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d0LFHOJBHO

03000 9069M39H039m0 MIBMBObLYYMOo ™Mg3H™MagogBoLoL LEgboMoOL GoMamgddo 3mMLAmMmmgo-
960 CP sbodgE®oo 890dcmg0o gohbgl Mowoooygmo dgbfim®dgogoomob @odynbEymo wmgdEmbgool
0930301 03900L omzoamobfiobgoom. dgdmbgzggzgool YdgEgbmoodo, GMgmME IMbOMMEbMOS, go-
©003%9439¢ ML 03 LozgoMHBdo MOToTMOL A\, 03d, MYIEo bgoEF®ObML L3gE0R03M0 BHIJLHPMJOOL
306bo3z0LoL, A,-b omgomobfobgoop HomImTmdl CP o®mmgg3zel gomo domyngol doobmmgdsodo.

30LIMM™aoxmo CP ©oMm03ggol @obogzogdomgdmon mgdEmbymo CP ©ommgggol § gobob-
®ob, 3obgobomgm m®mo Jodprgzggbo bJoE®obmmo gogodmmMydymo dobodomy®do bydgdlLodgd®oy-
0 LEHIbPOOFH PO JnEIMo, 03 30MMO0m, HMT 5Mb03bYmO bgoF®obmMgoo Jomom 9bgkagEH 03I
B3omobg dobol obgE30m oOg39MJONMI00 605D, V3dLMOD MmO, gobgzobomgm m®Mo F9JuH Y-
9o 6ol dJmbg 3 X 2 oMO30LgYMmo 093030L FoBH®M0EJ00. gb BHIJLBHYMJO0, bgoEB®ObML FobLg-
00l 3gbgmomgool Lo-bery gJoboBIoL omgomobHobgdom 0dmggzoob dbyoydo bgoE®obmgoobmgol
3oL FoB®0EgOL, MMIIMMNOMNGOLOE JOMO, WI3FHMbYO0 MoEbgzgol M0 JNMIYOm EOTMM3JZ0
AL = 2 @5 bymol Bmmo gobBmdomgool (d = 5) m3gmoym®ol odoEgods, 0dmggs HobolHomag-
¥Y396g0900b go3gmgool Jglodmgommool dJmbg bgoE®obmL LgdEmmMgol, godmmgmowo CP slo-
39 ®0900m. 63 Y3065L36gmgool ggbg®o®mgos Hgos A, ©o/ob A, 03g00m gOMBoMYPIMZob MbgYyg.
B0 d6™3To dMYyz0b0m00 Mg3E™agbgbtolol IEHIM YOO dbO0B0. oSO dTobo, gobBMgogdYmod
Mg dgbifogmomo gohmo ¢gJuE O Pmo bygeol dJmbg BMaogHmo oMmozoLbgnmo 093030L FoFMoE
o bohggbgooo, MMA bgoE®obmL dobymo JoF®oEgooLmgzol ghmo d = 5 MO OFHMMom gob3oMMog-
090 Hgmomol gomgomobobgos, CP obodgE®ogdolmgol godmmgmom gmhmdomyymgaob dgLfm-
9090000 9O Mo, 0dmmgzo 9Ju3g™m0dgbEMOb MO3LgddwO bgoFH®ObML LgdEm®ol dJmbg dmwgmgol
©5 0060MbYmo dLdgEHMooL LobY®Zgmo 360dzbgmMos doomHggs MIBMbobLYMoO ™MgdEmagbgbo-
Lom 3oMmE3gbo bgoEH®obmgdool dobgool JgoMJoom odomo 36033b9wm0ogdoLmgol(~Modwngbody

®930 - 107 3g30).

0000moo Bodogom LoEygzgoo: CP ommggas, Mgbmboblymo mgdEmggbgbobo, bgoE®obml do-
Lgoo o JgMg3o, MIBMMTo™0BOF0O.
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Abstract

Within the low scale resonant leptogenesis scenario, the cosmological CP asymmetry may
arise by radiative corrections through the charged lepton Yukawa couplings. While in some
cases, as one expects, decisive role is played by the A. coupling, we show that in specific
neutrino textures only by inclusion of the A, the cosmological CP violation is generated at
1-loop level.

With the purpose to relate the cosmological CP violation to the leptonic CP phase §, we
consider an extension of MSSM with two right handed neutrinos (RHN), which are degenerate
in mass at high scales. Together with this, we first consider two texture zero 3 x 2 Dirac Yukawa
matrices of neutrinos. These via see-saw generated neutrino mass matrices augmented by single
AL = 2 dimension five (d = 5) operator give predictive neutrino sectors with calculable CP
asymmetries. The latter is generated through A, ; coupling(s) at 1-loop level. Detailed analysis
of the leptogenesis is performed. We also revise some one texture zero Dirac Yukawa matrices,
considered earlier, and show that addition of a single AL = 2, d = 5 entry in the neutrino
mass matrices, together with newly computed 1-loop corrections to the CP asymmetries, give
nice accommodation of the neutrino sector and desirable amount of the baryon asymmetry via

the resonant leptogenesis even for rather low RHN masses(~few TeV — 107 GeV).

Key Words: CP violation, resonant leptogenesis, neutrino mass and mixing, renormalization.
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1 Introduction

Problem of neutrino masses and generation of the baryon asymmetry of the Universe, together
with the dark matter problem and naturalness issues, call for some reasonable extension(s) of the
Standard Model (SM). Perhaps simplest and most elegant simultaneous resolution of the first two
puzzles is by the SM extension with the right handed neutrinos (RHN). This, by the AL = 2 lepton
number violating interactions generates the neutrino masses via celebrated see-saw mechanism |[2],
[3], accommodating the atmospheric and solar neutrino data [4], and gives an elegant possibility
for the baryogenesis through the thermal leptogenesis [5] (for reviews see Refs. [6-8]).

Motivated by these, we consider the minimal supersymmetric standard model (MSSM)EI aug-
mented by two degenerate RHNs. Note that the degeneracy in the RHN mass spectrum offers an
elegant possibility of resonant leptogenesis [9-11] (see |12-18] for recent discussions on resonant
leptogenesis). This framework, as it was shown in [1,/16,|19], with specific forms of the Yukawa
couplings, allows to have highly predictive model. In particular, in [20] all possible two texture zero
3 x 2 Dirac type neutrino Yukawa couplings have been considered. Those, via see-saw generated
neutrino mass matrices augmented by a single d =5, AL = 2 operator, gave consistent neutrino
scenarios. As it was shown, all experimentally viable cases allowed to calculate the cosmological
CP violation in terms of a single known (from the model) leptonic phase (5E] In the subsequent
work [16], the quantum corrections, primarily due to the A, Yukawa coupling, have been investi-
gated and, confirming earlier claim of Refs. |2§|, it was shown that the cosmological CP asymmetry
arises at 1-loop orderﬁ Demonstrated on a specific fully consistent neutrino model [16], this was
shown to work well and opened wide prospect for the model building for the low scale resonant
leptogenesis.

Starting with the two RHN’s we investigate texture zero 3 x 2 Dirac type Yukawa couplings,
which lead to the neutrino mass matrices with zero entries. On top of this, we augment the
Lagrangian couplings with a single AL = 2 lepton number violating d = 5 operator, which allows to

keep some predictions and, at the same time, makes some mass matrices experimentally acceptable.

! This setup with the SUSY scale Mg ~ few TeV guarantees the natural stability of the EW scale.
2The approach with texture zeros has been put forward in [21], which successfully relates the phase § with the

cosmological CP asymmetry [1,/16L{19}-27].
3Studies of |1] included only \,’s 2-loop effects in the RG of the RHN mass matrix, which give parametrically

more suppressed cosmological CP violation in comparison with those evaluated in [16].



It turns out that only three Yukawa textures (out of nine) possess cosmological CP phase which we
relate to neutrino CP ¢ phase. All experimentally viable neutrino mass matrices lead to interesting
predictions, which we investigate in detail.

Next, we give detailed and conscious derivation of the loop induced leptonic cosmological CP
violation showing the necessity of inclusion of the charged lepton Yukawa couplings. Proof includes
analytical expressions and is extended by inclusion of the A, coupling which as it turns out in specific
neutrino scenarios is the only relevant source of the cosmological CP violation within considered
scenarios with the RHN masses < 107 GeV. We apply obtained result to specific neutrino textures.
While in Refs. [1,|19,[21-27] the textures relating the cosmological CP violation to the leptonic
0 phase (being still undetermined from the construction) have been discussed, in [20] we have
proposed models, which not only give such relations, but also predict the values of the ¢ (the
leptonic Dirac phase) and p; 5 (two leptonic Majorana phases) and consequently the cosmological
CP violation. From the constructions of |20] we consider viable neutrino models built by two
texture zero 3 x 2 Yukawa coupling generated see-saw neutrino mass matrices augmented by the
single AL = 2, d =5 operator. For all these neutrino models, applying obtained all relevant
corrections, we investigate the resonant leptogenesis process based on the procedure first described
and performed in [17,/18|. Along with the cases where crucial is A\, coupling, we have ones for
which the leptonic asymmetry originates due to the )\, Yukawa coupling. For the first time such
possibility was presented in [17,/18]. We also revise textures of [1| and consider their improved
versions by addition of single d =5 entry to the neutrino mass matrix, making them consistent
and also viable for the baryogenesis. The details of the calculation of the contribution to the
leptonic asymmetry from the right handed sneutrino decays are given as well. These include new
corrections corresponding to the muon lepton soft SUSY breaking terms. Also, refined and more
accurate expressions for the decay widths and absorptive parts, relevant for the CP asymmetries,
are used.

Although in this work we are using the results of the loop induced cosmological CP violation
(summarized in section [3.1]and in Appendixes[A] [B) for specific texture zero models, the application
can be extended to any model with two (quasi) degenerate RHNs.

The thesis is organized as follows. In section [2.1] after defining the setup with two degenerate

RHNs, we list all possible Two Zero 3 x 2 Yukawa Textures and point out those with inherent,



unremovable complexity. In section using complex Yukawa textures we build Neutrino mass
matrices and augment them with ds operator mass terms. In section [2.3| we classify and analyze
experimentally viable neutrino mass matrices with one and two texture zeroes and make predictions.
In section [2.4] we relate cosmological CP and ¢ phases in two texture zero neutrino mass models
and calculate the cosmological CP violating ¢ phase in each case.

In section we give details of the calculation of the loop induced cosmological CP violation.
Mainly we follow the method of Ref. |16] proving inevitable emergence of the cosmological CP
violation via charged lepton Yukawas at 1-loop level, confirming earlier result of |28] (which took
into account A, coupling). We also include the contribution due to the ), which had not been
considered before publication of [17,/18]. In section , with the updated neutrino data, we give
updated results of the two texture zero neutrino mass models which are highly predictive and
determine cosmological CP violating phases in terms of the ¢ phase. In section [3.3] applying results
of the previous sections we determine cosmological CP violation for each considered model and use
them for calculating of the baryon asymmetry. The latter is generated via resonant leptogenesis.
We demonstrate that successful scenarios are possible for the low RHN masses (in a range few
TeV — 107 GeV). In section we revise textures of Ref. [1] and make model improvements of
the obtained neutrino mass matrices by adding the single AL = 2, d = 5 mass terms to certain
non-zero entries (in a spirit of Sect. [3.2). This makes the neutrino scenarios compatible with
the best fit values of the neutrino data [4] and also proves to blend well with the leptogenesis
scenarios. We stress that in the P, neutrino texture scenario (discussed in Sect. and also
in the texture By’ (considered in Sect. , for successful leptogenesis to take place crucial role
is played by the A, Yukawa coupling which via 1-loop correction generates sufficient amount of
the cosmological CP asymmetry. Such possibility had not been considered in the literature prior
to [17,/18]. (The general expressions for the corresponding corrections are presented in Sect. .
Sect. includes discussion and outlook where we also summarize our results and highlight some
prospects for a future work. Conclusions are given in Sect. [4 In Sect. [6] we stress significance of
the main scientific results presented in the thesis, their novelty and relevance to particle physics and
cosmology. Sect. [] consists in the information provided in Sect. [6] and translated into Georgian.
Appendix |Al includes some expressions, details related to the renormalization group (RG) studies

and description of calculation procedures we are using. In Appendix [B| the contribution to the



net baryon asymmetry from the decays of the scalar components (RHS) of the RHN superfields is
considered in detail. These analyses also include new corrections due to A, and corresponding soft
SUSY breaking trilinear A, coupling (besides \;, A, and other relevant couplings). In Appendix
[C] we highlight and discuss some key concepts of Baryogenesis.

2 Neutrino Mass Matrices from Two Zero 3 x 2 Yukawa Tex-

tures and Minimal d = 5 Entries

2.1 Two texture zero 3 x 2 Yukawa matrices: 27,Y3,’s

Let us consider the lepton sector of MSSM augmented with two right-handed neutrinos N; and Nj.

The relevant Yukawa superpotential couplings are given by:
. 1
Wiept = We +W,,, W, =1"Y58chy, W, =1"Y,Nh, — §NTMNN, (2.1)

where hy and h, are down and up type MSSM Higgs doublet superfields respectively. N, [, e°

denote:

N
N = (N1>, 17 = (I, 1y, 15), T = (e5,¢5,€5). (2.2)
2

In the next section, upon deriving the neutrino mass matrices, together with couplings of Eq.
([2.1), the single d = 5 operator per the neutrino mass matrix will be applied. Because of this, in
comparison with the approach considered in [1], more two texture zero Y, Yukawa matrices will
be compatible with the current experiments. We will work in a basis in which the charged lepton

Yukawa matrix is diagonal and real:
Y42g = Diag(Ae, Ay Ar). (2.3)

As far as the RHN mass matrix My is concerned, we will assume that it has the form:
0 1
My = M. (2.4)
10

This form of My is crucial for our studies, since (2.4) at a tree level leads to the mass degeneracy
of the RHN’s, it has interesting implications for resonant leptogenesis [1,[19] and also, as we will

see below, for building predictive neutrino scenarios. In a spirit of [1], here we attempt to classify

4



specific texture zero scenarios with degenerate RHN’s which lead to predictions consistent with ex-
periments. The matrix Y, contains two columns. Since due to the form of My there is an exchange
invariance N7 — No, Ny — Ny, it does not matter in which column of Y, we set elements to zero.
Thus, starting with the Yukawa couplings, we consider the following nine different 3 x 2 Yukawa

matrices with two zero entries:

x 0 x 0 X X
=1 x 0|, Th=]| x x |, T3=| x 0 |,
X X x 0 x 0
0 0 x 0 x 0
Iy=1 x x|, Is=]1 0 x |, Tse=| x x |,
X X X X 0 x
X X X X X X
T:r=10 0], Ts= x 0 |, Ta=] x x [, (2.5)
X X 0 x 0 0

where " x"s stand for non-zero entries. Next, we factor out phases from these textures, in such a
way as to make maximal number of entries be real. As it turns out only T4, T7 and Ty will have

unfactorable phases. The latter should be relevant to the lepton asymmetry.

TEXTURE Ty

Starting with 77 Yukawa matrix, we parameterize it and write in a form of factored out phases:

ap e’ 0 e 0 0 a; O ‘
' ' e’LUJ 0
T\ = | age’ 0 =10 e¥ 0 as 0 ], (2.6)
. 4 . 0 e*
aze'  bse'P3 0 0 e7 az bs

with
w=ptaz—Pf wT=ar+B-az3—p, y=axtfz—az—p, z=P3—0p. (2.7)

where a;, b and all phases are real. Below, in a similar way, we write down the remaining Yukawa

textures given in Eq.(2.5).



TEXTURE T5

a, et 0 e 0 0 a; O '
. ‘ . e 0
Ty = | ae™® by | =10 e¥ 0 as by ],
A A 0 e”
ase'™? 0 0 0 e as 0
with
w=ptay—Pf, z=1+B—a—p, y=P0—p, z=az3+fr—ay—p.
TEXTURE T3
a;er  byett e 0 0 a; b ‘
A A elw 0
T = | age’™ 0 =10 e¥ 0 as 0 E
. . 0 e”
aze'™? 0 0 0 ¥ as 0
with

w=p+tor =01, v=—p, yY=ar—a1+p—p, z=az3—a+p —p.

TEXTURE Ty
0 0 e 0 0 0 0 .
A , . e“ 0
Ty= | ae™® by’ | =10 e¥ 0 as by ],
. . . , 0 e”
aze’®  bse'’s 0 0 e as bse™®
with

w=ay—Pa+p, y=Ppr—p, z=az—ar+pPr—p, ¢=0ay—az+Ps— [

TEXTURE T3
ae 0 e 0 0 a, 0 ,
. . piw 0
T5 - 0 bg@zﬁQ - 0 e¥ 0 0 b2 ) y
. , . 0 e”
aze’  bse' 0 0 e7 az b3
with

w=ptaz—Pf rT=ar+B—-—az—p, y=Pp—p, z=p0—p

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



TEXTURE Tg

a, e’ 0 e 0 0 a; O '
) 4 . e 0
To = | age™™ b | =10 e¥ 0 as by ],
A A 0 e*”
0 bgelﬁ?’ 0 0 e¥ 0 b3
with
w=ptay—[f, v=a1+Bh—ar—p, y=p—p, z=p—p
TEXTURE T~
aje®r  be e 0 0 a; by )
e“ 0
17 0 0 0 e¥ 0 0 0 )
A ‘ , 0 e
aze’®  bse'’s 0 0 €7 as bge'
with

w=p+oa—pF, x=p—p,

TEXTURE T3
a;e'  betth e 0 0 a, b ‘
A A ew 0
T3 = | age’ 0 =10 e¥ 0 as 0 ],
4 , 0 e
0  bse'® 0 0 ¢* 0 by
with

w=pt+tar—pF, z=5—p, y=oax—ar+pB—p z2=P3—p.

TEXTURE Ty
a;e'  bett e 0 0 a; b ,
. , , , e 0
Ty = | age™®  bye'?? 0 e¥ 0 ay  bye'® 1,
, 0 e¥
0 0 0 0 e~# 0 0
with

w=o—b+p, Tz=0—p yY=ax—a1+b—p, o¢=0a—PF —a+ P

z=a3—a1+ B —p, =01 —az— B+ P

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

The phases x,y and z can be eliminated by proper redefinition of the states [ and e¢. As far as the

phases w and p are concerned, because of the form of the My matrix (2.4)), also they will turn out to

7



be non-physical. This is the one main difference of our construction from the scenarios considered

earlier [26]. As we see, in textures Ty, T7 and Ty there remains one unremovable phase ¢ (i.e. in

the second matrices of the r.h.s of Eqs. (2.12]) (2.18]) and (2.22)) respectively). This physical phase

¢ is relevant to the leptogenesis [1] and also, as we will see below, it will be related to phase 4,

determined from the neutrino sector.

2.2 Neutrino mass matrices derived from 27;Y3,’s and one d = 5 operator

Integrating the RHN’s, from the superpotential couplings of Eq. (2.1]), using the see-saw formula,

we get the following contribution to the light neutrino mass matrix:
M5 = —(h9)2Y, MY L. (2.24)

For Y, in ([2.24)) the textures T; listed in the previous section should be used in turn. All obtained
matrices M;?, if identified with light neutrino mass matrices, will give experimentally unacceptable
results. The reason is the number of texture zeros which we have in 7; and My matrices. In order

to overcome this difficulty we include the following d = 5 operator:

(j 15
0} = %liljhuhu (2.25)

where ds, 25 and M, are real parameters. For each case, we will include a single term of the type of
Eq. . The latter, together with will contribute to the neutrino mass matrix. This will
allow to have viable models and, at the same time because of the minimal number of the additions,
we will still have predictive scenarios. The operators can be obtained by another sector in
such a way as to not affect the forms of T; and My matrices. We comment about this in Sect.
3.5 Here, we just consider operators without specifying their origin and investigate their

implications. Recall that, in the previous section, we have written the Yukawa textures in the form:
Y, = PY,)'Ps, (2.26)

where Py, P, are diagonal phase matrices and Y# is either a real matrix or contains only one phase

(for Ty, Tr and Ty). Making the field phase redefinitions:

I'=Pil, N =P,N, () =Pje with P; = Diag(e™, e", e”), P,=Diag(e™, e”) (2.27)



the superpotential coupling will become:

. 1
W, = ()'Y3e (e hy, W, = (I)'YEN'h, — 5(J\f’)TM;VN' (2.28)
with:
0 1) - - .
My = M, M= @)y (2.29)
10

Now, for simplification of the notations, we will get rid of the primes (i.e. perform !’ — [, e? — €°,...)
and in Eq. (2.24) using Y# instead of Y,,, from different T} textures we get corresponding M5*, and
then adding the operator ([2.25)), obtain the final neutrino mass matrix.

From textures 7T} 3 we obtain:

0 0 a1bs 0 a1by 0 2a1b1  agby asby
Mpr =1 0 0  aghs | M, Mg, = | ajby 2asby asby | M, Mpy =] asby 0 0 [|m,
a1bs asbs 2asbs 0 asby 0 asb; 0 0
(2.30)
where m = —(h0)2/M. Tt is easy to verify that adding one d = 5 operator mass term to any entry

of these mass matrices will not make them experimentally acceptable. Thus, discarding them we

move to the remaining textures.

From texture Ty:

0 0 0
MT4 =10 2@2()2 a3b2 + CLQb3€i¢ m. (231)
0 a3b2 + agbgei‘b 2a3b3€i¢

Adding the d = 5 operators to zero entries of this matrix, we will get three different neutrino mass
matrices. Therefore, addition of type term will be performed in the (1,1), (1,2) and (1,3)
entries respectively. Since the phase x in Egs. , is undetermined, we can shift the
phase of state [; in such a way as to match the phase of the operator with the phase of m.
Thus, this addition will not introduce additional phases inside the neutrino mass matrices. They

will have forms:



ds 0 0

Mz = | o 2a2b; asby + axbse™ | m, (2.32)
0 &3b2 + G,ngeid) 2a3b36i¢
0 ds 0

M7(1112) = d5 2a2b2 agbz + a2b362¢ m, (233)
0 a3b2 + a2b3€i¢ 2a3b3€i¢
0 0 ds

Mgg) =10 2020, azby + asbze™ | m, (2.34)

ds asby + asbse™® 2asbse™®
where dj is a real parameter: ds = J5A7[ /M,. By similar way, we will get the other neutrino mass
matrices using the remaining Yukawa textures. Also, one can make sure that for those remaining
cases there are undetermined phases [see Eqs: —] and their proper shift can match the
phase of the term (2.25) with m. Therefore, below, without loss of any generality we can take the

parameter ds (in the neutrino mass matrices) to be real.

From texture Tk:

0 a1b2 CL1b3
MT5 = (Ilbg 0 agbg (235)

albg CL3b2 2&3[)3

S

a1b3 a3b2 2&3[)3 albg a3b2 2@3[)3

From texture Tj:
0 CL1b2 albg
MT6 = a1b2 2&2()2 CLng m. (237)

a1b3 a2b3 0

0 albg a1b3 d5 Cllbg Cleg

Mgg): aiby 2axby ashs | M, M}il)z arby 2asbs  ashs | m. (2.38)

ds aiby aibs aiby  aibs
(11) — (22) _
MT5 = aby 0 asby m, MT5 = arby ds  asby . (2.36)

aq bg a2b3 d5 albg CLng 0

10



From texture 17:

2a1b; 0 asb, + abse™®
Mz, = 0 0 0 m.
asb, + a1bse’® 0 2a3bse™®
2a1b; 0 asby + a1bse™®
M = 0 ds 0 m
asby + a1bse™® 0 2a3bse’®
2a,b; ds asby + abse™®
MY = ds 0 0 m
asby + a1bse™® 0 2a3bse’®
2a,b; 0 asby + abse™
MY = 0 0 ds m.
asby + a1bse™®  dj 2a3bse™®
From texture Tg:
2a1b; asb, aibs
Mrp, = | asby 0 agbs | M.
arbs asbs 0
2a1b1  asb1 aibs 2a1b;  asby
Mgm - asby ds agbs | M, M:(rig) = asby 0
arbs  asbs 0 a1bs  asbs
From texture Ty:
2a1b; ashy + a1bee™® 0
Mz, = | ayb; + aibye™® 2a5by€™ 0| m.
0 0 0
2a1b; ashy + a1bee™®  ds
M;%?’) = | aghy + a;bye™® 2a5bye™? 0|m
ds 0 0
2a,by asby + arbye®® 0
MEY = | agby + arhye™®  2anboc®  dy |
0 ds 0

11

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)



2a,b; asby + arbye’® 0
Mgg) = | agby + arbae® 2a3bye 0 | m. (2.48)

0 0 ds
We have shown that only Ty, T7 and Ty 273Y35’s give rise to complex mass matrices and that
complexity, i.e. phase ¢ in the lepton mixing matrix, arises through — from complex 27,Y35’s

— and not from an x5 phase.

2.3 Analyzing neutrino mass matrices

Since we are working in a basis of a diagonal charged lepton mass matrix, lepton mixing matrix U

entirely comes from the neutrino sector. Therefore, the following equality holds:

, .
M, = PU*P M%sy+p (2.49)
where
Mdiag _ P = Di w1 wa L iw3 P/ — Di 1 ip1 ip2 2.50
1% = (my, mg, m3), = Diag(e™?, €' e'“?), = Diag(1, e, e'?) (2.50)
,'5
C13C12 C13512 sz’
_ i i§
U= | —co3s12 — S93513¢126°  C23¢12 — S23513512€" S23C13 (2.51)
) )
593512 — C23513C12€" —593C12 — C23513512€" C23C13

where m; denote neutrino masses. U given in Eq. is the standard parametrization used in
the literature (see for instance [29,30]). The relation turns out to be convenient and useful
for neutrino mass matrix analysis. Numerical values of oscillation parameters both, for normal
(NH) and inverted (IH) hierarchies can be found in [31]. Thus, for these mass orderings we will use

the following notations:

For normal hierarchy (NH):

2 9 2 2 9 2 _ 2 2 2 _ /. 2 2
Amg, =m; —mi, Amg,, =m;—m;, My = \/m3 — Amg,,, — Amz,, mo =\/m5— Amz,,

(2.52)

For inverted hierarchy (IH)

2 9 2 2 9 2 _ 2 2 2 /.2 2
Amg,,, =my —m3z, Amiy,=m;—my, my= \/m3 + Amgy, — AmZ,,  me = /m3;+ Amg,,

(2.53)

12



2.3.1 Types of neutrino mass matrices

Complex 3 x 3 Majorana type neutrino mass matrices with more than two independent zero entries
are all excluded by current experiments. As it turns out, experimental data also exclude the
possibility of real neutrino mass matrices with two independent zero entries. This was noticed earlier
upon studies of the texture zero neutrino mass matrices [21,32-34]. Therefore, experimentally viable
neutrino mass matrices, from our 3 x 2 Yukawa textures (listed in Sect. should be produced by
Ty, ..., Ty giving either neutrino mass matrices with two independent zero entries and the complex
phase, or the one zero entry real neutrino mass matrices (via textures T5, Tg, Ty and one d=5b

operator). Two zero entry complex neutrino mass matrices (we have obtained) have forms:

0 x 0 0 0 x x 0 x x x 0
PP=] x x x|, A= 0 x x|, B=]10 0 x|, PhP=] x x x
0 x X X X X X X X 0 x 0

(2.54

These types of textures correspond to the following mass matrices, we have obtained:
Py-type: M:(Ff), Ps-type: Mgf), Ps-type: M:(Fzg), Py-type: Mgd)

As far as the one zero entry neutrino mass matrices are concerned we are getting the following

types of real mass matrices:

0 x X X X X X X X
Ps=]1 x x x|, B=| x 0 x|, =] x x x [ (2.55)
X X X X X X x x 0

Also here, we indicate the correspondence of P; ¢~ textures to the appropriate neutrino mass ma-

trices we have obtained: Ps-type: M:(F?), Mgg), Ps-type: M:(Fil), Mg?’) and Pr-type:
(11) (22)

My, Mgp™.

2.3.2 Predictions from P, 334 type neutrino mass matrices

Here we analyze neutrino mass matrices with two independent zero entries. As we will see, for each

case we will get several predictions.

13



TYPE P,
Structure of the P, in Eq.(2.54) imposes the following conditions: MY =0 and M£1’3’:0, which

taking into account (2.49)-(2.51)) give the following relations:

mi o mso o i 2 i
_ _ 4 1 __ i(p2+26)
Clo + — 5879 = —t15€ (2.56)
ms ms

and

my mo ; i mi mo ;

— [ = = 2671 ) ty3819019 — 513672 4 s13e7 0 [ —2, + ——= 52 ) =0 (2.57)
12 12
ms ms ms ms

Using ([2.56)) in the last term of (2.57) we obtain:

my ma . .
(_1 - —262’)1) tazsiacia + 5136 P20 4 5512620 = (2.58)
ms M3
which gives:
mys13(1 4 t15) = [my — mae™ [tazs12¢1 (2.59)

while from Eq. (2.56) we have:

matly = [micly + masiye™|. (2.60)

We can exclude phase p; from (2.59)) and (2.60)) to obtain:
m3 (s + s cotas(1 +t1)%) = micl, + misty (2.61)

From which, based on recent experimental data 31| inverted hierarchical pattern (IH) is excluded.

For normal hierarchical neutrinos from (2.61)), with (2.52)) we get

2 2 2
2 _ ATnatm + A/'nsolCIQ
ms =

- 5%3 COtg3(1 + t%:a)z - #113.

(2.62)

Using sin® fy3 = 0.49, the best fit values for the remaining mixing angles [31] and also the best fit

values for the atmospheric and solar neutrino mass squared differences:

Am?,, =0.002382 eV?, Am2,=7.5x 107" eV? (2.63)
from (2.62)) we obtain for NH:
my = 0.00613 eV, my = 0.0106 eV, m3 = 0.0499 eV. (2.64)

14



Using these, from (2.60)) we predict:

244 2 4 2.4
m3lis — MiCiy — M557y

cos p; = = p1 = £3.036, (2.65)

2 o2

while from (2.56) and (2.58) we have:

§ = arg[mic2, + mas2,e'] — arg[my — moe'],
12 12

pa = £ — arg[micly + mosi,e] + 2arg[m; — moe™]. (2.66)
With numbers given in (2.64) and (2.65]), from (2.66|) we obtain:

0 ==+0.378, p1 =+£3.036, ps==£2.696, mgs =0, (2.67)

where the neutrino-less double beta decay parameter mgg is determined as: mgg = |miciycy +

Mae'? 2,523, + maei?? s2,¢%9|. We summarize our results in Table [1]

o P1 P2 works with
NH, sin? 53 = 0.49 and best

0 = £0.378 | p1 = £3.036 | po = £2.696 | fit values for remaining oscillation parameters,
(m1, me, m3) = (0.00613,0.0106,0.0499), mgs = 0

Table 1: Results from P; type texture. Masses are given in eVs.

TYPE P,
In this case M"Y = 0 and M =0 and together with Eq. 1' the following relation holds:

mp Mg i(pa+6 —is (T o mz o
— [ — — —=€"' ] 819¢10 + 813t2361(p2+ ) — Sigloge™ " | —ciy + —57"* | = 0. (2.68)
mg mg msg ms

Using ([2.56]) in the last term of (2.68]) we obtain:

- (_1 - _26%) S12C12 + S13t23€" 20 + s13ta3t T, 2T = 0 (2.69)
ms ms
which gives:
m3813t23(1 + t%3) = |m1 — mgeim |812612. (270)

Excluding phase p; from Egs. (2.70)) and (2.60)[which is derived from Eq.(2.56)), i.e. the condition
MY = 0] we obtain:

mzz’,(tils + 3%3@3(1 + t%3>2) = m%c?z + mgS%Q (2.71)
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Last relation makes obvious that the IH case is excluded. On the other hand, for NH neutrinos,

from (2.71)), with (2.52)) we get:

Am?,  + Am?
m§:1_2t21 R T (2.72)
sisl33(1 + 113)* — 113

After finding the value of m3 and remaining masses,
(ma, ma, ms) = (0.00501, 0.01,0.04982) eV.. (2.73)

Egs. (2.68) and (2.69)) allow to calculate the phases:

24 _ 2 _ 2
cos p; = M3t mlclg 2m2512 = p1 = F2.828, (2.74)
§ = + arglmc, + mastye™] — arglm — mac®],
pa = F — arg[mycly + maosi,e”] + 2arg[m; — moe™]. (2.75)
Using the best fit values of measured parameters [31] for NH we obtain results

§=+1.924, p=F2.828, po=FL715, mygs =0, (2.76)

which are summarized in Table 2}

) 1 P2 works with
NH and best fit

0==41.924 | py = F2.828 | py = F1.715 values of oscillation parameters,
(m1, mg, m3) = (0.00501,0.01,0.04982), msg = 0

Table 2: Results from P, type texture. Masses are given in eVs.

P, and P; neutrino textures were studied in [33-39]. Our analytical expressions, allowing thorough
investigations, are compact and exact. To analyze the textures P; and Pj it is convenient to note,
that equation Mﬁ"’j) = 0 can be written as: Ay X mqe™' + A3 X mge®?? = A; x m;. When two mass

matrix elements are equal to zero we have a pair of similar equations which we write in a matrix

AQ A3 mgeipl _ A1m1 (2 77)
B, Bg m3eip2 Blml ‘ ‘

form:
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From these equations we have:

1

1

=~ (B3A — A3B 2=~ (AyB) — BA 2.78
moé€ A, B, —AgBQ( 341 3 1)m1, mse A, Bs —Ang( 21 2 1)m1 ( )
or,
2 |B3A1 - ASBl|2 2 ‘AZBl - B2f41‘2
_ — 2.79
b | A2 B3 — ASB2’2m17 . | A2 B3 — A332\2m1 (2.79)
and
Amsol |B3A1 — A3B1|2 — |A2B3 — A3B2|2 (2 80)
j:Amatm |A2B1 — BQA1|2 — |B3A1 — A3B1|27 '

where "+" and "-" signs correspond to normal and inverted hierarchies respectively. Eq. (2.80) is
the relation for calculating the value of 4. At the same time (after knowing the §), from Eq. (2.79))
and (2.52))/(2.53) the neutrino masses can be calculated. After these, with relations in Eq. ([2.78])

the phases p; and p, can be found. Below, we use this procedure for the textures P; and Pj.

TYPE P

For this case we have:

Al:_UiklUi[Qa Ay = U12U2Tza Az =

U13U32> Bl =

~Us\Uly, By =UsUly, By =UsUl,

and using these in Eqgs. (2.78)-(2.80]), for NH and IH neutrino mass ordering, we get results which

are summarized in Table Bl

o P1

P2

works with

§ = £1.547 | p1 = £0.0615 | py =

F3.098

NH and best fit values
of oscillation parameters,
(M1, my, m3) =
(0.07213,0.07265, 0.08752),
mgap = 0.0726

§ = £1.579 | py = F0.0998 | py =

+£3.0726

IH and best fit values
of oscillation parameters,
(my1, my, m3) =
(0.07195,0.07247,0.05294),
mgap = 0.0716

Table 3: Results from Pj type texture. Masses are given in eVs.
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TYPE P,

For this case we have:
A = _U1*1U1T3> Ay = U1*2U2T37 Az = U1*3U?J>r?n By = _U§1U1T3v By = U§2U2T37 B3 = U§3U§3-

For this case NH works with sin? 6,3 larger by 1o from the best fit value. However, IH case requires
a lower value of sin? 3. Using above relations in Egs. (2.78)-(2.80), for NH and IH cases we get

results which are summarized in Table [l

o 1 P2 works with

NH and sin? fs5 = 0.51 and best fit values
for remaining oscillation parameters,
0 = £1.575 p1 = F0.0127 | po = £3.133 (my1, ma, m3) =
(0.171701,0.171919,0.1787),
mpg = 0.1719
IH and sin® fy5 = 0.495 and best fit values

for remaining oscillation parameters,
0 ==+£1.5705 | p; = £0.00622 | ps = F3.137 (my1, ma, m3) =
(0.2513,0.25145, 0.2465),

mgag = 0.2512

Table 4: Results from P, type texture. Masses are given in eVs.

Our results for the textures P and P, are compatible with ones [33//40], obtained before[]

2.3.3 Predictions from real one zero entry neutrino textures - P;; 7

Now we turn to the analysis of the one texture zero neutrino mass matrices we have obtained in
Section . They fall in the category of the Ps¢7 type mass matrices given in Eq. (2.55). One
texture zero neutrino mass matrices were investigated in [41-45]. In our construction, these mass

matrices are real. This makes them more predictive.

TYPE P

4Some of these works used the earlier experimental data. We have made sure, that with those inputs, we would

get similar results.
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In this case, our construction implies ¢=0 and all elements of the lepton mixing matrix are real (i.e.
0=0 or 7). Therefore, together with MP=0 we have to match phases of both sides of Eq..
This turns out to be impossible for p;, po not equal to either 0 or 7 , because we have only three
free phases w;23. Thus, it turns out that only normal hierarchical scenario will be allowed with

0 = 0 or w. With these, and from the condition MV(M):O, we get

1
m my \ 2
2 1162 2 41
tan 013 = (—0102812— - 02012—> , (2.81)
ms ms

where ¢; and ¢ stand for cos p; and cos py respectively. This relation can be satisfied by special
selection of the neutrino masses and p; o = 0 or 7. Since two mass square differences are fixed from
the neutrino data, only one free mass is available, which we choose to be mg. The latter is tightly
constrained via Eq.. Thus, the model predicts three neutrino masses and the phases. For the

best fit values of the oscillation parameters [31] for NH we obtain solutions:

my = 0.002268 eV, my = 0.008952 ¢V, m3 = 0.04962 eV,

with mgg =0, =0 or m, pr=m ps=0 (2.82)

and

my = 0.010677 eV, my = 0.006245 eV, m3 = 0.04996 eV,
with mgg=0, 0=0 or w, pr=m py=m. (2.83)

By the similar analysis, we can easily make sure that inverted hierarchy is not allowed within our

construction for this Ps type texture.

TYPE B

For this case, the condition M3 =0 gives the following expression for 6;s:

023823813(m201 - ml)
2 2 2 2 2
M1Cy3 + M2S33873C1 + M3553C13C2

tan ‘912 =

2 2 o2 — 2 _ 2 2 2 2 2 2 2 2 2 2
+ \/023323313(m201 m) (micyz + Mass3sisct + M3S53Ci3Ce) (M1553513 + Macisc1 + M3S53C13Co)

2 2 o2 2 .2
(2.84)
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where, ¢; and ¢y stand for cosp; and cos ps respectively. S;3 = +s13 and a "+" corresponds to
0 =0 and a "-" sign to 6 = 7. So, this equation will include all cases. Some cases work with the
best fit values (BFV) of the oscillation parameters [31], while some cases work only with deviations
from the BFV. We will allow some of these parameters to vary within a 30 range. Results are

summarized in Table B

ol p|p1| pe works with
ol 1ol » [H, by best fit values of oscillation parameters,
(my, me, m3) = (0.07613,0.07662, 0.0585), mgzs = 0.0733
ol . IH, by best fit values of oscillation parameters,
(mq, ma, m3) = (0.07635,0.07684, 0.05878), mgz = 0.07354
ol -1l ol & NH, by best fit values of oscillation parameters,
(m1, mg, m3) = (0.06353,0.06412,0.08058), mzs = 0.06056
S . NH, by best fit values of oscillation parameters,
(mq, me, m3) = (0.06315,0.06374, 0.08028), mzs = 0.0602
I I [H, by best fit values of oscillation parameters,
(my, me, m3) = (0.05735,0.058,0.03024), mszs = 0.02246
ol ol +1 o [H, by best fit values of oscillation parameters,
(m1, ma, m3) = (0.04879,0.04955,0.002516), mszs = 0.0185
N I I I NH, sin? 615 = 0.0218, sin’ fo3 € [0.382,0.4], ms3 € [0.12,0.3], sin? 15 = [0.27,0.297],
mgp € [0.052,0.14], > m; € [0.34,0.9]
N IH, sin? 6,3 = 0.0218, sin® fy3 € [0.552, 0.644], ms € [0,0.002], sin? 1, = [0.313, 0.344],
mgs € [0.0146,0.0176]

Table 5: Results from Py type texture. "p" stands for a sign of a square root in (2.84)). Masses are

given in eVs.

TYPE F;

For this case, the condition M3 =0 gives:

023823813(m1 - m201)
2 2 2 2 2
M1S53 + MaC33873C1 + M3C53CT3C2

tan ‘912 =
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+ V33853573 (M1 — macy)

2 _ 2 22 2 2 2 2 3 )
(M1835 + MaC33575C1 + M3C53C5452) (M1C358T5 + Mas35¢1 + M3C54C55C2)

2 2 2 2 2
M1853 + MaC33573C1 + M3C53CT13C2

(2.85)

Notations here are similar to those for case Py [see comment after Eq. (2.84)]. Results are summa-
rized in Table [ As above, we have used data from Ref. [31].

ol p | p1| pe works with
[H, by best fit values of oscillation parameters,
O|+| m| O
(my, ma, m3) = (0.9997,0.10034, 0.08729), mgz = 0.04

0 0 IH, sin? 6,3 € [0.389,0.487], and bfv for remaining osc. parameters,

- s

mg € [0.04496, 0.4138], mgz € [0.064,0.398], > m; € [0.178, 1.25]
IH, by best fit values of oscillation parameters,
7|+ | 7] 0
(my, mg, m3) = (0.05004,0.05078,0.01142), mgp = 0.019
TH, sin? 653 € [0.389, 0.448], sin? 015 = [0.325, 0.344]
T+ | | 7
and bfv for remaining osc. parameters, ms € [0,0.001379], mgs € [0.0146,0.0165]
0 IH, sin?fy3 € [0.389, 0.488], and bfv for remaining osc. parameters,
T - 7
mg € [0.04473,0.6183], mgsz € [0.064,0.59], > m; € [0.178,1.86]

0 0 NH, sin® 63 € [0.621,0.643], and bfv for remaining osc. parameters,

+ |

mg € [0.1246, 0.5928], mgz € [0.046,0.24], > m; € [0.354, 1.77]

0 0 NH, sin® fy3 € [0.49,0.643], and bfv for remaining oscillation parameters,

- s

mg € [0.05803, 0.5187], msz € [0.0286,0.4938], > m; € [0.1196, 1.551]
0 NH, sin? fp3 € [0.49, 0.643], and bfv for remaining oscillation parameters,
T - T
mg € [0.05821, 0.5209], mgs € [0.02895,0.4959], > m,; € [0.1205, 1.558]

n,n

Table 6: Results from P; type texture. "p" stands for a sign of a square root in ([2.85)). Masses are

given in eVs.

2.4 Relating cosmological CP and ¢

As we have already seen, from certain 27Y3,’s complex phases cannot be factored out. Such cou-

plings are: Ty,T7, Ty and they give rise to complex mass matrices. Here we calculate phase ¢ in
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terms of the CP phase entering in neutrino oscillation. Recall that the ¢ is predicted from the neu-

trino mass matrices ([2.33),(2.34)),(2.42)),(2.47)), which we have considered. Keeping in mind ([2.54]),

we use ([2.49) and (2.50) to find the numerical value of phase ¢ in each case.

Case of MEQ) (Texture P):

Equating (2,2), (3,3) and (2,3) matrix elements of both sides in Eq. (2.49), we get the relations:

2asbs| €™ = €22 Agy,  2a3bze™|m|e’™ = ¥3 Az, (azby + agbse’®)|m|e®m = ') Log

with

TR * T T ip1 * T Tk 02

(2.86)

(2.87)

Note, that from the neutrino sector all A;; numbers are determined. Dividing the last relation in

(2.86)) in turn on the 1-st and 2-nd relations and then multiplying resulting two equations, we get

the following relation:

, A 2 ash

i 23 23 _ u2vu3
xe? = | ———= -1, z=—.

vV A22A33 A22A33 a3b2

Therefore, we have:
2
2
¢ = Arg A 23 1

Vv A22A33 A22A33 B

From here, using results given in Table[I} we find numerical value of ¢:

¢ = +1.287.

(2.88)

(2.89)

(2.90)

In a pretty similar way, for remaining three neutrino mass matrices ([2.34)),(2.42)),(2.47)), for the

phase ¢ we get:

2

2
A23 23 A13

¢ = Arg +

+ 1| ], e=a
vV AsrAss AgoAss ¢ e VA1 Ass

2

2
A12 12
1 ;

= A + _
¢ e VA1 Ao A1 Az

22

A Ass

(2.91)

(2.92)



which yield
¢ =+1.169, M =+2957 and ™ = £3.124,

o™ = £3.058 and o™ = 43.136 (2.93)

respectively. For these we have used results given in Tables: [2] [3] and [4] resp. Note, that ¢ phases
in all four cases have been found for the reason that with a predictive neutrino sector there is
no undetermined parameter. This makes the whole scenario really attractive to study the baryon
asymmetry via the leptogenesis (for similar studies see: |1}19,21,26}27.32,/46]). As mentioned, since
the ¢ participates in the coupling of RHN states with [ and A, it will control CP asymmetric
decays of the N states. Thus, it is interesting to look into the details of the leptogenesis within the

scenarios we have considered here.

3 Texture Zero Neutrino Models and Their Connection with

Resonant Leptogenesis

3.1 Loop Induced Calculable Cosmological CP Violation

The setup considered in this section is the same as the one presented in the previous section and is
given by formulas: (2.1, (2.2), and (2.4). Moreover, we assume that the RHN mass matrix
My is strictly degenerate at the GUT scale, which will be taken to be Mg ~ 2 -10' GeV. ] To
stress scale dependence of M (u) we rewrite as:

01
at ,LL:MG : MN: M(Mg) (31)
10

Although it is interesting and worth to study, we do not attempt here to justify the form of My (and
of the textures considered below) by symmetries. Our approach here is rather phenomenological
aiming to investigate possibilities, outcomes and implications of the textures we consider. Since
(3.1) at a tree level leads to the mass degeneracy of the RHN’s, it has interesting implications
for resonant leptogenesis [1,|19,24] and also, as we will see below, for building predictive neutrino

scenarios |1}20].

5Degeneracy of My can be guaranteed by some symmetry at high energies. For concreteness, we assume this

energy interval to be > Mg (although the degeneracy at lower energies can be considered as well).
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For the leptogenesis scenario two necessary conditions need to be satisfied. First of all, at the
scale u = My, , the degeneracy between the masses of Ny and N, has to be lifted. And, at the
same scale, the neutrino Yukawa matrix Y, - written in the mass eigenstate basis of My, must be
such that Im[(YY;)12]2 # 0. [These can be seen from Eq. (3.27) with a demand €, 5 # 0.] Below
we show that both of them are realized by radiative corrections and needed effect already arises at
1-loop level, with a dominant contribution due to the Y, Yukawa couplings (in particular from A,
and in some cases from A,) in the RG.

As it was shown |1}|16]28], within considered setup, radiative corrections are crucial for gener-
ating cosmological CP violation. In particular, the needed asymmetry is generated at 1-loop level
due to A, Yukawa coupling provided that the condition (Y)31(Y,)s2 # 0 is satisfied [16]. Here,
to be more generic and to not limit the class of the models, we also include the effects of the A,
Yukawa coupling in the Calculationﬁ Thus, in this section we present details of these calculations.
We will start with radiative corrections to the My matrix. RG effects cause lifting of the mass
degeneracy and, as we will see, are important also for the phase misalignment (explained below).

At the GUT scale, the My has off-diagonal form with (My)11 = (My)2e = 0 [see Eq. ]
However, at low energies, RG corrections generate these entries. Thus, we parameterize the matrix

My at scale p as:

0N 1
1 On (1)
While all entries of the matrix My run, for our studies will be relevant the ratios % = 5](\}) and

% = 5](3) (obeying the RG equations investigated below). That’s why My was parametrized in

a form given in Eq. 1) With ]5](\}’2)| < 1, the M (at scale p = M) will determine the masses of
RHNs M; and Ms, while 51(\}’2) will be responsible for their splitting and for complexity in My (the
phase of the overall factor M does not contribute to the physical CP). As will be shown below:

o = (0F) = —dw. (3.3)
Therefore, My is diagonalized by the transformation

ULMyUy = MY = Diag (My, My) ,  with Uy = PyOyPy',

In Sections and among other neutrino scenarios, we consider ones for which such corrections are crucial

for generation of the needed amount of Baryon asymmetry.
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My = [M[(1=lon]) , M= [M[(1+[on]) (3.4)

where
Py = Diag (e™/2,e"/?) | Oy = N B . Py’ = Diag (e%/? je=m/?)
V2 1 1
with n=Arg(dn) , ou = Arg(M). (3.5)

In the N’s mass eigenstate basis, the Dirac type neutrino Yukawa matrix will be Y,, =Y, Uy.
In the CP asymmetries, the components (Y,[Y},); and (Y][Y,)1 appear [see Eq. (3.27)]. From (3.4)
and (3.5)) we have

2

~ 2 N 2
[(nyy)m] = — [(O% PLYY, PyON)n ], [(YJY,,)12] = — [(OL PLYY, PyON)1]” . (3.6)

Therefore, the CP violation should come from P%Y,Y, Py, which in a matrix form is:

(YJYV)].:L |(YVTYV)12‘ ei(n_n/)

PLYY, Py = -
\(YJYV)zl\eZ(" - (YJYu)zz

, o with o = Arg[(V)Y))al] . (3.7)
We see that ' — n difference (mismatch) will govern the CP asymmetric decays of the RHNs.
Without including the charged lepton Yukawa couplings in the RG effects we will have 1’ ~ n with
a high accuracy. It was shown in Ref. [14] that by ignoring Y, Yukawas no CP asymmetry emerges
at O(Y;}) order and non-zero contributions start only from O(Y,®) terms [15]. Such corrections
are extremely suppressed for Y, S 1/50. Since in our consideration we are interested in cases
with M;, < 107 GeV leading to (Y, )| < 7-107* (well fixed from the neutrino sector and the
desired value of the baryon asymmetry), these effects (i.e. order ~ Y% corrections) will not have
any relevance. In Ref. 1] in the RG of My the effect of Y., coming from 2-loop corrections, was
taken into account and it was shown that sufficient CP violation can emerge. Below we show that
including Y, in the Y,’s 1-loop RG, will induce sufficient amount of CP violation. This mainly
happens via A, and in particular cases (which are considered below) from ), Yukawa couplings.

Thus, below we give detailed investigation of A, ,’s effects.

Using Mpy’s RG given in Eq. (A.3 (of Appendix [A.1)), for 5(1’2), which are the ratios E%ﬁ%g

and 22 [see parametrization in Eq. ] we can derive the following RG equations:

d
167T2£51(v)—4(YTY)21+26 [(YJYV>11_(YJYV)22]_2(6( )) (YTY)H_% 5 (YTY)
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1

- 4—7T2(YJY6YJYV)21 + (3.8)
d
16772%553) —4(Y}Y,)) 15426 [(Y)Y,)2— (YY) 25DV (VY )1 — 260D (VIY, )1y
1
- 4_7T2(YJYeKqu)12 +o (3.9)

were in second lines of and are given 2-loop corrections depending on Y,.. Dots there
stand for higher order irrelevant terms. From 2-loop corrections we keep only Y, dependent terms.
Remaining contributions are not relevant for usﬂ From (3.8) and we see that dominant
contributions come from the first terms of the r.h.s. and from those given in the second rows. Other
terms give contributions of order O(Y;}) or higher and thus will be ignored. At this approximation

we have
1

1672

0 @y 1 [t ;
S(0) = 00" (1) = ~dx(t) = — 5 [ v (i1~

w2 J,

YeYJ)YV) (3.10)

21

where t = In u, tg = In Mg and we have used the boundary conditions at the GUT scale (5%)(75@) =
55\?) (tg) = 0. For evaluation of the integral in (3.10)) we need to know the scale dependence of Y,
and Y,. This is found in Appendix by solving the RG equations for Y, and Y,. Using Egs.
and , the integral of the matrix appearing in (3.10)) can be written as:

1 0 0

/t:jYJ(l - 1617T2Y;1§)det ~RM)Y), | 0 F (M) 0 Y, (3.11)

0 0 7 (M)

where
(), ()(1 — 5g)dt o (B () (1 — okp)dt t
(M) = Jui (1) :A(j/)f((t)dt ) . Tu(M) = S0 t%:dit)dt ) , R(M) = /tM k(t)dt ,

(3.12)
re(p) =), () =), () =1 (w)ng, (1) (3.13)

and we have ignored A, Yukawa couplings. For the definition of n-factors see Eq. (A.6). The Y, 4

denotes corresponding Yukawa matrix at scale yp = M. On the other hand, we have:

1 0 0
VY| = (MY | 0 r(M) 0 Y . (3.14)
0 0 r(M)

"Omitted terms are either strongly suppressed or do not give any significant contribution to either the CP violation

or the RHN mass splittings.
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(Derivations are given in Appendix [A.1])

Comparing with we see that difference in these matrix structures (besides overall
flavor universal RG factors) is in the RG factors r; ,(M) and 7, ,(M). Without the \;, Yukawa
couplings these factors are equal and there is no mismatch between the phases n and 7’ |[defined in
Eqgs. and ] of these matrices. Non zero 1’ — n will be due to the deviations, which we

parameterize as
_ (M)

& - _ M)

A0 T 00

The values of {, and &; can be computed numerically by evaluation of the appropriate RG factors.

—1. (3.15)

Approximate expressions can be derived for &; ,, which are given by:

o [Ron Mo 10
T | 1672 M 3(1672)?

M

- Pjé%)} oo (3.16)

M. 2
[BA? + 6A} + 10A2 — (2¢2 + ¢0)gz] (m —G) ]
1—loop

=

[A,%(M) Mg 1 X2(M)

1 2 2 2 a ay .2 Mg ’
G g t3 (16722 [3A] 4 6X; + 27 — (2¢¢ + Cy)ga]u:M In —~

héﬂ . (3.17)

where one and two loop contributions are indicated. Derivation of approximate expression of &,

[Eq.(3.16))] is given in Appendix A.1 of Ref. [16]. Eq. (3.17)) can be derived in a similar way. As
fg;;; in Eq.

we see, non-zero &, are induced already at 1-loop level [without 2-loop correction of
]. However, inclusion of 2-loop correction can contribute to the &, , by amount of ~ 3 — 5%
(because of In % factor suppression) and we have included it.

Now we write down quantities which have direct relevance for leptogenesis calculations. Using

Eq. (3.11) in (3.10) and then applying Eq.(A.5) [for expressing Y, ’s elements with corresponding
entries of Y, (M)]|, with definitions of Egs. (3.13)) and (3.15]), we obtain:

|(5N(M)]ei’7 — LM

— YTYV in’ (Y, Y, i(d31—¢32) Y, Y, i(¢21*¢>22):|
472 k(M) [’( 2 Yo )ale™ + & (Y)a1(Yy )azle + &ul(V2)21(Yy)22le 1

(3.18)
where ¢;; denotes the phase of the matrix element (Y, );; at scale p = M. Eq. (3.18) shows well

that in the limit &, — 0, we have n = 7/, while the mismatch between these two phases is due to
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&rp 7 0. With &, < 1, from (3.18]) we derive:

|(Y2)31(Y))s2| sin(¢s1 — @50 — 1) + 4] (Y0)21(Yy) 22| sin(dor — do2 — 1) _

n— 77/ ~ 57'
‘(YVTYI/)21|

(3.19)

We stress, that the 1-loop renormalization of the Y, matrix plays the leading role in generation
of & ,, i.e. in the CP Violationﬂ [This is also demonstrated by Eq. ] When the product
(Y,)31(Y},)32 is non-zero, the leading role for the mismatch between n and 7’ is played by &,.. However,
for the Yukawa texture, having this product zero, important will be contribution from &,. [As we
will see on working examples, this will happen for Ty of Eq. and texture By of Eq. ]

The value of [0 (M)|, which characterizes the mass splitting between the RHN’s, can be com-
puted by taking the absolute values of both sides of :

_ BN eyt * * Mg __RM)
[on(M)| = s |(YV Y, )o1 + & (Y0)31(Y) )s2 + €u(Ye )21 (V) )22|M=M In M with Ky = (M) ln% -
(3.20)

These expressions can be used upon the calculation of the leptogenesis, which we will do in sections

and [3.4] for concrete models of the neutrino mass matrices.

3.2 See-Saw via Two Texture Zero 3 x 2 Dirac Yukawas Augmented by
Single d=5 Operator. Predicting CP Violation

Within the setup with two RHNs, having at the GUT scale mass matrix of the form (3.1), we
consider all two texture zero 3 x 2 Yukawa matrices with an unremovable complex ¢ phase. As
shown in [20] and in Sect. [2.1] there are nine two texture zero 3 x 2 Yukawa matrices, out of
which only three, namely Ty, 77 and Ty (given by , and respectively) possess
unremovable complexity.

That complexity expressed through physical phase ¢ is relevant to the leptogenesis [1| and also,
as it was shown in [20], it can be related to phase §, determined from the neutrino sector. As will
be shown on concrete neutrino models, this will remain true after inclusion of specific single d =5

operator. Since we are interested in complex two texture zero 3 x 2 Yukawa matrices for Y, in

(2.24]) the textures T} 79 should be used in turn.

8Note that since RG equations for My and Y, in non-SUSY case have similar structures (besides some group-

theoretical factors) the &, would be generated also within non-SUSY setup.
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Before switching to concrete Neutrino mass texture models, we explain our choice of numerical
data used hereafter. As far as the numerical values of the oscillation parameters are concerned,
since the bfv’s of the works of Ref. [4] differ from each other by few %’s, we will use their mean

values:

. 9 5 0.432 for NH .y 0.02157 for NH
sin“ 15 = 0.308, sin” fy3 = , sin“fi3 =

0.591 for IH 0.0216 for IH

) s 2.47-107% eV? for NH
Amg,,., = |m5 —ms;| = . (3.21)

Am?, =748 -107° eV?
2.54-1073 eV? for IH

sol — )

In models, which allow to do so, we use the best fit values (bfv) given in (3.21]). However, in some

cases we also apply the value(s) of some oscillation parameter(s) which deviate from the bfv’s by

several o.

P, Neutrino Texture

This texture, within our scenario, can be parameterized as:

0 ds 0
M,(Mz) = | ds 2a5b; (azbs + agbsei®)rys | M (3.22)
0 (asby + asbze®)r,s 2a3bzer?,
where,
- iUy (M)
) 1 02 works with
NH, sin? 6,3 = 0.451, sin? 6, = 0.323 and best
+0.0879121 | £3.11851 | 43.03949 fit values for remaining oscillation parameters,
(m1, me, m3) = (0.00694406, 0.0110914, 0.0509217), msz = 0

Table 7: Results from P; type texture. Masses are given in eVs.

and RG factors r; and 7,3 are given in Egs. (A.17) and (A.18) of Ref. [16]. (For notations and
definitions see also Appendix [A.2) The entries depending on a;, b; in (3.22) arise from the T}
texture [given in (2.12))] by the see-saw mechanism. The entry ds comes from the (2.25) type
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operator %lllzhuhu. Since, as we see from Eqs. (2.12)) and ([2.13]), the phase x is undetermined,

we can select it in such a way as to set (3.22))’s ds entry to be real. Therefore, we still have
single physical phase ¢. It will be related to the phase ¢ and will govern the leptogenesis process
(discussed in Sect. . Due to the texture zeros, it is possible to predict the phases and values of
the neutrino masses in terms of the measured oscillation parameters. In particular, the conditions
MY =0 and Mil"”:o, using —, give

two complex equations and , which with the input of five oscillation parameters
allow to calculate all neutrino masses and predict three phases 4, p; and p,. Without providing
here further analytical relations [followed from Egs. (2.5, and given in [20]), in Table 7| we
summarize the results. [Only normal hierarchical (NH) neutrino mass ordering scenario works for

the P; type texture.]

P, Neutrino Texture

0 0 ds
MV(MZ) = 0 2(12()2 (a3b2 + a2b3ei¢)rl,3 m (324)
d5 (agbg + &ngew)r,/g 2@3()36i¢7"33

This texture’s a;, b; entries are also obtained from the 7T texture via the see-saw mechanism
and by addition of the d = 5 operator %lllghuhu. By proper adjustment of the phase x [remaining
undetermined in and ], we can set ds entry of to be real. The two conditions
M,gl’l) = (0 and M,Em):o give relation of Eq. and Eq. which allow to predict neutrino
masses and three phases d, p; 2. Results are given in Table[8| For inputs the best fit values (bfv) of
the oscillation parameters are taken from Eq.(3.21). For more details we refer the reader to [20].

) p1 P2 works with
NH and bfv’s
+1.71006 | F2.79206 | F1.47308 of oscillation parameters,
(mq, me, m3) = (0.00471158, 0.0098488, 0.0506656), msz = 0

Table 8: Results from P, type texture. Masses are given in eVs.

P; Neutrino Texture

30



Using the see-saw formula (2.24) for the 77 texture (2.18) and including the d = 5 operator

%lzlghuhu, we obtain the P5; neutrino texture:

2CL1b1 0 (CLgbl + a1b3€i¢>7’1,3
M,(Mz) = 0 0 ds m (3.25)
(asby + aibse™®)r,s ds 2a3bzer?,

Since the phase y is not fixed in and (2.19), without loss of any generality the d5 entry of
can be set to be real. The conditions M"? = 0 and MV(2’2):0, similar to previous cases,
allow to predict my 23 and d, p12. Without giving the expressions (being lengthy and presented
in Ref. [20]), we proceed to give numerical results, which for NH and inverted hierarchical (IH)

neutrino mass orderings are summarized in Table [9

) p1 P2 works with
NH and bfv’s

of oscillation parameters,
+1.53714 | £0.0867342 | £3.20236 (my, mg, m3) =
(0.0588907, 0.0595224, 0.077543),
mgag = 0.059436
[H and bfv’s

of oscillation parameters,

+1.58066 | F0.114316 | £3.06301 (o, Mg, mg) =
(0.0696426,0.0701776, 0.0488354),
mgs = 0.0692588

Table 9: Results from P; type texture. Masses are given in eVs.
P, Neutrino Texture

This texture is obtained by applying the see-saw formula (2.24) to the Ty texture (2.22)) and

including the d = 5 operator %lglghuhu. Doing these we obtain the P, neutrino texture:

2&1[)1 (a2b1 + a1626i¢) 0
MI/(MZ) = ((Igbl + a1b2€i¢) 2agbg€i¢ d5 m (326)
0 ds 0

31



In this case the phase z is not fixed [see Egs. (2.22]) and (2.23)] and we can use this phase freedom
to take ds entry of 1} matrix as a real parameter. The conditions MM = M3 =0 will give

two complex (i.e. four real) equations, which contain three phases d, p; 2 and one of the neutrino

2
sol

2

masses (remember that two measured parameters Am?, = m3 —m? and Am?, = |m2—m3| leave

undetermined values of the neutrino masses). Therefore, as for previous cases, with input of five

Am?

atm

measured oscillation parameters (which are: Am? and {62, 623, 613}) from the conditions

sol’
given above we predict all light neutrino masses and three phases 0, p; o. Still referring to [20], for
analytical expressions, in Table we give the numerical results obtained for this texture P, for
NH and TH cases. The value of s3; we are using is deviated from the bfv, because the conditions
M = MP? = 0 do not allow to use bfv’s. Note that in NH, case 2 and for IH the values of S35
are less deviated from bfv, but the NH’s case 1, as it turns out, is preferred for obtaining needed
amount of the baryon asymmetry. Without the latter constraint, just for satisfying the neutrino
data, we could have used smaller values of s3;, but this would give higher values of neutrino masses

which would not satisfy the current cosmological constraint ), m; < 0.23 €V (the limit set by the

Planck observations [47]@. Upon leptogenesis investigation we will use NH, case 1 given in Tab.

) p1 P2 works with
NH and sin? 653 = 0.6 and bfv’s

for remaining oscillation parameters,

NH, case 1 | £1.62446 | F0.129186 | £3.05085 (my1, ma, m3) =

(0.044819, 0.0456458, 0.0674799),
mgag = 0.0454757

NH and sin® fy3 = 0.551 and bfv’s

for remaining oscillation parameters,

NH, case 2 | £1.59508 | 770.0647305 | £3.09629 (my, ma,m3) =

(0.0707692, 0.0712957, 0.0869084),
mgg = 0.0712444

9Tighter upper bound can be obtained by considering additional combined datasets [48]. However, bound also
depends on the theoretical framework and can be relaxed (see e.g. 2"d Ref. of [4], where as demonstrated in Table
IT, the scenario with extra Ajens parameter yields more relaxed bounds). Thus, upon our calculations we use the

constraint ), m; < 0.23 eV.
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) 1 P2 works with
IH and sin® fy3 = 0.441 and bfv’s

for remaining oscillation parameters,

£1.56553 | £0.0733633 | £3.19198 (my, ma,ms3) =

(0.0820116, 0.0824663, 0.065274),
mgs = 0.0817407

Table 10: Results from P, type texture. Masses are given in eVs.

3.3 Resonant Leptogenesis

Expression for 05 (M) with effects of A\, - and ignoring ., is given by Eq. (3.18)). The CP asymme-
tries €; and €5 generated by out-of-equilibrium decays of the quasi-degenerate fermionic components
of Ny and N, states respectively are given by [10,[11]{]

Im[(Y,}Y,)a)? (M3 — M2) MTy
(YY) 1 (VY )an (M2 — M2)* + M2T2

e =¢6(l+2). (3.27)

€1 =

Here M, My (with My > M) are the mass eigenvalues of the RHN mass matrix. These masses,
within our scenario, are given in (3.4)) with the splitting parameter given in Eq. (3.20)). For the

decay widths, here we will use more accurate expressions [6]:

M v Mg : 2 2 Mg ’

where Mg is the SUSY scale and we assume that all SUSY states have the common mass equal to
this scale. sg and cg are short hand notations for sin 3 and cos 3 respectively. N; decays proceed via
N; = hyl; and N; — h,l; channels. Upon derivation of we took into account that h, is a linear
combination of the SM Higgs doublet hgp; and the heavy Higgs doublet H: h, =~ sghgy + csH.
Mass of the hgys has been ignored, while the mass of the H has been taken~ Mg. Moreover, the

imaginary part of [(}A/J f/,,)gl]2 will be computed with help of 1} and 1D with the relevant phase

given in Eq. (3.19). Using general expressions (3.19)) and (3.20)) for the given neutrino model we
will compute n — 1 and |d5(M)|. With these, since we know the possible values of the phase

10Tn Appendix [B| we investigate the contribution to the baryon asymmetry via decays of the scalar components of

the RHN superfields. As we show, these effects are less than 3.4%.
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¢ [see Egs. (3.31)),(3.33),(3.35)),(3.37)|, and with the help of the relations (3.32), (3.34)), (3.36]),

we can compute € o in terms of |M| and as or a; (depending on the texture we are dealing
with). Recalling that the lepton asymmetry is converted to the baryon asymmetry via sphaleron
processes |49, with the relation 7;—1{ ~ —1.48 x 1073 (k;We; + kP ey) we can compute the baryon
asymmetry. The notion n{ is used for the baryon asymmetry created through the decays of the
fermionic components of N 5 superfields. The net baryon asymmetry n; receives the contribution
from the decays of the scalar components NLQ. The latter contribution we denote by n,. The
computation of it (being suppressed in comparison with n{: ) will be discussed in Appendix . For
the efficiency factors r ;12 we will use the extrapolating expressions [6] (see Eq. (40) in Ref. [6]),
with lif(l) and /if(Q) depending on the mass scales m; = %(Yj)}y)n and my = 1)3]\(4—1‘24)(}};[?”)22
respectively.

Within our studies we will consider the RHN masses ~ |M| $ 107 GeV. With this, we will not
have the relic gravitino problem [50,/51]. For simplicity, we consider all SUSY particle masses to be
equal to Mg < |M|, with Mg identified with the SUSY scale, below which we have just SM. As it
turns out, via the RG factors, the asymmetry also depends on the top quark mass.

It is remarkable that within some models the observed baryon asymmetry

(@) — (8.65 & 0.085) x 10! (3.29)
S/ exp

(the recent value reported by WMAP and Planck [47]), can be obtained even for low values of the
MSSM parameter tan 3 = {* (defined at the SUSY scale p = Mg).

Below, we perform analysis for each of these P34 cases (and for revised models of Ref. [1]
discussed in Sect. in turn and present our results. As an input for the top’s running mass we

will use the central value, while for the SUSY scale Mg we will consider two cases:
my(my) = 163.48 GeV,

Case (I): Mg =10° GeV,  Case (I): Mg =2 x 10° GeV. (3.30)

Procedure of our RG calculation and used schemes are described in Appendix [A.3] As it was
shown in [20], for neutrino mass matrix textures P; 234, we will be able to relate the cosmological

phase ¢ to the CP violating phase 9.

For P, Texture
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As was shown in Sect for this case, using the form of the M, [given by Eq. (3.22) and derived
within our setup]| in the relation (2.49)) and equating appropriate matrix elements of the both sides,
we will be able to calculate the phase ¢ [16,20]:

2

2
Az An ) | (3.31)

vV ./422./433 + A22~A33 a

Moreover, expressing ag, b3 in terms of ay (taking as to be an independent variable) and other

¢ = Arg

known and/or predicted parameters, we will have:

A23 + \/ A%?) - A22A33

As we see from Egs. (3.31)) and (3.32), there is a pair of solutions. When for the a3 in (3.32) we

a9 1
a3 = ————
° Tv3 |A22|

B b2 = — 5 bd = ’A33’

= — 3.32
Dmlagr?, (3.32)

are taking the ” 47 sign, in we should take the sign ” —” and vice versa. (The same applies
to the cases of textures P 34.) For this case, the baryon asymmetry via the resonant leptogenesis
has been investigated in Ref. [16]. Here, for the decay widths we use more refined expressions of
Eq. . Because of this, the values of tan 5 (given in Table are slightly different. Since in
this model (Y,)31 and (Y, )32 are non-zero, according to Eq. the mismatch n — ' (e.g. CP
asymmetry) is mainly arising due to &,. However, in numerical calculations we have also taken into
account the contribution of §,. The results are given in Table (for more explanations see also
caption of this table). While in the table we vary the values of M and tan (3, the cases with I and II
correspond respectively to the cases (I) and (II) of Eq. (i.e. Mg =1 and 2 TeV resp.). For
the definition of the RG factors given in this table see Appendix A.2 of Ref. [16](For notations and
definitions see also Appendix . For finding maximal values of the Baryon asymmetries (given
in Tab we have varied the parameter a,. As we see, the value of the net baryon asymmetry
ny slightly differs from n{: . This is due to the contribution from 7, [coming from the right handed
sneutrino (RHS) decays|, which is small (less than 3.4% of n}). Details of 71,’s calculations are

discussed in Appendix [B]
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Case | M(GeV)|tanfB | 1 T, ky | 10° x & | 10M x ("—S{)max 10 x (%)max
(L.1) 3-10% | 1.72{0.8868 | 0.9714 | 1.206 6.106 8.29 8.57
(I.2) 10 | 1.619 | 0.832 | 0.9523 | 1.2322 5.303 8.34 8.6
(1.3) 10° | 1.664 | 0.7482 | 0.9203 | 1.1807 4.821 8.36 8.6
(L.4) 10% | 1.719 | 0.682 | 0.8923 | 1.1345 4.381 8.37 8.6
(I.5) 107 | 1.773 | 0.6291 | 0.8676 | 1.0971 3.937 8.37 8.6
(I1.1) 6-10% | 1.701 | 0.8689 | 0.9678 | 1.175 5.897 8.294 8.57
(I1.2) 10% | 1.615 | 0.8464 | 0.9599 | 1.1994 5.365 8.334 8.59
(I1.3) 105 | 1.625 | 0.7629 | 0.9283 | 1.1669 4.755 8.36 8.6
(I1.4) 10% | 1.678 | 0.6974 | 0.9008 | 1.1243 4.321 8.36 8.6
(I1.5) 107 | 1.731 | 0.645 | 0.8765 | 1.0894 3.887 8.36 8.6

Table 11: Texture P;, normal hierarchy: Baryon asymmetry for various values of M and for minimal
(allowed) value of tan 8. With neutrino oscillation parameters and results given in the Table [7] and

computed from Eq. {} ¢ = £1.264. For all cases r,3 ~ 1.

For P, Texture

With a pretty similar procedure, for this case we get:

2

2
Az An ) | (3.33)

Vv A22A33 i -/422-’433 B

¢ = Arg

Expressing ag, by 3 in terms of ay and other parameters (yet known or predicted in this scenario),

we will have:

. (05} 1
Tv3 ’Azzf

_ A _ | As]

by = = 7o
T T 2mlay’ P 2mlagr?

as (3.34)

Az £/ A3y — AxAss

Results for this case are presented in Table [12]
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Case | M(GeV)|tanfB | 1 T, ky | 10° x & | 10M x ("—S{)max 10 x (%)max
(L.1) 3-10% | 1.948 | 0.8908 | 0.9725 | 1.1439 7.264 8.306 8.57
(I.2) 10* | 1.833 | 0.8412 | 0.955 | 1.1543 | 6.242 8.35 8.6
(1.3) 10° | 1.881 | 0.7647 | 0.9254 | 1.1158 5.692 8.37 8.6
(L.4) 10% | 1.938 | 0.7039 | 0.8994 | 1.0821 5.182 8.36 8.6
(I.5) 107 | 1.996 | 0.6554 | 0.8766 | 1.0544 4.671 8.36 8.6
(I1.1) 6-10% | 1.933 | 0.8728 | 0.9689 | 1.1201 7.058 8.314 8.97
(I1.2) 10% | 1.836 | 0.8526 | 0.9616 | 1.133 6.373 8.35 8.6
(I1.3) 105 | 1.843 | 0.7771 | 0.9326 | 1.1063 5.638 8.36 8.6
(I1.4) 108 1.9 ] 0.7175 | 0.9072 | 1.0748 5.14 8.37 8.6
(I1.5) 107 | 1.956 | 0.6697 | 0.8848 | 1.049 4.632 8.37 8.6

Table 12: Texture P,, normal hierarchy: Baryon asymmetry for various values of M and for minimal
(allowed) value of tan 8. With neutrino oscillation parameters and results given in the Table |§ and

computed from Eq. {} ¢ = +1.1. For all cases r,3 ~ 1.

For P; Texture

Case | M(GeV) | tanp | 74 Tv, ky | 10° x & | 10M (%)max 101 x ()
(L.1) 3-10% | 7.158 | 0.904 | 0.9761 | 1.0076 | 76.29 8.49 8.59
(I.2) 10* | 6.802 | 0.8717 | 0.9635 | 0.9983 | 64.79 8.508 8.6
(1.3) 10° | 6.922 0.82 | 0.9417 | 0.9819 | 59.11 8.51 8.6
(L.4) 108 | 7.074 | 0.7789 | 0.9225 | 0.9692 | 53.92 8.51 8.6
(I.5) 107 | 7.227 | 0.7467 | 0.9056 0.96 | 48.65 8.51 8.6
(I1.1) 6-10% | 7.146 | 0.8852 | 0.9723 | 0.9986 | 75.06 8.5 8.6
(I1.2) 10* | 6.85 | 0.8725 | 0.9672 | 0.9954 | 67.24 8.5 8.6
(I1.3) 10° | 6.858 | 0.8229 | 0.946 | 0.9802 | 59.44 8.51 8.6
(I1.4) 105 | 7.003 | 0.7835 | 0.9274 | 0.9684 | 54.17 8.51 8.6
(I1.5) 107 | 7.151 | 0.7524 | 0.9109 | 0.9597 | 48.87 8.51 8.6

37




Table 13: Texture Pj, normal hierarchy: Baryon asymmetry for various values of M and for minimal
(allowed) value of tan 3. With neutrino oscillation parameters and results given in the Table [9] and

computed from Eq. (3.35)) (for NH case) ¢ = £2.92. For all cases r,3 ~ 1.

Case | M(GeV)| tanp T T, Ky | 107 x & | 101 x (Z—g)mm 101 x (%)mm
(I.1) 3-10% | 27.11 | 0.905 | 0.9764 | 1.0038 | 1154.3 8.515 8.6
(I.2) 10% | 25.824 | 0.8738 | 0.9641 | 0.9938 | 980.4 8.52 8.6
(1.3) 10° | 26.138 | 0.8234 | 0.9427 | 0.9784 | 894.7 8.53 8.6
(I.4) 108 | 26.55 | 0.7833 | 0.9238 | 0.9667 | 815.9 8.53 8.6
(I.5) 107 | 26.96 | 0.7515 | 0.9071 | 0.9583 736 8.53 8.6
(IL.1) 6-10° 271 0.886 | 0.9725 | 0.995 | 1135.1 8.516 8.6
(I1.2) 10* | 26.061 | 0.8739 | 0.9676 | 0.991 | 1017.9 8.518 8.6
(I1.3) 105 | 25.979 | 0.8259 | 0.9469 | 0.9766 899.4 8.52 8.6
(I1.4) 108 | 26.38 | 0.7875 | 0.9285 | 0.9657 | 819.9 8.53 8.6
(I1.5) 107 | 26.783 | 0.757 | 0.9123 | 0.9578 739.6 8.53 8.6

Table 14: Texture Pj, inverted hierarchy: Baryon asymmetry for various values of M and for
minimal (allowed) value of tan 5. With neutrino oscillation parameters and results given in the

Table @ and computed from Eq. 1’ (for TH case) ¢ = £3.124. For all cases 7,3 ~ 1.

2

2
s B9 . (3.35)

VA A\ AnAs

Expressing as, b 3 in terms of a; and other fixed parameters, we will have:

Ais £/ Aty — A1 Ass

Results for this texture for cases of NH and IH neutrinos are presented in Tables [13| and [14] respec-

¢ = Arg

. ap 1
Tv3 |«411|

_ Al A

by = —
O T 2mlay P 2mlagr?

a3

(3.36)

tively.

For P, Texture
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For this case cosmological phase is given by:
2

2
ot An )| (3.37)

q: —

VA1 Ag A1 Az
Expressing aq, by 2 in terms of ay and other known and/or predicted parameters, we will have:
| A A [ Azl

= a2, 1= 7= , by = -
| Ao £ 1/ A2, — Ap1Ass| 2|mlay 2|m|ay

In this scenario, since (Y},)31 and (Y})s32 are zero, according to Eq. (3.18)) the mismatch n — 7’ (e.g.

¢ = Arg

(3.38)

a1

CP asymmetry) is arising due to ,. Since the latter is suppressed by )\fb, as it turns out large
values of the tan  are required and only in NH case needed amount of the Baryon asymmetry can

be generated. Results are given in Table [I5]

Case | M(GeV)| tanp T T, Ky | 100 x &, | 101 x (%)maw 10M x (Re)
(I.1) 3-10% | 64.639 | 0.9048 | 0.9763 | 1.0349 | 3.111 8.518 8.6
(1.2) 10% | 62.213 | 0.873 | 0.9638 | 1.0212 2.638 8.52 8.6
(1.3) 105 | 62.02 | 0.8203 | 0.9418 | 1.0059 2.416 8.53 8.6
(I.4) 108 | 62.006 | 0.7767 | 0.9218 | 0.994 | 2.213 8.53 8.6
(I.5) 107 62 | 0.7404 | 0.9037 | 0.9848 2.008 8.53 8.6
(I1.1) 6-10% | 65.28 | 0.8859 | 0.9725 | 1.0208 | 3.045 8.517 8.99
(I1.2) 10* | 63.398 | 0.8735 | 0.9675 | 1.0145 2.728 8.525 8.59
(I1.3) 10° | 62.548 | 0.8239 | 0.9463 | 0.9996 | 2.417 8.53 8.6
(I1.4) 106 | 62.528 | 0.7827 | 0.9271 | 0.9886 | 2.211 8.53 8.6
(I1.5) 107 | 62.535 | 0.7484 | 0.9097 | 0.9803 | 2.005 8.53 8.6

Table 15: Texture Pj, normal hierarchy: Baryon asymmetry for various values of M and for minimal
(allowed) value of tan 3. With neutrino oscillation parameters and results given in the Table [10]
NH, case 1, and ¢ computed from Eq. 1D (for NH case) ¢ = £2.872.

3.4 Revising Textures of Ref. [1] and Improved Versions

In this section we revise the textures considered in the work [1]. Since some of them are excluded

by the current neutrino data [4](see also Eq. ({3.21))), we apply d = 5 contributions (in a spirit
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of section and achieve their compatibility with the best fit values. Together with this, we
investigate resonant leptogenesis and show that one loop corrections via A, and/or A, are crucial.
In [1], while ignoring A, the two loop correction to A, was taken into account and this suggested
for textures A and B; specific low bounds on the values of tan 3. As demonstrated below, one
loop effects of A, (giving dominant contribution for textures A and B;) and A, (for the texture B,)
significantly change results.
In the setup of two degenerate RHNs, in Ref. [1] the following three possible one texture zero
neutrino Dirac Yukawa couplings have been considered :
ae 0
Texture A : Y, = | ae™® bye® | (3.39)

aze'  bae's

ape®  beth a;e®  beth
Texture By : Y, = | ayeiee 0 , Texture By : Y, = | agei@ pyeP2 |, (3.40)
aze'®®  bae's asze® 0

where for notational consistency with the entire work, we have shown phases o, 3;, while assuming

that the couplings a;, b; are realE-I Below we will (re)investigate these textures in turn.

Texture A

The A Yukawa texture can be written as:

a, e’ 0 e 0 0 a 0 ,
e 0
Texture A: Y, = | apei® b2 | = 0 e 0 as  bo N
aze’™  bge'Ps 0 0 €7 aze’® by

with v =0~ +B—p, y=F—p, 2=0—p w=a—F+p ¢=a3—a. (3.41)

As we see, besides the phase ¢ all phases are factored out and have no physical relevance. With
the RHN mass matrix of Eq.(2.29)), via the see-saw|see expression in Eq.([2.24))| we will get the light

neutrino mass matrix:

0 arbs arbsrys
MZEA)(MZ) = ale 2@2()2 (a2b3 + a3b2€i¢>?,,l/3 m , (342>
arbsrys  (ashs + azbae™)ry; 2a3bzer?,

1On the contrary, in Ref. |1], without writing down the phase factors, a; and b; were treated as a complex

parameters.
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|[For definitions of m, r,3 and proper explanations see respectively Eq. and also Egs. (A.17),
(A.18) of Ref. |16, and comments therein, as well as Appendix This neutrino mass texture
has only two non-zero mass eigenvalues. As it was shown in [1], this for NH (m; = 0) and IH
(m3 = 0) neutrino mass patterns, gives respectively the predictive relations tan 6,3 = \/%312 and
tan o = ’WZ—; Both of them are in a gross conflict with the current neutrino data, which exclude

this scenario.

A’ Neutrino Texture: Improved Version

The drawbacks coming from the A neutrino mass matrix (3.42)) can be avoided by adding ds
term to one of the entries. Here we consider this addition to the (2,3) and (3,2) elements of the
light neutrino mass matrix, which would make the model viable. (We refer to this improved version

of (3.42) as the A’ neutrino texture.) After this, the M, will have the form:

0 a1by aibsrys
MZEA’)(MZ) = a1by 2a4bs (a253+a3bgei¢)r,,3+d5 . (3.43)
a1bsrys  (azbs+asbae’®)rys+ds 2a3bzer?,

With this modification, all masses are non-zero. One can check out, that with the fixed phase
redefinitions [given in Eq. (3.41)], in general d5 is a complex parameter. Thus, together with
additional mass, we will have one more independent phase. As it turns out, only NH scenario is
possible to realize. Therefore as additional independent parameters we take one of the mass and
Ap = p1 — pa. From the condition MY =0 we have:

micly, —misi, —mjitis 2

m ;
20—Ap)= , —m—Arg | — 52, +12," P2 with Ap = p, — ps.
cos( ) 2maomszsiytis pr=moale ms "12 s ' p=n (;14)

(Here and below we use shorthanded notations t;; = tané,;.) From the first relation of ([3.44)) one

can check that IH scenario can not be realized. As far as the NH scenario is concerned, it will
work with low bound on the lightest neutrino mass m;. In fact, the first relation of (3.44)) gives the

allowed range for m;. For example, with bfv’s of the oscillation parameters (3.21)) we have:
0.00239 eV < m; £ 0.00641 eV. (3.45)

Thus, as independent parameters we will take m; and Ap. We will select them in such a way as to

get desirable baryon asymmetry. For example, with the choice
my = 0.005719 eV, Ap = 4.987 (3.46)
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Case | M(GeV) | tan B | 7y T, ky | 10tx & | 10M x (%) - 10M x ()
(L1) | 3-10% |1.939|0.8907 | 0.9725 | 1.1457 | 0.7215 8.53 8.6
(1.2) 104 1.838 | 0.8414 | 0.955 | 1.153 | 0.6266 8.53 8.59
(1.3) 10° 1.904 | 0.7662 | 0.9258 | 1.111 | 0.5793 8.53 8.59
(I.4) 108 1.986 | 0.7078 | 0.9006 | 1.0742 | 0.5374 8.54 8.6
(I.5) 107 2.075 1 0.6628 | 0.879 |1.0442 | 0.4956 8.55 8.61
(IL.1) | 6-10% |1.928 | 0.8727 | 0.9688 | 1.121 | 0.7031 8.53 8.6
(I1.2) 10* 1.84 |1 0.8527 1 0.9617 | 1.1322 | 0.6393 8.54 8.6
(I1.3) 10° 1.869 | 0.7784 | 0.933 | 1.1013 | 0.5753 8.54 8.6
(I1.4) 106 1.949 | 0.721 | 0.9083 | 1.0672 | 0.5337 8.54 8.6
(IL.5) 107 2.036 | 0.6766 | 0.887 |1.0393 | 0.4923 8.54 8.6

Table 16: A’ Neutrino Texture, NH. Baryon asymmetry for various values of M and for correspond-
ing minimal (allowed) values of tan 5. With the choice given in Eqs. 1) {D and bfv’s of s?j.

For all cases r,3 ~ 1.

and bfv’s of all measured oscillation parameters with help of (2.52)) and ({3.44)) for neutrino masses

and phases we are getting:
(mq, mg, m3) ~ (0.005719, 0.01037, 0.05077) eV,

(8, p1, p2) ~ (2.9639, 2.911, —2.076) . (3.47)

As far as the baryon asymmetry is concerned, using (3.43)) in (2.49) for the CP phase ¢ and

expressing couplings a; 3, b2 3 in terms of as we get

A2 Agg)
— Ar 12 7
o= (35
Az 1 | AppAss e Az Az 1

=2 "= a,, = , = —_—— = — . 3.48
“ 22 o s T3 | Az R 2|m|ay ’ Az | 2ry3|mlas ( )

For the values of 1} 1’ and bfv’s of 3%2’23’13 we get
¢ = —2.9207 . (3.49)
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With these, and for given values of M and tan (8 by varying a, we can investigate the baryon

asymmetry. Results are given in Tab. [I6]
Texture B,

The B; Yukawa texture can be written as:

a;e’®r  bet e 0 0 a, by A
e“ 0
Texture By : Y, = | aye’® 0 =10 e¥ 0 as 0 )
. . . . 0 e”
aze'®  bge'Ps 0 0 e~# aze’®  bs

with = = f1—p, y=a—a1+fi—p, 2z=[0—p, w=a1—Pi+p, ¢=az—Fz—a+H. (3.50)

With the RHN mass matrix of Eq. (2.29)), via the see-saw we will get the light neutrino mass

matrix:

2a1b; asby  (arbs + asbie™®)ry;
MIEBI)(MZ) — a2b1 0 agbg’f’yg m ) (351>
(a1bs + azbie®)r,s  asbsr,s 2a353€i¢7"33

This neutrino mass texture (referred as By neutrino texture) works only for inverted neutrino mass
ordering |1| (with ms = 0) and has two predictive relations. In particular, in terms of measured
oscillation parameters we can calculate the phases ¢ and p;. The exact expressions are:
—i6 )2

my(1 + t35t1ysty) — ma (1, + 13551;) (1 — tagtisige

cosd = , =m—Ar , 3.52
2ta3t12513(my + M) P~ & (t1o + tags1ze—1)2 (3.52)
with my = \/Am?ztm — AmZoh My = AmgtW“ ms = 0. (35?))

Although the first expression in (3.52]) excludes the possibility of using the best fit values for all
oscillation parameters, it allows for keeping values of s2; and s%, within 1o, while confining s%, to
20. Remarkably, needed baryon asymmetry can be achieved with relatively low values of tan .

For example,

for TH of the By neutrino texture, with : s3; = 0.604 (10), s, = 0.33 (20), si; = 0.023 (10)

— § = +0.307, p; =7 F0.2192, ¢ = +3.129 (3.54)
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(Am?, and Am?2,, are taken bfv’s.) to generate baryon asymmetry of desired amount [(%)mm o~

8.59 x 107!] in case of M = 3-10% GeV and Mg =1 TeV the value tan 3 = 6.32 is required.
B, Neutrino Texture: Improved Version

By addition of the d5 term to (1,3) and (3,1) entries of the By neutrino texture (3.51)), the light

neutrino mass matrix becomes:

2a1b1 a2b1 ((Ilbg + agblew)ﬂ/g + d5
MZEBII)(MZ) = azby 0 azbsry3 m., (3'55)
((llbg + a3b1€i¢)7"y3 —|— d5 a2b3r1,3 2a3b36i¢7“12,3

which gives all neutrinos massive and opens up a possibility of choosing two variables such as ms
and Ap = p; — py as independent ones to operate with. We refer to this (3.55]) improved version
as the By neutrino texture. From the condition M,EM) = (0 we have:

m1<U21)2

U2 — Us)? Uy 26100 A .
ma |Ua| [ma(Uz2)"+ms(Uzs)"e ™), pr=m—Arg mo(Uze)? + mg(Usg)2etar

, with Ap = p1—po.
(3.56)

Out of the numerous values Ap and mg can take on, we select those that are not in conflict with the
observed oscillation data and at the same time together with the minimal allowed value of tan g
generate baryon asymmetry of the needed amount. In case of Inverted Hierarchy both of these

requirements can be satisfied. In particular:

for TH of the By’ neutrino texture : m3 = 0.00250717 eV and Ap = 3.6599 (3.57)

determine numerical values of the rest of masses, phases and eventually the neutrino double beta

decay parameter:

(ma, ma, ms) = (0.049714, 0.050461, 0.00250717) eV,
(8, p1, p2) = (0.17303, 2.9456, —0.71436). (3.58)
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As far as the baryon asymmetry is concerned, using (3.55)) in (2.49|), we get:

A? Agg)
:Ar 12 7
i g(A%SAu
1 An 1 A33 |A12| |A23|
_ _ by = 7 = = 3.60
“=3 Ao 2, 3 2ry3 | Agg 2 | a; ru3|m|as ( )

Using all these, we can calculate the baryon asymmetry. The results are given in Tab. The
goal of attaining needed baryon asymmetry with the minimal allowed value of tan § and without
coming in contradiction with the experimental data can be achieved in case of Normal Hierarchy

as well by selecting:

For NH of the B,' neutrino texture : ms3 = 0.0741678 ¢V and Ap = 3.2526 (3.61)
Case | M(GeV) | tan g | rs T, ky | 102 x & | 10M % <%> - 10" (Be)
(I.1) 3-103 2.1 10.8928 | 0.9731 | 1.118 0.8134 8.57 8.62
(I.2) 10 2.135 | 0.8499 | 0.9574 | 1.0986 | 0.7826 8.95 8.6
(1.3) 10° 2.332 | 0.7856 | 0.9316 | 1.0545 | 0.7924 8.56 8.61
(I.4) 106 2.559 | 0.7385 | 0.9103 | 1.0209 | 0.8066 8.56 8.6
(I.5) 107 2.822 | 0.7048 | 0.8926 | 0.9959 | 0.8242 8.54 8.59
(I1.1) | 6-10% | 2.118 | 0.875 | 0.9695 | 1.0933 | 0.8109 8.95 8.6
(I1.2) 10* 2.119 | 0.858 | 0.9631 | 1.0876 | 0.7896 8.56 8.6
(I1.3) 10° 2.302 | 0.7948 | 0.9378 | 1.0481 | 0.7932 8.56 8.6
(I1.4) 106 2.524 | 0.7484 | 0.9168 | 1.017 | 0.8067 8.59 8.59
(I1.5) 107 2.786 | 0.715 | 0.8994 | 0.9936 | 0.826 8.5 8.59

Table 17: By’ Neutrino Texture, IH. Baryon asymmetry for various values of M and for correspond-
ing minimal (allowed) values of tan 3. With the choice given in Eqgs. (3.57), (3.58) and bfv’s of s7.
With ¢ = —2.9846 and for all cases r,3 ~ 1.

give:

(ma, ma, m3) = (0.05437, 0.0550533, 0.0741678) eV,

¢ = 2.2568,

mgg =~ 0.051 eV.
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Case | M(GeV) | tanf T To, KN 10* x & | 10M x (%) i
(L.1) 3-10% | 12.612 | 0.9047 | 0.9764 | 1.0026 | 23.596 8.6
(I.2) 10% 12.081 | 0.8733 | 0.9639 | 0.9929 | 20.327 8.6
(I.3) 105 12.355 | 0.8229 | 0.9425 | 0.9772 | 18.774 8.6
(L.4) 109 12.696 | 0.7829 | 0.9236 | 0.9652 | 17.364 8.6
(I.5) 107 13.066 | 0.7515 | 0.9071 | 0.9566 | 15.947 8.6
(IT.1) | 6-10% | 12.608 | 0.8858 | 0.9725 | 0.994 23.269 8.6
(I1.2) 104 12.158 | 0.8735 | 0.9675 | 0.9904 | 21.059 8.6
(I1.3) 10° 12.249 | 0.8253 | 0.9467 | 0.9757 | 18.883 8.6
(IL4) | 10° | 12.582 | 0.787 | 0.9284 | 0.9645 | 17.46 8.6
(I1.5) 107 12.943 | 0.7567 | 0.9122 | 0.9565 | 16.029 8.6

Table 18: B;’ Neutrino Texture, NH. Baryon asymmetry for various values of M and for corre-
sponding minimal (allowed) values of tan 8. With the choice given in Eqgs. (3.61), (3.62) and bfv’s
of s%. With ¢ = 2.2568 and for all cases r,3 ~ 1 and ™ ~ 0.

The baryon asymmetries for cases corresponding to this NH scenario are given in Tab. [I8]
Texture B,

This texture is interesting because, due to specific form of Y,,, the radiative corrections through
the A; coupling do not generate cosmological CP asymmetry. Thus A, may be important, which
we investigate below. Thus, this model (and its slight modification discussed below) serves as a
good demonstration of the role of §, correction in emergence of needed Baryon asymmetry.

The By Yukawa texture can be written as:

a;e’ 1 breth e 0 0 a; b 4
e 0
Texture By : Y, = [ aye’®? by | =1 0 €% 0 ay bye™ NE
‘ ‘ 0 e
ase'™? 0 0 0 e¥ as 0

with =081 -p, y=wm—a+p—p, z2=a3—a+ B —p,

w=ar—p+p ¢=ar—pF —ay+ . (3.64)
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Via the see-saw we will get the light neutrino mass matrix:

2&161 a1b26i¢+agbl CL3b1’f’,,3
M£B2)(MZ) = | arbre’®+asby 2a2b,€" aghae'ryy [ (3.65)
a3b17”y3 a3b2€i¢7’,/3 0

This neutrino mass texture (referred as By neutrino texture) works only for inverted neutrino mass
ordering |1] (with ms = 0) and has two predictive relations. In particular, in terms of measured
oscillation parameters we can calculate the phases ¢ and p;. The exact expressions are:

mlt%zt%:a - m2(t%3 + t%23%3)

cosd =
2(my + ma)tiatessis

12
tiatas — S13€™
toz + t12513€%

: plZW—Arg(

with  m; = \/Amgtm — Am?

_ 2
Sl me = \/Am

atm»

ms = 0. (3.66)

From these relations one can easily check that model works only if at least two of the oscillation
parameters sin” §;; are off by several o’s. Taking bfv’s of the oscillation parameters would give the
absolute values of the r.h.s. of expression for cosd larger than one. Besides this difficulty, proper
value of the baryon asymmetry (generated with help of 1-loop correction of \,) requires even more
deviation from the bfv’s of the oscillation parameters. The root of the problem is that the value
of the phase ¢ is fixed so that the parameter sin ¢ (governing cosmological CP asymmetry) turns
out to be too suppressed. For instance, with s%, = 0.333, s2; = 0.388, s2; = 0.0241 and bfv’s of
Am?2, . Am?2,, for M = 3-10% GeV, with tan 8 ~ 68 and Mg = 1 TeV we obtain needed baryon

asymmetry [(%) ~ 8.56 x 10~ !], however for this case the values of sin®6,; are deviated from

max

the bfv’s by (2 — 3)o.
By’ Neutrino Texture: Improved Version

In order to avoid difficulties with By neutrino texture we add ds term to the (1,2) and (2, 1)

elements of the light neutrino mass matrix. After this, the M, will have the form:

2@1()1 albgei¢+a2b1—i—d5 a3b17’l,3
MIEBQI)(MZ) = a1526i¢+a251+d5 2a252€i¢ a3526i¢7"u3 m . (3'67>
azbiry3 a3b2€i¢7°u3 0

With this modification, all masses are non-zero, and therefore two additional parameters ms # 0

and p, enter. We refer to this (3.67)) improved version as the By’ neutrino texture. Thus our relations
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will involve two more independent quantities. For convenience we take ms and Ap = p; — ps as
such. From the condition M** = 0 we have:

mo (U31)2

U 2_ U 2 U 2 iAp =1—A -
i Uil = |ma(Usa)* o (Uss Je'] - pn=m—Arg ma(Usg)?+ms(Uss)%eiar

with Ap = p;— ps.
(3.68)

From these relations the phases § and p; can be calculated in terms of m3 and Ap.

As it turns out, in this improved version the IH case works well for both neutrino sector and
the baryon asymmetry. So, we will start with discussing the IH case. For measured oscillation
parameters we take the best fit values given in and select pairs (mg, Ap) in such a way as to

get needed baryon asymmetry. One such choice is:
mg = 0.01406 eV, Ap = 3.5257 , (3.69)
which with help of and determine neutrino masses and phases as:
(mq, ma, mg) = (0.0516, 0.052323, 0.01406) eV,

(5, p1, p2) = (2.8528, 3.1385, —0.38724) . (3.70)

These for the observable v025-decay give mgg ~ 0.0193 eV.
As far as the baryon asymmetry is concerned, using (3.67)) in (2.49) for the CP phase ¢ and

expressing couplings as 3, b1 2 in terms of a; we get

A AH)
=Arg [ 22 ),
i ¢ (A%:J,Am
Ao Az 2 | Az | A Aoz A 1
_ : = = |22 g, b= — — ) 3.71
T A A | T s AT T 2lmla;” Az | 2|mlay (371)
For the values of (3.69), (3.70) and bfv’s for the 6;; angles we get

¢ = 2.2301 . (3.72)

With these, and for given values of M and tan (8 by varying a; we can investigate the baryon
asymmetry. Results are given in Tab. [I9
As far as the NH case is concerned, the neutrino sector can work well by certain selection of

(m3, Ap). However, in order to generate needed baryon asymmetry we need to take values of sin® 0;;
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Case | M(GeV) | tanf Ty3 T To, ky | 100xE, [ 10M % (n—5> - 10 x (%) i
(I.1) | 3-10% |69.256 | 0.9965 | 0.9048 | 0.9763 | 1.047 4.18 8.55 8.6
(I.2) 104 67.557 | 0.9929 | 0.8728 | 0.9638 | 1.0327 | 3.589 8.55 8.6
(I.3) 105 67.376 | 0.9854 | 0.8196 | 0.9415 | 1.0176 | 3.34 8.55 8.6
(IL.4) 108 67.359 | 0.9771 | 0.7749 | 0.9213 | 1.006 | 3.122 8.55 8.6
(I.5) 107 67.376 | 0.9681 | 0.7373 | 0.9027 | 0.997 | 2.903 8.56 8.6
(IT.1) | 6-10% |70.391 | 0.9964 | 0.8858 | 0.9725 | 1.0311 | 4.093 8.55 8.6
(IL.2) 10% 69.003 | 0.9949 | 0.8735 | 0.9675 | 1.0243 | 3.691 8.55 8.6
(IL.3) 100 68.322 | 0.9873 | 0.8234 | 0.9462 | 1.0094 | 3.33 8.55 8.6
(I1.4) 108 68.321 | 0.979 | 0.7813 | 0.9267 | 0.9988 | 3.108 8.55 8.6
(I1.5) 107 68.373 | 0.9699 | 0.7459 | 0.909 | 0.9907 | 2.889 8.56 8.61

Table 19: By’ Neutrino Texture, IH neutrinos. Baryon asymmetry for various values of M and for

corresponding minimal (allowed) values of tan . For the values of (3.69)), (3.70) and bfv’s of 6,;

mixing angles.
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deviated from the bfv’s by the (2 — 3)o. For example, with (s2,, 525, 573) = (0.27,0.629,0.022) and
(ms, Ap) = (0.060651 eV, 3.12) we get

for NH of the By’ neutrino texture : (m1, ma, mg) = (0.033671,0.034764,0.060651) eV,

(8, p1, p2) = (—0.013, —0.12393, 3.0393) —> ¢ = —2.7538, mys ~ 0.032 V. (3.73)

These for tan 3 = 68.1 and M = 10° GeV, Mg = 1 TeV give the baryon asymmetry (%)max ~
8.59 - 1071

Note that the By" neutrino texture coincides with the texture P; of Ref. [20] if all entries in
are taken to be real. As was shown in [20] the real neutrino mass texture with MY =0
will work for both NH and IH neutrinos (see Tab. 6 of Ref. [20]). Advantage of complex d = 5
entry [like in texture ] is that it gives good possibility for generation of the baryon asymmetry
with the A\,’s radiative correction playing the decisive role. For the first time similar possibility has
been considered in [17,/18].

Concluding, note also that the A’ and B;’ neutrino textures are generalizations of the textures
P5 and Py (respectively), considered in [20]. The latter two had no complex phases, while A" and

B’ scenarios besides good neutrino fits give possibility for the generation of the baryon asymmetry.

3.5 Discussion and Outlook

We have investigated the resonant leptogenesis within the extension of the MSSM by two right
handed neutrino superfields with quasi-degenerate masses < 107 GeV. It was shown that in this
regime the cosmological CP asymmetry arises at one loop level due to charged lepton Yukawa
couplings. In particular, needed corrections may come from either of the A; and A, couplings.
Which one is relevant from these two couplings depends on the structure of the 3 x 2 Dirac type
Yukawa matrix Y,. Aiming to make close connection with the neutrino sector, we first examined all
viable neutrino models (considered earlier in Ref. [20]) based on two texture zero Y, ’s augmented by
single AL = 2, d = 5 operators. This setup is predictive and allows to relate leptonic CP violating
phase ¢ with the cosmological CP violation. In one of such scenarios the role of the A, coupling
in CP asymmetry generated at quantum level has been demonstrated. We have also revised the

models of Ref. [1] and considered their improved versions by including proper AL = 2, d = 5
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operators. This allowed to have good fit with the neutrino data and generate needed amount of
the baryon asymmetry.

Without specifying their origin, in our considerations we have extensively applied the AL = 2,
d = 5 operators, of the form given in Eq. . The d = 5 operator coupling [see Eq. ]
in our case has been directly introduced in the neutrino mass matrices. Here we give one example
of possible generation of d = 5 operators we are exploiting within our setup. Besides being of
a quantum gravity origin, such d = 5 couplings can be generated from a different sector via
renormalizable interactions. For instance, introducing the pair of MSSM singlet states N/, A" and

the superpotential couplings
AN Ry, + NN B, — MANN

it is easy to verify that integration of the heavy N, N multiplets leads to the operator in Eq.
with
dse’™ = 22X\

Important ingredient here is to maintain forms of the resulting mass matrices and do not mix the
states N, N with RHN’s N, 5. This can be achieved by some (possible flavor) symmetries (which
we do not pursue here). Perhaps a safer way to generate those AL = 2 effective couplings would
be to proceed in a spirit of type II [52|, or type III [53]| see-saw mechanisms, or exploit alternative
possibilities [54,55] through the introduction of appropriate extra states. Details of such scenarios
should be pursued elsewhere.

Throughout our studies we have studied texture zero coupling matrices, but did not attempt to
explain and justify considered structures by symmetries. Our approach, being rather phenomeno-
logical, was to consider such textures which give predictive and/or consistent scenarios allowing for
transparent demonstrations of the suggested mechanism of the loop induced cosmological CP viola-
tion. It is desirable to have explanation of texture zeros at more fundamental level, and exploiting
flavor symmetries seems to be a good framework.

Since the supersymmetry is a well motivated construction, we have performed our investigations
within its framework. However, it would be interesting to examine the considered models also within
the non-SUSY setup. For the latter, the scenarios with low tan 8 look encouraging to start with.

Finally, it would be challenging to embed considered models in Grand Unification (GUT) such
as SU(5) and SO(10) GUTs. Due to the high GUT symmetries, additional relations and constraints
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would emerge making models more predictive.

4 Conclusions

Within the MSSM augmented with two quasi-degenerate right-handed neutrinos all possible two
and one texture zero 3 X 2 Yukawa matrices together with minimal d = 5 operator couplings have
been analyzed and their contribution to the light neutrino mass matrices has been thoroughly
investigated. All viable neutrino mass matrices have been studied and predictive relations have
been derived. Cosmological CP violation has been related to the leptonic CP violating 6 phase.
Realizations of resonant leptogenesis have been investigated and their consistency with experimental

data has been demonstrated.

5 ®39b09dg (Resume in Georgian)

LabEo, dm0gMo o gegdE®MmmaogboEy®mo YohmogmmJdgwgogool omdhgmo LEIbIOEHPYOo Jmwgmo
(L3), JoYHYOZO® MOZ30L0 YoWOJLO® OO FotdoEgoolo, ggc BLOHOL vMObYMMZebo dobol dJmbyg
630 ®0bMgool d9OLIOMOOL O OM 0dmggzo FMLAMMMZoPMo CP sLodgE®ool 8do3zd0gma30emgo e
obLbOL, BMEMMF 93 PY30060L3bgMoOL Ho®TMAMOOL, 0bg Gogbgomo 3603306geM0O0L MIoMLOBEGOLom.
00603690 LoOMPYJJo0 Y339 M0dI60dg dMJP®o Heol gobdogmmodsdo HomdmMoagbgd 0bEgb-
Loyg®o mgmdoymo o gJu3dgmodgdbEPmo 33emg3900L LARgMOML. mgolomgol gdudg®modgbEnmo ©o
0033003900 39093900 Y3gmo 3ombgzotbg 3oLbL o6 33139990, Fog®Maad LoBYLEOLO o Lodow®mol
300 9930 JomO© LoZoMMYogb MNP0 IMEIOL QoMamgodo sbLboL. bd-ob ghmgdm y3g-
oY LOObEHIOILM FOROIOMNMJOOL FoETMOEgbL Jobodo Mo bY3goLodgEMoYmo LEObEOIMEYMO
dmgmo (LLA), ™AL MG 330B0-30wO330MJOPMO (Hg-0obeMgosdo BPLHOI FowWOg39MYOY-
™0) JoMOR3I00 630E®obMMo (36) 3obBMgowgoom, 303000gm O FoMdoEgoom godmgoggbgm goM339-
90 MObORIOEM0Jo0 gJudg®ModgbEMob MOgLgoowo bgoE®ObML Toby®mo JoE®o3go0L doLomgos
0 ™gdmby® CP ©0od®dmggs § Robolbo ©o 3mbdmmmgoned CP sbodgE®mool dm®ol 3ogdomol
©oLOEagbo. Loodobme, dbyoydo 6xoEH®ObMIooLm3zol gobgobomgm gOmo o m®mo FIJLEHYOYmo
690l dJmbg gggmo dgbodmm 093030L oF®oEo o dgdmgoyggzabgm AL = 2 mgdymbymo Goibgol
©03M®3930, HRMOL Fmo gob¥momgdol (d = 5) M3gMOFHMG0. 03 M3JOOFHMOL Jgodgb Hgmomo
dbgoggdo 6goE®obmL dobye doF®oEodo. ALLA-0L sLgmo dMwoY0ZoE00m Hggb:
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1) dmgz0bobgm ggudg®modgbEmob mogLgoswo dLHoJo bgoFH®obmML Jobymo FoEMoEgool mobo-
33030300 0 Jomo JgLFogmom godmgzoyggzebgm HobobomdgEygzgmgool gbo®ol dgmbg vbomoByMo
303 LoObYMg0900, MMIJMNO 3odMygbgoom dogzomgm LEOYmo 0bgMEmIoEos Fbyoydo bgoF®ObmL do-
LgooL, mgdEmbyY®o CP od®mgggo d 530B0bo o doom®mabol g3obgool 9gbobgo. obggg, dmgobgdbgm
CP 003M3930 d 530B0b 003030060900 mgMagmo cmgdiEmggbglololb CP g3obsobmoeb (A. Achelashvili
and Z. Tavartkiladze, Int. J. Mod. Phys. A 31, no. 13, 1650077 (2016).).

2) 3obgobomgm MH9bmMboblbgmo mg3Emagbgbolol Logombo. 330bEH M0 FgbHimEgogool gGIMYMo
dgLfogmom, 3ohggbgom gdEHmMby®mo dbodgE®ool FoMmIMIMool Iglodmgdmmos 1-3oMYy7sMgob m-
bgbg O O30003009m, MMA 63 3MMEILT0 oodFY39H MMML MOTOTMOL Foy WY3H™bOL 0Y3030L
000, m9dEo Bmg 9gdmbgggodo, s®Loomo 3b60dgbgmmMdd 0J3L 3oy gdEMbol 093030 035L. Hobob-
Pom39’939mgool PYbomoly IJmbg 3mb3MIE Y bgoBH®obml ImEgmbg dmgzabobgm CP odmmgggo
0 g30B0bo o ZMbdMmmmgon®o CP sLodgE®ool ©o3o3d0mgooly Jgbodmgdmmool ©gdmblgmomgos
©o 30h3969m, BT d0M0MBYMO dLAYEE00L Lobykggmo 360gbgeM0Os Foowgos MIBMbObLYmO
™93%H™a969B80LoL godmygbgdom. FomdMgomaobgm hggbo dmmgmol MgbmM®To0BOF0YMO YeEH®O-
00Lg3gMmo LOLEOYMOL JOMO FoZOMOMO O OZITBHZOBIM Y39mod Jomgoymo d9wgaol dgMom-
00. 960 0BoL JoJLodoey®o LoBYLEOLMZOL ZLoMZgJOMMOOm MJbMMTdMOBIF0YMO XZYBOL gob-
{™Mmg09089 ©0dgoMmgoPmo 330300 omygdoEozaco dgmmmgoom. doMx3gbs LbgoF®obmgoolL—ab-
oL L3OO Yo 30OED0MEOJOOL EOTMooL gogemmgbso Jgzoxobgm IHIMPYMo 33tmggzol dgw9gzow
(A. Achelashvili and Z. Tavartkiladze, Phys. Rev. D 96, no. 1, 015015 (2017).).

3) ©00303%3039m, 3MbIMMMgo®mo CP sbodgE®ool MoEooEogmo dgbfim®dgogoom gohgbol dgbod-
@gd@mool dgbfogmom, H™T bgoF®mobml gom33gamo BaJuHMgoobmzol Fbmmme A,-l domgo-
@obobgoo 0dmggo 3mLAMMMEoYed CP potmgggzol ghm-domyyggmaob doobmmgdsdo, oygdgs d90-
®™bH393300L PYIMOZMILMOOTo gowodHy3zaHoo A -L Famomo. gJudgomodgbEmob MogLbgoso Ygzgmo
dobg®o Mool gobbomgolol, dbgeggmmosdo dogomgm MMaM®OE A, obg A, d3om gobdo®m-
09090 Mo0030mo dgLim®mgogoo, gobgobomgm dugogdo BgoF®obmbmgolb m®o EgJuE gt ymo
byemol dJmbg yzgmo 3 X 2 09308301 FoFMoEo O hogoHOIMIm ™MI3H™MagogboLoL IEOYMO dbo-
@0YB0. 9bdmmMgog®mo doamdom dggoLogmgm gomo FIJLH YO Yo bymol dJmbg o®szobgymo
0939300 303 M033900 O 3ohgzgbgm Jomgdymo 39093300l MogLbgoomMos gJuldgmodgbEgm dmboig-
dg0mob (A. Achelashvili and Z. Tavartkiladze, Nucl. Phys. B 929, 21 (2018). A. Achelashvili
and Z. Tavartkiladze, AIP Conf.Proc. 1900 (2017) no.1, 020012.).
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4) 303009m, M0 (330H0) 30©5330Mgdxmo 3b-0b LzgboMOL PROMZEgddo, BMZOO MNOBOYGOMMOY-
00 CP obodgE®oobmgol (dgboosdobo dgbfimmgogoom). dogbgoogeam 0dobo, GmAd H3gbl boddmMIdo
do®ygg7cgobo 30obemmgoom gob3do®mmogoymo CP @otmgggzso godmygbgogm 0dbs ¢ajubpagtgmo by-
goob dJmbg L3gE0B03YM IMIMgodo, Jowgoymo 89wgagool godmygbgods Jglodmgogmos MmMo
(33060) googgemgoymo db-ol d9d339cm bgooLbdogcm dmgedo.

6 Resume

The Standard Model of weak, strong and electromagnetic interactions (SM), despite its enormous
success is incapable of accommodating non-zero masses of neutrinos, neither does it provide satis-
factory explanation of the cosmological CP asymmetry in terms of both, its origin and numerical
value. These issues, however, have been the subject of intense theoretical and experimental research
for several decades. Nowadays, experimental and observational data, though not answering all the
questions, but nevertheless rich and precise enough to address various aspects of the theory, is in
dire need of accounting for within relevant models. One of the most promising extensions of SM is
the Minimal Supersymmetric Standard Model (MSSM), which we augment by two quasi-degenerate
(strictly degenerate at tree level) right-handed neutrinos (RHN), thus paving the way for certain
predictive relations which have been successfully used in sorting out viable light neutrino mass
matrices, as well as establishing the connection of leptonic CP violating phase  with the cosmo-
logical CP asymmetry. Towards this end, we considered all possible two and one texture zero 3 x 2
light neutrino Yukawa matrices and introduced one AL = 2 lepton number violating dimension five
(d = 5) operator contributing to the light neutrino mass matrix. Tweaking MSSM this way, we:
1) Classified all experimentally viable light neutrino mass matrices, leading to several predictions
and analytically derived predictive relations, thus obtaining all numerical information regarding
light neutrino masses, leptonic CP violating phase § and Majorana phases in each case. We also
related the CP violating § phase to the CP phase of the thermal leptogenesis (A. Achelashvili and
Z. Tavartkiladze, Int. J. Mod. Phys. A 31, no. 13, 1650077 (2016).).

2) Addressed the issue of resonant leptogenesis. Investigating the quantum corrections in details,
we showed that the lepton asymmetry is induced at 1-loop level and decisive role is played by the
tau lepton Yukawa coupling, although in some cases the mu lepton Yukawa coupling is of crucial

importance. On a concrete and predictive neutrino model, which enables to predict the CP vio-
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lating 6 phase and relate it to the cosmological CP asymmetry, we demonstrated that the needed
amount of the baryon asymmetry could be generated via the resonant leptogenesis. We presented
one example of renormalizable ultra violet completion of our model and proved the robustness
of all obtained results. To make our study as thorough as possible, we extensively used rigorous
methods based on RG equations. Impact of the decays of the right-handed sneutrinos—the scalar
partners of the RHNs-was estimated through the most detailed investigation (A. Achelashvili and
Z. Tavartkiladze, Phys. Rev. D 96, no. 1, 015015 (2017).).

3) Proved, having studied the rise of cosmological CP asymmetry by radiative corrections through
the charged lepton Yukawa couplings, that in specific neutrino textures only inclusion of the A,
generates cosmological CP violation at 1-loop level. In most cases, however, decisive role is played
by the A, coupling. In each case of experimentally favored light neutrino mass matrices we took
into account radiative corrections induced by both, A, and A, couplings, considered all two texture
zero 3 x 2 Dirac Yukawa matrices of neutrinos and performed detailed analysis of leptogenesis. We
applied the same approach to one texture zero Dirac Yukawa matrices as well and showed com-
patibility of obtained results with current experimental data (A. Achelashvili and Z. Tavartkiladze,
Nucl. Phys. B 929, 21 (2018). A. Achelashvili and Z. Tavartkiladze, AIP Conf.Proc. 1900 (2017)
no.1, 020012.).

4) Obtained, within the scenarios with two (quasi) degenerate RHNs, the general expressions for CP
asymmetry (with corresponding corrections). Although in our work obtained results of the loop in-
duced cosmological CP violation have been used for specific texture zero models (see Refs. [16-18]),

the application can be extended to any model with two (quasi) degenerate right handed neutrinos.

A Renormalization Group Studies

A.1 Running of Y,,Y, and My Matrices

RG equations for the charged lepton and neutrino Dirac Yukawa matrices, appearing in the super-

potential of Eq. (2.1]), at 1-loop order have the forms [56},57:

d

1672 Y, = SYYY 4+ VLYY, + Y, [tr (3Yij + YJYe) - cggﬂ . = (%, 3,0), (A1)
d 3

167T2EY1, =Y, VY, +3V,YY, +V, [tr Y)Y, +V[Y) —cigl] , = (g, 3,0).  (A.2)
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9o = (g1, 92, 93) denote gauge couplings of U(1)y, SU(2), and SU(3). gauge groups respectively.
Their 1-loop RG have forms 16724 g, = b,g3, with b, = (2,1, —3), where the hypercharge of U(1)y
is taken in SU(5) normalization.

The RG for the RHN mass matrix at 2-loop level has the form [57]:

d 1
167r2%MN = 2MyY)Y, — 53 My Yiv.yly, +viv,Yly, + VY, «(3Y]Y, + VV,)]
s

1 3
+ @MNYJYV (ggf + 393) + (transpose) , (A.3)

Let’s start with renormalization of the Y,’s matrix elements. Ignoring in Eq. (A.2) the O(Y}?)
order entries (which are very small because within our studies |(Y;);;| £ 107*), and from charged

fermion Yukawas keeping A-, A,, A\; and )\, we will have:

d
167r2E In(Y,)ij o 0isA2 4 0p2 X2 + 3N] — clg? . (A.4)
This gives the solution
(V)i (1) = (Yoc)is (e (1)) (0 ()20 (1) 10w (1), (A.5)

where Y, denotes Yukawa matrix at scale My and the scale dependent RG factors are given by:

1 o 2 / / 1 tGQ / /
e T AR ) BRI ey )
1
ngu(ﬂ):exp 1

ta
5 2/ c,‘jgi(t’)dt) =P (Wnd (), with t=Inp, ' =Ing, tec=InMg. (A.6)
™ Jt

From these, for the combination Y'Y, at scale u = M we get expression given in Eq. (3.14)).

On the other hand, for the RHN mass splitting and for the phase mismatch [depending on &, ,
defined in Eq. (3.15))], the integrals/factors of Eqs. (3.11)), (3.12)), (3.13) and (3.14]) will be relevant.

A.2 Relating M, (Mz) and M,(M)

Details of derivations, of the results presented in this subsection, are given in Appendix A.2 of
Ref. [16]. At scale M, after decoupling of the RHN states, the neutrino mass matrix is generated

and has the form:

X X X
X X X



where ‘x’ stand for entries depending on Yukawa couplings. After renormalization, keeping A, A,

Ay and g, in the RGs, the neutrino mass matrix at scale My has the form:

X X (X)Ty3

M9 (My) = X X (X)-Ty3 (A.8)

S

()1 (X)rus (X)-1y8

with m given in Eq. (3.23) and x in Eq. (A.8]) denotes entries determined at scale M and corre-
sponding to those in (A.7), and RG factors r,3, rs are given respectively in Eqs. (A.17), (A.18) of
Ref. [16]:

. <m<tz> )”2 (M) | (A.9)

- (tas) 1-(tar)
o) i) G G (M)

1 thg
Ny = exp (— 62 / /\(t)dt> : (A.11)

tmy,

where

and remaining n-factors are defined in Eq. (A.6)).
We will also need the RG factor relating the VEV v, (M) to the v(Myz). Thus we define:

Uy (M)

o= i) (A12)

Analytic expression for r,, derived from appropriate RGs is given by Eq. (A.20) of Ref. [16]:

(M) (m(ysmt))?’( nb<tz>)>3( m(tz)))<77§(tz)772_2(tMs))Z(ﬁ?(tz)UIQ(tMs) ®

"= s0t)ss \mttan) it ot/ atean) m(tar) ) - (A13)

A.3 Calculation Procedure and Used Schemes

To find the RG factors, appearing in the baryon asymmetry and in the neutrino mass matrix
renormalization, we numerically solve renormalization group equations from the scale My up to
the Mg ~ 2-10'% GeV scale. For simplicity, for all SUSY particle masses we take common mass

scale Mg. Thus, in the energy interval M, < u < Mg, the Standard Model RGs for MS coupling
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constants are used. However, in the interval Mg < p < My, since we are dealing with the SUSY,
the RGs for the DR couplings are applied. Below we give boundary and matching conditions for

the gauge couplings g; 23, for Yukawa constants A ; -, and for the Higgs self-coupling .

2
Gauge couplings a, = =

We choose our inputs for the MS gauge couplings at scale My as follows:

_ 3 _ 3, 8 m _ _ 8 m
a7 (My) = gCiaeé(MZ) + gciglnﬁ; .y (My) =s2a (Mg + Siglnﬁtz ,
1 m
1 (My) = a7 (My) + —In —- A.14
5 (Mz) = o7 (M) + 5-In L (A14)
where logarithmic terms In - are due to the top quark threshold correction [58,59]. Taking
as(Mz) = 0.1185, oL (M) = 127.934 and s? = 0.2313, from (A.14)) we obtain:
82 . m 8s2  m
TH(My) = 59.0057 + —% In —- > (My) = 29.5911 + —2 In —~
ar (Mz) T e, @2 (M2) T or M0,
1

a7 (My) = 8.4388 + — In (A.15)

3 MZ '
With these inputs we run ¢, 2 3 via the 2-loop RGs from Mz up to the scale M.
At scale 1 = Mg we use the matching conditions between DR — MS gauge couplings [60,61]:

1 1 1 1 1 1 1 1
at p = Mg : — = —, —_=—— -, = = A.16
aPR oM ot oS 6w O e S ( )

Above the scale Mg we apply 2-loop SUSY RG equations in DR scheme [56].

Yukawa Couplings and A
At the scale Mg all SUSY states decouple and we are left with the Standard Model with one

Higgs doublet. Thus, Yukawa couplings we are considering and the self-coupling are determined

as:
_my(my) _ 2.89GeV _ 1.746GeV ~0.1027GeV
)\t(mt) - U(mt) ) )\b<MZ) - /U(Mz) ) )\T(MZ) - U(MZ) ) )\M(MZ) - U(MZ) )
2
A(my) = Lme N i v(My) =174.1 GeV , my = 125.15 GeV | (A.17)
4 \ v(my)

where my(m;) is the top quark running mass related to the pole mass as:

mt(mt) == ptMtpole . <A18>
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The factor p; is p; ~ 1/1.0603 62|, while the recent measured value of the top’s pole mass is [63]:
MP' = (173.34 + 0.76) GeV. (A.19)

We take the values of as boundary conditions for solving 2-loop RG equations [59,/64] for
Atprp and A from the My scale up to the scale M.

Above the Mg scale, we have MSSM states including two doublets h, and hg, which couple with
up type quarks and down type quarks/charged leptons respectively. Thus, Yukawa couplings we
are considering at Mg are ~ \(Mg)/sp, \o(Msg)/cs and A, ,(Ms)/cp, with sz = sin 3, ¢z = cos S.
Above the scale Mg we apply 2-loop SUSY RG equations in DR scheme |56]. Thus, at u = Mg we

use the matching conditions between DR — MS couplings:

— \Ms 1 92 392 492
tp= Mg : MR~ L1 L2 3
abp =M P l+16w2(120+8 3 )|
= NS 1 (1347 3¢2 4g? — A 1 9g>  3g2
ADR ~ b 1, =2 =3 ADR o T gy (2L 22 A.20
b cs [+167r2 (120 TR T3 ) M cs e\ a0 Ts )] A0

where expressions in brackets of r.h.s. of the relations are due to the DR — MS conversions [61].
With Eq. (A.20)’s matchings we run corresponding couplings from the scale Mg up to the M scale.
Throughout this work, above the mass scale Mg without using the superscript DR we assume the

couplings determined in this scheme.

B Baryon Asymmetry from RHS Decays

In this appendix we give details of the contribution to the net baryon asymmetry from the right
handed sneutrinos (RHS) - the scalar partners of the RHNs. Estimation of this contribution for
specific textures was given in [1], while more detailed investigation was given in [16] (from the
lepton couplings taking into account only A, and A, in the proper RGs). Since we have seen that
for some cases for the cosmological CP asymmetry decisive is the RG correction via the A, Yukawa
coupling, here we extend its calculation by taking into account also effects from A\, and A, into the
asymmetry generated by the RHS decays.

We will consider soft SUSY breaking scalar potential
v 7 \ 1~ \T 71 7 \7 \7
Vg =1"A,Nh, — 5NTBNN +hee + 'm2l+ N'm% N | (B.1)
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which will be relevant for deriving RHS masses and their couplings to the components of the [ and
h. superfields. Using general expressions of Ref. [56] we write down 1-loop RGs for A, and By,

which have the forms:

d .
167T2£A,, =Y. YIA, + 2A.Y]Y, + 5Y, YA, + A, [tr(3Y,]Y, + VY,) + 4V]Y, — cig?]

1oy, [tr(?,YJAu LY + c‘;ggMVa} , (B.2)
d
16W2EBN =2B\Y, Y, + 2V Y By + 4MyY] A, +4ATY My (B.3)

We parameterize the matrices By and A, as:

s 1
By = (Mn)12mp o | A, =maa, , (B.4)

where entries (My )12, mp, 5};}3) and elements of the matrix a, run (their RGs can be derived from
the RG equations given above), while m 4 is a constant. The matrix A, (similar to the structure of

Y. Yukawa matrix) is

A, = Diag (A., A,, A,). (B.5)

Assuming proportionality / alignment of the soft SUSY breaking terms and corresponding super-
potential couplings, we will use the following boundary conditions:
_ . _ 1 _ 5@ _ A :
at p=Mg: a,=Y,, Ogy=05y=0, Ac=maDiag (A, A\, A;)
Au = mAYuG y Ad = mAYdG . (B6)

Using (B.3) for By’s entries in (B.4]) we have:

d d
167r2—t§g}v ~ AV )1 + 87 A (Viay)or 167r2—t§§§}v ~ AV Y )0 + 87 A (Y ). (BT)

d mpg d mp
For the elements of a, we have
d ((a,)i 1 2
16m2— 2 )~ 2——(Gis A Ay + 90, A —(3NA @02 M B.
O dt <(Yy)”) mA< 3 + 042 iz #) + ma (3 tA + €Y, Va) ’ ( 8)

which show the violation of the alignment between a, and Y, due to RG effects. At r.h.s. of (B.8§])

we kept A\, 7+, Aure, gauge couplings and gaugino masses. From this we derive

1+€0 0 0
ay, = 0 1+60+€# 0 YI/
0 0 14+¢+¢€,
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1 1 ta
with € = — 53 / dt(3N AL + cLgiMy,) | €ur = — = / dtA, - Aur (B.9)
t

My 8m2my

Keeping in mind that the powers of the Y, couplings can be ignored due to their smallness, the mp

can be treated as a constant, and from (B.9)), (B.7]), (B.4]) we obtain:

—ady(l+¢€ 1
at u=M: By=mpM v 2 , a=1+2"4 (B.10)
1 —ady (1 + &) mp
and
1 ta « ma 1 ta ot m* *
€1= dt YT e 2——¢ Yu € - dt Y " A ~x Yu
“ 47T20z5N/tM (”<167r2 e T mBe) )21’ 2T ady / ( (167r2 ¢ m*B6 ) )21 ’
with € = Diag (e, € + €, €0+ €7) . (B.11)

The form of By given in Eq. (B.10]) will be used to construct the RHS mass matrix. Before doing
this, using Eq. (A.5]) and ignoring the coupling A, (as it turns out from the lepton Yukawa couplings

all relevant effects are due to A, ;), for € 5 at scale p = M we can get expressions:

1 2 1 .
_ M = YTKYV = M - - YTKY*
61( ) 471—2055N( v )21 Y 9 62( ) 47_‘_20457\[( v v )21 Y
A 1 1
with K = Diag {2mAIo , = (2 Ay 2 2]“‘)) , <2_1<T a 212(7))] |
ez, mp na \ ms 167 N2\ m 167
ta
fo= / dipeo 1= / dinfn, (eo + eur)nt, . 1T = / g, Ny e (BA12)
tyv tar tas

Keeping the By-term in 1' and including the mass? term N TM]T\,M' ~N coming from the

superpotential, the quadratic (with respect to N ’s) potential will be:
- - 1 - .
VY = NTM{MyN — (§NTBNN + h.c.) . (B.13)

With the transformation of the N superfields N = UyN’ (according to Eq. (3.4), the Uy diago-

nalizes the fermionic RHN mass matrix), we obtain:
. 1 -, .
vV = NT(MY“)*N' — (§N TUJEBNUNN’Jrh.C.) : (B.14)
With phase redefinition

N' = PN", P, = Diag (e_ia’l/z, e_iQQ/Q) . with @2 = Arglmp(1 F &|dn])] (B.15)
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and by going to the real scalar components

. 1 - i i 1 - .
NY = E(Nf%ﬂLiN{) , Ny = E(NzRJFiNQI) : (B.16)

and using (B.10)), we will have:

1 7 ~ Mm - ~ ~
- (éz\f TULBNUNN' + h.c.) = —% 11— aldn]| ((NlR)2 - (N{)2>

MLy g (992 = (3)2) | MIRe(mpt) (NRNE — L)+ MJEm(mpt,) (NINE + NENY)
with &= a(l+ 2 ; @) 5, = ialsn] 2 ; @ il@nta)/2 (B.17)
From (B.14)) and (B.17) we obtain the mass® terms:
v — %ﬁOTMgﬁO . with 7 = (NlR,N{ NE Ng) (B.18)
and
(M)? 0 —|M|Re(mpdc) |M|[Im(mspé.)
i 0 (VP Mlm(mph) MIRe(msi) _—
—|M|Re(mpd.) |M|Im(mpd,) (MJ)? 0
[M[Im(mpdc) | M[Re(mpd.) 0 (MY)?
where

(M7)? = [MP(1 ~ |o])? = [msM]| |1 = Glonl], (M3)* = [M[*(1 — |ox])* + |mpM| |1 — alén]|

(M5)? = [MP(1+]8w])* = [mpM| |1+ @lonll, (M7)* = [MP(1+|0x])*+[msM] 1 + Glow| (B.20)

The coupling of 7° states with the fermions emerges from the F-term of the superpotential

1Y, Nh,. Following the transformations, indicated above, we will have:
("Y,Nhi)p = 'Y, N = e 2,17V, Uy (pue @972 pg) °

ith Lt Lo (B.21)
wi Pu=—= , pPd=—= : .
v2\ o0 o V21 g

Diagonalizing the matrix (B.19)) by the transformation
VIEMEV; = (M9, i = Vin, (B.22)
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the fermion coupling with the scalar n mass eigenstates will be
hd'Yei  with Ve =Y, VOV, VO=Uy (pue ™% pge™/?) . (B.23)

The coupling with the slepton [ is derived from the interaction term hyl” (Y,,M]"QN *— AN )

Going from N to the 7 states, one obtains:
hdTYpn  with Yg = (Y, M5V — A, VOV; . (B.24)

For given values of M, mp and m4, with help of Egs. (B.19), (B.23) and (B.24)), we will have

coupling matrices Yz, Yp and all other quantities needed for calculation of the baryon asymmetry

created via the decays of the 7, 234 states.

B.1 Calculating % - Asymmetry Via n Decays

Due to the SUSY breaking terms, the masses of RHS’s differ from their fermionic partners’ masses.
For each mass-cigenstate RHS’s 7,=1 234 we have one of the masses ]\Z/i:172,374 respectively. With
the SUSY Mg scale % < 1/3, the states n; remain nearly degenerate and for the resonant n-decays
the resummed effective amplitude technique [10| will be applied. Effective amplitudes for the real

f1; decay, say into the lepton I, (o = 1,2,3) and antilepton I, respectively are given by [10]

Sai = Sai = Y _ Saj L(M)(1 = 0y) , Su=8% - > s, L(M)(1 = 6y) . (B.25)
j J\JZ2 - J\JJ2 + H]J(MZ) j J\JZ2 - J\JJ2 + H]j(Mz)

where S,; is a tree level amplitude and II;; is a two point Green function’s (polarization operator

of n; — n;) absorptive part. The CP asymmetry is then given by
5o (18l = 1Sail?)
S (18l + [Sail?)

With Yz and Yp given by Egs. (B.23) and (B.24) we can calculate polarization diagram’s (with

(B.26)

external legs 7; and 7n;) absorptive part II;;. These at 1-loop level are given by:

1L _@ _%QT Ty * iz 2_%5 T Ty *
5(0) = o <1 - ) (vive+v7 YF>ij+ = <sﬁ r-— )) (vivs + Vi YB>U . (B27)
where p denotes external momentum in the diagram and upon evaluation of , for II one
should use with p = M;. In , taking into account the SUSY masses Mg of all non SM

states, we are using the refined expression for the II;;.
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In an unbroken SUSY limit, neglecting finite temperature effects (7" — 0), the N decay does
not produce lepton asymmetry due to the following reason. The decays of N in the fermion and
scalar channels are respectivelly N — lh, and N — i*hj; Since the rates of these processes are
the same due to SUSY (at 7" = 0), the lepton asymmetries created from these decays cancel each

other. With T" # 0, the cancellation does not take place and one has

with a temperature dependent factor Agp given in |65HE Therefore, we just need to compute
€;(f; — lhy), which is the asymmetry created by 7; decays in two fermions. Thus, in (B.25) we
take Sa; = (YVp)ai and calculate €;(7; — lhy,) with (B.26). The baryon asymmetry created from the

lepton asymmetry due to n decays is given by:

- 4
™ 846 104"

S -
=1

_ 4
- )

—n; = —8.46- 107> " ei(it; = thy )1, | B.29
Asr 2. " >

where an effective number of degrees of freedom (including two RHN superfields) g, = 228.75 was

~ (W sin )2 9

used. 7; are efficiency factors which depend on m; ~ “~—; (Y}Yp)ii, and account for temperature

effects once integration of the Boltzmann equations is performed [65].

Calculating the contribution % = % to the baryon asymmetry from the RHS decays, we have
examined various values of pairs (my4, mg) in the range of 100 GeV - few TeV. As it turned out,
the ratio Z—Z is always suppressed(< 3.4 - 1072). The results for each neutrino scenario, we have
considered in this work, for one specific choice of (m4, mpg), are given in Table 20| (see its caption for
more information). The ranges for % are due to the fact that for each scenario we have considered
different values of tan 8, M and Mg. Upon the calculations, with obtained values of m;, according
to Ref. [65] we picked up the corresponding values of 7; and used them in (B.29). While giving
the results of the net baryon asymmetry, for each case (see sections and , we have included
corresponding contributions from % as well. As we see from the results of Tab. the % is
suppressed /subleading for all cases. We have also witnessed (by varying the phases of my4 ) that
the complexities of m 4 and mp practically do not change the results. This happens because the m 4

in the Yz coupling matrix appears in front of the Y, [see Eq. (B.24))], which is strongly suppressed.
Irrelevance of the mp’s phase can be seen from the structure of 1) Suppression of % will always

12 This expression is valid with alignment A, = mY,, which we are assuming to be true at the GUT scale and

thus Eq. l) can be well applicable to our estimates.
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Neutrino Model 101 x %

Texture P, NH, data of tab. |7 0.23 —0.28
Texture P,, NH, data of tab.|8 0.16 — 0.23
Texture P3, NH, data of tab.|9 ~ 0.1
Texture P53, TH, data of tab. (9 0.07 — 0.09
Texture P,, NH, data of tab. |10 0.07 — 0.08
Texture A’, NH, data of Eqs. (3.46)), (3.47 0.05 —0.07

Texture B,’, IH, data of Eqs. (3.57)), (3.58) | 0.04 — 0.049

Texture B,’, NH, data of Eqs. (3.61) — (3.63 ~ 0
Texture By', IH, data of Eqs. (3.69)), (3.70 0.042 — 0.05
Texture By, NH, data of Eq. (3.73 ~14x10™*

Table 20: Values of % = % - contributions to the Baryon asymmetry via decays of the right
handed sneutrinos for (ma, mp) = (1007, 500) GeV and for various neutrino textures. Asymmetries

are calculated with those values of a;, and b; Yukawas that give (%) 1y (FOT the latter see sections

and )
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happen for the value of |mp| in the range of 100 GeV - few TeV, because the mass degeneracy of n;
states is lifted in such a way that resonant enhancement of % is not realized. (Unlike the case of
soft leptogenesis [65] which requires |mpg| < 10 MeV. Without special arrangement, such suppressed

values of |mp| seem unnatural and we have not considered them within our studies.)

C Issues Related to the Baryogenesis

In this appendix we highlight and discuss some key concepts of Baryogenesis. For comprehensive

reviews we refer to [66], from which we have greatly benefited.

C.1 Freeze Out: Origin of Species

The early history of the universe can be described to a high degree of accuracy in terms of most of its
constituents being in thermal equilibrium. If the thermal equilibrium has been held since the early
period of the universe, the present state of the universe would be completely specified by the present
temperature. However, thermal equilibrium has been disturbed many times, by various processes,
such as: neutrino decoupling, decoupling of the background radiation, primordial nucleosynthesis,
inflation, baryogenesis, decoupling of relic WIMPs etc. To find out whether a particle species is
coupled to or decoupled from the plasma one needs to compare the interaction rate I' of the particle

with the expansion rate of the universe H:
[' > H (coupled) , T <H (decoupled) (C.1)

where I is the interaction rate (per particle) for the reaction(s) that keep the species in equilibrium.

m)3/2

If a massive particle species remained in equilibrium until present, its abundance: ¢ ~ (T

exp(—1)
would be absolutely negligible because of the exponential suppression. If the interactions of the
species freezes out(i.e. I' < H) at a temperature such that 7 is not much greater than 1, the species

can have a significant relic abundance today.

C.2 Baryon Asymmetry of The Universe

In this section we outline the problem of baryon asymmetry within the Standard Model and demon-

strate how it can emerge, although in insufficient amount, on a more sophisticated level, such as
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an SU(5) GUT. The problem itself is rooted in the observed fact that the Universe seemingly
does not contain antimattter in high concentrations. Such cosmological asymmetry between mat-
ter(baryons) and antimatter(antibaryons) remains a mistery even at the SU(3)xSU(2)xU(1) level.
There is no cosmological model capable of generating just baryons on condition that all relevant
baryon producing interactions conserve baryon nunber. Prior to the advent of GUT based models,
in all cosmological models asymmetric initial conditions were set in advance which seemed unsat-
isfactory. The Standard Model based on baryon number conserving interactions does not fix the
photon number density(corresponding to temperature of 2.7 K) to the observed nucleon density

ny. Such a ratio is introduced by hand as an initial condition:

IN ~ 1070 (C.2)

Ny
When the Universe was not hot enough for baryons(quarks) and antibaryons(antiquarks) to be
produced in pairs, the above mentioned condition would lead to the baryon asymmetry:

_ nC
Ng Ilq

C
nq+nq

§= ~107? (C.3)

where ny and ng are quark and antiquark number densities respectively. Naturally, the funda-
mental question arises: why shoud there be such an asymmetry with precisely such value of §7
It would seem much more natural to assume that initially the Universe was in a symmetric state
(irrespectively of initial conditions) and later, because of fundamental interactions of physics ended
up with baryon asymmetry. To realize such a scenario it is necessary to postulate a new, baryon
number changing interaction in addition to those that are already present in SU(3)xSU(2)xU(1)
which would satisfy the following conditions:

1)The new interaction is expected to violate both C and CP invariances.

2)Its existence should be indicative of a period in cosmological expansion of the Universe when
the B, C and CP invariance violating processes were in conflict with thermodynamical equilib-
rium. Obviously, both C and CP symmetries exclude the possibility of non-zero § defined in
because corresponding transformations replaces n, with ng and vice versa. The requirement of
violated thermal equillibrium may not seem so obvious but can be justified using CPT invariance
which forces all particle and antiparticle states to have the same masses and therefore to have the
same weights in Boltzmann distribution. Thus, no CPT invariant interaction can lead to non-zero

value of § in thermodynamical equilibrium. The simplest GUT model based on SU(5) gauge group
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possesses all necessary ingredients guaranteeing non-zero value of § which, however, is disfavored
by current experimental data, rendering the simplest SU(5) model obsolete. Nevertheless, SU(5)
model and its shortcomings are still worth of studying. It predicts B, C and CP violating processes
involving interactions with X-bosons(and with the Higgs particle as well) after these particle had
been pushed out of equilibrium because of cosmological expansion. To demonstrate this possibility,
we need to figure out the rates of relevant reactions as functions of energy(or, temperature). The
condition of thermodynamical equilibrium requires that reaction rates exceed the rate of cosmolog-
ical expansion of the Universe . It turns out that in two-body collisions mediated by X and
Y bosons:

uu — etd®, ud — v°d°, ud —etu® (C.4)

the required transition from thermodynamical equilibrium to the non-equilibrium state is impos-
sible. However, decays and inverse decays of heavy X-bosons have a threshold and can, therefore,
make the above mentioned transitions possible. When kT > My, X-bosons must exist in the dy-
namical equilibrium and there number must be comparable to the number of ordinary particles(for
example, Nx ~ N, ). Under these circumstances, X and X¢ bosons decay violating B and CP in-
variances, producing more quarks than antiquarks. Ordinarily, excess of baryons would eventually
vanish because if inverse decay processes, but when the Universe cools down to the temperature
for which kT < Mx the number of X-bosons(and inverse decays) gets suppressed by the Boltzmann
factor exp(—%), consequently baryon production virtually stops and the baryon excess generated
earlier gets 'frozen in’. There are two decay channels involving X-bosons; So, four decay widths

should exist accounting for X and X° boson decays:

=T(X = 5¢°), with By = —1/3 (C.5)
72 =X —qq), with By =2/3 (C.6)
and
v =T(X* —1q), with B} =1/3 (C.7)
s = DX = ¢°q), with By =-2/3 (C.8)

CPT invariance causes total decay widths of particles and antiparticles to be the same:

M+y=7+% (C.9)
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At the same time CPT invariance ensures that v, = 7{ and 2 = 75 only in Born approximation.

With C and CP violating interactions, higher order terms can emerge leading to:

N—"Y2=7—7#0 (C.IO)

meaning that, although X and X°¢ bosons had initially been present in the same amount, the
departure from thermodynamical equilibrium would have forced them to produce excess of baryons
over antibaryons:

0 ~mB1 +72B2 + 1B| +95B5 = (71 — %) (B1 — By) (C.11)

This clearly proves that the origin of non-zero ¢ is related to B, C and CP violation. The problem
is however, that on the other hand, § must be much smaller than 1079 , since v; — ¢ is necessarily
a higher order term [67] and is likely to be further multiplied by a small CP-phase [68|. Another
problem associated with the SU(5) model is conservation of B—L. Namely, B—L=0, even if B#0, and
any baryon asymmetry generated will be washed out in subsequent topological transitions.
For successful baryogenesis, generation of non-vanishing B—L is needed. The abovementioned
problems marring the SU(5) GUT model can be alleviated in more complex approaches, such as
SO(10), where neither B nor B—L is conserved and experimentally observable value of v; — ~¢
can be reached. One of the attractive features of SO(10) is the presence of heavy scalar bosons
and gauge bosons which generate the d=7 operators. These particles have (B—L)-violating two-
body decays, which can generate the observed baryon asymmetry of the universe naturally. This
would not be possible in case of (B—L)-preserving decays of GUT scale particles such as the
ones in SU(5). The idea to use grand unified theories for implementing Sakharov‘s conditions for
baryogenesis was practically abandoned after the realization that the sphalerons, which violate
B+L symmetry would erase any baryon asymmetry that obeyed the A(B—L)=0 selection rule [49).
This is because the effective interactions generated by sphalerons are in thermal equilibrium in
the range: 102GeV<T< 10*2GeV and violate B+L symmetry. However, if baryon asymmetry was
generated by (B—L)-violating decays of GUT scale particles, they would be immune to sphaleron
destruction. This mechanism of baryogenesis, which also induces the d=7 B-violating operators,
is very efficient and occurs quite generically in SO(10) models(for details and related discussion
see Ref. [69]). The d=7 B and (B—L)-violating operators arise in unified SO(10) models, both in
the non-supersymmetric and SUSY versions. For comparison, the leading baryon number violating

operators in the Standard Model are of dimension 6(d=6), all carrying lepton number L=1 along
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with B=1. Consequently, this operators preserve B—L. The same operators are present in SU(5)
and SO(10) based models, suppressed by two inverse powers of GUT scale masses. For the d=7
operators arising in SO(10), (B—L)=+2. While they are suppressed by one additional power of a
heavy mass scale, they can naturally lead to sphaleron-proof baryogenesis. In several instances there

also was found that these operators may lead to observable (B—L)-violating nucleon decay [69).

C.3 Leptogenesis

In the Standard Model, considering only renormalizable interactions, perturbation theory guaran-
tees conservation of baryon and lepton numbers to all orders. However, certain non-perturbative
effects(like sphalerons) may give rise to baryon and lepton number violating reactions. Such reac-
tions are suppressed by a factor exp (—Bgi;) ~ 107162 where g is the SU(2) coupling constant. At
temperatures above 300 GeV, this exponential suppression disappears due to thermal fluctuations.
Nevertheless, net baryon /lepton numbers get produced in insufficient amount because the reactions
responsible for baryon/lepton number violation take place in thermal equilibrium and besides, the
same reactions are suppressed by some small parameters, smallness of which is dictated by the need
to violate conservation of both CP and baryon/lepton numbers. An attempt to generate non-zero
baryon number density in the GUT based extensions of the Standard Model, through the decay
processes of leptoquarks is bound to fail, because despite having different values for B and L, the
decay channels have the same value of B-L. This in turn means that in the Universe with equal
numbers of particles and antiparticles of all types, densities of B, L and B-L will inevitably be
equal to zero. To address this problem, it is tempting to introduce in the early Universe some
heavy particle, decays of which would produce a non-zero density of B-L. Generated this way the
non-zero density of B-L number would not vanish in thermal equilibrium and it could become a
source of non-zero density of baryon number. Suppose that in thermal equilibrium there are con-
served quantum numbers (), and each of the particle species ’i’ being in equilibrium carries a value
Ga; for the quantum number ),. Chemical potential u; of a particle of the i’ species is conserved
for all interactions in thermal equilibrium and therefore can be expressed as a linear combination

of conserved quantum numbers:

Hi = quua <C12>
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Since these particles are involved in interactions which take place at temperatures above 10'® K (or,

800 GeV), they are highly relativistic and the number density of particle species "I’ can be written

as:
3 poo 2
G d*p B kT x2dx
= (27h)3 / e(p—p)/ksT 1 Amgi (271-h o erhi/ksT ] (C.13)
where z = kB%T and g; is the number of helicity (and other sources of multiplicity) states for each
particle and the '—’ sign corresponds to bosons and the 4+’ sign to fermions. The expression for

antiparticle density n; is similar to ((C.13|) with u; replaced with -p;. Thus,

5, — g (K51 g (4 /OO vcda (C.14)
n; —N; =0mg; \ —— SII .
9\ 2rh kT ) Jo €*® F2e®cosh(p;/kgT) + 1
It can be safely assumed that |u; < 1| for all particle species and therefore:
ksT\® [ © zrletdr
. — ;= 8mg; | —— - C.15
men i ( 27rh) (kBT /0 (e*F1)2 ( )

Using ((C.12)) we re-write the last expression as:
n; —n; = f(T)gips = f(T)gi Z aifla (C.16)
This in turn can be used to express density of the conserved quantum number @),:

na =Y qai(ni =) = f(T) > Mappy (C.17)
7 b

where
Moy = Gidlaihyi (C.18)
from ((C.17)):
n; —n; = ZgiqaiMazlnb <C19>
ab

for any particle species ’i’. Using data provided in the table below
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Particle | g | B | L | Tj Y
ur, 3(1/310| 1/2|-1/6
dr, 311/310|-1/2|-1/6
UR 3(1/3]0| 0 |-2/3
dg 311/3]0| 0 1/3
vy 110 |1]1/2|1/2
er 11 0 |1]-1/2|1/2
eRr 1710 |1 0 1
w+ 41 0 |0 1 0
ot 210 [0 1/2]-1/2
@° 21 0 [0 -1/2]-1/2

gluons |4 | 0 |0 0 0

Table 21: Particles of the Standard Model, together with the number ¢ of their helicity and color
states (with an extra factor 2 for bosons), and the values of their baryon number, lepton number,
and gauge quantum numbers. Only one “generation” of quarks and leptons and only one doublet
of scalar fields are shown. The subscripts L. and R denote the helicity states of quarks u and d and
leptons v and e. Antiparticles are not shown separately, and the photon and Z° are not shown
because they are their own antiparticles, and so do not contribute to the densities of any quantum

numbers. Color quantum numbers are not shown.

we derive a formula for baryon number density in thermal equilibrium.

np = Z Bz(nz — ’I_IZ) = Zngz ((B - L)iMB?iL,B—L + YZM;,IB—L) np_1 =

4., 2 8N, + 4N,
=z My ) Nynpop = (oot g C.20
<3 BoLB-L 3 YvB—L) oeL (22Ng+13Nd> e (C.20)

where N, and Ny stand for the number of quark/lepton families and Higgs douplets respectively.

Experimentally allowed minimal model involves 3 generations and 1 Higgs doublet, thus giving

i = () nis.
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C.4 Instantons, Sphalerons and the Early Universe

Non-Abelian gauge theories allow for the existence of topologically different vacua which are sepa-
rated from each other by a barrier, providing the possibility of topological transitions in the early
Universe. These transitions lead to anomalous non-conservation of fermion number in the Standard
Model. The probability of taking the field from one vacuum to another depends on temperature
and on contributions of two competing processes. The first being the sub-barrier tunneling, which
is the dominant of the two when the temperature at the time of transition is small compared to the
height of the barrier. Corresponding Euclidean solution to the field equations is called an instanton.
The second process dominates when the temperature is high enough for thermal fluctuations to take
the field over the barrier and to another vacuum without tunneling. The static field configuration
corresponding to the maximum of the potential and determining the rate of transitions in this case
is called a sphaleron. Before delving deeper into topological transitions it makes sense to consider

the SU(2)xU(1) group first. Corresponding Lagrangian
Ly = ithpy* (0, +igAy +ig YL Bu)vr + iy (0, + ig'YrBu) YR (C.21)
is invariant under both SU(2) transformations:
Y = U,  Yr— Yr (C.22)
and U(1) transformations:
Y = eIy g eIy (C.23)
provided gauge fields A, and B, transform as:
A, — A, =UAU "+ g(@HU)U_I and B, — B, = B, +J,\ (C.24)

respectively. An important role is also played by tensor F),, defined as:

F.,=0,A, —-0,A,+ig(A,A, —AA,) (C.25)
and its dual tensor:
~ 1
Fof = 560/37%5 (C.26)

To understand the non-trivial structure of the vacuum in non-Abelian theories, it is convenient

to start with SU(N) theory without fermionic and bosonic fields. Vacuum implies vanishing of
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F

w, but not of the vector potential A,. Vanishing of F),, simply means that vector potential is a

gauge-transform of zero, i.e. vector potential with components:
Ay=0, A =—@QU) U (C.27)
Y

where U(x) is an arbitrary time-independent unitary matrix, also describes vacuum. All possible
U(x) functions form homotopy classes. Two functions belong to the same homotopy class if they
can be related by a non-singular continuous transformation. If not, the functions are said to belong

to different homotopy classes. Homotopy classes are characterized by the winding number:

V= —2417T2 / tr (¢7*(Q,U)U(0;U) U (0, U)U ) dPx (C.28)

where €7* is a totally antisymmetric Levi-Civita symbol. In the electroweak theory at temperatures
T> 100 GeV symmetry is restored and the rate of topological transitions is very high. Since the
SU(2) gauge fields interact only with the left-handed fermions and have the same strength for each

doublet, the left current can be written as:

o gt = — It (FF) (C.29)

where f indicates a fermion doublet and runs from 1 to 12. Values f= 1,2, 3 correspond to leptonic
doublets while f= 4 — 12 number three quark families. For example, the choice of f= 1 immediately
selects the first lepton family with the corresponding current: f =1, J{ =& y"eL + Vey*ve. From
two vacuum configurations with winding numbers 1 and v specified on two different space-

like hyperspaces the following relation is true:

/tr(FfW)d‘lx = 1(;7; (11 — ) (C.30)

which means that the field configurations interpolating between two topologically different vacua
has a non-vanishing field strength and hence, 'in between’ non-zero positive potential energy. From
and it is clear that a topological transition increasing the winding number by Av units,
decreases the fermion number in each doublet by the same Av units leading to non-conservation of
the total fermion number. With the color index taken into account, there are nine quark doublets

and since the baryon number of each quark is equal to %, the following relation holds:
1
AL.=AL,=AL, = gAB (C.31)
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where indices e, u, 7 indicate the leptonic doublets, while AB stands for an overall change of
the baryon number. Of course, total lepton and baryon numbers change by three units each:
AL = AB = —3. The energy of disappearing fermions is transferred to the remaining and newly
created fermions and antifermions. There are certain interactions in the Electroweak theory which
convert left-handed fermions into right-handed ones. This means non-conservation of the total
fermion number, hence some linear combination of baryon and lepton numbers B + aL (from
(C.20) a = 28/51) should vanish at thermal equilibrium. On the other hand from (C.31)) it follows
that B-L is conserved. Topological transitions in the early Universe can ensure equilibrium only
if their rate per fermion exceeds the expansion rate of the Universe. Thus, even if B+al. were
generated in the early Universe, it would be washed out by topological transitions for temperatures:

102GeV > T > 10%2GeV. Hence, if B-L=0, no pre-existent baryon number survives.

C.5 Baryogenesis Via Leptogenesis. See-Saw Mechanism

From ((C.20) it is obvious that for baryon asymmetry to emerge, non-zero initial value for B-L is
necessary. Even if initially B; = 0 and L; # 0, topological transitions will subsequently ensure

non-zero final baryon number density, given by:

a 28
Bi=——21, with a=— .32
1T 1Y VIR0 (C-32)

As to the non-zero initial value for L;, it can be generated in out-of-equilibrium decays of heavy
neutrinos [5]. Heavy neutrinos can be produced after inflation, either in the preheating phase or
after thermalization. Subsequently, their concentration freezes out and their out-of-equilibrium
decays give rise to lepton asymmetry L;. Heavy neutrinos can be naturally incorporated in the
Standard Model to explain neutrino masses in neutrino oscillations. We start with the Yukawa

coupling term responsible for Dirac masses of neutrinos:

LY = —fYi vl + hee. (C.33)

Ry
where ¢ = 1,2, 3 is the lepton family index. Invariance of (C.33) requires that the right-handed

neutrinos be SU(2) singlets, with neither color nor hypercharge. On the other hand, respecting all

the gauge symmetries of the theory the Majorana mass term can be introduced as well:

LY = — M (%), (C.34)



where ¢’ stands for charge conjugation. Once the symmetry is broken, the expectation value yq of

the x field emerges and the Dirac masses of neutrino can be evaluated from the matrix:
(Mp)ij = £ x0 (C.35)
For the sake of simplicity we consider the case of one generation and write the total mass term as:

, 1, 0 mp vy
L= -2 (VL 1/%) +he (C.36)

mp M VR

Under the assumption of mp < M diagonalization of (C.36|) leads to the mass eigenvalues:

m3,
, = ~ M C.37
m my ( )
and their corresponding eigenstates:
ve~vp+vi, No~vp+uvg (C.38)

which describe light and heavy Majorana fermions. Appropriately choosing the value for M one
can obtain light neutrino masses within a reasonable range. This method of generating light
neutrino masses is called the see-saw mechanism. Confining the theory to just Dirac neutrino mass
terms would result in ending up with unnaturally small Yukawa couplings and unbroken L. Lepton
number violation stems from having both Dirac and Majorana mass terms in Lagrangian. Just
Dirac mass terms are not enough to violate lepton number. However, with heavy Majorana mass,
the lepton number is also violated. Heavy majorana neutrinos, being absolutely identical to their
antiparticles(N = N°¢), can decay into a lepton-higgs pair N — [¢ or into the CP-conjugated state
N — ¢, thus violating the lepton number by two units. It is worth noting, that in case of three
generations neutrino mass eigenstates do not coincide with flavor(weak) states. Instead, they are
related by lepton mixing matrix. This explains neutrino oscillations and with complex Yuakawa

couplings one can have sources of CP violation.
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