ηobs.

The value of a ve
tor, X, is 
al
ulated as:

X =















































dA(zrec)

DV(0.106)
− 30.95

dA(zrec)

DV(0.2)
− 17.55

dA(zrec)

DV(0.35)
− 10.11

dA(zrec)

DV(0.44)
− 8.44

dA(zrec)

DV(0.6)
− 6.69

dA(zrec)

DV(0.73)
− 5.45















































. (8.8)

The inverse 
ovarian
e matrix for the observations, C−1
, is de�ned as:

C−1 =





























0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738

−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751

−0.164945 −2.45497 9.55916 −0.128187 −0.410404 −0.447574

−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437

−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441

−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022





























.

(8.9)

In the Gaussian distribution, we used the prior value of the Hubble 
onstant, H0 = 74.3±2.1,

to restri
t the H0 parameter in the likelihood fun
tion, LB
, Ref. (Freedman et al. (2012)).

The likelihood fun
tion obtained for the growth rate fun
tion, Lf
, and the likelihood fun
tion

obtained for BAO/CMBR 
onstraints, LB
, are independent of ea
h other, therefore, the


ombined likelihood fun
tion, L, is simply a multipli
ation of the given likelihood fun
tions,

a

ording to the results from Eq. (5.4): L = Lf · LB
.

The results of our 
al
ulations are presented in Fig. (8.2). After 
ondu
ting the BAO/CMBR

analysis, we re
eived the new 
onstraints on the Ωm and α model parameters. The model

parameter Ωm is restri
ted within 0.26 < Ωm < 0.34 at the 1σ 
on�den
e level. For the

parameter α we got a range of the values, 0 ≤ α ≤ 1.30, at the 1σ 
on�den
e level, see

Fig. (9.1).

126



Ωm

α

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.5

1

1.5

2

2.5

3

3.5

4

Figure 8.2: 1σ and 2σ 
on�den
e level 
ontours on the parameters Ωm and α in the φCDM
model. These 
onstraints are obtained after adding BAO/CMBR measurements of the prior

distan
es, Ref. (Giostri et al. (2012)).

8.3 Con
lusion

To 
onstrain the parameters in the Ratra-Peebles φCDM s
alar �eld model, we used a


ompilation of the observations: the growth rate data and BAO data with the prior distan
es

from the CMBR. Using only the growth rate data, there is a strong degenera
y between the

values of the model parameters Ωm and α. It means that the larger values of the parameter α

are allowed with an in
rease in the value of the parameter Ωm. The degenera
y is eliminated

after 
ombining the 
onstraints on the growth rate data with the 
onstraints on the distan
e-

redshift ratio of the BAO data and the prior distan
e from the CMBR.

As a result, we re
eived the 
onstraints on the model parameters in the Ratra-Peebles

φCDM model: Ωm = 0.30± 0.04 and 0 ≤ α ≤ 1.30 at the 1σ 
on�den
e level. The best �t

value for the parameter α is α = 0.00.
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Chapter 9

Constraints on the Models Parameters

in the Quintessen
e and Phantom

φCDM Models

This 
hapter is based on the resear
h, whi
h was 
arried out in the paper, Ref. (Avsajanishvili

et al. (2018)).

We studied the quintessen
e (
anoni
al s
alar �elds) and the phantom (non-
anoni
al

s
alar �elds) s
alar �eld models in the 
ase of �at spa
etime. There is still no �nal de
ision,

whi
h of these models is preferable, Refs. (Suzuki et al. (2012), Novosyadlyj et al. (2013),

Ade et al. (2014
), Betoule et al. (2014), Ade et al. (2016)). We applied the predi
ted

data, 
al
ulated for the up
oming DESI experiment and studied the s
alar �elds models


ompared to the standard ΛCDM model. Our study is based on the 
omparison of data on

the expansion rate of the universe, the growth rate of the matter density �u
tuations and

the measurements of the angular diameter distan
e, whi
h will be obtained from the DESI

experiment.

9.1 De�nition of the Model Parameters and the Initial

Conditions

We studied the s
alar �eld models with 10 quintessential and 7 phantom potentials, a list

of whi
h is presented in Table 6.1 and in Table 6.2. All the s
alar �eld models presented in

these Tables have the same parameters Ωm0 and H0. In addition to these parameters, ea
h

s
alar �eld model has its own set of the extra model parameters that determine the shape
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and the strength of the potential, V (φ).

For ea
h potential, we numeri
ally solved the system of the di�erential equations: the

Klein-Gordon equation of motion for the quintessen
e (the phantom) model, respe
tively

Eq. (6.21) (Eq. (6.31)), the �rst Friedmann's equation, Eq. (6.22) and then the perturbation

equation, Eq. (4.31), for a wide range of the free parameters and the initial 
onditions (φ0,

φ̇0) for the matter dominated epo
h. Due to the fa
t that for all the potentials the ranges

of the initial 
onditions and the model parameters are unknown pre
isely, we developed a

method for de�ning these ranges. For ea
h potential, we found the plausible solutions, for

whi
h the following three 
riteria were simultaneously ful�lled:

1. The transition between the matter and dark energy equality (Ωm = Ωφ) happens relatively

re
ently, a ∈ (0.6; 0.8), see Fig. (7.4) (right panel).

2. The growth rate of the matter density �u
tuations, f(a), and the fra
tional matter density,

Ωm(a), are parametrized by the Linder γ-parametrization, Eq. (4.37).

3. The EoS parameter predi
ted by the di�erent dark energy models should be in the agree-

ment with the expe
ted 
urrent value of the EoS parameter (for the phantom models

w0 < −1; for the quintessen
e models −1 < w0 < −0.75, for the freezing type wa < 0

and for the thawing type wa > 0).

Despite the fa
t that the Ratra-Peebles potential has an attra
tor solution, for the best

numeri
al 
onvergen
e we 
hose a spe
i�
 solution at the matter dominated epo
h with the

following initial 
onditions, Refs. (Ratra & Peebles (1988b), Farooq (2013), Avsajanishvili

et al. (2014)):

V0 =
8

3

(

α + 4

α + 2

)

[2

3
α(α + 2)

]α/2

, (9.1)

φin =

[

2

3
α(α+ 2)

]1/2

t
3

α+2

in , (9.2)

φ̇in =

[

6α

α + 2

]1/2

t
1−α
2+α

in . (9.3)

The initial value of the s
ale fa
tor, ain ∝ t
2/3
in , was 
hosen at the matter domination epo
h,

Eq. (2.101). In our 
al
ulations, we used the values of the model parameter α in the range,

α ≤ 0.7, Ref. (Samushia (2009)).

We applied the aforementioned phenomenologi
al method and found the following ranges

for ea
h potential: the allowed initial 
onditions and the model parameters, whi
h des
ribe

129



the form and the strength of the potential. These ranges, along with the general free model

parameters Ωm0 and H0, are presented in Table 6.1 and Table 6.2. We used this data for

ea
h dark energy model as the initial 
onditions for the MCMC 
al
ulations.

Quintessen
e potentials Free parameters

V (φ) = V0M
2
plφ

−α H0(50÷ 90)
Ωm0(0.25÷ 0.32)

V0(3÷ 5)
α(10−6 ÷ 0.7)

V (φ) = V0 exp(−λφ/Mpl)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10÷ 103)

λ(10−7 ÷ 10−3)
φ0(0.2÷ 1.6)
φ̇0(79.8÷ 338.9)

V (φ) = V0(exp(Mpl/φ)− 1)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10÷ 102)

φ0(1.5÷ 10)
φ̇0(350÷ 850)

V (φ) = V0φ
−χ exp(γφ2/M2

pl)

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10

−2 ÷ 10−1)
χ(4÷ 8)

γ(6.5÷ 7)
φ0(5.78÷ 10.55)
φ̇0(680.6÷ 879)

V (φ) = V0(cosh(ςφ)− 1)g

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(5÷ 8)
ς(0.15÷ 1)

g(0.1÷ 0.49)
φ0(1.8÷ 5.8)
φ̇0(360÷ 685)

V (φ) = V0(exp(νφ) + exp(υφ))
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 12)

ν(6 ÷ 12)
φ0(0.014÷ 1.4)
φ̇0(9.4÷ 311)

V (φ) = V0((φ− B)2 + A) exp(−µφ)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(40÷ 70)
A(1÷ 40)

B(1÷ 60)
µ(0.2÷ 0.9)
φ0(5.8÷ 8.45)
φ̇0(681÷ 804.5)

V (φ) = V0 sinh
m(ξMplφ)

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 10)
m(−0.1 ÷−0.3)

ξ(10−2 ÷ 1)
φ0(0.5÷ 2.5)
φ̇0(190÷ 367)

V (φ) = V0 exp(Mpl/φ)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10

2 ÷ 103)

φ0(5.78÷ 10.55)
φ̇0(680.6÷ 879)

V (φ) = V0(1 + exp(−τφ))
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 102)

τ(10 ÷ 102)
φ0(0.01÷ 0.075)
φ̇0(9.4÷ 32)

Table 9.1: The list of the dark energy quintessen
e potentials and the free parameters.
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Phantom potentials Free parameters

V (φ) = V0φ
5

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10

−3 ÷ 10−2)

φ0(3.37÷ 3.94)
φ̇0(523÷ 563.6)

V (φ) = V0φ
−2

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(30÷ 50)

φ0(2.83÷ 5.15)
φ̇0(471.4÷ 600)

V (φ) = V0 exp(βφ)
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 20)

β(0.08÷ 0.3)
φ0(0.2÷ 9.14)
φ̇0(79.8÷ 830.9)

V (φ) = V0φ
2

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 20)

φ0(0.67÷ 2.8)
φ̇0(191÷ 450)

V (φ) = V0(1− exp(φ2/σ2))
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(5÷ 30)

σ(5÷ 30)
φ0(0.67÷ 2.8)
φ̇0(191÷ 450)

V (φ) = V0(1− cos(φ/κ))
H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(1÷ 4)

κ(1.1÷ 2)
φ0(2.3÷ 3.37)
φ̇0(420÷ 500)

V (φ) = V0(cosh(ψφ))
−1

H0(50÷ 90)
Ωm0(0.25÷ 0.32)
V0(10

−3 ÷ 102)

ψ(10−3 ÷ 1)
φ0(1.4÷ 2.3)
φ̇0(310÷ 420.7)

Table 9.2: The list of the dark energy phantom potentials and the free parameters.

9.2 MCMC Analysis for Study of the Dark Energy Mod-

els

We 
al
ulated the values of the normalized Hubble parameter for all the dark energy models,

the angular diameter distan
e and the growth rate in the redshift range, z ∈ (0.15; 1.85).

• The normalized Hubble parameter, E(z)

We 
al
ulated the values of the normalized Hubble parameter, E(z), from Eq. (6.22).

• The angular diameter distan
e, dA(z)

We 
omputed the angular diameter distan
es using the equation:

dA(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
. (9.4)

This equation is a spe
ial 
ase for the �at universe, it was obtained from Eq. (3.48).

• The 
ombination of the growth rate of the matter density �u
tuations and the matter

power spe
trum amplitude, f(a)σ8(a)

The value of the growth rate of the matter density �u
tuations was found from Eq. (4.34).

131



The matter power spe
trum amplitude 
an be determined through the fun
tion σ8(a) ≡
D(a)σ8, where σ8 ≡ σ8(a0) is the rms linear �u
tuation in the mass density distribution

on the s
ale 8h−1
Mp
. We �xed the value of σ8 to its 
urrent best �t ΛCDM value

of σ8 = 0.815 from the Plank 2015 data, Ref. (Ade et al. (2016)).

Sin
e the observations for the expansion rate of the universe, H(z), the growth rate of

the matter density �u
tuations, f(a)σ8(a), and the angular diameter distan
es, DA(z), are

dependent on ea
h other, we 
al
ulated the 
ovariant matri
es for these measurements. We

followed the standard approa
h for 
al
ulating the Fisher matri
es, proposed in Ref. (Font-

Ribera et al. (2014)). We assumed 14000 sq. deg. of sky 
overage and the wavenumbers up

to kmax = 0.2 Mpc/h. Our varian
es mat
hed the numbers in Table V of Ref. (Font-Ribera

et al. (2014)). We also a

ounted for the 
ovarian
es between the measurements within

the same redshift bin. The DA(z) and H(z) measurements are negatively 
orrelated by

approximately 40%, while the 
orrelations with f(a)σ8(a) are below 10% for all the redshift

bins.

After 
ondu
ting the MCMC analysis, we found that the values of the parameters 
or-

responding to the maximum probability are within of the prior ranges of these parameters

presented in Table 9.1 and Table 9.2. We found that there is no need to adjust the prior

ranges of the model parameters. The examples of the MCMC 
onstraints for the quintessen
e

Ratra-Peebles, the Golden-Wang-Steinhardt and the phantom pseudo-Nambu-Goldstone bo-

son potentials are shown in Figs. (9.1-9.3).

9.3 Bayesian Statisti
s

To assess the quality of the di�erent models and to distinguish them from ea
h other, we

applied the Akaike information 
riterion (AIC), Ref. (Akaike (1974)) and the Bayesian (or

S
hwarz) information 
riterion (BIC), Ref. (S
hwarz (1978)). The AIC and BIC infor-

mation 
riteria are the fun
tions of the number of estimated model parameters, N . The

information, whi
h is obtained by these 
riteria, 
omplement ea
h other.

The AIC and BIC are de�ned respe
tively as:

AIC = −2 lnLmax + 2k (9.5)

and

BIC = −2 lnLmax + k lnN, (9.6)
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Figure 9.1: The 2σ 
on�den
e level 
ontour plots for various pairs of the free parameters (α,
Ωm0, h), for whi
h the φCDM model with the Ratra-Peebles potential V (φ) = V0M

2
plφ

−α
is

in the best �t with the ΛCDM model.

where Lmax ∝ exp(−χ2
min/2) is the maximum value of the probability fun
tion, k is the

number of observations.

We also 
ondu
ted the Bayes eviden
e analysis. The Bayes eviden
e for the model with

a set of the parameters, p, is determined by the integral:

E =

∫

d3pP(p), (9.7)

where P is the posterior likelihood, whi
h is proportional to the lo
al density of the MCMC

points. The boundaries of the integration are given by the prior on the extra parameters,

i.e., from the previously found ranges of the model parameters shown in Table 6.1 and Table

6.2.

The models with the higher values of the Bayes eviden
e are preferable to the models

with the lower values of the Bayes eviden
e.
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Figure 9.2: The 2σ 
on�den
e level 
ontour plots for various pairs of the free parameters

(V0, Ωm0, h, φ0, φ̇0), for whi
h the φCDM model with the Zlatev-Wang-Steinhardt potential

V (φ) = V0(exp(Mpl/φ)− 1) is in the best �t with the ΛCDM model.

Figure 9.3: The 2σ 
on�den
e level 
ontour plots for various pairs of the free parameters (k,
Ωm0, h, V0, φ0, φ̇0), for whi
h the φCDM model with the phantom pseudo-Nambu-Goldstone

boson potential V (φ) = V0(1− cos(φ/κ)) is in the best �t with the ΛCDM model.
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Quintessen
e potentials AIC BIC Bayes fa
tor

V (φ) = V0M
2
plφ

−α
10 18.7 0.5293

V (φ) = V0 exp(−λφ/Mpl) 12 22.4 0.0059

V (φ) = V0(exp(Mpl/φ)− 1) 10 18.7 0.0067

V (φ) = V0φ
−χ exp(γφ2/M2

pl) 14 26.2 0.0016

V (φ) = V0(cosh(ςφ)− 1)g 14 26.2 0.0012

V (φ) = V0(exp(νφ) + exp(υφ)) 14 26.2 0.0053

V (φ) = V0((φ− B)2 + A) exp(−µφ) 16 29.9 0.0034

V (φ) = V0 sinh
m(ξMplφ) 14 26.2 0.0014

V (φ) = V0 exp(Mpl/φ) 10 18.7 0.0077

V (φ) = V0(1 + exp(−τφ)) 12 22.4 0.0024

Table 9.3: The list of the dark energy quintessen
e potentials with the 
orresponding values

of AIC, BIC and Bayes fa
tor.

Phantom potentials AIC BIC Bayes fa
tor

V (φ) = V0φ
5

10.0 18.7 0.0921

V (φ) = V0φ
−2

10.0 18.7 0.0142

V (φ) = V0 exp(βφ) 22.4 12.0 0.0024

V (φ) = V0φ
2

10.0 18.7 0.0808

V (φ) = V0(1− exp(φ2/σ2)) 12.0 22.4 0.0113

V (φ) = V0(1− cos(φ/κ)) 12.0 22.4 0.0061

V (φ) = V0(cosh(ψφ))
−1

12.0 22.4 0.0056

Table 9.4: The list of the dark energy phantom potentials with the 
orresponding values of

AIC, BIC and Bayes fa
tor.

We investigated how tight the prior on the extra model parameters should be for the


ompetitiveness of the dark energy models (in the sense of the Bayes eviden
e) with the

standard ΛCDM model. We 
he
ked that the priors ranges of the model parameters in
lude

the values of the model parameters from the posterior ranges.

We numeri
ally integrated the posterior probability for all the models, the results of this

integration are presented in Table 9.3 and Table 9.4. All these numbers are normalized

relative to the �du
ial ΛCDM model.
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9.4 φCDM Models in the CPL Phase Spa
e

To 
he
k how well the CPL parametrization approximates the dark energy models, how

these models are 
onsistent with the ΛCDM model and how they di�er from ea
h other, we

presented a set of the possible values of the EoS parameters, w0 and wa, for ea
h dark energy

potential in the CPL - ΛCDM phase spa
e.

The mapping of the dark energy models on the w0 − wa plane is shown in Fig. (9.4)

for the quintessen
e models and in Fig. (9.5) for the phantom models. In these �gures, the


urves represent the maximum ranges of the values of the EoS parameters, w(a), for ea
h

dark energy model in the w0−wa plane. These CPL-ΛCDM 
ontours at the 1σ, 2σ, and 3σ


on�den
e levels were obtained by �tting the data H(z), dA(z) and f(a)σ8(a) for ea
h dark

energy model under study and for the ΛCDM model of the CPL parametrization.

In order to 
he
k how well the CPL parametrization, Eq. (6.46), des
ribes the dark energy

models, we �nd the best �t e�e
tive values of w0 − wa for a range of the free parameters

for ea
h model. For an easy visual representation of this information, we 
hose a parameter

with respe
t to whi
h the best �t w0 and wa values are the most sensitive and plotted these

ranges within priors. These results are presented in Fig. (9.4) for the quintessen
e models

and in Fig. (9.5) for the phantom models.

In Fig. (9.4) we show that some of the dark energy models are lo
ated very 
lose to the

ΛCDM model for a wide range values of the EoS parameter within our priors. The range

of the values of the EoS parameters for the Ferreira-Joy
e, the inverse exponent and the

Sugra potentials is very small, it almost 
oin
ides with the value of the EoS parameter for

the ΛCDM model, (w0 = −1, wa = 0), therefore, these models are absolutely impossible

to distinguish from the ΛCDM model. The values of the EoS parameter for the Chang-

S
herrer, the Ur�ena-L�opez-Matos, and the Barreiro-Copeland-Nunes potentials are inside of

the 3σ 
on�den
e levels of the CPL - ΛCDM 
ontours. Thus, these potentials 
annot be

distinguished from the standard ΛCDM model today. The values of the EoS parameter for

the Ratra-Peebles, the Zlatev-Wang-Steinhardt, the Albre
ht-Skordis, and the Sahni-Wang

potentials are beyond of the 3σ 
on�den
e levels of the CPL - ΛCDM 
ontours. This means

that depending on the value of the EoS parameter at the present epo
h, these models 
an

either be distinguished or they 
annot be distinguished from the ΛCDM model today.

The results obtained for the phantom potentials are presented in Fig. (9.5). Obviously,

the values of the EoS parameter for the phantom quadrati
 potential are outside of the

3σ 
on�den
e levels of the CPL - ΛCDM 
ontours, so this potential 
annot imitate the
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ΛCDM model today. The EoS parameter 
urves for the pseudo-Nambu-Goldstone boson,

the inverse hyperboli
 
osine, the exponent, the Gaussian, the inverse square power potentials

are partially at the 3σ 
on�den
e levels of the CPL - ΛCDM 
ontours and partly outside

of these boundaries. Thus, these models either 
an mimi
 the ΛCDM model today or they


an also manifest themselves as the dark energy models with a faster 
hange of the EoS

parameter over time than the EoS parameter in the ΛCDM model. The 
urve of the EoS

parameter for the �fth power phantom potential is within the 3σ 
on�den
e levels of the

CPL - ΛCDM 
ontours, so this model 
annot be distinguished from the ΛCDM model today.

For ea
h potential we investigated whether a 
hange in the value of one of the model

parameters (provided that the values of the other model parameters and the values of the

initial 
onditions are �xed) or a 
hange in the values of the initial 
onditions (provided that

the values of the model parameters are �xed) leads to the maximum range of the values

of the EoS parameter. The result of this study is that we 
an divide all the 
onsidered

potentials into two types: into the potentials whose evolution depends on the values of the

initial 
onditions and into the potentials whose evolution doesn't depend on the values of the

initial 
onditions, i.e., su
h potentials have the attra
tor solutions. The �rst type in
ludes

the following quintessen
e potentials: the Zlatev-Wang-Steinhardt, the Sahni-Wang, as well

as the following phantom potentials: the quadrati
, the Gaussian, the �fth power, the inverse

square power. The se
ond type in
ludes the following quintessen
e potentials

1

: the Sugra,

the Ur�ena-L�opez-Matos, the Albre
ht-S
ordis, the Chang-S
herer, the Barreiro-Copeland-

Nunes, as well as the following phantom potentials: the pseudo-Nambu-Goldstone boson,

the inverse hyperboli
 
osine, the exponent.

9.5 Con
lusion

Applying the phenomenologi
al method developed by us, we re
onstru
ted the dark energy

model of a s
alar �eld, listed in Table 6.1 and in Table 6.2. Thus, we found the prior ranges

for the initial 
onditions and the model parameters. The results are summarized in Table

9.1 and in Table 9.2.

The 
onstraints on the dark energy models were obtained by 
omparing H(z), dA(z),

f(a)σ8(a) data with the 
orresponding data generated for the �du
ial ΛCDM model. The

examples of the 
onstraints for the Ratra-Peebles, the Zlatev-Wang-Steinhardt quintessen
e

1

The Ratra-Peebles potential is in the privileged position in 
omparison with the other potentials, sin
e

for this potential we 
onsidered a solution with the �xed initial 
onditions, Eq. (9.1). Thus, this potential

was not 
onsidered in this study.
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Figure 9.4: The 
omparison of the possible w0 and wa values for the quintessen
e dark energy
potentials with the CPL-ΛCDM 3σ 
on�den
e level 
ontours.

potentials and for the inverse hyperboli
 
osine phantom potential are shown in Figs. (9.1-

9.3).

We applied the Bayes statisti
al 
riteria to 
ompare the models, su
h as the Bayes fa
tor,

as well as the AIC and BIC information 
riteria. To this end, we have integrated Eq. (9.7)

within the boundaries 
orresponding to the previously found ranges of the model parameters

given in Table 9.1 and in Table 9.2. The 
al
ulated values of AIC, BIC and Bayes fa
tor

for all the dark energy models are summarized in Table 9.3 and in Table 9.4. These numbers


learly demonstrated that if the ΛCDM model is the true des
ription of dark energy, then

the full DESI data will be able to strongly dis
riminate most of the s
alar �eld dark energy

models 
urrently under 
onsideration.

We investigated how the dark energy models are mapped on the w0 −wa phase spa
e of

the CPL-ΛCDM 
ontours, see Fig. (9.4) and Fig. (9.5).

We found that the Ferreira-Joy
e, the inverse exponent, the Sugra, the Chang-S
herrer,

the Ur�ena-L�opez-Matos, the Barreiro-Copeland-Nunes quintessen
e models and the �fth
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Figure 9.5: The 
omparison of the possible w0 and wa values for the phantom dark energy

potentials with the CPL-ΛCDM 3σ 
on�den
e level 
ontours.

power phantom model 
annot be distinguished from the ΛCDM model for the present time.

Whilst the Ratra-Peebles, the Zlatev-Wang-Steinhardt, the Albre
ht-Skordis, the Sahni-

Wang quintessen
e models and the pseudo-Nambu-Goldstone boson, the inverse hyperboli



osine, the exponent, the Gaussian, the inverse square power phantom models 
an either

be distinguished or 
annot be distinguished from the ΛCDM model today. The quadrati


phantom model 
an be absolutely distinguished from the ΛCDM model at the present epo
h.

All the studied models 
an be divided into two types: on the models whose evolution de-

pends on the values of the initial 
onditions and into the models whose evolution doesn't de-

pend on the values of the initial 
onditions. The �rst type in
ludes the following quintessen
e

models: the Zlatev-Wang-Steinhardt, the Sahni-Wang and also the phantom models: the

quadrati
, the Gaussian, the �fth power, the inverse square power. The se
ond type in
ludes

the following quintessen
e models: the Sugra, the Chang-S
herrer, the Albre
ht-Skordis, the

Ur�ena-L�opez-Matos, the Barreiro Copeland-Nunes, as well as the following phantom models:

the pseudo-Nambu-Goldstone boson, the inverse hyperboli
 
osine, the exponent.
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Chapter 10

Mass Varying Neutrino Model

The 
oupled models of dark matter and dark energy were developed to resolve the 
oin
iden
e

problem in the standard ΛCDM model. Based on the essen
e of this problem, it follows that

dark matter and dark energy intera
ted with ea
h other during their evolution. At the same

time, the assumed dark matter parti
les had the mass that varied over time.

One of the 
andidates for the role of dark matter 
an be 
onsidered the reli
 neutrinos.

The neutrinos belong to the 
lass of leptons and 
an parti
ipate only in the weak gravita-

tional intera
tions. In addition, the neutrino has the mass. A

ording to Plan
k 2015, the

value of the sum of neutrino masses at the present epo
h is

∑

mν < 0.23 eV under the

assumption that the ΛCDM model is 
orre
t, Ref. (Ade et al. (2016)). Fardon, Nelson and

Weiner elaborated the me
hanism of the Varying Mass Parti
les (VAMPs). They applied

the VAMPs me
hanism to the neutrinos, as a result of whi
h the model of Mass Varying

Neutrino (MaVaN) was 
reated, Ref. (Fardon et al. (2004)). In this model, the fermioni


�eld intera
ts with the bosoni
 s
alar �eld via the Yukawa 
oupling. If initially (before in-

tera
tion) the reli
 neutrino is massless, then intera
ting with the s
alar �eld the neutrino

will a
quire the mass, whi
h subsequently varies over time.

The MaVaN model is quite 
ompelling, sin
e the 
ause of the neutrino mass emergen
e

is explained in this model. In addition, the 
oin
iden
e problem is resolved in this model,

i.e., the answer to the following question is given: "Why do the neutrinos (dark matter) and

dark energy have the 
omparable energy s
ales at the present epo
h?"

The disadvantage of the MaVaN model is the instability of a �uid, whi
h 
onsists of the

neutrinos and dark energy. This instability is a 
onsequen
e of the negative value of the

square of the sound speed in this medium. A negative value of the square of the sound speed

arises due to the exponential growth of the s
alar �u
tuations, whi
h leads to the expo-
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nential 
lustering of the neutrinos, Refs. (Afshordi et al. (2005), Kaplinghat & Rajaraman

(2007)). To get rid of this problem, the additional 
ompli
ations were introdu
ed into the

MaVaN model, for example, a multi
omponent s
alar �eld was 
onsidered, Ref. (Takahashi

& Tanimoto (2007)). In the paper Ref. (Chitov et al. (2011)), the authors studied the stable,

metastable and unstable phases of the MaVaN model and found a 
onsistent solution for the

equilibrium 
ondition.

In this work, we 
onsider the inverse-power Ratra-Peebles s
alar �eld potential. This

potential does not have a non-trivial minimum. The fermioni
 mass is generated due to the

violation of the 
hiral symmetry in the Dira
 se
tor of the Lagrangian. It is assumed that the

fermioni
 mass is obtained from the minimizing the total thermodynami
 potential. At the

same time, the evolution of the mass is slow enough, so that the 
oupled system (fermions

and dark energy) to be in the equilibrium at the temperature of T (a).

10.1 Intera
tion of the S
alar Field and Dira
 Field

The Hamiltonian of the bosoni
 s
alar �eld for the FLRW metri
 and the Eu
lidean a
tion

of the bosoni
 s
alar �eld are de�ned, respe
tively, as:

HB =

∫

a3d3x
[1

2
φ̇2 +

1

2a2
(∇φ)2 + V (φ)

]

(10.1)

and

SEB =

∫ β

0

dτ

∫

a(t)3d3x
[1

2

(∂τ

∂φ

)2

+
1

2a2
(∇φ)2 + V (φ)

]

, (10.2)

where

∫

d3x = V is a 
omoving volume; a3V = Vphys is a physi
al volume; V (φ) is a potential

of the s
alar �eld.

The Dira
 Hamiltonian for the FLRW metri
 and the Eu
lidean a
tion for the Dira
 �eld

are presented, respe
tively, as:

HD =

∫

a3d3x ψ̄
(

− ı

a
γ ·∇+mν

)

ψ (10.3)

and

SED =

∫ β

0

dτ

∫

a(t)3d3x ψ̄(x, τ)
(

γo
∂

∂τ
− ı

a
γ ·∇+mν − µγo

)

ψ(x, τ), (10.4)

where mν is the fermioni
 mass.
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The grand partition fun
tion is de�ned by the Grassmann fun
tional integral:

ZD ≡ Tr e−β(Ĥ−µQ̂) =

∫

Dψ̄Dψ e−S
E
D . (10.5)

Consider the intera
tion of the bosoni
 s
alar �eld with the massless fermions via the Yukawa


oupling:

S = SEB + SED
∣

∣

mν=0
+ g

∫ β

0

dτ

∫

a3d3x φψ̄ψ, (10.6)

where g is the dimensionless Yukawa 
oupling 
onstant, g = 1.

The Lagrangian for the Yukawa 
oupling is de�ned as:

LYuk = −gψ̄φψ. (10.7)

The path integral for the partition fun
tion in the intera
tion of the bosoni
 �eld with the

fermioni
 �eld:

Z =

∫

DφDψ̄Dψ e−S . (10.8)

The Grassmann �elds 
an be formally integrated, Ref. (Chitov et al. (2011)):

Z =

∫

Dφ e−S(φ) =

∫

Dφ exp
[

− SEB + logDetD̂(φ)
]

, (10.9)

where the Dira
 operator is de�ned as:

D̂(φ) = γo
∂

∂τ
− ı

a
γ ·∇+ gφ(x, τ)− µγo. (10.10)

10.2 Saddle Point Approximation

The thermodynami
 potential in the 
oupled model of the bosoni
 s
alar �eld and the

fermioni
 �eld, Eq. (10.6), 
an be found in the saddle point approximation, minimizing

the path integral, Eq. (10.9). We take into a

ount that the bosoni
 s
alar �eld at the

moment, φ = φc, minimizes the a
tion, S. This is the so-
alled 
lassi
al �eld value:

φcr = 〈ϕ〉. (10.11)
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In this 
ase, we 
an pre
isely determine the value of log det D̂(φ), where the fermions a
quire

the mass:

mν = gφcr. (10.12)

At the moment φ = φcr the partition fun
tion has the form:

Zφν = ZF e
−βV V (φcr). (10.13)

In this 
ase, the total thermodynami
 potential, Vφν(φcr), is de�ned as:

Vφν(φcr) = V (φcr) + Vν(φcr), (10.14)

where

Vφν = V0 −
1

3π2

∫ ∞

0

dp p4

ǫ(p)

[

nF (ǫ+) + nF (ǫ−)

]

, (10.15)

here V0 is a thermodynami
 potential for va
uum
1

; nF (x) is a Fermi distribution fun
tion:

nF (x) =
1

eβx + 1
. (10.16)

Let's ñonsider the approximation in the saddle point, φ = φcr. This approximation will be

a self-
onsistent if φcr minimizes the free energy. The 
onditions for the minimum of the

total thermodynami
 potential, Eq. (10.14), at the saddle point (at �xed temperature and


hemi
al potential):

∂Vφν(φ)

∂φ

∣

∣

∣

∣

µ,β;φ=φcr

= 0,
∂2Vφν(φ)

∂φ2

∣

∣

∣

∣

µ,β;φ=φcr

> 0. (10.17)

Applying the �rst 
ondition in Eq. (10.17) to the total thermodynami
 potential, Eq. (10.14),

we get:

V ′(φcr) + gρs = 0, (10.18)

where ρs is a fermioni
 density.

ρs ≡
〈N̂〉
V

=
∂Vν
∂m

, (10.19)

here N̂ =
∫

d3
√−g xψ̄ψ.

1

Hen
eforth, the values of the potential, the pressure and the energy density will be rede�ned with respe
t

to the 
orresponding va
uum values as: Vφν 7→ Vφν − F0, Pν 7→ Pν − P0, ρs 7→ ρs − ρ0.
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The fermioni
 density is de�ned as:

ρs =
m

π2

∫ ∞

0

dp p2

ǫ(p)

[

nF (ǫ+) + nF (ǫ−)− 1

]

. (10.20)

10.2.1 Fermioni
 Potential

Consider the Dira
 fermions, for whi
h the number of the fermions and the antifermions

is the same, i.e., the 
hemi
al potential is zero, µ = 0. The fermions with zero 
hemi
al

potential are des
ribed by the Fermi distribution fun
tion, Eq. (10.16):

nF (E) =
1

eβE + 1
, (10.21)

where E is a physi
al fermioni
 energy, whi
h is de�ned as:

E(p) =
√

m2
ν + p2, (10.22)

here p is a fermioni
 momentum.

The fermioni
 potential, Vν , is 
ompletely determined by the fermioni
 pressure, pν :

Vν = −pν = −NF

3π2

∫ ∞

0

p4dp

E(p)
[nF (E−) + nF (E+)],

= −2NF

3π2

∫ ∞

0

p4dp

E(p)(eβE + 1)
, µ = 0, (10.23)

where NF is the number of the neutrinos spe
ies, NF = 3; β = 1/T and T = Tν0/a,

Tν0 = 1.9454 eV is a neutrinos temperature at the present epo
h

2

.

In Eq. (10.23), taking into a

ount that E± = E(p)±µ, if µ = 0, then nF (E−) = nF (E+).

Let's introdu
e the new variables to the integral, Eq. (10.23): E = βE, dE = βdE, where

E
2
= β2m2

ν + β2p2, Eq. (10.22); pdp = E
β
dE, p3 = (E

2−β2m2
ν)

3/2

β3 = (E
2−ϕ2)3/2

β3 . The new

boundaries of the integration: for p = 0, E = βmν = φ and for p = ∞, E = ∞.

Eventually, Eq. (10.23) 
an be rewritten as:

Vν = −pν = −2NF

3π2

∫ ∞

ϕ

(E
2 − ϕ2)3/2

β3E(eE + 1)

E

β
dE = − 2NF

3π2β4

∫ ∞

ϕ

(E
2 − ϕ2)3/2

eE + 1
dE. (10.24)

2

The neutrinos temperature at the present epo
h 
an be obtained from the equation: Tν0 = (4/11)1/3Tγ0,

where Tγ0 = T0 is a photons temperature at the present epo
h.
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10.2.2 Fermioni
 Energy Density

The total thermodynami
 potential, Vφν , is de�ned as:

Vφν = V (φ) + Vν(ϕ) = Vφ(φ)−
2NF

3π2β4

∫ ∞

ϕ

(E
2 − ϕ2)3/2

eE + 1
dE. (10.25)

We examine the Ratra-Peebles potential for the bosoni
 s
alar �eld:

V (φ) =
Mα+4

φ

φα
, (10.26)

where Mφ is a mass s
ale for the Ratra-Peebles potential.

From the 
ondition of the minimizing the total thermodynami
 potential, Eq. (10.18),

we have:

ρs =
∂Vν
∂mν

= −1

g

∂Vν
∂φ

. (10.27)

Di�erentiating Eq. (10.24), we obtain the equation for the fermioni
 density:

ρs = −∂Vν
∂ϕ

=
2NF

3π2β4

∫ ∞

βmν

3

2

2β2mν(E
2 − (βmν)

2)1/2

eE + 1
dE,

=
2NFmν

π2β2

∫ ∞

βmν

(E
2 − (βmν)

2)1/2

eE + 1
dE . (10.28)

Eq. (10.28) 
an be rewritten as:

ρs =
2NF

3π2β4

∫ ∞

φ

3

2

2φβ2(E
2 − φ

2
)1/2

eE + 1
dE =

2NFφ

π2β3

∫ ∞

φ

(E
2 − φ

2
)1/2

eE + 1
dE . (10.29)

10.3 Mass Equation

Plugging Eq. (10.26) into Eq. (10.18), we get:

αMα+4
φ

φα+1
= gρs ⇒ αMφ

α+4
gα = β3φ

α+1
ρs, (10.30)

here φ = βmν =
gφ
T
; Mφ ≡ Mφ

T
.

Substituting Eq. (10.29) into Eq. (10.30), we obtain the mass equation:

αMφ
α+4

gα = β3φ
(α+1) 2NFφ

π2β3

∫ ∞

φ

(E
2 − φ

2
)1/2

eE + 1
dE , (10.31)
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απ2gαMφ
α+4

2NF

= Iα(φ), Iα(φ) = φ
(α+2)

∫ ∞

φ

(E
2 − φ

2
)1/2

eE + 1
dE . (10.32)

The numeri
al solutions of Eq. (10.32), whi
h depend on the parameter α, are shown in

Fig. (10.1).

φ
0 2 4 6 8 10 12

I
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(φ
)
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α = 0.5
α = 0.7
α = 1

Figure 10.1: The solutions of the mass equation, Eq. (10.32), for the di�erent values of the

α parameter.

10.4 Energy Balan
e in the Universe to the Criti
al Point

We are 
onsidering a �at universe, whi
h implies the equality of the total energy density and

the 
riti
al density: ρtot = ρcr. Namely:

ρtot = ργ0a
−4 + ρm0a

−3 + ρcouple =
3H2

8πG
. (10.33)

Equally, the total energy density 
an be represented as:

ρtot =
7π2NF

60
T 4. (10.34)

The energy density for the photons is de�ned as:

ργ =
π2

15
T 4 =

π2

15
T 4
0 (1 + z)4. (10.35)
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From Eq. (10.35) and Eq. (10.34) we get

3

:

ρtot ≈ ργ + ρcouple ≈
π2

15

(

1 +
7NF

4

)

. (10.36)

Hen
e, we have:

Ωcouple =
7NF

4 + 7NF
= 0.84, Ωγ =

4

4 + 7NF
= 0.16. (10.37)

The energy density parameters for the photons, the matter and the neutrinos-dark energy

�uid depending on redshift are presented in Fig. (10.2). The evolution of the energy density

Figure 10.2: The dependen
e of the energy density parameters for the photons, the matter

and the neutrinos-dark energy �uid on redshift. The value of z⋆ denotes the epo
h of the

matter and dark energy equality.

parameters was 
al
ulated from the moment 1+ z = 107, i.e., starting with the temperature

T ∼ 2.35 KeV to the present epo
h. Thus, the values of the temperature are lower than the

value of the temperature at the epo
h of the ele
tron-positron pairs annihilation, the value

of whi
h is Te = 0.5MeV, see Fig. (10.2).

3

At the high temperatures, the value of whi
h are in the range, Teq ≪ T < Te, where Teq is the tempera-

ture in the universe at the moment of the matter energy and dark energy equality; Te is the temperature at

the epo
h of the ele
tron-positron annihilation. We 
an ignore the 
ontribution of the matter energy density

to the total energy density, sin
e the matter is a subdominant during this period of time.
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10.5 Joint Solution of the First Friedmann's and the S
alar

Field Equations

10.5.1 Relativisti
 Neutrino Before the Criti
al Point

At the values of the s
ale fa
tor a < acr, the fermioni
 and bosoni
 �elds do not intera
t

with ea
h other, therefore, the neutrinos remain relativisti
 and, a

ordingly, the neutrinos

have no mass,

∑

mν = 0.

For this period of time, the total potential, the energy density and the pressure for the

s
alar �eld and the relativisti
 neutrinos 
an be written, respe
tively, as:

V = Vφ −
2NF

3π2β4

∫ ∞

ϕβ

(E
2 − ϕ2β2)3/2

eE + 1
dE, (10.38)

ρ =
φ̇2

2
+ Vφ +

2NF

π2β4

∫ ∞

ϕβ

E
2
(E

2 − ϕ2β2)1/2

eE + 1
dE, (10.39)

p =
φ̇2

2
− Vφ +

2NF

3π2β4

∫ ∞

ϕβ

(E
2 − ϕ2β2)3/2

eE + 1
dE. (10.40)

The �rst Friedmann's equation and the s
alar �eld equation for the values of the s
ale fa
tor

a < acr are presented, respe
tively, as:

( ȧ

a

)2

= H2
0

(

Ωr0a
−4 +Ωm0a

−3 +
1

ρcr

(

Vφ +
φ̇2

2
+

2NF

π2β4

∫ ∞

ϕβ

E
2
(E

2 − ϕ2β2)1/2

eE + 1
dE

))

, (10.41)

φ̈+ 3
ȧ

a
φ̇+

∂Vφ
∂φ

+
2ϕNF

π2β3

∫ ∞

ϕβ

(E
2 − ϕ2β2)1/2

eE + 1
dE = 0. (10.42)

Taking into a

ount that a < acr:

ϕ = mν = 0 and

∫ ∞

ϕ

E
2
(E

2 − ϕ2β2)1/2

eE + 1
dE =

∫ ∞

0

E
3

eE + 1
dE =

7π4

120
. (10.43)

Therefore, the equations, Eq. (10.41) and Eq. (10.42), 
an be rewritten as:

( ȧ

a

)2

= H2
0

(

Ωr0a
−4 + Ωm0a

−3 +
1

ρcr

(

Vφ +
φ̇2

2
+

7π2NF

60β4

))

, (10.44)

φ̈+ 3
ȧ

a
φ̇+

∂Vφ
∂φ

= 0. (10.45)
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10.5.2 Neutrino Masses Evolution after the Criti
al Point

At the 
riti
al point, the total thermodynami
 potential rea
hes its equilibrium and, there-

fore, has a minimum value, as a result of whi
h the neutrinos a
quire the mass. After this

point, the mass of the neutrinos varies over time. The behavior of the neutrinos obeys the

law of 
hange of the matter depending on the s
ale fa
tor, i.e., the neutrinos energy density

varies as, ρν ∝ a−3
for a ≥ acr.

The total potential, the energy density and the pressure for the intera
tion of the neu-

trinos and the s
alar �eld are presented, respe
tively, as:

Vcouple = Vφ + φρcr

(acr
a

)3

, (10.46)

ρcouple =
φ̇2

2
+ Vφ + φρcr

(acr
a

)3

, (10.47)

pcouple =
φ̇2

2
− Vφ − φρcr

(acr
a

)3

. (10.48)

The EoS for intera
tion of the neutrinos and the s
alar �eld:

wcouple ≡
pcouple
ρcouple

=

φ̇2

2
− Vφ − φρcr

(

acr
a

)3

φ̇2

2
+ Vφ + φρcr

(

acr
a

)3 . (10.49)

The matter energy density parameter, Ωm, and the dark energy density parameter, Ωφ, are

de�ned, respe
tively, as:

Ωm(a) =
Ωm0a

−3

E2(a)
, (10.50)

Ωφ(a) =

φ̇2

2
+

Mα+4
φ

φα
+ φρcr

(

acr
a

)3

E2(a)ρcr0
. (10.51)

The �rst Friedmann's equation and the s
alar �eld equation are represented, respe
tively,

as:

H = H0

(

Ωm0a
−3 +

1

ρcr0

(

Vφ +
φ̇2

2
+ φρcr

(acr
a

)3))1/2

, (10.52)

φ̈+ 3Hφ̇+
∂Vφ
∂φ

+ ρcr

(acr
a

)3

= 0. (10.53)
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The mass s
ale, Mφ, is 
al
ulated as:

Mφ = (ναρφν)
α+1
α+4∆−α

cr T
−3α
α+4

0 , (10.54)

where ρφν is the energy density for the matter and the neutrinos-dark energy �uid at the

present epo
h; ν ≈ φcr = mν(acr)
Tcr

, where ν = α + 5/2, mν(acr) is the value of the sum of

neutrino masses at the 
riti
al point, Tcr is the value of the neutrinos temperature at the


riti
al point.

The value of the neutrinos energy density at the 
riti
al point is de�ned as:

ρcr =M3
φα

(νcr
ν

)α+1

, (10.55)

where

νcr =
(

√
2

απ3/2
νν exp−ν

) 1
α+4

(10.56)

and

∆cr =
(

√
2ννe−ν

απ3/2

) 1
α+4

. (10.57)

10.5.3 Results

We numeri
ally integrated Eq. (10.52) and Eq. (10.53). The results of these 
al
ulations are

presented in Table 10.1 and in Fig. (10.3).

α acr mν(acr) eV mν(a0) eV

10−5 0.00440 0.13366 0.13541

10−4 0.00240 0.23779 0.23853

10−3 0.00140 0.42491 0.42525

10−2 0.00070 0.79610 0.79636

10−1 0.00020 2.44842 2.44891

0.2 0.00010 5.32040 5.32085

0.3 0.00006 10.57513 10.57546

0.4 0.00003 20.02527 20.02550

0.5 0.00002 36.60875 36.60890

Table 10.1: The value of the s
ale fa
tor at the 
riti
al point, acr, the value of the sum of

neutrino masses at the 
riti
al point, mν(acr), the value of the sum of neutrino masses today,

mν(a0), depending on the value of the model parameter α.

In Table 10.1 we present the values of the s
ale fa
tor at the 
riti
al point, acr, the
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Figure 10.3: The evolution of the neutrino masses, mν , for the value of the parameter

α = 0.0001.

values of the sum of neutrino masses at the 
riti
al point, mν(acr), the values of the sum of

neutrino masses today, mν(a0), depending on the value of the model parameter, α. With an

in
rease in the value of the model parameter, α, i.e., with the strengthening of the s
alar

�eld potential: i) the value of the s
ale fa
tor at the 
riti
al point, acr, de
reases, thus, the

moment of the s
alar and fermioni
 �elds intera
tion o

urs at the earlier time; ii) the value

of the initial sum of neutrino masses and, a

ordingly, the �nal value of the sum of neutrino

masses in
reases.

The evolution of the neutrino masses for the value of the model parameter α = 0.0001

is shown in Fig. (10.3). The evolution of the matter energy density parameter, Ωm, and

the energy density parameter of the neutrinos-dark energy �uid, Ωcouple, for the value of

the model parameter α = 0.0001 is presented in Fig. (10.4) (left panel). The moment of

the matter and dark energy equality o

urs at the value of the s
alar fa
tor a = 0.75. The

evolution of the EoS parameter in the intera
tion of the neutrinos and the s
alar �eld for

the value of the model parameter α = 0.0001 is shown in Fig. (10.4) (right panel). With the

given value of the model parameter α, the s
alar �eld is very weak. Therefore, after rea
hing

the 
riti
al point, the value of the EoS parameter tends to wcouple ≈ −1.

10.6 Con
lusion

Studying the MaVaN model:

1. The analysis was 
arried out and the approximation was found for the possible values
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Figure 10.4: Left panel: the evolution of the matter energy density parameter, Ωm, and

the neutrinos-dark energy density parameter, Ωcouple, for the value of the model parameter,

α = 0.0001. Right panel: the EoS parameter, wcouple(a), depending on the value of the s
ale

fa
tor for the value of the model parameter α = 0.0001.

of the matter energy density parameter, the energy density parameter for the photons

and the energy density parameter for the �uid, whi
h 
onsists of the neutrinos and dark

energy.

2. The system of the di�erential equations, whi
h des
ribes the dynami
s of the universe in

the MaVaN model, were obtained: i) until the moment of the neutrinos intera
tion with

the s
alar �eld, ii) from the beginning of the neutrinos intera
tion with the s
alar �eld to

the present epo
h.

3. We 
al
ulated the value of the s
ale fa
tor and the value of the sum of neutrino masses at

the 
riti
al point, as well as the value of the sum of neutrino masses at the present epo
h

depending on the value of the model parameter α of the Ratra-Peebles potential.

4. In our future resear
h, we are going to test this model using various observational data.
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Chapter 11

Con
lusion

This thesis is devoted to the study of the s
alar �eld φCDM models. The detailed des
ription

of these investigations is presented below.

I. We investigated the various properties of the Ratra-Peebles φCDM model 
ompared to

the ΛCDM model:

1. We studied the dynami
s of the universe in the Ratra-Peebles φCDM model depend-

ing on the value of the model parameter α. An in
rease in the value of the parameter

α 
auses a stronger time dependen
e of the s
alar �eld, φ, its time derivative, φ̇, as

well as the EoS parameter, w, and its derivative with respe
t to the s
ale fa
tor,

dw/da.

2. We found that the Ratra-Peebles φCDM model di�ers from the ΛCDM model in

number of 
hara
teristi
s that do not depend on the value of the model parameter,

α. These 
hara
teristi
s are generi
 to the 
lass of the φCDM quintessen
e models

of the freezing type:

a) In the φCDM models, the expansion rate of the universe is always greater than

the expansion rate in the ΛCDM model.

b) The domination of the dark energy epo
h in the φCDMmodels begins earlier than

in the ΛCDM model (provided that the other 
osmologi
al model parameters are

�xed).


) The Ratra-Peebles φCDM model and the ΛCDM model di�er in their predi
tions

for the growth rate of the matter density �u
tuations in the universe: the φCDM

model predi
ts a slower growth rate of the matter density �u
tuations than in

the ΛCDM model.
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d) The value of the Linder γ-parametrization in the φCDM model in
reases with

an in
rease in the value of the model parameter α. The value of the Linder

γ-parametrization in the φCDM model is greater than in the ΛCDM model.

e) We de�ned the boundaries of the appli
ability for the Linder γ-parametrization

in the Ratra-Peebles model, z ∈ (0; 5). The appli
ability of the Linder γ-

parametrization is terminated later in the ΛCDM model than in the φCDM

model.

II. We 
onstrained the Ωm and α model parameters in the Ratra-Peebles φCDM s
alar

�eld model using various observations:

a) Applying only the observations of the growth rate fun
tion, there is a strong degen-

era
y between the model parameters Ωm and α. It means that with an in
rease in

the value of the parameter Ωm, the larger values of α parameter are allowed. In this


ase, it is impossible to �nd a 
onstraint on the value of the parameter α.

b) The degenera
y is eliminated after 
ombining the 
onstraints on the observations of

the growth rate fun
tion, the 
onstraints on the distan
e-redshift ratio of the BAO

observations and prior distan
e from CMBR.


) As a result, we obtained the 
onstraints on the model parameters in the Ratra-

Peebles φCDM s
alar �eld model: Ωm = 0.30 ± 0.04 and 0 ≤ α ≤ 1.30 at 1σ


on�den
e level. The best �t value for the model parameter α is α = 0.00.

III. We studied the s
alar �eld φCDM models: ten quintessen
e models and seven phantom

models:

1. We re
onstru
ted these models using the phenomenologi
al method developed by us.

Resulting in, for ea
h potential the following ranges were found: i) the model pa-

rameters, ii) the EoS parameters, iii) the initial 
onditions for di�erential equations,

whi
h des
ribe the dynami
s of the universe.

2. Using the MCMC analysis, we obtained the 
onstraints on the s
alar �eld models

by 
omparing the observations for: the expansion rate of the universe, the angu-

lar diameter distan
e and the growth rate fun
tion with the 
orresponding data,

generated for the �du
ial ΛCDM model.

3. We applied the Bayes statisti
al 
riteria to 
ompare the s
alar �eld models. To this

end, we 
al
ulated the Bayes fa
tor, as well as the AIC andBIC information 
riteria.
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The results of this analysis showed that the DESI data 
annot uniquely distinguish

between the s
alar �eld models under the assumption and that the ΛCDM model is

a true dark energy model.

4. We investigated the s
alar �eld models in the w0 − wa phase spa
e of the CPL-

ΛCDM 
ontours. We identi�ed the sub
lasses of the quintessen
e and the phantom

s
alar �eld models, whi
h at the present epo
h: i) 
an be distinguishable from the

ΛCDM model, ii) 
annot be distinguishable from the ΛCDM model, iii) 
an be either

distinguishable or indistinguishable from the ΛCDM model.

5. Moreover, we found that all the studied models 
an be divided into two 
lasses: the

models that have the attra
tor solutions and the models whose evolution depends

on the initial 
onditions.

IV. Investigating the MaVaN model:

1. The analysis was 
arried out and the approximation was found for the possible

values of the matter energy density parameter, the energy density parameter for

the photons and the energy density parameter for the �uid, whi
h 
onsists of the

neutrinos and dark energy.

2. The di�erential equations, whi
h des
ribe the dynami
s of the universe for the Ma-

VaN model, were obtained: i) until the moment of the neutrinos intera
tion with

the s
alar �eld, ii) from the beginning of the neutrinos intera
tion with the s
alar

�eld to the present epo
h.

3. The value of the s
ale fa
tor and the value of the sum of neutrino masses at the


riti
al point, as well as the value of the sum of neutrino masses at the present

epo
h were 
al
ulated depending on the value of the model parameter α in the

Ratra-Peebles potential.

155



Chapter 12

Future Proje
ts

The future proje
ts in
lude:

1. The study of the neutrinos in�uen
e on the large-s
ale stru
ture formation of the universe

in the MaVaN model. The investigation of the neutrinos 
lustering in the MaVaN model

in the intera
tion of the neutrinos with the s
alar �eld.

2. The investigation of the non-�at in�ationary φCDM s
alar �eld models, Refs. (Ratra &

Peebles (1995), Ratra (2017)). Carrying out the Fisher matrix analysis and more ad-

van
ed Dali matrix analysis to study these models.

3. The exploration of the modi�ed gravity models.

4. The investigation of the large-s
ale stru
ture of the universe in the modi�ed gravity

models.
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