
Extensions of the Standard Model

and Their Implications in

Particle Physics and Cosmology

Avtandil Achelashvili

A dissertation submitted to the graduate division of

the Faculty of Natural Sciences and Medicine of

Ilia State University in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Physics

Doctoral Program in Physics and Astronomy

Supervisor: Prof. Zurab Tavartkiladze

Ilia State University

Tbilisi, 2019



Statement

As an author of the dissertation presented, I state that the dissertation represents my original

work and does not include material already published, submitted for publication or presented

as a PhD thesis by other authors, unless mentioned or cited in accordance with proper rules.

Avtandil Achelashvili

11.02.2019

i



აბსტრაქტი

დაბალენერგეტიკული რეზონანსული ლეპტოგენეზისის სცენარის ფარგლებში კოსმოლოგი-

ური CP ასიმეტრია შეიძლება გაჩნდეს რადიაციული შესწორებებიდან დამუხტული ლეპტონების

იუკავას ბმების გათვალისწინებით. შემთხვევების უმეტესობაში, როგორც მოსალოდნელია, გა-

დამწყვეტ როლს ამ საკითხში თამაშობს λτ ბმა, თუმცა ნეიტრინოს სპეციფიკური ტექსტურების

განხილვისას, λµ-ს გათვალისწინებაც წარმოშობს CP დარღვევას ერთი მარყუჟის მიახლოებაში.

კოსმოლოგიური CP დარღვევის დასაკავშირებლად ლეპტონური CP დარღვევის δ ფაზას-

თან, განვიხილეთ ორი მარჯვენა ნეიტრინოთი გაფართოებული მინიმალური სუპერსიმეტრიუ-

ლი სტანდარტული მოდელი, იმ პირობით, რომ აღნიშნული ნეიტრინოები მაღალ ენერგეტიკულ

სკალაზე მასის მიხედვით გადაგვარებულები არიან. ამასთან ერთად, განვიხილეთ ორი ტექსტუ-

რული ნულის მქონე 3× 2 დირაკისეული იუკავას მატრიცები. ეს ტექსტურები, ნეიტრინოს მასე-

ბის გენერირების სი-სოუ მექანიზმის გათვალისწინებით იძლევიან მსუბუქი ნეიტრინოებისთვის

მასურ მატრიცებს, რომელთათვისაც ერთი, ლეპტონური რიცხვის ორი ერთეულით დამრღვევი

∆L = 2 და ხუთის ტოლი განზომილების (d = 5) ოპერატორის დამატება, იძლევა წინასწარმე-

ტყველებების გაკეთების შესაძლებლობის მქონე ნეიტრინოს სექტორებს, გამოთვლადი CP ასი-

მეტრიებით. ამ უკანასკნელების გენერირება ხდება λτ და/ან λµ ბმებით ერთმარყუჟოვან დონეზე.

ნაშრომში მოყვანილია ლეპტოგენეზისის დეტალური ანალიზი. გარდა ამისა, განზოგადებულია

ადრე შესწავლილი ერთი ტექსტურული ნულის მქონე ზოგიერთი დირაკისეული იუკავას მატრიცა

და ნაჩვენებია, რომ ნეიტრინოს მასური მატრიცებისთვის ერთი d = 5 ოპერატორით განპირობე-

ბული წვლილის გათვალისწინება, CP ასიმეტრიებისთვის გამოთვლილ ერთმარყუჟოვან შესწო-

რებებთან ერთად, იძლევა ექსპერიმენტთან თავსებადი ნეიტრინოს სექტორის მქონე მოდელებს

და ბარიონული ასიმეტრიის სასურველი მნიშვნელობა მიიღწევა რეზონანსული ლეპტოგენეზი-

სით მარჯვენა ნეიტრინოების მასების შედარებით დაბალი მნიშვნელობებისთვის(∼რამდენიმე

ტევი – 107 გევი).

ძირითადი საძიებო სიტყვები: CP დარღვევა, რეზონანსული ლეპტოგენეზისი, ნეიტრინოს მა-

სები და შერევა, რენორმალიზაცია.

ii



Abstract

Within the low scale resonant leptogenesis scenario, the cosmological CP asymmetry may

arise by radiative corrections through the charged lepton Yukawa couplings. While in some

cases, as one expects, decisive role is played by the λτ coupling, we show that in specific

neutrino textures only by inclusion of the λµ the cosmological CP violation is generated at

1-loop level.

With the purpose to relate the cosmological CP violation to the leptonic CP phase δ, we

consider an extension of MSSM with two right handed neutrinos (RHN), which are degenerate

in mass at high scales. Together with this, we first consider two texture zero 3×2 Dirac Yukawa

matrices of neutrinos. These via see-saw generated neutrino mass matrices augmented by single

∆L = 2 dimension five (d = 5) operator give predictive neutrino sectors with calculable CP

asymmetries. The latter is generated through λµ,τ coupling(s) at 1-loop level. Detailed analysis

of the leptogenesis is performed. We also revise some one texture zero Dirac Yukawa matrices,

considered earlier, and show that addition of a single ∆L = 2, d = 5 entry in the neutrino

mass matrices, together with newly computed 1-loop corrections to the CP asymmetries, give

nice accommodation of the neutrino sector and desirable amount of the baryon asymmetry via

the resonant leptogenesis even for rather low RHN masses(∼few TeV – 107 GeV).

Key Words: CP violation, resonant leptogenesis, neutrino mass and mixing, renormalization.
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1 Introduction

Problem of neutrino masses and generation of the baryon asymmetry of the Universe, together

with the dark matter problem and naturalness issues, call for some reasonable extension(s) of the

Standard Model (SM). Perhaps simplest and most elegant simultaneous resolution of the first two

puzzles is by the SM extension with the right handed neutrinos (RHN). This, by the ∆L = 2 lepton

number violating interactions generates the neutrino masses via celebrated see-saw mechanism [2],

[3], accommodating the atmospheric and solar neutrino data [4], and gives an elegant possibility

for the baryogenesis through the thermal leptogenesis [5] (for reviews see Refs. [6–8]).

Motivated by these, we consider the minimal supersymmetric standard model (MSSM)1 aug-

mented by two degenerate RHNs. Note that the degeneracy in the RHN mass spectrum offers an

elegant possibility of resonant leptogenesis [9–11] (see [12–18] for recent discussions on resonant

leptogenesis). This framework, as it was shown in [1, 16, 19], with specific forms of the Yukawa

couplings, allows to have highly predictive model. In particular, in [20] all possible two texture zero

3 × 2 Dirac type neutrino Yukawa couplings have been considered. Those, via see-saw generated

neutrino mass matrices augmented by a single d = 5, ∆L = 2 operator, gave consistent neutrino

scenarios. As it was shown, all experimentally viable cases allowed to calculate the cosmological

CP violation in terms of a single known (from the model) leptonic phase δ.2 In the subsequent

work [16], the quantum corrections, primarily due to the λτ Yukawa coupling, have been investi-

gated and, confirming earlier claim of Refs. [28], it was shown that the cosmological CP asymmetry

arises at 1-loop order.3 Demonstrated on a specific fully consistent neutrino model [16], this was

shown to work well and opened wide prospect for the model building for the low scale resonant

leptogenesis.

Starting with the two RHN’s we investigate texture zero 3 × 2 Dirac type Yukawa couplings,

which lead to the neutrino mass matrices with zero entries. On top of this, we augment the

Lagrangian couplings with a single ∆L = 2 lepton number violating d = 5 operator, which allows to

keep some predictions and, at the same time, makes some mass matrices experimentally acceptable.
1This setup with the SUSY scale MS ∼ few TeV guarantees the natural stability of the EW scale.
2The approach with texture zeros has been put forward in [21], which successfully relates the phase δ with the

cosmological CP asymmetry [1, 16,19–27].
3Studies of [1] included only λτ ’s 2-loop effects in the RG of the RHN mass matrix, which give parametrically

more suppressed cosmological CP violation in comparison with those evaluated in [16].
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It turns out that only three Yukawa textures (out of nine) possess cosmological CP phase which we

relate to neutrino CP δ phase. All experimentally viable neutrino mass matrices lead to interesting

predictions, which we investigate in detail.

Next, we give detailed and conscious derivation of the loop induced leptonic cosmological CP

violation showing the necessity of inclusion of the charged lepton Yukawa couplings. Proof includes

analytical expressions and is extended by inclusion of the λµ coupling which as it turns out in specific

neutrino scenarios is the only relevant source of the cosmological CP violation within considered

scenarios with the RHN masses <∼ 107 GeV. We apply obtained result to specific neutrino textures.

While in Refs. [1, 19, 21–27] the textures relating the cosmological CP violation to the leptonic

δ phase (being still undetermined from the construction) have been discussed, in [20] we have

proposed models, which not only give such relations, but also predict the values of the δ (the

leptonic Dirac phase) and ρ1,2 (two leptonic Majorana phases) and consequently the cosmological

CP violation. From the constructions of [20] we consider viable neutrino models built by two

texture zero 3 × 2 Yukawa coupling generated see-saw neutrino mass matrices augmented by the

single ∆L = 2, d = 5 operator. For all these neutrino models, applying obtained all relevant

corrections, we investigate the resonant leptogenesis process based on the procedure first described

and performed in [17, 18]. Along with the cases where crucial is λτ coupling, we have ones for

which the leptonic asymmetry originates due to the λµ Yukawa coupling. For the first time such

possibility was presented in [17, 18]. We also revise textures of [1] and consider their improved

versions by addition of single d = 5 entry to the neutrino mass matrix, making them consistent

and also viable for the baryogenesis. The details of the calculation of the contribution to the

leptonic asymmetry from the right handed sneutrino decays are given as well. These include new

corrections corresponding to the muon lepton soft SUSY breaking terms. Also, refined and more

accurate expressions for the decay widths and absorptive parts, relevant for the CP asymmetries,

are used.

Although in this work we are using the results of the loop induced cosmological CP violation

(summarized in section 3.1 and in Appendixes A, B) for specific texture zero models, the application

can be extended to any model with two (quasi) degenerate RHNs.

The thesis is organized as follows. In section 2.1, after defining the setup with two degenerate

RHNs, we list all possible Two Zero 3 × 2 Yukawa Textures and point out those with inherent,
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unremovable complexity. In section 2.2 using complex Yukawa textures we build Neutrino mass

matrices and augment them with d5 operator mass terms. In section 2.3 we classify and analyze

experimentally viable neutrino mass matrices with one and two texture zeroes and make predictions.

In section 2.4 we relate cosmological CP and δ phases in two texture zero neutrino mass models

and calculate the cosmological CP violating φ phase in each case.

In section 3.1 we give details of the calculation of the loop induced cosmological CP violation.

Mainly we follow the method of Ref. [16] proving inevitable emergence of the cosmological CP

violation via charged lepton Yukawas at 1-loop level, confirming earlier result of [28] (which took

into account λτ coupling). We also include the contribution due to the λµ which had not been

considered before publication of [17, 18]. In section 3.2, with the updated neutrino data, we give

updated results of the two texture zero neutrino mass models which are highly predictive and

determine cosmological CP violating phases in terms of the δ phase. In section 3.3, applying results

of the previous sections we determine cosmological CP violation for each considered model and use

them for calculating of the baryon asymmetry. The latter is generated via resonant leptogenesis.

We demonstrate that successful scenarios are possible for the low RHN masses (in a range few

TeV – 107 GeV). In section 3.4 we revise textures of Ref. [1] and make model improvements of

the obtained neutrino mass matrices by adding the single ∆L = 2, d = 5 mass terms to certain

non-zero entries (in a spirit of Sect. 3.2). This makes the neutrino scenarios compatible with

the best fit values of the neutrino data [4] and also proves to blend well with the leptogenesis

scenarios. We stress that in the P4 neutrino texture scenario (discussed in Sect. 3.2) and also

in the texture B2
′ (considered in Sect. 3.4), for successful leptogenesis to take place crucial role

is played by the λµ Yukawa coupling which via 1-loop correction generates sufficient amount of

the cosmological CP asymmetry. Such possibility had not been considered in the literature prior

to [17, 18]. (The general expressions for the corresponding corrections are presented in Sect. 3.1).

Sect. 3.5 includes discussion and outlook where we also summarize our results and highlight some

prospects for a future work. Conclusions are given in Sect. 4. In Sect. 6 we stress significance of

the main scientific results presented in the thesis, their novelty and relevance to particle physics and

cosmology. Sect. 5 consists in the information provided in Sect. 6 and translated into Georgian.

Appendix A includes some expressions, details related to the renormalization group (RG) studies

and description of calculation procedures we are using. In Appendix B the contribution to the
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net baryon asymmetry from the decays of the scalar components (RHS) of the RHN superfields is

considered in detail. These analyses also include new corrections due to λµ and corresponding soft

SUSY breaking trilinear Aµ coupling (besides λτ , Aτ and other relevant couplings). In Appendix

C we highlight and discuss some key concepts of Baryogenesis.

2 Neutrino Mass Matrices from Two Zero 3× 2 Yukawa Tex-

tures and Minimal d = 5 Entries

2.1 Two texture zero 3× 2 Yukawa matrices: 2T0Y32’s

Let us consider the lepton sector of MSSM augmented with two right-handed neutrinos N1 and N2.

The relevant Yukawa superpotential couplings are given by:

Wlept = We +Wν , We = lTY diag
e echd, Wν = lTYνNhu −

1

2
NTMNN, (2.1)

where hd and hu are down and up type MSSM Higgs doublet superfields respectively. N , l, ec

denote:

N =

(
N1

N2

)
, lT = (l1, l2, l3), ecT = (ec1, e

c
2, e

c
3). (2.2)

In the next section, upon deriving the neutrino mass matrices, together with couplings of Eq.

(2.1), the single d = 5 operator per the neutrino mass matrix will be applied. Because of this, in

comparison with the approach considered in [1], more two texture zero Yν Yukawa matrices will

be compatible with the current experiments. We will work in a basis in which the charged lepton

Yukawa matrix is diagonal and real:

Y diag
e = Diag(λe, λµ, λτ ). (2.3)

As far as the RHN mass matrix MN is concerned, we will assume that it has the form:

MN =

 0 1

1 0

M. (2.4)

This form of MN is crucial for our studies, since (2.4) at a tree level leads to the mass degeneracy

of the RHN’s, it has interesting implications for resonant leptogenesis [1, 19] and also, as we will

see below, for building predictive neutrino scenarios. In a spirit of [1], here we attempt to classify
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specific texture zero scenarios with degenerate RHN’s which lead to predictions consistent with ex-

periments. The matrix Yν contains two columns. Since due to the form of MN there is an exchange

invariance N1 → N2, N2 → N1, it does not matter in which column of Yν we set elements to zero.

Thus, starting with the Yukawa couplings, we consider the following nine different 3 × 2 Yukawa

matrices with two zero entries:

T1 =


× 0

× 0

× ×

 , T2 =


× 0

× ×

× 0

 , T3 =


× ×

× 0

× 0

 ,

T4 =


0 0

× ×

× ×

 , T5 =


× 0

0 ×

× ×

 , T6 =


× 0

× ×

0 ×

 ,

T7 =


× ×

0 0

× ×

 , T8 =


× ×

× 0

0 ×

 , T9 =


× ×

× ×

0 0

 , (2.5)

where "×"s stand for non-zero entries. Next, we factor out phases from these textures, in such a

way as to make maximal number of entries be real. As it turns out only T4, T7 and T9 will have

unfactorable phases. The latter should be relevant to the lepton asymmetry.

TEXTURE T1

Starting with T1 Yukawa matrix, we parameterize it and write in a form of factored out phases:

T1 =


a1e

iα1 0

a2e
iα2 0

a3e
iα3 b3e

iβ3

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 0

a2 0

a3 b3


eiω 0

0 eiρ

 , (2.6)

with

ω = ρ+ α3 − β3, x = α1 + β3 − α3 − ρ, y = α2 + β3 − α3 − ρ, z = β3 − ρ. (2.7)

where ai, b3 and all phases are real. Below, in a similar way, we write down the remaining Yukawa

textures given in Eq.(2.5).
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TEXTURE T2

T2 =


a1e

iα1 0

a2e
iα2 b2e

iβ2

a3e
iα3 0

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 0

a2 b2

a3 0


eiω 0

0 eiρ

 , (2.8)

with

ω = ρ+ α2 − β2, x = α1 + β2 − α2 − ρ, y = β2 − ρ, z = α3 + β2 − α2 − ρ. (2.9)

TEXTURE T3

T3 =


a1e

iα1 b1e
iβ1

a2e
iα2 0

a3e
iα3 0

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 b1

a2 0

a3 0


eiω 0

0 eiρ

 , (2.10)

with

ω = ρ+ α1 − β1, x = β1 − ρ, y = α2 − α1 + β1 − ρ, z = α3 − α1 + β1 − ρ. (2.11)

TEXTURE T4

T4 =


0 0

a2e
iα2 b2e

iβ2

a3e
iα3 b3e

iβ3

 =


eix 0 0

0 eiy 0

0 0 eiz




0 0

a2 b2

a3 b3e
iφ


eiω 0

0 eiρ

 , (2.12)

with

ω = α2 − β2 + ρ, y = β2 − ρ, z = α3 − α2 + β2 − ρ, φ = α2 − α3 + β3 − β2. (2.13)

TEXTURE T5

T5 =


a1e

iα1 0

0 b2e
iβ2

a3e
iα3 b3e

iβ3

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 0

0 b2

a3 b3


eiω 0

0 eiρ

 , (2.14)

with

ω = ρ+ α3 − β3, x = α1 + β3 − α3 − ρ, y = β2 − ρ, z = β3 − ρ. (2.15)
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TEXTURE T6

T6 =


a1e

iα1 0

a2e
iα2 b2e

iβ2

0 b3e
iβ3

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 0

a2 b2

0 b3


eiω 0

0 eiρ

 , (2.16)

with

ω = ρ+ α2 − β2, x = α1 + β2 − α2 − ρ, y = β2 − ρ, z = β3 − ρ. (2.17)

TEXTURE T7

T7 =


a1e

iα1 b1e
iβ1

0 0

a3e
iα3 b3e

iβ3

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 b1

0 0

a3 b3e
iφ


eiω 0

0 eiρ

 , (2.18)

with

ω = ρ+ α1 − β1, x = β1 − ρ, z = α3 − α1 + β1 − ρ, φ = α1 − α3 − β1 + β3. (2.19)

TEXTURE T8

T8 =


a1e

iα1 b1e
iβ1

a2e
iα2 0

0 b3e
iβ3

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 b1

a2 0

0 b3


eiω 0

0 eiρ

 , (2.20)

with

ω = ρ+ α1 − β1, x = β1 − ρ, y = α2 − α1 + β1 − ρ, z = β3 − ρ. (2.21)

TEXTURE T9

T9 =


a1e

iα1 b1e
iβ1

a2e
iα2 b2e

iβ2

0 0

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 b1

a2 b2e
iφ

0 0


eiω 0

0 eiρ

 , (2.22)

with

ω = α1 − β1 + ρ, x = β1 − ρ, y = α2 − α1 + β1 − ρ, φ = α1 − β1 − α2 + β2. (2.23)

The phases x, y and z can be eliminated by proper redefinition of the states l and ec. As far as the

phases ω and ρ are concerned, because of the form of theMN matrix (2.4), also they will turn out to
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be non-physical. This is the one main difference of our construction from the scenarios considered

earlier [26]. As we see, in textures T4, T7 and T9 there remains one unremovable phase φ (i.e. in

the second matrices of the r.h.s of Eqs. (2.12) (2.18) and (2.22) respectively). This physical phase

φ is relevant to the leptogenesis [1] and also, as we will see below, it will be related to phase δ,

determined from the neutrino sector.

2.2 Neutrino mass matrices derived from 2T0Y32’s and one d = 5 operator

Integrating the RHN’s, from the superpotential couplings of Eq. (2.1), using the see-saw formula,

we get the following contribution to the light neutrino mass matrix:

M ss
ν = −〈h0

u〉2YνM−1
N Y T

ν . (2.24)

For Yν in (2.24) the textures Ti listed in the previous section should be used in turn. All obtained

matrices M ss
ν , if identified with light neutrino mass matrices, will give experimentally unacceptable

results. The reason is the number of texture zeros which we have in Ti and MN matrices. In order

to overcome this difficulty we include the following d = 5 operator:

O5
ij ≡

d̃5e
ix5

2M∗
liljhuhu (2.25)

where d̃5, x5 and M∗ are real parameters. For each case, we will include a single term of the type of

Eq. (2.25). The latter, together with (2.24) will contribute to the neutrino mass matrix. This will

allow to have viable models and, at the same time because of the minimal number of the additions,

we will still have predictive scenarios. The operators (2.25) can be obtained by another sector in

such a way as to not affect the forms of Ti and MN matrices. We comment about this in Sect.

3.5. Here, we just consider operators (2.25) without specifying their origin and investigate their

implications. Recall that, in the previous section, we have written the Yukawa textures in the form:

Yν = P1Y
R
ν P2, (2.26)

where P1,P2 are diagonal phase matrices and Y R
ν is either a real matrix or contains only one phase

(for T4, T7 and T9). Making the field phase redefinitions:

l′ = P1l, N ′ = P2N, (e′)c = P∗1ec with P1 = Diag(eix, eiy, eiz), P2 = Diag(eiω, eiρ) (2.27)
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the superpotential coupling will become:

We = (l′)TY diag
e (e′)chd, Wν = (l′)TY R

ν N
′hu −

1

2
(N ′)TM ′

NN
′ (2.28)

with:

M ′
N =

0 1

1 0

 M̃, M̃ = e−i(ω+ρ)M. (2.29)

Now, for simplification of the notations, we will get rid of the primes (i.e. perform l′ → l, ec′ → ec,...)

and in Eq. (2.24) using Y R
ν instead of Yν , from different Ti textures we get corresponding M ss

ν , and

then adding the operator (2.25), obtain the final neutrino mass matrix.

From textures T1,2,3 we obtain:

MT1 =


0 0 a1b3

0 0 a2b3

a1b3 a2b3 2a3b3

 m̄, MT2 =


0 a1b2 0

a1b2 2a2b2 a3b2

0 a3b2 0

 m̄, MT3 =


2a1b1 a2b1 a3b1

a2b1 0 0

a3b1 0 0

 m̄,

(2.30)

where m̄ = −〈h0
u〉2/M̃ . It is easy to verify that adding one d = 5 operator mass term to any entry

of these mass matrices will not make them experimentally acceptable. Thus, discarding them we

move to the remaining textures.

From texture T4:

MT4 =


0 0 0

0 2a2b2 a3b2 + a2b3e
iφ

0 a3b2 + a2b3e
iφ 2a3b3e

iφ

 m̄. (2.31)

Adding the d = 5 operators to zero entries of this matrix, we will get three different neutrino mass

matrices. Therefore, addition of (2.25) type term will be performed in the (1,1), (1,2) and (1,3)

entries respectively. Since the phase x in Eqs. (2.12), (2.13) is undetermined, we can shift the

phase of state l1 in such a way as to match the phase of the (2.25) operator with the phase of m̄.

Thus, this addition will not introduce additional phases inside the neutrino mass matrices. They

will have forms:
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M
(11)
T4

=


d5 0 0

0 2a2b2 a3b2 + a2b3e
iφ

0 a3b2 + a2b3e
iφ 2a3b3e

iφ

 m̄, (2.32)

M
(12)
T4

=


0 d5 0

d5 2a2b2 a3b2 + a2b3e
iφ

0 a3b2 + a2b3e
iφ 2a3b3e

iφ

 m̄, (2.33)

M
(13)
T4

=


0 0 d5

0 2a2b2 a3b2 + a2b3e
iφ

d5 a3b2 + a2b3e
iφ 2a3b3e

iφ

 m̄, (2.34)

where d5 is a real parameter: d5 = d̃5M̃/M∗. By similar way, we will get the other neutrino mass

matrices using the remaining Yukawa textures. Also, one can make sure that for those remaining

cases there are undetermined phases [see Eqs: (2.14)-(2.23)] and their proper shift can match the

phase of the term (2.25) with m̄. Therefore, below, without loss of any generality we can take the

parameter d5 (in the neutrino mass matrices) to be real.

From texture T5:

MT5 =


0 a1b2 a1b3

a1b2 0 a3b2

a1b3 a3b2 2a3b3

 m̄. (2.35)

M
(11)
T5

=


d5 a1b2 a1b3

a1b2 0 a3b2

a1b3 a3b2 2a3b3

 m̄, M
(22)
T5

=


0 a1b2 a1b3

a1b2 d5 a3b2

a1b3 a3b2 2a3b3

 m̄. (2.36)

From texture T6:

MT6 =


0 a1b2 a1b3

a1b2 2a2b2 a2b3

a1b3 a2b3 0

 m̄. (2.37)

M
(33)
T6

=


0 a1b2 a1b3

a1b2 2a2b2 a2b3

a1b3 a2b3 d5

 m̄, M
(11)
T6

=


d5 a1b2 a1b3

a1b2 2a2b2 a2b3

a1b3 a2b3 0

 m̄. (2.38)
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From texture T7:

MT7 =


2a1b1 0 a3b1 + a1b3e

iφ

0 0 0

a3b1 + a1b3e
iφ 0 2a3b3e

iφ

 m̄. (2.39)

M
(22)
T7

=


2a1b1 0 a3b1 + a1b3e

iφ

0 d5 0

a3b1 + a1b3e
iφ 0 2a3b3e

iφ

 m̄, (2.40)

M
(12)
T7

=


2a1b1 d5 a3b1 + a1b3e

iφ

d5 0 0

a3b1 + a1b3e
iφ 0 2a3b3e

iφ

 m̄, (2.41)

M
(23)
T7

=


2a1b1 0 a3b1 + a1b3e

iφ

0 0 d5

a3b1 + a1b3e
iφ d5 2a3b3e

iφ

 m̄. (2.42)

From texture T8:

MT8 =


2a1b1 a2b1 a1b3

a2b1 0 a2b3

a1b3 a2b3 0

 m̄. (2.43)

M
(22)
T8

=


2a1b1 a2b1 a1b3

a2b1 d5 a2b3

a1b3 a2b3 0

 m̄, M
(33)
T8

=


2a1b1 a2b1 a1b3

a2b1 0 a2b3

a1b3 a2b3 d5

 m̄. (2.44)

From texture T9:

MT9 =


2a1b1 a2b1 + a1b2e

iφ 0

a2b1 + a1b2e
iφ 2a2b2e

iφ 0

0 0 0

 m̄. (2.45)

M
(13)
T9

=


2a1b1 a2b1 + a1b2e

iφ d5

a2b1 + a1b2e
iφ 2a2b2e

iφ 0

d5 0 0

 m̄, (2.46)

M
(23)
T9

=


2a1b1 a2b1 + a1b2e

iφ 0

a2b1 + a1b2e
iφ 2a2b2e

iφ d5

0 d5 0

 m̄, (2.47)
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M
(33)
T9

=


2a1b1 a2b1 + a1b2e

iφ 0

a2b1 + a1b2e
iφ 2a2b2e

iφ 0

0 0 d5

 m̄. (2.48)

We have shown that only T4, T7 and T9 2T0Y32’s give rise to complex mass matrices and that

complexity, i.e. phase δ in the lepton mixing matrix, arises through (2.24) — from complex 2T0Y32’s

— and not from an x5 phase.

2.3 Analyzing neutrino mass matrices

Since we are working in a basis of a diagonal charged lepton mass matrix, lepton mixing matrix U

entirely comes from the neutrino sector. Therefore, the following equality holds:

Mν = PU∗P
′
Mdiag

ν U+P (2.49)

where

Mdiag
ν = (m1,m2,m3), P = Diag(eiω1 , eiω2 , eiω3), P

′
= Diag(1, eiρ1 , eiρ2) (2.50)

U =


c13c12 c13s12 s13e

−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13

 (2.51)

where mi denote neutrino masses. U given in Eq. (2.51) is the standard parametrization used in

the literature (see for instance [29, 30]). The relation (2.49) turns out to be convenient and useful

for neutrino mass matrix analysis. Numerical values of oscillation parameters both, for normal

(NH) and inverted (IH) hierarchies can be found in [31]. Thus, for these mass orderings we will use

the following notations:

For normal hierarchy (NH):

∆m2
sol = m2

2 −m2
1, ∆m2

atm = m2
3 −m2

2, m1 =
√
m2

3 −∆m2
atm −∆m2

sol, m2 =
√
m2

3 −∆m2
atm

(2.52)

For inverted hierarchy (IH)

∆m2
atm = m2

2 −m2
3, ∆m2

sol = m2
2 −m2

1, m1 =
√
m2

3 + ∆m2
atm −∆m2

sol, m2 =
√
m2

3 + ∆m2
atm

(2.53)
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2.3.1 Types of neutrino mass matrices

Complex 3×3 Majorana type neutrino mass matrices with more than two independent zero entries

are all excluded by current experiments. As it turns out, experimental data also exclude the

possibility of real neutrino mass matrices with two independent zero entries. This was noticed earlier

upon studies of the texture zero neutrino mass matrices [21,32–34]. Therefore, experimentally viable

neutrino mass matrices, from our 3×2 Yukawa textures (listed in Sect. 2.1) should be produced by

T4, ..., T9 giving either neutrino mass matrices with two independent zero entries and the complex

phase, or the one zero entry real neutrino mass matrices (via textures T5, T6, T8 and one d=5

operator). Two zero entry complex neutrino mass matrices (we have obtained) have forms:

P1 =


0 × 0

× × ×

0 × ×

 , P2 =


0 0 ×

0 × ×

× × ×

 , P3 =


× 0 ×

0 0 ×

× × ×

 , P4 =


× × 0

× × ×

0 × 0

 .

(2.54)

These types of textures correspond to the following mass matrices, we have obtained:

P1-type: M
(12)
T4

, P2-type: M
(13)
T4

, P3-type: M
(23)
T7

, P4-type: M
(23)
T9

As far as the one zero entry neutrino mass matrices are concerned we are getting the following

types of real mass matrices:

P5 =


0 × ×

× × ×

× × ×

 , P6 =


× × ×

× 0 ×

× × ×

 , P7 =


× × ×

× × ×

× × 0

 . (2.55)

Also here, we indicate the correspondence of P5,6,7 textures to the appropriate neutrino mass ma-

trices we have obtained: P5-type: M
(22)
T5

, M
(33)
T6

, P6-type: M
(11)
T5

, M
(33)
T8

and P7-type:

M
(11)
T6

, M
(22)
T8

.

2.3.2 Predictions from P1,2,3,4 type neutrino mass matrices

Here we analyze neutrino mass matrices with two independent zero entries. As we will see, for each

case we will get several predictions.
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TYPE P1

Structure of the P1 in Eq.(2.54) imposes the following conditions: M (1,1)
ν = 0 and M (1,3)

ν =0, which

taking into account (2.49)-(2.51) give the following relations:

m1

m3

c2
12 +

m2

m3

s2
12e

iρ1 = −t213e
i(ρ2+2δ) (2.56)

and

−
(
m1

m3

− m2

m3

eiρ1

)
t23s12c12 − s13e

i(ρ2+δ) + s13e
−iδ
(
m1

m3

c2
12 +

m2

m3

s2
12e

iρ1

)
= 0 (2.57)

Using (2.56) in the last term of (2.57) we obtain:(
m1

m3

− m2

m3

eiρ1

)
t23s12c12 + s13e

i(ρ2+δ) + s13t
2
13e

i(ρ2+δ) = 0 (2.58)

which gives:

m3s13(1 + t213) = |m1 −m2e
iρ1|t23s12c12 (2.59)

while from Eq. (2.56) we have:

m3t
2
13 = |m1c

2
12 +m2s

2
12e

iρ1|. (2.60)

We can exclude phase ρ1 from (2.59) and (2.60) to obtain:

m2
3(t413 + s2

13 cot2
23(1 + t213)2) = m2

1c
2
12 +m2

2s
2
12 (2.61)

From which, based on recent experimental data [31] inverted hierarchical pattern (IH) is excluded.

For normal hierarchical neutrinos from (2.61), with (2.52) we get

m2
3 =

∆m2
atm + ∆m2

solc
2
12

1− s2
13 cot2

23(1 + t213)2 − t413

. (2.62)

Using sin2 θ23 = 0.49, the best fit values for the remaining mixing angles [31] and also the best fit

values for the atmospheric and solar neutrino mass squared differences:

∆m2
atm = 0.002382 eV2, ∆m2

sol = 7.5× 10−5 eV2 (2.63)

from (2.62) we obtain for NH:

m1 = 0.00613 eV, m2 = 0.0106 eV, m3 = 0.0499 eV. (2.64)
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Using these, from (2.60) we predict:

cos ρ1 =
m2

3t
4
13 −m2

1c
4
12 −m2

2s
4
12

2m1m2c2
12s

2
12

⇒ ρ1 = ±3.036, (2.65)

while from (2.56) and (2.58) we have:

δ = arg[m1c
2
12 +m2s

2
12e

iρ1 ]− arg[m1 −m2e
iρ1 ],

ρ2 = ±π − arg[m1c
2
12 +m2s

2
12e

iρ1 ] + 2 arg[m1 −m2e
iρ1 ]. (2.66)

With numbers given in (2.64) and (2.65), from (2.66) we obtain:

δ = ±0.378, ρ1 = ±3.036, ρ2 = ±2.696, mββ = 0, (2.67)

where the neutrino-less double beta decay parameter mββ is determined as: mββ = |m1c
2
12c

2
13 +

m2e
iρ1c2

13s
2
12 +m3e

iρ2s2
13e

2iδ|. We summarize our results in Table 1.

δ ρ1 ρ2 works with

δ = ±0.378 ρ1 = ±3.036 ρ2 = ±2.696

NH, sin2 θ23 = 0.49 and best

fit values for remaining oscillation parameters,

(m1,m2,m3) = (0.00613, 0.0106, 0.0499), mββ = 0

Table 1: Results from P1 type texture. Masses are given in eVs.

TYPE P2

In this case M (1,1)
ν = 0 and M (1,2)

ν =0 and together with Eq.(2.56), the following relation holds:

−
(
m1

m3

− m2

m3

eiρ1

)
s12c12 + s13t23e

i(ρ2+δ) − s13t23e
−iδ
(
m1

m3

c2
12 +

m2

m3

s2
12e

iρ1

)
= 0. (2.68)

Using (2.56) in the last term of (2.68) we obtain:

−
(
m1

m3

− m2

m3

eiρ1

)
s12c12 + s13t23e

i(ρ2+δ) + s13t23t
2
13e

i(ρ2+δ) = 0 (2.69)

which gives:

m3s13t23(1 + t213) = |m1 −m2e
iρ1|s12c12. (2.70)

Excluding phase ρ1 from Eqs. (2.70) and (2.60)[which is derived from Eq.(2.56), i.e. the condition

M
(1,1)
ν = 0] we obtain:

m2
3(t413 + s2

13t
2
23(1 + t213)2) = m2

1c
2
12 +m2

2s
2
12 (2.71)
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Last relation makes obvious that the IH case is excluded. On the other hand, for NH neutrinos,

from (2.71), with (2.52) we get:

m2
3 =

∆m2
atm + ∆m2

solc
2
12

1− s2
13t

2
23(1 + t213)2 − t413

. (2.72)

After finding the value of m3 and remaining masses,

(m1,m2,m3) = (0.00501, 0.01, 0.04982) eV. (2.73)

Eqs. (2.68) and (2.69) allow to calculate the phases:

cos ρ1 =
m2

3t
4
13 −m2

1c
4
12 −m2

2s
4
12

2m1m2c2
12s

2
12

⇒ ρ1 = ∓2.828, (2.74)

δ = ±π + arg[m1c
2
12 +m2s

2
12e

iρ1 ]− arg[m1 −m2e
iρ1 ],

ρ2 = ∓π − arg[m1c
2
12 +m2s

2
12e

iρ1 ] + 2 arg[m1 −m2e
iρ1 ]. (2.75)

Using the best fit values of measured parameters [31] for NH we obtain results

δ = ±1.924, ρ1 = ∓2.828, ρ2 = ∓1.715, mββ = 0, (2.76)

which are summarized in Table 2:

δ ρ1 ρ2 works with

δ = ±1.924 ρ1 = ∓2.828 ρ2 = ∓1.715

NH and best fit

values of oscillation parameters,

(m1,m2,m3) = (0.00501, 0.01, 0.04982), mββ = 0

Table 2: Results from P2 type texture. Masses are given in eVs.

P1 and P2 neutrino textures were studied in [33–39]. Our analytical expressions, allowing thorough

investigations, are compact and exact. To analyze the textures P3 and P4 it is convenient to note,

that equation M (i,j)
ν = 0 can be written as: A2×m2e

iρ1 +A3×m3e
iρ2 = A1×m1. When two mass

matrix elements are equal to zero we have a pair of similar equations which we write in a matrix

form:  A2 A3

B2 B3

(m2e
iρ1

m3eiρ2

)
=

(
A1m1

B1m1

)
. (2.77)
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From these equations we have:

m2e
iρ1 =

1

A2B3 − A3B2

(B3A1 − A3B1)m1, m3e
iρ2 =

1

A2B3 − A3B2

(A2B1 −B2A1)m1 (2.78)

or,

m2
2 =
|B3A1 − A3B1|2

|A2B3 − A3B2|2
m2

1, m2
3 =
|A2B1 −B2A1|2

|A2B3 − A3B2|2
m2

1 (2.79)

and
∆m2

sol

±∆m2
atm

=
|B3A1 − A3B1|2 − |A2B3 − A3B2|2

|A2B1 −B2A1|2 − |B3A1 − A3B1|2
, (2.80)

where "+" and "-" signs correspond to normal and inverted hierarchies respectively. Eq. (2.80) is

the relation for calculating the value of δ. At the same time (after knowing the δ), from Eq. (2.79)

and (2.52)/(2.53) the neutrino masses can be calculated. After these, with relations in Eq. (2.78)

the phases ρ1 and ρ2 can be found. Below, we use this procedure for the textures P3 and P4.

TYPE P3

For this case we have:

A1 = −U∗11U
†
12, A2 = U∗12U

†
22, A3 = U∗13U

†
32, B1 = −U∗21U

†
12, B2 = U∗22U

†
22, B3 = U∗23U

†
32

and using these in Eqs. (2.78)-(2.80), for NH and IH neutrino mass ordering, we get results which

are summarized in Table 3.

δ ρ1 ρ2 works with

δ = ±1.547 ρ1 = ±0.0615 ρ2 = ∓3.098

NH and best fit values

of oscillation parameters,

(m1,m2,m3) =

(0.07213, 0.07265, 0.08752),

mββ = 0.0726

δ = ±1.579 ρ1 = ∓0.0998 ρ2 = ±3.0726

IH and best fit values

of oscillation parameters,

(m1,m2,m3) =

(0.07195, 0.07247, 0.05294),

mββ = 0.0716

Table 3: Results from P3 type texture. Masses are given in eVs.
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TYPE P4

For this case we have:

A1 = −U∗11U
†
13, A2 = U∗12U

†
23, A3 = U∗13U

†
33, B1 = −U∗31U

†
13, B2 = U∗32U

†
23, B3 = U∗33U

†
33.

For this case NH works with sin2 θ23 larger by 1σ from the best fit value. However, IH case requires

a lower value of sin2 θ23. Using above relations in Eqs. (2.78)-(2.80), for NH and IH cases we get

results which are summarized in Table 4.

δ ρ1 ρ2 works with

δ = ±1.575 ρ1 = ∓0.0127 ρ2 = ±3.133

NH and sin2 θ23 = 0.51 and best fit values

for remaining oscillation parameters,

(m1,m2,m3) =

(0.171701, 0.171919, 0.1787),

mββ = 0.1719

δ = ±1.5705 ρ1 = ±0.00622 ρ2 = ∓3.137

IH and sin2 θ23 = 0.495 and best fit values

for remaining oscillation parameters,

(m1,m2,m3) =

(0.2513, 0.25145, 0.2465),

mββ = 0.2512

Table 4: Results from P4 type texture. Masses are given in eVs.

Our results for the textures P3 and P4 are compatible with ones [33–40], obtained before.4

2.3.3 Predictions from real one zero entry neutrino textures - P5,6,7

Now we turn to the analysis of the one texture zero neutrino mass matrices we have obtained in

Section 2.2. They fall in the category of the P5,6,7 type mass matrices given in Eq. (2.55). One

texture zero neutrino mass matrices were investigated in [41–45]. In our construction, these mass

matrices are real. This makes them more predictive.

TYPE P5

4Some of these works used the earlier experimental data. We have made sure, that with those inputs, we would

get similar results.
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In this case, our construction implies φ=0 and all elements of the lepton mixing matrix are real (i.e.

δ=0 or π). Therefore, together with M (1,1)
ν =0 we have to match phases of both sides of Eq.(2.49).

This turns out to be impossible for ρ1, ρ2 not equal to either 0 or π , because we have only three

free phases ω1,2,3. Thus, it turns out that only normal hierarchical scenario will be allowed with

δ = 0 or π. With these, and from the condition M (1,1)
ν =0, we get

tan θ13 =

(
−c1c2s

2
12

m2

m3

− c2c
2
12

m1

m3

) 1
2

, (2.81)

where c1 and c2 stand for cos ρ1 and cos ρ2 respectively. This relation can be satisfied by special

selection of the neutrino masses and ρ1,2 = 0 or π. Since two mass square differences are fixed from

the neutrino data, only one free mass is available, which we choose to be m3. The latter is tightly

constrained via Eq.(2.81). Thus, the model predicts three neutrino masses and the phases. For the

best fit values of the oscillation parameters [31] for NH we obtain solutions:

m1 = 0.002268 eV, m2 = 0.008952 eV, m3 = 0.04962 eV,

with mββ = 0, δ = 0 or π, ρ1 = π, ρ2 = 0 (2.82)

and

m1 = 0.010677 eV, m2 = 0.006245 eV, m3 = 0.04996 eV,

with mββ = 0, δ = 0 or π, ρ1 = π, ρ2 = π. (2.83)

By the similar analysis, we can easily make sure that inverted hierarchy is not allowed within our

construction for this P5 type texture.

TYPE P6

For this case, the condition M (2,2)
ν = 0 gives the following expression for θ12:

tan θ12 =
c23s23ŝ13(m2c1 −m1)

m1c2
23 +m2s2

23s
2
13c1 +m3s2

23c
2
13c2

±
√
c2

23s
2
23s

2
13(m2c1 −m1)2 − (m1c2

23 +m2s2
23s

2
13c1 +m3s2

23c
2
13c2)(m1s2

23s
2
13 +m2c2

23c1 +m3s2
23c

2
13c2)

m1c2
23 +m2s2

23s
2
13c1 +m3s2

23c
2
13c2

(2.84)
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where, c1 and c2 stand for cos ρ1 and cos ρ2 respectively. ŝ13 = ±s13 and a "+" corresponds to

δ = 0 and a "-" sign to δ = π. So, this equation will include all cases. Some cases work with the

best fit values (BFV) of the oscillation parameters [31], while some cases work only with deviations

from the BFV. We will allow some of these parameters to vary within a 3σ range. Results are

summarized in Table 5.

δ p ρ1 ρ2 works with

0 - 0 π
IH, by best fit values of oscillation parameters,

(m1,m2,m3) = (0.07613, 0.07662, 0.0585), mββ = 0.0733

π - 0 π
IH, by best fit values of oscillation parameters,

(m1,m2,m3) = (0.07635, 0.07684, 0.05878), mββ = 0.07354

0 - 0 π
NH, by best fit values of oscillation parameters,

(m1,m2,m3) = (0.06353, 0.06412, 0.08058), mββ = 0.06056

π - 0 π
NH, by best fit values of oscillation parameters,

(m1,m2,m3) = (0.06315, 0.06374, 0.08028), mββ = 0.0602

π + π 0
IH, by best fit values of oscillation parameters,

(m1,m2,m3) = (0.05735, 0.058, 0.03024), mββ = 0.02246

0 + π 0
IH, by best fit values of oscillation parameters,

(m1,m2,m3) = (0.04879, 0.04955, 0.002516), mββ = 0.0185

π + π 0
NH, sin2 θ13 = 0.0218, sin2 θ23 ∈ [0.382, 0.4], m3 ∈ [0.12, 0.3], sin2 θ12 = [0.27, 0.297],

mββ ∈ [0.052, 0.14],
∑
mi ∈ [0.34, 0.9]

0 + π π
IH, sin2 θ13 = 0.0218, sin2 θ23 ∈ [0.552, 0.644], m3 ∈ [0, 0.002], sin2 θ12 = [0.313, 0.344],

mββ ∈ [0.0146, 0.0176]

Table 5: Results from P6 type texture. "p" stands for a sign of a square root in (2.84). Masses are

given in eVs.

TYPE P7

For this case, the condition M (3,3)
ν = 0 gives:

tan θ12 =
c23s23ŝ13(m1 −m2c1)

m1s2
23 +m2c2

23s
2
13c1 +m3c2

23c
2
13c2
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±
√
c2

23s
2
23s

2
13(m1 −m2c1)2 − (m1s2

23 +m2c2
23s

2
13c1 +m3c2

23c
2
13c2)(m1c2

23s
2
13 +m2s2

23c1 +m3c2
23c

2
13c2)

m1s2
23 +m2c2

23s
2
13c1 +m3c2

23c
2
13c2

(2.85)

Notations here are similar to those for case P6 [see comment after Eq. (2.84)]. Results are summa-

rized in Table 6. As above, we have used data from Ref. [31].

δ p ρ1 ρ2 works with

0 + π 0
IH, by best fit values of oscillation parameters,

(m1,m2,m3) = (0.9997, 0.10034, 0.08729), mββ = 0.04

0 - 0 π
IH, sin2 θ23 ∈ [0.389, 0.487], and bfv for remaining osc. parameters,

m3 ∈ [0.04496, 0.4138], mββ ∈ [0.064, 0.398],
∑
mi ∈ [0.178, 1.25]

π + π 0
IH, by best fit values of oscillation parameters,

(m1,m2,m3) = (0.05004, 0.05078, 0.01142), mββ = 0.019

π + π π
IH, sin2 θ23 ∈ [0.389, 0.448], sin2 θ12 = [0.325, 0.344]

and bfv for remaining osc. parameters, m3 ∈ [0, 0.001379], mββ ∈ [0.0146, 0.0165]

π - 0 π
IH, sin2 θ23 ∈ [0.389, 0.488], and bfv for remaining osc. parameters,

m3 ∈ [0.04473, 0.6183], mββ ∈ [0.064, 0.59],
∑
mi ∈ [0.178, 1.86]

0 + π 0
NH, sin2 θ23 ∈ [0.621, 0.643], and bfv for remaining osc. parameters,

m3 ∈ [0.1246, 0.5928], mββ ∈ [0.046, 0.24],
∑
mi ∈ [0.354, 1.77]

0 - 0 π
NH, sin2 θ23 ∈ [0.49, 0.643], and bfv for remaining oscillation parameters,

m3 ∈ [0.05803, 0.5187], mββ ∈ [0.0286, 0.4938],
∑
mi ∈ [0.1196, 1.551]

π - 0 π
NH, sin2 θ23 ∈ [0.49, 0.643], and bfv for remaining oscillation parameters,

m3 ∈ [0.05821, 0.5209], mββ ∈ [0.02895, 0.4959],
∑
mi ∈ [0.1205, 1.558]

Table 6: Results from P7 type texture. "p" stands for a sign of a square root in (2.85). Masses are

given in eVs.

2.4 Relating cosmological CP and δ

As we have already seen, from certain 2T0Y32’s complex phases cannot be factored out. Such cou-

plings are: T4, T7, T9 and they give rise to complex mass matrices. Here we calculate phase φ in
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terms of the CP phase entering in neutrino oscillation. Recall that the δ is predicted from the neu-

trino mass matrices (2.33),(2.34),(2.42),(2.47), which we have considered. Keeping in mind (2.54),

we use (2.49) and (2.50) to find the numerical value of phase φ in each case.

Case of M (12)
T4

(Texture P1):

Equating (2,2), (3,3) and (2,3) matrix elements of both sides in Eq. (2.49), we get the relations:

2a2b2|m̄|eiφm̄ = e2iω2A22, 2a3b3e
iφ|m̄|eiφm̄ = e2iω3A33, (a3b2 + a2b3e

iφ)|m̄|eiφm̄ = ei(ω2+ω3)A23,

(2.86)

with

Aij = U∗i1U
∗
j1m1 + U∗i2U

∗
j2m2e

iρ1 + U∗i3U
∗
j3m3e

iρ2 . (2.87)

Note, that from the neutrino sector all Aij numbers are determined. Dividing the last relation in

(2.86) in turn on the 1-st and 2-nd relations and then multiplying resulting two equations, we get

the following relation:

xeiφ =

 A23√
A22A33

±

√
A2

23

A22A33

− 1

2

, x ≡ a2b3

a3b2

. (2.88)

Therefore, we have:

φ = Arg

 A23√
A22A33

±

√
A2

23

A22A33

− 1

2 . (2.89)

From here, using results given in Table 1, we find numerical value of φ:

φ = ±1.287. (2.90)

In a pretty similar way, for remaining three neutrino mass matrices (2.34),(2.42),(2.47), for the

phase φ we get:

φ = Arg

 A23√
A22A33

±

√
A2

23

A22A33

− 1

2 , φ = Arg

 A13√
A11A33

±

√
A2

13

A11A33

− 1

2 ,
(2.91)

φ = Arg

 A12√
A11A22

±

√
A2

12

A11A22

− 1

2 , (2.92)
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which yield

φ = ±1.169, φNH = ±2.957 and φIH = ±3.124,

φNH = ±3.058 and φIH = ±3.136 (2.93)

respectively. For these we have used results given in Tables: 2, 3 and 4 resp. Note, that φ phases

in all four cases have been found for the reason that with a predictive neutrino sector there is

no undetermined parameter. This makes the whole scenario really attractive to study the baryon

asymmetry via the leptogenesis (for similar studies see: [1,19,21,26,27,32,46]). As mentioned, since

the φ participates in the coupling of RHN states with l and hu (2.1) it will control CP asymmetric

decays of the N states. Thus, it is interesting to look into the details of the leptogenesis within the

scenarios we have considered here.

3 Texture Zero Neutrino Models and Their Connection with

Resonant Leptogenesis

3.1 Loop Induced Calculable Cosmological CP Violation

The setup considered in this section is the same as the one presented in the previous section and is

given by formulas: (2.1), (2.2), (2.3) and (2.4). Moreover, we assume that the RHN mass matrix

MN is strictly degenerate at the GUT scale, which will be taken to be MG ' 2 · 1016 GeV. 5 To

stress scale dependence of M(µ) we rewrite (2.4) as:

at µ = MG : MN =

 0 1

1 0

M(MG). (3.1)

Although it is interesting and worth to study, we do not attempt here to justify the form ofMN (and

of the textures considered below) by symmetries. Our approach here is rather phenomenological

aiming to investigate possibilities, outcomes and implications of the textures we consider. Since

(3.1) at a tree level leads to the mass degeneracy of the RHN’s, it has interesting implications

for resonant leptogenesis [1, 19, 24] and also, as we will see below, for building predictive neutrino

scenarios [1, 20].
5Degeneracy of MN can be guaranteed by some symmetry at high energies. For concreteness, we assume this

energy interval to be ≥MG (although the degeneracy at lower energies can be considered as well).
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For the leptogenesis scenario two necessary conditions need to be satisfied. First of all, at the

scale µ = MN1,2 the degeneracy between the masses of N1 and N2 has to be lifted. And, at the

same scale, the neutrino Yukawa matrix Ŷν - written in the mass eigenstate basis of MN , must be

such that Im[(Ŷ †ν Ŷν)12]2 6= 0. [These can be seen from Eq. (3.27) with a demand ε1,2 6= 0.] Below

we show that both of them are realized by radiative corrections and needed effect already arises at

1-loop level, with a dominant contribution due to the Ye Yukawa couplings (in particular from λτ

and in some cases from λµ) in the RG.

As it was shown [1, 16, 28], within considered setup, radiative corrections are crucial for gener-

ating cosmological CP violation. In particular, the needed asymmetry is generated at 1-loop level

due to λτ Yukawa coupling provided that the condition (Yν)31(Yν)32 6= 0 is satisfied [16]. Here,

to be more generic and to not limit the class of the models, we also include the effects of the λµ

Yukawa coupling in the calculation.6 Thus, in this section we present details of these calculations.

We will start with radiative corrections to the MN matrix. RG effects cause lifting of the mass

degeneracy and, as we will see, are important also for the phase misalignment (explained below).

At the GUT scale, the MN has off-diagonal form with (MN)11 = (MN)22 = 0 [see Eq. (3.1)].

However, at low energies, RG corrections generate these entries. Thus, we parameterize the matrix

MN at scale µ as:

MN(µ) =

 δ
(1)
N (µ) 1

1 δ
(2)
N (µ)

M(µ). (3.2)

While all entries of the matrix MN run, for our studies will be relevant the ratios (MN )11

(MN )12
= δ

(1)
N and

(MN )22

(MN )12
= δ

(2)
N (obeying the RG equations investigated below). That’s why MN was parametrized in

a form given in Eq. (3.2). With |δ(1,2)
N | � 1, the M (at scale µ = M) will determine the masses of

RHNs M1 and M2, while δ
(1,2)
N will be responsible for their splitting and for complexity in MN (the

phase of the overall factor M does not contribute to the physical CP). As will be shown below:

δ
(1)
N = (δ

(2)
N )∗ ≡ −δN . (3.3)

Therefore, MN is diagonalized by the transformation

UT
NMNUN = MDiag

N = Diag (M1,M2) , with UN = PNONPN
′ ,

6In Sections 3.3 and 3.4, among other neutrino scenarios, we consider ones for which such corrections are crucial

for generation of the needed amount of Baryon asymmetry.
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M1 = |M | (1− |δN |) , M2 = |M | (1 + |δN |) , (3.4)

where

PN = Diag
(
e−iη/2, eiη/2

)
, ON =

1√
2

 1 −1

1 1

 , PN
′ = Diag

(
e−iφM/2, ie−iφM/2

)
,

with η = Arg (δN) , φM = Arg (M) . (3.5)

In the N ’s mass eigenstate basis, the Dirac type neutrino Yukawa matrix will be Ŷν = YνUN .

In the CP asymmetries, the components (Ŷ †ν Ŷν)21 and (Ŷ †ν Ŷν)12 appear [see Eq. (3.27)]. From (3.4)

and (3.5) we have[
(Ŷ †ν Ŷν)21

]2

= −
[
(OT

NP
∗
NY

†
ν YνPNON)21

]2
,

[
(Ŷ †ν Ŷν)12

]2

= −
[
(OT

NP
∗
NY

†
ν YνPNON)12

]2
. (3.6)

Therefore, the CP violation should come from P ∗NY
†
ν YνPN , which in a matrix form is:

P ∗NY
†
ν YνPN =

 (Y †ν Yν)11

∣∣(Y †ν Yν)12

∣∣ ei(η−η′)
|(Y †ν Yν)21|ei(η

′−η) (Y †ν Yν)22

 , with η′ = Arg[(Y †ν Yν)21] . (3.7)

We see that η′ − η difference (mismatch) will govern the CP asymmetric decays of the RHNs.

Without including the charged lepton Yukawa couplings in the RG effects we will have η′ ' η with

a high accuracy. It was shown in Ref. [14] that by ignoring Ye Yukawas no CP asymmetry emerges

at O(Y 4
ν ) order and non-zero contributions start only from O(Y 6

ν ) terms [15]. Such corrections

are extremely suppressed for Yν <∼ 1/50. Since in our consideration we are interested in cases

with M1,2
<∼ 107 GeV leading to |(Yν)ij| < 7 · 10−4 (well fixed from the neutrino sector and the

desired value of the baryon asymmetry), these effects (i.e. order ∼ Y 6
ν corrections) will not have

any relevance. In Ref. [1] in the RG of MN the effect of Ye, coming from 2-loop corrections, was

taken into account and it was shown that sufficient CP violation can emerge. Below we show that

including Ye in the Yν ’s 1-loop RG, will induce sufficient amount of CP violation. This mainly

happens via λτ and in particular cases (which are considered below) from λµ Yukawa couplings.

Thus, below we give detailed investigation of λτ,µ’s effects.

Using MN ’s RG given in Eq. (A.3) (of Appendix A.1), for δ(1,2)
N , which are the ratios (MN )11

(MN )12

and (MN )22

(MN )12
, [see parametrization in Eq. (3.2)], we can derive the following RG equations:

16π2 d

dt
δ

(1)
N =4(Y †ν Yν)21+2δ

(1)
N

[
(Y †ν Yν)11−(Y †ν Yν)22

]
−2(δ

(1)
N )2(Y †ν Yν)12−2δ

(1)
N δ

(2)
N (Y †ν Yν)21
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− 1

4π2
(Y †ν YeY

†
e Yν)21 + · · · (3.8)

16π2 d

dt
δ

(2)
N =4(Y †ν Yν)12+2δ

(2)
N

[
(Y †ν Yν)22−(Y †ν Yν)11

]
−2(δ

(2)
N )2(Y †ν Yν)21−2δ

(1)
N δ

(2)
N (Y †ν Yν)12

− 1

4π2
(Y †ν YeY

†
e Yν)12 + · · · (3.9)

were in second lines of (3.8) and (3.9) are given 2-loop corrections depending on Ye. Dots there

stand for higher order irrelevant terms. From 2-loop corrections we keep only Ye dependent terms.

Remaining contributions are not relevant for us.7 From (3.8) and (3.9) we see that dominant

contributions come from the first terms of the r.h.s. and from those given in the second rows. Other

terms give contributions of order O(Y 4
ν ) or higher and thus will be ignored. At this approximation

we have

δ
(1)
N (t) ' δ

(2)∗
N (t) ≡ −δN(t) ' − 1

4π2

∫ tG

t

dt

(
Y †ν (1− 1

16π2
YeY

†
e )Yν

)
21

(3.10)

where t = lnµ, tG = lnMG and we have used the boundary conditions at the GUT scale δ(1)
N (tG) =

δ
(2)
N (tG) = 0. For evaluation of the integral in (3.10) we need to know the scale dependence of Yν

and Ye. This is found in Appendix A.1 by solving the RG equations for Yν and Ye. Using Eqs.

(A.5) and (A.6), the integral of the matrix appearing in (3.10) can be written as:

∫ tG

tM

Y †ν (1− 1

16π2
YeY

†
e )Yνdt ' κ̄(M)Y †νG


1 0 0

0 r̄µ(M) 0

0 0 r̄τ (M)

YνG (3.11)

where

r̄τ (M) =

∫ tG
tM
κ(t)rτ (t)(1− λ2

τ

16π2 )dt∫ tG
tM
κ(t)dt

, r̄µ(M) =

∫ tG
tM
κ(t)rµ(t)(1− λ2

µ

16π2 )dt∫ tG
tM
κ(t)dt

, κ̄(M) =

∫ tG

tM

κ(t)dt ,

(3.12)

rτ (µ) = η2
τ (µ) , rµ(µ) = η2

µ(µ) , κ(µ) = η6
t (µ)η2

gν(µ) (3.13)

and we have ignored λe Yukawa couplings. For the definition of η-factors see Eq. (A.6). The YνG

denotes corresponding Yukawa matrix at scale µ = MG. On the other hand, we have:

(Y †ν Yν)
∣∣
µ=M

' κ(M)Y †νG


1 0 0

0 rµ(M) 0

0 0 rτ (M)

YνG . (3.14)

7Omitted terms are either strongly suppressed or do not give any significant contribution to either the CP violation

or the RHN mass splittings.
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(Derivations are given in Appendix A.1.)

Comparing (3.11) with (3.14) we see that difference in these matrix structures (besides overall

flavor universal RG factors) is in the RG factors rτ,µ(M) and r̄τ,µ(M). Without the λτ,µ Yukawa

couplings these factors are equal and there is no mismatch between the phases η and η′ [defined in

Eqs. (3.5) and (3.7)] of these matrices. Non zero η′ − η will be due to the deviations, which we

parameterize as

ξτ =
r̄τ (M)

rτ (M)
− 1, ξµ =

r̄µ(M)

rµ(M)
− 1 . (3.15)

The values of ξµ and ξτ can be computed numerically by evaluation of the appropriate RG factors.

Approximate expressions can be derived for ξτ,µ, which are given by:

ξτ'

[
λ2
τ (M)

16π2
ln
MG

M
+

1

3

λ2
τ (M)

(16π2)2

[
3λ2

t + 6λ2
b + 10λ2

τ − (2cae + caν)g
2
a

]
µ=M

(
ln
MG

M

)2
]

1−loop

−
[
λ2
τ (M)

16π2

]
2−loop

, (3.16)

ξµ'

[
λ2
µ(M)

16π2
ln
MG

M
+

1

3

λ2
µ(M)

(16π2)2

[
3λ2

t + 6λ2
b + 2λ2

τ − (2cae + caν)g
2
a

]
µ=M

(
ln
MG

M

)2
]

1−loop

−
[
λ2
µ(M)

16π2

]
2−loop

, (3.17)

where one and two loop contributions are indicated. Derivation of approximate expression of ξτ

[Eq.(3.16)] is given in Appendix A.1 of Ref. [16]. Eq. (3.17) can be derived in a similar way. As

we see, non-zero ξτ,µ are induced already at 1-loop level [without 2-loop correction of λ2
τ,µ

16π2 in Eq.

(3.12)]. However, inclusion of 2-loop correction can contribute to the ξτ,µ by amount of ∼ 3− 5%

(because of ln MG

M
factor suppression) and we have included it.

Now we write down quantities which have direct relevance for leptogenesis calculations. Using

Eq. (3.11) in (3.10) and then applying Eq.(A.5) [for expressing YνG’s elements with corresponding

entries of Yν(M)], with definitions of Eqs. (3.13) and (3.15), we obtain:

|δN(M)|eiη =
1

4π2

κ̄(M)

κ(M)

[
|(Y †ν Yν)21|eiη

′
+ ξτ |(Yν)31(Yν)32|ei(φ31−φ32) + ξµ|(Yν)21(Yν)22|ei(φ21−φ22)

]
µ=M

(3.18)

where φij denotes the phase of the matrix element (Yν)ij at scale µ = M . Eq. (3.18) shows well

that in the limit ξτ,µ → 0, we have η = η′, while the mismatch between these two phases is due to
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ξτ,µ 6= 0. With ξτ,µ � 1, from (3.18) we derive:

η − η′ ' ξτ |(Yν)31(Yν)32| sin(φ31 − φ32 − η′) + ξµ|(Yν)21(Yν)22| sin(φ21 − φ22 − η′)
|(Y †ν Yν)21|

. (3.19)

We stress, that the 1-loop renormalization of the Yν matrix plays the leading role in generation

of ξτ,µ, i.e. in the CP violation.8 [This is also demonstrated by Eq. (3.16).] When the product

(Yν)31(Yν)32 is non-zero, the leading role for the mismatch between η and η′ is played by ξτ . However,

for the Yukawa texture, having this product zero, important will be contribution from ξµ. [As we

will see on working examples, this will happen for T9 of Eq. (2.5) and texture B2 of Eq. (3.40)].

The value of |δN(M)|, which characterizes the mass splitting between the RHN’s, can be com-

puted by taking the absolute values of both sides of (3.18):

|δN(M)| = κN
4π2

∣∣(Y †ν Yν)21 + ξτ (Yν)31(Y ∗ν )32 + ξµ(Yν)21(Y ∗ν )22

∣∣
µ=M

ln
MG

M
, with κN =

κ̄(M)

κ(M) ln MG

M

.

(3.20)

These expressions can be used upon the calculation of the leptogenesis, which we will do in sections

3.3 and 3.4 for concrete models of the neutrino mass matrices.

3.2 See-Saw via Two Texture Zero 3 × 2 Dirac Yukawas Augmented by

Single d=5 Operator. Predicting CP Violation

Within the setup with two RHNs, having at the GUT scale mass matrix of the form (3.1), we

consider all two texture zero 3 × 2 Yukawa matrices with an unremovable complex φ phase. As

shown in [20] and in Sect. 2.1, there are nine two texture zero 3 × 2 Yukawa matrices, out of

which only three, namely T4, T7 and T9 (given by (2.12), (2.18) and (2.22) respectively) possess

unremovable complexity.

That complexity expressed through physical phase φ is relevant to the leptogenesis [1] and also,

as it was shown in [20], it can be related to phase δ, determined from the neutrino sector. As will

be shown on concrete neutrino models, this will remain true after inclusion of specific single d = 5

operator. Since we are interested in complex two texture zero 3 × 2 Yukawa matrices for Yν in

(2.24) the textures T4,7,9 should be used in turn.
8Note that since RG equations for MN and Yν in non-SUSY case have similar structures (besides some group-

theoretical factors) the ξτ,µ would be generated also within non-SUSY setup.
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Before switching to concrete Neutrino mass texture models, we explain our choice of numerical

data used hereafter. As far as the numerical values of the oscillation parameters are concerned,

since the bfv’s of the works of Ref. [4] differ from each other by few %’s, we will use their mean

values:

sin2 θ12 = 0.308, sin2 θ23 =

0.432 for NH

0.591 for IH
, sin2 θ13 =

0.02157 for NH

0.0216 for IH
,

∆m2
sol = 7.48 · 10−5 eV2, ∆m2

atm = |m2
3 −m2

2| =

2.47 · 10−3 eV2 for NH

2.54 · 10−3 eV2 for IH
. (3.21)

In models, which allow to do so, we use the best fit values (bfv) given in (3.21). However, in some

cases we also apply the value(s) of some oscillation parameter(s) which deviate from the bfv’s by

several σ.

P1 Neutrino Texture

This texture, within our scenario, can be parameterized as:

Mν(MZ) =


0 d5 0

d5 2a2b2 (a3b2 + a2b3e
iφ)rν3

0 (a3b2 + a2b3e
iφ)rν3 2a3b3e

iφr2
ν3

 m̄ (3.22)

where,

m̄ = − rm̄v
2
u(MZ)

M · e−i(ω+ρ)
(3.23)

δ ρ1 ρ2 works with

±0.0879121 ±3.11851 ±3.03949

NH, sin2 θ23 = 0.451, sin2 θ12 = 0.323 and best

fit values for remaining oscillation parameters,

(m1,m2,m3) = (0.00694406, 0.0110914, 0.0509217), mββ = 0

Table 7: Results from P1 type texture. Masses are given in eVs.

and RG factors rm̄ and rν3 are given in Eqs. (A.17) and (A.18) of Ref. [16]. (For notations and

definitions see also Appendix A.2) The entries depending on ai, bj in (3.22) arise from the T4

texture [given in (2.12)] by the see-saw mechanism. The entry d5 comes from the (2.25) type
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operator d̃5eix5

M∗
l1l2huhu. Since, as we see from Eqs. (2.12) and (2.13), the phase x is undetermined,

we can select it in such a way as to set (3.22)’s d5 entry to be real. Therefore, we still have

single physical phase φ. It will be related to the phase δ and will govern the leptogenesis process

(discussed in Sect. 3.3). Due to the texture zeros, it is possible to predict the phases and values of

the neutrino masses in terms of the measured oscillation parameters. In particular, the conditions

M
(1,1)
ν = 0 and M (1,3)

ν =0, using (2.49)-(2.51), give

two complex equations (2.56) and (2.57), which with the input of five oscillation parameters

allow to calculate all neutrino masses and predict three phases δ, ρ1 and ρ2. Without providing

here further analytical relations [followed from Eqs. (2.56), (2.57) and given in [20]), in Table 7 we

summarize the results. [Only normal hierarchical (NH) neutrino mass ordering scenario works for

the P1 type texture.]

P2 Neutrino Texture

Mν(MZ) =


0 0 d5

0 2a2b2 (a3b2 + a2b3e
iφ)rν3

d5 (a3b2 + a2b3e
iφ)rν3 2a3b3e

iφr2
ν3

 m̄ (3.24)

This texture’s ai, bi entries are also obtained from the T4 texture (2.12) via the see-saw mechanism

and by addition of the d = 5 operator d̃5eix5

M∗
l1l3huhu. By proper adjustment of the phase x [remaining

undetermined in (2.12) and (2.13)], we can set d5 entry of (3.24) to be real. The two conditions

M
(1,1)
ν = 0 and M (1,2)

ν =0 give relation of Eq. (2.56) and Eq. (2.68) which allow to predict neutrino

masses and three phases δ, ρ1,2. Results are given in Table 8. For inputs the best fit values (bfv) of

the oscillation parameters are taken from Eq.(3.21). For more details we refer the reader to [20].

δ ρ1 ρ2 works with

±1.71006 ∓2.79206 ∓1.47308

NH and bfv’s

of oscillation parameters,

(m1,m2,m3) = (0.00471158, 0.0098488, 0.0506656), mββ = 0

Table 8: Results from P2 type texture. Masses are given in eVs.

P3 Neutrino Texture
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Using the see-saw formula (2.24) for the T7 texture (2.18) and including the d = 5 operator
d̃5eix5

M∗
l2l3huhu, we obtain the P3 neutrino texture:

Mν(MZ) =


2a1b1 0 (a3b1 + a1b3e

iφ)rν3

0 0 d5

(a3b1 + a1b3e
iφ)rν3 d5 2a3b3e

iφr2
ν3

 m̄ (3.25)

Since the phase y is not fixed in (2.18) and (2.19), without loss of any generality the d5 entry of

(3.25) can be set to be real. The conditions M (1,2)
ν = 0 and M

(2,2)
ν =0, similar to previous cases,

allow to predict m1,2,3 and δ, ρ1,2. Without giving the expressions (being lengthy and presented

in Ref. [20]), we proceed to give numerical results, which for NH and inverted hierarchical (IH)

neutrino mass orderings are summarized in Table 9.

δ ρ1 ρ2 works with

±1.53714 ±0.0867342 ±3.20236

NH and bfv’s

of oscillation parameters,

(m1,m2,m3) =

(0.0588907, 0.0595224, 0.077543),

mββ = 0.059436

±1.58066 ∓0.114316 ±3.06301

IH and bfv’s

of oscillation parameters,

(m1,m2,m3) =

(0.0696426, 0.0701776, 0.0488354),

mββ = 0.0692588

Table 9: Results from P3 type texture. Masses are given in eVs.

P4 Neutrino Texture

This texture is obtained by applying the see-saw formula (2.24) to the T9 texture (2.22) and

including the d = 5 operator d̃5eix5

M∗
l2l3huhu. Doing these we obtain the P4 neutrino texture:

Mν(MZ) =


2a1b1 (a2b1 + a1b2e

iφ) 0

(a2b1 + a1b2e
iφ) 2a2b2e

iφ d5

0 d5 0

 m̄ (3.26)
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In this case the phase z is not fixed [see Eqs. (2.22) and (2.23)] and we can use this phase freedom

to take d5 entry of (3.26) matrix as a real parameter. The conditions M (1,3)
ν = M

(3,3)
ν = 0 will give

two complex (i.e. four real) equations, which contain three phases δ, ρ1,2 and one of the neutrino

masses (remember that two measured parameters ∆m2
sol = m2

2−m2
1 and ∆m2

atm = |m2
3−m2

2| leave

undetermined values of the neutrino masses). Therefore, as for previous cases, with input of five

measured oscillation parameters (which are: ∆m2
sol,∆m

2
atm and {θ12, θ23, θ13}) from the conditions

given above we predict all light neutrino masses and three phases δ, ρ1,2. Still referring to [20], for

analytical expressions, in Table 10 we give the numerical results obtained for this texture P4 for

NH and IH cases. The value of s2
23 we are using is deviated from the bfv, because the conditions

M
(1,3)
ν = M

(3,3)
ν = 0 do not allow to use bfv’s. Note that in NH, case 2 and for IH the values of s2

23

are less deviated from bfv, but the NH’s case 1, as it turns out, is preferred for obtaining needed

amount of the baryon asymmetry. Without the latter constraint, just for satisfying the neutrino

data, we could have used smaller values of s2
23, but this would give higher values of neutrino masses

which would not satisfy the current cosmological constraint
∑

imi < 0.23 eV (the limit set by the

Planck observations [47]9). Upon leptogenesis investigation we will use NH, case 1 given in Tab.10.

δ ρ1 ρ2 works with

NH, case 1 ±1.62446 ∓0.129186 ±3.05085

NH and sin2 θ23 = 0.6 and bfv’s

for remaining oscillation parameters,

(m1,m2,m3) =

(0.044819, 0.0456458, 0.0674799),

mββ = 0.0454757

NH, case 2 ±1.59508 ∓0.0647305 ±3.09629

NH and sin2 θ23 = 0.551 and bfv’s

for remaining oscillation parameters,

(m1,m2,m3) =

(0.0707692, 0.0712957, 0.0869084),

mββ = 0.0712444

9Tighter upper bound can be obtained by considering additional combined datasets [48]. However, bound also

depends on the theoretical framework and can be relaxed (see e.g. 2nd Ref. of [4], where as demonstrated in Table

II, the scenario with extra Alens parameter yields more relaxed bounds). Thus, upon our calculations we use the

constraint
∑
imi < 0.23 eV.
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δ ρ1 ρ2 works with

±1.56553 ±0.0733633 ±3.19198

IH and sin2 θ23 = 0.441 and bfv’s

for remaining oscillation parameters,

(m1,m2,m3) =

(0.0820116, 0.0824663, 0.065274),

mββ = 0.0817407

Table 10: Results from P4 type texture. Masses are given in eVs.

3.3 Resonant Leptogenesis

Expression for δN(M) with effects of λµ,τ and ignoring λe, is given by Eq. (3.18). The CP asymme-

tries ε1 and ε2 generated by out-of-equilibrium decays of the quasi-degenerate fermionic components

of N1 and N2 states respectively are given by [10,11]:10

ε1 =
Im[(Ŷ †ν Ŷν)21]2

(Ŷ †ν Ŷν)11(Ŷ †ν Ŷν)22

(M2
2 −M2

1 )M1Γ2

(M2
2 −M2

1 )
2

+M2
1 Γ2

2

, ε2 = ε1(1↔ 2) . (3.27)

Here M1,M2 (with M2 > M1) are the mass eigenvalues of the RHN mass matrix. These masses,

within our scenario, are given in (3.4) with the splitting parameter given in Eq. (3.20). For the

decay widths, here we will use more accurate expressions [6]:

ΓNi =
Mi

8π
(Ŷ †Ŷ )ii

((
1− 4

M2
S

M2
i

) 1
2

+ s2
β + c2

β

(
1− M2

S

M2
i

)2
)
, (3.28)

where MS is the SUSY scale and we assume that all SUSY states have the common mass equal to

this scale. sβ and cβ are short hand notations for sin β and cos β respectively. Ni decays proceed via

Ni → huli andNi → h̃ul̃i channels. Upon derivation of (3.28) we took into account that hu is a linear

combination of the SM Higgs doublet hSM and the heavy Higgs doublet H: hu ' sβhSM + cβH.

Mass of the hSM has been ignored, while the mass of the H has been taken' MS. Moreover, the

imaginary part of [(Ŷ †ν Ŷν)21]2 will be computed with help of (3.6) and (3.7) with the relevant phase

given in Eq. (3.19). Using general expressions (3.19) and (3.20) for the given neutrino model we

will compute η − η′ and |δN(M)|. With these, since we know the possible values of the phase
10In Appendix B we investigate the contribution to the baryon asymmetry via decays of the scalar components of

the RHN superfields. As we show, these effects are less than 3.4%.
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φ [see Eqs. (3.31),(3.33),(3.35),(3.37)], and with the help of the relations (3.32), (3.34), (3.36),

(3.38) we can compute ε1,2 in terms of |M | and a2 or a1 (depending on the texture we are dealing

with). Recalling that the lepton asymmetry is converted to the baryon asymmetry via sphaleron

processes [49], with the relation nfb
s
' −1.48 × 10−3(κf

(1)ε1 + κf
(2)ε2) we can compute the baryon

asymmetry. The notion nfb is used for the baryon asymmetry created through the decays of the

fermionic components of N1,2 superfields. The net baryon asymmetry nb receives the contribution

from the decays of the scalar components Ñ1,2. The latter contribution we denote by ñb. The

computation of it (being suppressed in comparison with nfb ) will be discussed in Appendix B. For

the efficiency factors κf (1,2) we will use the extrapolating expressions [6] (see Eq. (40) in Ref. [6]),

with κf
(1) and κf

(2) depending on the mass scales m̃1 = v2
u(M)
M1

(Ŷ †ν Ŷν)11 and m̃2 = v2
u(M)
M2

(Ŷ †ν Ŷν)22

respectively.

Within our studies we will consider the RHN masses ' |M | <∼ 107 GeV. With this, we will not

have the relic gravitino problem [50,51]. For simplicity, we consider all SUSY particle masses to be

equal to MS < |M |, with MS identified with the SUSY scale, below which we have just SM. As it

turns out, via the RG factors, the asymmetry also depends on the top quark mass.

It is remarkable that within some models the observed baryon asymmetry(nb
s

)
exp

= (8.65± 0.085)× 10−11 (3.29)

(the recent value reported by WMAP and Planck [47]), can be obtained even for low values of the

MSSM parameter tan β = vu
vd

(defined at the SUSY scale µ = MS).

Below, we perform analysis for each of these P1,2,3,4 cases (and for revised models of Ref. [1]

discussed in Sect. 3.4) in turn and present our results. As an input for the top’s running mass we

will use the central value, while for the SUSY scale MS we will consider two cases:

mt(mt) = 163.48 GeV,

Case (I) : MS = 103 GeV, Case (II) : MS = 2× 103 GeV. (3.30)

Procedure of our RG calculation and used schemes are described in Appendix A.3. As it was

shown in [20], for neutrino mass matrix textures P1,2,3,4, we will be able to relate the cosmological

phase φ to the CP violating phase δ.

For P1 Texture
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As was shown in Sect.2.4 for this case, using the form of the Mν [given by Eq. (3.22) and derived

within our setup] in the relation (2.49) and equating appropriate matrix elements of the both sides,

we will be able to calculate the phase φ [16, 20]:

φ = Arg

 A23√
A22A33

∓

√
A2

23

A22A33

− 1

2 . (3.31)

Moreover, expressing a3, b2,3 in terms of a2 (taking a2 to be an independent variable) and other

known and/or predicted parameters, we will have:

a3 =
a2

rν3

1

|A22|

∣∣∣∣∣A23 ±
√
A2

23 −A22A33

∣∣∣∣∣, b2 =
|A22|

2|m̄|a2

, b3 =
|A33|

2|m̄|a3r2
ν3

. (3.32)

As we see from Eqs. (3.31) and (3.32), there is a pair of solutions. When for the a3 in (3.32) we

are taking the ” + ” sign, in (3.31) we should take the sign ”− ”, and vice versa. (The same applies

to the cases of textures P2,3,4.) For this case, the baryon asymmetry via the resonant leptogenesis

has been investigated in Ref. [16]. Here, for the decay widths we use more refined expressions of

Eq. (3.28). Because of this, the values of tan β (given in Table 11) are slightly different. Since in

this model (Yν)31 and (Yν)32 are non-zero, according to Eq. (3.18) the mismatch η − η′ (e.g. CP

asymmetry) is mainly arising due to ξτ . However, in numerical calculations we have also taken into

account the contribution of ξµ. The results are given in Table 11 (for more explanations see also

caption of this table). While in the table we vary the values ofM and tan β, the cases with I and II

correspond respectively to the cases (I) and (II) of Eq. (3.30) (i.e. MS = 1 and 2 TeV resp.). For

the definition of the RG factors given in this table see Appendix A.2 of Ref. [16](For notations and

definitions see also Appendix A.2). For finding maximal values of the Baryon asymmetries (given

in Tab.11) we have varied the parameter a2. As we see, the value of the net baryon asymmetry

nb slightly differs from nfb . This is due to the contribution from ñb [coming from the right handed

sneutrino (RHS) decays], which is small (less than 3.4% of nfb ). Details of ñb’s calculations are

discussed in Appendix B.
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Case M(GeV) tan β rm̄ rvu κN 105 × ξτ 1011×
(
nfb
s

)
max

1011×
(
nb
s

)
max

(I.1) 3 · 103 1.72 0.8868 0.9714 1.206 6.106 8.29 8.57

(I.2) 104 1.619 0.832 0.9523 1.2322 5.303 8.34 8.6

(I.3) 105 1.664 0.7482 0.9203 1.1807 4.821 8.36 8.6

(I.4) 106 1.719 0.682 0.8923 1.1345 4.381 8.37 8.6

(I.5) 107 1.773 0.6291 0.8676 1.0971 3.937 8.37 8.6

(II.1) 6 · 103 1.701 0.8689 0.9678 1.175 5.897 8.294 8.57

(II.2) 104 1.615 0.8464 0.9599 1.1994 5.365 8.334 8.59

(II.3) 105 1.625 0.7629 0.9283 1.1669 4.755 8.36 8.6

(II.4) 106 1.678 0.6974 0.9008 1.1243 4.321 8.36 8.6

(II.5) 107 1.731 0.645 0.8765 1.0894 3.887 8.36 8.6

Table 11: Texture P1, normal hierarchy: Baryon asymmetry for various values ofM and for minimal

(allowed) value of tan β. With neutrino oscillation parameters and results given in the Table 7 and

computed from Eq. (3.31) φ = ±1.264. For all cases rν3 ' 1.

For P2 Texture

With a pretty similar procedure, for this case we get:

φ = Arg

 A23√
A22A33

∓

√
A2

23

A22A33

− 1

2 . (3.33)

Expressing a3, b2,3 in terms of a2 and other parameters (yet known or predicted in this scenario),

we will have:

a3 =
a2

rν3

1

|A22|

∣∣∣∣∣A23 ±
√
A2

23 −A22A33

∣∣∣∣∣, b2 =
|A22|

2|m̄|a2

, b3 =
|A33|

2|m̄|a3r2
ν3

(3.34)

Results for this case are presented in Table 12.
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Case M(GeV) tan β rm̄ rvu κN 105 × ξτ 1011×
(
nfb
s

)
max

1011×
(
nb
s

)
max

(I.1) 3 · 103 1.948 0.8908 0.9725 1.1439 7.264 8.306 8.57

(I.2) 104 1.833 0.8412 0.955 1.1543 6.242 8.35 8.6

(I.3) 105 1.881 0.7647 0.9254 1.1158 5.692 8.37 8.6

(I.4) 106 1.938 0.7039 0.8994 1.0821 5.182 8.36 8.6

(I.5) 107 1.996 0.6554 0.8766 1.0544 4.671 8.36 8.6

(II.1) 6 · 103 1.933 0.8728 0.9689 1.1201 7.058 8.314 8.57

(II.2) 104 1.836 0.8526 0.9616 1.133 6.373 8.35 8.6

(II.3) 105 1.843 0.7771 0.9326 1.1063 5.638 8.36 8.6

(II.4) 106 1.9 0.7175 0.9072 1.0748 5.14 8.37 8.6

(II.5) 107 1.956 0.6697 0.8848 1.049 4.632 8.37 8.6

Table 12: Texture P2, normal hierarchy: Baryon asymmetry for various values ofM and for minimal

(allowed) value of tan β. With neutrino oscillation parameters and results given in the Table 8 and

computed from Eq. (3.33) φ = ±1.1. For all cases rν3 ' 1.

For P3 Texture

Case M(GeV) tan β rm̄ rvu κN 105 × ξτ 1011×
(
nfb
s

)
max

1011×
(
nb
s

)
max

(I.1) 3 · 103 7.158 0.904 0.9761 1.0076 76.29 8.49 8.59

(I.2) 104 6.802 0.8717 0.9635 0.9983 64.79 8.508 8.6

(I.3) 105 6.922 0.82 0.9417 0.9819 59.11 8.51 8.6

(I.4) 106 7.074 0.7789 0.9225 0.9692 53.92 8.51 8.6

(I.5) 107 7.227 0.7467 0.9056 0.96 48.65 8.51 8.6

(II.1) 6 · 103 7.146 0.8852 0.9723 0.9986 75.06 8.5 8.6

(II.2) 104 6.85 0.8725 0.9672 0.9954 67.24 8.5 8.6

(II.3) 105 6.858 0.8229 0.946 0.9802 59.44 8.51 8.6

(II.4) 106 7.003 0.7835 0.9274 0.9684 54.17 8.51 8.6

(II.5) 107 7.151 0.7524 0.9109 0.9597 48.87 8.51 8.6
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Table 13: Texture P3, normal hierarchy: Baryon asymmetry for various values ofM and for minimal

(allowed) value of tan β. With neutrino oscillation parameters and results given in the Table 9 and

computed from Eq. (3.35) (for NH case) φ = ±2.92. For all cases rν3 ' 1.

Case M(GeV) tan β rm̄ rvu κN 105 × ξτ 1011×
(
nfb
s

)
max

1011×
(
nb
s

)
max

(I.1) 3 · 103 27.11 0.905 0.9764 1.0038 1154.3 8.515 8.6

(I.2) 104 25.824 0.8738 0.9641 0.9938 980.4 8.52 8.6

(I.3) 105 26.138 0.8234 0.9427 0.9784 894.7 8.53 8.6

(I.4) 106 26.55 0.7833 0.9238 0.9667 815.9 8.53 8.6

(I.5) 107 26.96 0.7515 0.9071 0.9583 736 8.53 8.6

(II.1) 6 · 103 27.1 0.886 0.9725 0.995 1135.1 8.516 8.6

(II.2) 104 26.061 0.8739 0.9676 0.991 1017.9 8.518 8.6

(II.3) 105 25.979 0.8259 0.9469 0.9766 899.4 8.52 8.6

(II.4) 106 26.38 0.7875 0.9285 0.9657 819.9 8.53 8.6

(II.5) 107 26.783 0.757 0.9123 0.9578 739.6 8.53 8.6

Table 14: Texture P3, inverted hierarchy: Baryon asymmetry for various values of M and for

minimal (allowed) value of tan β. With neutrino oscillation parameters and results given in the

Table 9 and computed from Eq. (3.35) (for IH case) φ = ±3.124. For all cases rν3 ' 1.

φ = Arg

 A13√
A11A33

∓

√
A2

13

A11A33

− 1

2 . (3.35)

Expressing a3, b1,3 in terms of a1 and other fixed parameters, we will have:

a3 =
a1

rν3

1

|A11|

∣∣∣∣∣A13 ±
√
A2

13 −A11A33

∣∣∣∣∣, b1 =
|A11|

2|m̄|a1

, b3 =
|A33|

2|m̄|a3r2
ν3

(3.36)

Results for this texture for cases of NH and IH neutrinos are presented in Tables 13 and 14 respec-

tively.

For P4 Texture
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For this case cosmological phase is given by:

φ = Arg

 A12√
A11A22

∓

√
A2

12

A11A22

− 1

2 . (3.37)

Expressing a1, b1,2 in terms of a2 and other known and/or predicted parameters, we will have:

a1 =
|A11|

|A12 ±
√
A2

12 −A11A22|
a2, b1 =

|A11|
2|m̄|a1

, b2 =
|A22|

2|m̄|a2

(3.38)

In this scenario, since (Yν)31 and (Yν)32 are zero, according to Eq. (3.18) the mismatch η− η′ (e.g.

CP asymmetry) is arising due to ξµ. Since the latter is suppressed by λ2
µ, as it turns out large

values of the tan β are required and only in NH case needed amount of the Baryon asymmetry can

be generated. Results are given in Table 15.

Case M(GeV) tan β rm̄ rvu κN 104 × ξµ 1011×
(
nfb
s

)
max

1011×
(
nb
s

)
max

(I.1) 3 · 103 64.639 0.9048 0.9763 1.0349 3.111 8.518 8.6

(I.2) 104 62.213 0.873 0.9638 1.0212 2.638 8.52 8.6

(I.3) 105 62.02 0.8203 0.9418 1.0059 2.416 8.53 8.6

(I.4) 106 62.006 0.7767 0.9218 0.994 2.213 8.53 8.6

(I.5) 107 62 0.7404 0.9037 0.9848 2.008 8.53 8.6

(II.1) 6 · 103 65.28 0.8859 0.9725 1.0208 3.045 8.517 8.59

(II.2) 104 63.398 0.8735 0.9675 1.0145 2.728 8.525 8.59

(II.3) 105 62.548 0.8239 0.9463 0.9996 2.417 8.53 8.6

(II.4) 106 62.528 0.7827 0.9271 0.9886 2.211 8.53 8.6

(II.5) 107 62.535 0.7484 0.9097 0.9803 2.005 8.53 8.6

Table 15: Texture P4, normal hierarchy: Baryon asymmetry for various values ofM and for minimal

(allowed) value of tan β. With neutrino oscillation parameters and results given in the Table 10,

NH, case 1, and φ computed from Eq. (3.37) (for NH case) φ = ±2.872.

3.4 Revising Textures of Ref. [1] and Improved Versions

In this section we revise the textures considered in the work [1]. Since some of them are excluded

by the current neutrino data [4](see also Eq. (3.21)), we apply d = 5 contributions (in a spirit
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of section 3.2) and achieve their compatibility with the best fit values. Together with this, we

investigate resonant leptogenesis and show that one loop corrections via λτ and/or λµ are crucial.

In [1], while ignoring λµ the two loop correction to λτ was taken into account and this suggested

for textures A and B1 specific low bounds on the values of tan β. As demonstrated below, one

loop effects of λτ (giving dominant contribution for textures A and B1) and λµ (for the texture B2)

significantly change results.

In the setup of two degenerate RHNs, in Ref. [1] the following three possible one texture zero

neutrino Dirac Yukawa couplings have been considered :

Texture A : Yν =


a1e

iα1 0

a2e
iα2 b2e

iβ2

a3e
iα3 b3e

iβ3

 , (3.39)

Texture B1 : Yν =


a1e

iα1 b1e
iβ1

a2e
iα2 0

a3e
iα3 b3e

iβ3

 , Texture B2 : Yν =


a1e

iα1 b1e
iβ1

a2e
iα2 b2e

iβ2

a3e
iα3 0

 , (3.40)

where for notational consistency with the entire work, we have shown phases αi, βj, while assuming

that the couplings ai, bj are real.11 Below we will (re)investigate these textures in turn.

Texture A

The A Yukawa texture can be written as:

Texture A : Yν =


a1e

iα1 0

a2e
iα2 b2e

iβ2

a3e
iα3 b3e

iβ3

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 0

a2 b2

a3e
iφ b3


eiω 0

0 eiρ

 ,

with x = α1 − α2 + β2 − ρ, y = β2 − ρ, z = β3 − ρ, ω = α2 − β2 + ρ, φ = α3 − α2. (3.41)

As we see, besides the phase φ all phases are factored out and have no physical relevance. With

the RHN mass matrix of Eq.(2.29), via the see-saw[see expression in Eq.(2.24)] we will get the light

neutrino mass matrix:

M (A)
ν (MZ) =


0 a1b2 a1b3rν3

a1b2 2a2b2 (a2b3 + a3b2e
iφ)rν3

a1b3rν3 (a2b3 + a3b2e
iφ)rν3 2a3b3e

iφr2
ν3

m̄ , (3.42)

11On the contrary, in Ref. [1], without writing down the phase factors, ai and bj were treated as a complex

parameters.
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[For definitions of m̄, rν3 and proper explanations see respectively Eq. (3.23) and also Eqs. (A.17),

(A.18) of Ref. [16], and comments therein, as well as Appendix A.2] This neutrino mass texture

has only two non-zero mass eigenvalues. As it was shown in [1], this for NH (m1 = 0) and IH

(m3 = 0) neutrino mass patterns, gives respectively the predictive relations tan θ13 =
√

m2

m3
s12 and

tan θ12 =
√

m1

m2
. Both of them are in a gross conflict with the current neutrino data, which exclude

this scenario.

A′ Neutrino Texture: Improved Version

The drawbacks coming from the A neutrino mass matrix (3.42) can be avoided by adding d5

term to one of the entries. Here we consider this addition to the (2, 3) and (3, 2) elements of the

light neutrino mass matrix, which would make the model viable. (We refer to this improved version

of (3.42) as the A′ neutrino texture.) After this, the Mν will have the form:

M (A′)
ν (MZ) =


0 a1b2 a1b3rν3

a1b2 2a2b2 (a2b3+a3b2e
iφ)rν3+d5

a1b3rν3 (a2b3+a3b2e
iφ)rν3+d5 2a3b3e

iφr2
ν3

m̄. (3.43)

With this modification, all masses are non-zero. One can check out, that with the fixed phase

redefinitions [given in Eq. (3.41)], in general d5 is a complex parameter. Thus, together with

additional mass, we will have one more independent phase. As it turns out, only NH scenario is

possible to realize. Therefore as additional independent parameters we take one of the mass and

∆ρ = ρ1 − ρ2. From the condition M (1,1)
ν = 0 we have:

cos(2δ−∆ρ)=
m2

1c
4
12−m2

2s
4
12−m2

3t
4
13

2m2m3s2
12t

2
13

, ρ1 =π−Arg

[
m2

m3

s2
12 +t213e

i(2δ−∆ρ)

]
with ∆ρ = ρ1 − ρ2.

(3.44)

(Here and below we use shorthanded notations tij ≡ tan θij.) From the first relation of (3.44) one

can check that IH scenario can not be realized. As far as the NH scenario is concerned, it will

work with low bound on the lightest neutrino mass m1. In fact, the first relation of (3.44) gives the

allowed range for m1. For example, with bfv’s of the oscillation parameters (3.21) we have:

0.00239 eV <∼ m1
<∼ 0.00641 eV. (3.45)

Thus, as independent parameters we will take m1 and ∆ρ. We will select them in such a way as to

get desirable baryon asymmetry. For example, with the choice

m1 = 0.005719 eV, ∆ρ = 4.987 (3.46)
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Case M(GeV) tan β rm̄ rvu κN 104×ξτ 1011×
(
nfb
s

)
max

1011×
(
nb
s

)
max

(I.1) 3 · 103 1.939 0.8907 0.9725 1.1457 0.7215 8.53 8.6

(I.2) 104 1.838 0.8414 0.955 1.153 0.6266 8.53 8.59

(I.3) 105 1.904 0.7662 0.9258 1.111 0.5793 8.53 8.59

(I.4) 106 1.986 0.7078 0.9006 1.0742 0.5374 8.54 8.6

(I.5) 107 2.075 0.6628 0.879 1.0442 0.4956 8.55 8.61

(II.1) 6 · 103 1.928 0.8727 0.9688 1.121 0.7031 8.53 8.6

(II.2) 104 1.84 0.8527 0.9617 1.1322 0.6393 8.54 8.6

(II.3) 105 1.869 0.7784 0.933 1.1013 0.5753 8.54 8.6

(II.4) 106 1.949 0.721 0.9083 1.0672 0.5337 8.54 8.6

(II.5) 107 2.036 0.6766 0.887 1.0393 0.4923 8.54 8.6

Table 16: A′ Neutrino Texture, NH. Baryon asymmetry for various values ofM and for correspond-

ing minimal (allowed) values of tan β. With the choice given in Eqs. (3.46), (3.47) and bfv’s of s2
ij.

For all cases rν3 ' 1.

and bfv’s of all measured oscillation parameters with help of (2.52) and (3.44) for neutrino masses

and phases we are getting:

(m1,m2,m3) ' (0.005719, 0.01037, 0.05077) eV,

(δ, ρ1, ρ2) ' (2.9639, 2.911, −2.076) . (3.47)

As far as the baryon asymmetry is concerned, using (3.43) in (2.49) for the CP phase φ and

expressing couplings a1,3, b2,3 in terms of a2 we get

φ = Arg

(
A2

12A33

A2
13A22

)
,

a1 = 2

∣∣∣∣A12

A22

∣∣∣∣ a2, a3 =
1

rν3

∣∣∣∣A12A33

A22A13

∣∣∣∣ a2, b2 =
|A22|

2|m̄|a2

, b3 =

∣∣∣∣A13A22

A12

∣∣∣∣ 1

2rν3|m̄|a2

. (3.48)

For the values of (3.46), (3.47) and bfv’s of s2
12,23,13 we get

φ = −2.9297 . (3.49)
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With these, and for given values of M and tan β by varying a2 we can investigate the baryon

asymmetry. Results are given in Tab. 16.

Texture B1

The B1 Yukawa texture can be written as:

Texture B1 : Yν =


a1e

iα1 b1e
iβ1

a2e
iα2 0

a3e
iα3 b3e

iβ3

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 b1

a2 0

a3e
iφ b3


eiω 0

0 eiρ

 ,

with x = β1−ρ, y = α2−α1+β1−ρ, z = β3−ρ, ω = α1−β1+ρ, φ = α3−β3−α1+β1. (3.50)

With the RHN mass matrix of Eq. (2.29), via the see-saw we will get the light neutrino mass

matrix:

M (B1)
ν (MZ) =


2a1b1 a2b1 (a1b3 + a3b1e

iφ)rν3

a2b1 0 a2b3rν3

(a1b3 + a3b1e
iφ)rν3 a2b3rν3 2a3b3e

iφr2
ν3

m̄ , (3.51)

This neutrino mass texture (referred as B1 neutrino texture) works only for inverted neutrino mass

ordering [1] (with m3 = 0) and has two predictive relations. In particular, in terms of measured

oscillation parameters we can calculate the phases δ and ρ1. The exact expressions are:

cos δ =
m2(1 + t223t

2
12s

2
13)−m1(t212 + t223s

2
13)

2t23t12s13(m1 +m2)
, ρ1 =π−Arg

[
(1− t23t12s13e

−iδ)2

(t12 + t23s13e−iδ)2

]
. (3.52)

with m1 =
√

∆m2
atm −∆m2

sol, m2 =
√

∆m2
atm, m3 = 0. (3.53)

Although the first expression in (3.52) excludes the possibility of using the best fit values for all

oscillation parameters, it allows for keeping values of s2
23 and s2

13 within 1σ, while confining s2
12 to

2σ. Remarkably, needed baryon asymmetry can be achieved with relatively low values of tan β.

For example,

for IH of the B1 neutrino texture, with : s2
23 = 0.604 (1σ), s2

12 = 0.33 (2σ), s2
13 = 0.023 (1σ)

=⇒ δ = ±0.307, ρ1 = π ∓ 0.2192, φ = ±3.129 (3.54)
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(∆m2
sol and ∆m2

atm are taken bfv’s.) to generate baryon asymmetry of desired amount [
(
nb
s

)
max
'

8.59× 10−11] in case of M = 3 · 103 GeV and MS = 1 TeV the value tan β = 6.32 is required.

B1
′ Neutrino Texture: Improved Version

By addition of the d5 term to (1,3) and (3,1) entries of the B1 neutrino texture (3.51), the light

neutrino mass matrix becomes:

M (B1
′)

ν (MZ) =


2a1b1 a2b1 (a1b3 + a3b1e

iφ)rν3 + d5

a2b1 0 a2b3rν3

(a1b3 + a3b1e
iφ)rν3 + d5 a2b3rν3 2a3b3e

iφr2
ν3

m̄ , (3.55)

which gives all neutrinos massive and opens up a possibility of choosing two variables such as m3

and ∆ρ ≡ ρ1 − ρ2 as independent ones to operate with. We refer to this (3.55) improved version

as the B1
′ neutrino texture. From the condition M (2,2)

ν = 0 we have:

m1|U21|2 = |m2(U22)2+m3(U23)2ei∆ρ|, ρ1 =π−Arg

[
m1(U21)2

m2(U22)2 +m3(U23)2ei∆ρ

]
, with ∆ρ = ρ1−ρ2.

(3.56)

Out of the numerous values ∆ρ and m3 can take on, we select those that are not in conflict with the

observed oscillation data and at the same time together with the minimal allowed value of tan β

generate baryon asymmetry of the needed amount. In case of Inverted Hierarchy both of these

requirements can be satisfied. In particular:

for IH of the B1
′ neutrino texture : m3 = 0.00250717 eV and ∆ρ = 3.6599 (3.57)

determine numerical values of the rest of masses, phases and eventually the neutrino double beta

decay parameter:

(m1,m2,m3) = (0.049714, 0.050461, 0.00250717) eV,

(δ, ρ1, ρ2) = (0.17303, 2.9456, −0.71436) . (3.58)

mββ ' 0.019 eV. (3.59)
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As far as the baryon asymmetry is concerned, using (3.55) in (2.49 ), we get:

φ = Arg

(
A2

12A33

A2
23A11

)
,

a1 =
1

2

∣∣∣∣A11

A12

∣∣∣∣ a2, a3 =
1

2rν3

∣∣∣∣A33

A23

∣∣∣∣ a2, b1 =
|A12|
|m̄|a2

, b3 =
|A23|

rν3|m̄|a2

. (3.60)

Using all these, we can calculate the baryon asymmetry. The results are given in Tab. 17. The

goal of attaining needed baryon asymmetry with the minimal allowed value of tan β and without

coming in contradiction with the experimental data can be achieved in case of Normal Hierarchy

as well by selecting:

For NH of the B1
′ neutrino texture : m3 = 0.0741678 eV and ∆ρ = 3.2526 (3.61)

Case M(GeV) tan β rm̄ rvu κN 104 × ξτ 1011×
(
nfb
s

)
max

1011×
(
nb
s

)
max

(I.1) 3 · 103 2.1 0.8928 0.9731 1.118 0.8134 8.57 8.62

(I.2) 104 2.135 0.8499 0.9574 1.0986 0.7826 8.55 8.6

(I.3) 105 2.332 0.7856 0.9316 1.0545 0.7924 8.56 8.61

(I.4) 106 2.559 0.7385 0.9103 1.0209 0.8066 8.56 8.6

(I.5) 107 2.822 0.7048 0.8926 0.9959 0.8242 8.54 8.59

(II.1) 6 · 103 2.118 0.875 0.9695 1.0933 0.8109 8.55 8.6

(II.2) 104 2.119 0.858 0.9631 1.0876 0.7896 8.56 8.6

(II.3) 105 2.302 0.7948 0.9378 1.0481 0.7932 8.56 8.6

(II.4) 106 2.524 0.7484 0.9168 1.017 0.8067 8.55 8.59

(II.5) 107 2.786 0.715 0.8994 0.9936 0.826 8.55 8.59

Table 17: B1
′ Neutrino Texture, IH. Baryon asymmetry for various values ofM and for correspond-

ing minimal (allowed) values of tan β. With the choice given in Eqs. (3.57), (3.58) and bfv’s of s2
ij.

With φ = −2.9846 and for all cases rν3 ' 1.

give:

(m1,m2,m3) = (0.05437, 0.0550533, 0.0741678) eV,

(δ, ρ1, ρ2) = (0.0034537, 0.25965, −2.9929) . (3.62)

φ = 2.2568, mββ ' 0.051 eV. (3.63)
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Case M(GeV) tan β rm̄ rvu κN 104 × ξτ 1011×
(
nb
s

)
max

(I.1) 3 · 103 12.612 0.9047 0.9764 1.0026 23.596 8.6

(I.2) 104 12.081 0.8733 0.9639 0.9929 20.327 8.6

(I.3) 105 12.355 0.8229 0.9425 0.9772 18.774 8.6

(I.4) 106 12.696 0.7829 0.9236 0.9652 17.364 8.6

(I.5) 107 13.066 0.7515 0.9071 0.9566 15.947 8.6

(II.1) 6 · 103 12.608 0.8858 0.9725 0.994 23.269 8.6

(II.2) 104 12.158 0.8735 0.9675 0.9904 21.059 8.6

(II.3) 105 12.249 0.8253 0.9467 0.9757 18.883 8.6

(II.4) 106 12.582 0.787 0.9284 0.9645 17.46 8.6

(II.5) 107 12.943 0.7567 0.9122 0.9565 16.029 8.6

Table 18: B1
′ Neutrino Texture, NH. Baryon asymmetry for various values of M and for corre-

sponding minimal (allowed) values of tan β. With the choice given in Eqs. (3.61), (3.62) and bfv’s

of s2
ij. With φ = 2.2568 and for all cases rν3 ' 1 and ñb

s
' 0.

The baryon asymmetries for cases corresponding to this NH scenario are given in Tab. 18.

Texture B2

This texture is interesting because, due to specific form of Yν , the radiative corrections through

the λτ coupling do not generate cosmological CP asymmetry. Thus λµ may be important, which

we investigate below. Thus, this model (and its slight modification discussed below) serves as a

good demonstration of the role of ξµ correction in emergence of needed Baryon asymmetry.

The B2 Yukawa texture can be written as:

Texture B2 : Yν =


a1e

iα1 b1e
iβ1

a2e
iα2 b2e

iβ2

a3e
iα3 0

 =


eix 0 0

0 eiy 0

0 0 eiz



a1 b1

a2 b2e
iφ

a3 0


eiω 0

0 eiρ

 ,

with x = β1 − ρ, y = α2 − α1 + β1 − ρ, z = α3 − α1 + β1 − ρ,

ω = α1 − β1 + ρ, φ = α1 − β1 − α2 + β2. (3.64)
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Via the see-saw we will get the light neutrino mass matrix:

M (B2)
ν (MZ) =


2a1b1 a1b2e

iφ+a2b1 a3b1rν3

a1b2e
iφ+a2b1 2a2b2e

iφ a3b2e
iφrν3

a3b1rν3 a3b2e
iφrν3 0

m̄ . (3.65)

This neutrino mass texture (referred as B2 neutrino texture) works only for inverted neutrino mass

ordering [1] (with m3 = 0) and has two predictive relations. In particular, in terms of measured

oscillation parameters we can calculate the phases δ and ρ1. The exact expressions are:

cos δ =
m1t

2
12t

2
23 −m2(t223 + t212s

2
13)

2(m1 +m2)t12t23s13

, ρ1 = π − Arg

(
t12t23 − s13e

iδ

t23 + t12s13eiδ

)2

,

with m1 =
√

∆m2
atm −∆m2

sol, m2 =
√

∆m2
atm, m3 = 0. (3.66)

From these relations one can easily check that model works only if at least two of the oscillation

parameters sin2 θij are off by several σ’s. Taking bfv’s of the oscillation parameters would give the

absolute values of the r.h.s. of expression for cos δ larger than one. Besides this difficulty, proper

value of the baryon asymmetry (generated with help of 1-loop correction of λµ) requires even more

deviation from the bfv’s of the oscillation parameters. The root of the problem is that the value

of the phase φ is fixed so that the parameter sinφ (governing cosmological CP asymmetry) turns

out to be too suppressed. For instance, with s2
12 = 0.333, s2

23 = 0.388, s2
13 = 0.0241 and bfv’s of

∆m2
atm, ∆m2

sol, for M = 3 · 103 GeV, with tan β ' 68 and MS = 1 TeV we obtain needed baryon

asymmetry [
(
nb
s

)
max
' 8.56× 10−11], however for this case the values of sin2 θij are deviated from

the bfv’s by (2− 3)σ.

B2
′ Neutrino Texture: Improved Version

In order to avoid difficulties with B2 neutrino texture we add d5 term to the (1, 2) and (2, 1)

elements of the light neutrino mass matrix. After this, the Mν will have the form:

M (B2
′)

ν (MZ) =


2a1b1 a1b2e

iφ+a2b1+d5 a3b1rν3

a1b2e
iφ+a2b1+d5 2a2b2e

iφ a3b2e
iφrν3

a3b1rν3 a3b2e
iφrν3 0

m̄ . (3.67)

With this modification, all masses are non-zero, and therefore two additional parameters m3 6= 0

and ρ2 enter. We refer to this (3.67) improved version as the B2
′ neutrino texture. Thus our relations
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will involve two more independent quantities. For convenience we take m3 and ∆ρ = ρ1 − ρ2 as

such. From the condition M (3,3)
ν = 0 we have:

m1 |U31|2 =
∣∣m2(U32)2+m3(U33)2ei∆ρ

∣∣ , ρ1 =π−Arg

[
m2 (U31)2

m2(U32)2+m3(U33)2ei∆ρ

]
with ∆ρ = ρ1−ρ2.

(3.68)

From these relations the phases δ and ρ1 can be calculated in terms of m3 and ∆ρ.

As it turns out, in this improved version the IH case works well for both neutrino sector and

the baryon asymmetry. So, we will start with discussing the IH case. For measured oscillation

parameters we take the best fit values given in (3.21) and select pairs (m3,∆ρ) in such a way as to

get needed baryon asymmetry. One such choice is:

m3 = 0.01406 eV, ∆ρ = 3.5257 , (3.69)

which with help of (2.53) and (3.68) determine neutrino masses and phases as:

(m1,m2,m3) = (0.0516, 0.052323, 0.01406) eV,

(δ, ρ1, ρ2) = (2.8528, 3.1385, −0.38724) . (3.70)

These for the observable ν02β-decay give mββ ' 0.0193 eV.

As far as the baryon asymmetry is concerned, using (3.67) in (2.49) for the CP phase φ and

expressing couplings a2,3, b1,2 in terms of a1 we get

φ = Arg

(
A2

23A11

A2
13A22

)
,

a2 =

∣∣∣∣A22A13

A11A23

∣∣∣∣ a1, a3 =
2

rν3

∣∣∣∣A13

A11

∣∣∣∣ a1, b1 =
|A11|

2|m̄|a1

, b2 =

∣∣∣∣A23A11

A13

∣∣∣∣ 1

2|m̄|a1

. (3.71)

For the values of (3.69), (3.70) and bfv’s for the θij angles we get

φ = 2.2301 . (3.72)

With these, and for given values of M and tan β by varying a1 we can investigate the baryon

asymmetry. Results are given in Tab. 19.

As far as the NH case is concerned, the neutrino sector can work well by certain selection of

(m3,∆ρ). However, in order to generate needed baryon asymmetry we need to take values of sin2 θij
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Case M(GeV) tan β rν3 rm̄ rvu κN 104×ξµ 1011×
(
nfb
s

)
max

1011×
(
nb
s

)
max

(I.1) 3 · 103 69.256 0.9965 0.9048 0.9763 1.047 4.18 8.55 8.6

(I.2) 104 67.557 0.9929 0.8728 0.9638 1.0327 3.589 8.55 8.6

(I.3) 105 67.376 0.9854 0.8196 0.9415 1.0176 3.34 8.55 8.6

(I.4) 106 67.359 0.9771 0.7749 0.9213 1.006 3.122 8.55 8.6

(I.5) 107 67.376 0.9681 0.7373 0.9027 0.997 2.903 8.56 8.6

(II.1) 6 · 103 70.391 0.9964 0.8858 0.9725 1.0311 4.093 8.55 8.6

(II.2) 104 69.003 0.9949 0.8735 0.9675 1.0243 3.691 8.55 8.6

(II.3) 105 68.322 0.9873 0.8234 0.9462 1.0094 3.33 8.55 8.6

(II.4) 106 68.321 0.979 0.7813 0.9267 0.9988 3.108 8.55 8.6

(II.5) 107 68.373 0.9699 0.7459 0.909 0.9907 2.889 8.56 8.61

Table 19: B2
′ Neutrino Texture, IH neutrinos. Baryon asymmetry for various values of M and for

corresponding minimal (allowed) values of tan β. For the values of (3.69), (3.70) and bfv’s of θij

mixing angles.
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deviated from the bfv’s by the (2− 3)σ. For example, with (s2
12, s

2
23, s

2
13) = (0.27, 0.629, 0.022) and

(m3,∆ρ) = (0.060651 eV, 3.12) we get

for NH of the B2
′ neutrino texture : (m1,m2,m3) = (0.033671, 0.034764, 0.060651) eV,

(δ, ρ1, ρ2) = (−0.013, −0.12393, 3.0393) =⇒ φ = −2.7538, mββ ' 0.032 eV. (3.73)

These for tan β = 68.1 and M = 106 GeV, MS = 1 TeV give the baryon asymmetry
(
nb
s

)
max
'

8.59 · 10−11.

Note that the B2
′ neutrino texture coincides with the texture P7 of Ref. [20] if all entries in

(3.67) are taken to be real. As was shown in [20] the real neutrino mass texture with M (3,3)
ν = 0

will work for both NH and IH neutrinos (see Tab. 6 of Ref. [20]). Advantage of complex d = 5

entry [like in texture (3.67)] is that it gives good possibility for generation of the baryon asymmetry

with the λµ’s radiative correction playing the decisive role. For the first time similar possibility has

been considered in [17,18].

Concluding, note also that the A′ and B1
′ neutrino textures are generalizations of the textures

P5 and P6 (respectively), considered in [20]. The latter two had no complex phases, while A′ and

B1
′ scenarios besides good neutrino fits give possibility for the generation of the baryon asymmetry.

3.5 Discussion and Outlook

We have investigated the resonant leptogenesis within the extension of the MSSM by two right

handed neutrino superfields with quasi-degenerate masses <∼ 107 GeV. It was shown that in this

regime the cosmological CP asymmetry arises at one loop level due to charged lepton Yukawa

couplings. In particular, needed corrections may come from either of the λτ and λµ couplings.

Which one is relevant from these two couplings depends on the structure of the 3 × 2 Dirac type

Yukawa matrix Yν . Aiming to make close connection with the neutrino sector, we first examined all

viable neutrino models (considered earlier in Ref. [20]) based on two texture zero Yν ’s augmented by

single ∆L = 2, d = 5 operators. This setup is predictive and allows to relate leptonic CP violating

phase δ with the cosmological CP violation. In one of such scenarios the role of the λµ coupling

in CP asymmetry generated at quantum level has been demonstrated. We have also revised the

models of Ref. [1] and considered their improved versions by including proper ∆L = 2, d = 5
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operators. This allowed to have good fit with the neutrino data and generate needed amount of

the baryon asymmetry.

Without specifying their origin, in our considerations we have extensively applied the ∆L = 2,

d = 5 operators, of the form given in Eq. (2.25). The d = 5 operator coupling [see Eq. (2.25)]

in our case has been directly introduced in the neutrino mass matrices. Here we give one example

of possible generation of d = 5 operators we are exploiting within our setup. Besides being of

a quantum gravity origin, such d = 5 couplings can be generated from a different sector via

renormalizable interactions. For instance, introducing the pair of MSSM singlet states N , N and

the superpotential couplings

λ(i)liNhu + λ̄(j)ljNhu −M∗NN ,

it is easy to verify that integration of the heavy N , N multiplets leads to the operator in Eq. (2.25)

with

d̃5e
ix5 = 2λ(i)λ̄(j) .

Important ingredient here is to maintain forms of the resulting mass matrices and do not mix the

states N , N with RHN’s N1,2. This can be achieved by some (possible flavor) symmetries (which

we do not pursue here). Perhaps a safer way to generate those ∆L = 2 effective couplings would

be to proceed in a spirit of type II [52], or type III [53] see-saw mechanisms, or exploit alternative

possibilities [54,55] through the introduction of appropriate extra states. Details of such scenarios

should be pursued elsewhere.

Throughout our studies we have studied texture zero coupling matrices, but did not attempt to

explain and justify considered structures by symmetries. Our approach, being rather phenomeno-

logical, was to consider such textures which give predictive and/or consistent scenarios allowing for

transparent demonstrations of the suggested mechanism of the loop induced cosmological CP viola-

tion. It is desirable to have explanation of texture zeros at more fundamental level, and exploiting

flavor symmetries seems to be a good framework.

Since the supersymmetry is a well motivated construction, we have performed our investigations

within its framework. However, it would be interesting to examine the considered models also within

the non-SUSY setup. For the latter, the scenarios with low tan β look encouraging to start with.

Finally, it would be challenging to embed considered models in Grand Unification (GUT) such

as SU(5) and SO(10) GUTs. Due to the high GUT symmetries, additional relations and constraints
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would emerge making models more predictive.

4 Conclusions

Within the MSSM augmented with two quasi-degenerate right-handed neutrinos all possible two

and one texture zero 3× 2 Yukawa matrices together with minimal d = 5 operator couplings have

been analyzed and their contribution to the light neutrino mass matrices has been thoroughly

investigated. All viable neutrino mass matrices have been studied and predictive relations have

been derived. Cosmological CP violation has been related to the leptonic CP violating δ phase.

Realizations of resonant leptogenesis have been investigated and their consistency with experimental

data has been demonstrated.

5 რეზიუმე (Resume in Georgian)

სუსტი, ძლიერი და ელექტრომაგნიტური ურთიერთქმედებების აღმწერი სტანდარტული მოდელი

(სმ), მიუხედავად თავისი უაღრესად დიდი წარმატებისა, ვერ ხსნის არანულოვანი მასის მქონე

ნეიტრინოების არსებობას და არ იძლევა კოსმოლოგიური CP ასიმეტრიის დამაკმაყოფილებელ

ახსნას, როგორც ამ უკანასკნელის წარმოშობის, ისე რიცხვითი მნიშვნელობის თვალსაზრისით.

აღნიშნული სირთულეები უკვე რამდენიმე ათეული წლის განმავლობაში წარმოადგენენ ინტენ-

სიური თეორიული და ექსპერიმენტული კვლევების სფეროს. დღეისათვის ექსპერიმენტული და

დაკვირვების შედეგები ყველა კითხვაზე პასუხს არ გვცემენ, მაგრამ სიზუსტისა და სიმდიდრის

გამო აუცილებლად საჭიროებენ თეორიული მოდელის ფარგლებში ახსნას. სმ-ის ერთერთ ყვე-

ლაზე საინტერესო გაფართოებას წარმოადგენს მინიმალური სუპერსიმეტრიული სტანდარტული

მოდელი (მსსმ), რომლის ორი კვაზი-გადაგვარებული (ხე-მიახლოებაში ზუსტად გადაგვარებუ-

ლი) მარჯვენა ნეიტრინოთი (მნ) განზოგადებით, მივიღეთ და წარმატებით გამოვიყენეთ გარკვე-

ული თანაფარდობები ექსპერიმენტთან თავსებადი ნეიტრინოს მასური მატრიცების მისაღებად

და ლეპტონურ CP დამრღვევ δ ფაზასა და კოსმოლოგიურ CP ასიმეტრიას შორის კავშირის

დასადგენად. საამისოდ, მსუბუქი ნეიტრინოებისთვის განვიხილეთ ერთი და ორი ტექსტურული

ნულის მქონე ყველა შესაძლო იუკავას მატრიცა და შემოვიყვანეთ ∆L = 2 ლეპტონური რიცხვის

დამრღვევი, ხუთის ტოლი განზომილების (d = 5) ოპერატორი. ამ ოპერატორს შეაქვს წვლილი

მსუბუქი ნეიტრინოს მასურ მატრიცაში. მსსმ-ის ასეთი მოდიფიკაციით ჩვენ:
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1) მოვახდინეთ ექსპერიმენტთან თავსებადი მსუბუქი ნეიტრინოს მასური მატრიცების კლასი-

ფიკაცია და მათი შესწავლით გამოვიყვანეთ წინასწარმეტყველების უნარის მქონე ანალიზური

გამოსახულებები, რომელთა გამოყენებით მივიღეთ სრული ინფორმაცია მსუბუქი ნეიტრინოს მა-

სების, ლეპტონური CP დამრღვევი δ ფაზისა და მაიორანას ფაზების შესახებ. ასევე, მოვახერხეთ

CP დამრღვევი δ ფაზის დაკავშირება თერმული ლეპტოგენეზისის CP ფაზასთან (A. Achelashvili

and Z. Tavartkiladze, Int. J. Mod. Phys. A 31, no. 13, 1650077 (2016).).

2) განვიხილეთ რეზონანსული ლეპტოგენეზისის საკითხი. კვანტური შესწორებების დეტალური

შესწავლით, ვაჩვენეთ ლეპტონური ასიმეტრიის წარმოშობის შესაძლებლობა 1-მარყუჟოვან დო-

ნეზე და დავადგინეთ, რომ ამ პროცესში გადამწყვეტ როლს თამაშობს ტაუ ლეპტონის იუკავას

ბმა, თუმცა ზოგ შემთხვევაში, არსებითი მნიშვნელობა აქვს მიუ ლეპტონის იუკავას ბმას. წინას-

წარმეტყველების უნარის მქონე კონკრეტულ ნეიტრინოს მოდელზე მოვახდინეთ CP დამრღვევი

δ ფაზისა და კოსმოლოგიური CP ასიმეტრიის დაკავშირების შესაძლებლობის დემონსტრირება

და ვაჩვენეთ, რომ ბარიონული ასიმეტრიის სასურველი მნიშვნელობა მიიღება რეზონანსული

ლეპტოგენეზისის გამოყენებით. წარმოვადგინეთ ჩვენი მოდელის რენორმალიზაციური ულტრა-

იისფერი სისრულის ერთი მაგალითი და დავამტკიცეთ ყველა მიღებული შედეგის მდგრადო-

ბა. ანალიზის მაქსიმალური სიზუსტისთვის ვსარგებლობდით რენორმალიზაციური ჯგუფის გან-

ტოლებებზე დამყარებული მკაცრი მათემატიკური მეთოდებით. მარჯვენა სნეიტრინოების—მნ-

ის სკალარული პარტნიორების დაშლების გავლენა შევაფასეთ დეტალური კვლევის შედეგად

(A. Achelashvili and Z. Tavartkiladze, Phys. Rev. D 96, no. 1, 015015 (2017).).

3) დავამტკიცეთ, კოსმოლოგიური CP ასიმეტრიის რადიაციული შესწორებებით გაჩენის შესაძ-

ლებლობის შესწავლით, რომ ნეიტრინოს გარკვეული ტექსტურებისთვის მხოლოდ λµ-ს გათვა-

ლისწინება იძლევა კოსმოლოგიურ CP დარღვევას ერთ-მარყუჟოვან მიახლოებაში, თუმცა შემ-

თხვევების უმრავლესობაში გადამწყვეტია λτ -ს წვლილი. ექსპერიმენტთან თავსებადი ყველა

მასური მატრიცის განხილვისას, მხედველობაში მივიღეთ როგორც λτ , ისე λµ ბმით განპირო-

ბებული რადიაციული შესწორებები, განვიხილეთ მსუბუქი ნეიტრინოსთვის ორი ტექსტურული

ნულის მქონე ყველა 3 × 2 იუკავას მატრიცა და ჩავატარეთ ლეპტოგენეზისის დეტალური ანა-

ლიზი. ანალოგიური მიდგომით შევისწავლეთ ერთი ტექსტურული ნულის მქონე დირაკისეული

იუკავას მატრიცები და ვაჩვენეთ მიღებული შედეგების თავსებადობა ექსპერიმენტულ მონაცე-

მებთან (A. Achelashvili and Z. Tavartkiladze, Nucl. Phys. B 929, 21 (2018). A. Achelashvili

and Z. Tavartkiladze, AIP Conf.Proc. 1900 (2017) no.1, 020012.).
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4) მივიღეთ, ორი (კვაზი) გადაგვარებული მნ-ის სცენარის ფარგლებში, ზოგადი თანაფარდობე-

ბი CP ასიმეტრიისთვის (შესაბამისი შესწორებებით). მიუხედავად იმისა, რომ ჩვენს ნაშრომში

მარყუჟოვანი მიახლოებით განპირობებული CP დარღვევა გამოყენებულ იქნა ტექსტურული ნუ-

ლების მქონე სპეციფიკურ მოდელებში, მიღებული შედეგების გამოყენება შესაძლებელია ორი

(კვაზი) გადაგვარებული მნ-ის შემცველ ნებისმიერ მოდელში.

6 Resume

The Standard Model of weak, strong and electromagnetic interactions (SM), despite its enormous

success is incapable of accommodating non-zero masses of neutrinos, neither does it provide satis-

factory explanation of the cosmological CP asymmetry in terms of both, its origin and numerical

value. These issues, however, have been the subject of intense theoretical and experimental research

for several decades. Nowadays, experimental and observational data, though not answering all the

questions, but nevertheless rich and precise enough to address various aspects of the theory, is in

dire need of accounting for within relevant models. One of the most promising extensions of SM is

the Minimal Supersymmetric Standard Model (MSSM), which we augment by two quasi-degenerate

(strictly degenerate at tree level) right-handed neutrinos (RHN), thus paving the way for certain

predictive relations which have been successfully used in sorting out viable light neutrino mass

matrices, as well as establishing the connection of leptonic CP violating phase δ with the cosmo-

logical CP asymmetry. Towards this end, we considered all possible two and one texture zero 3× 2

light neutrino Yukawa matrices and introduced one ∆L = 2 lepton number violating dimension five

(d = 5) operator contributing to the light neutrino mass matrix. Tweaking MSSM this way, we:

1) Classified all experimentally viable light neutrino mass matrices, leading to several predictions

and analytically derived predictive relations, thus obtaining all numerical information regarding

light neutrino masses, leptonic CP violating phase δ and Majorana phases in each case. We also

related the CP violating δ phase to the CP phase of the thermal leptogenesis (A. Achelashvili and

Z. Tavartkiladze, Int. J. Mod. Phys. A 31, no. 13, 1650077 (2016).).

2) Addressed the issue of resonant leptogenesis. Investigating the quantum corrections in details,

we showed that the lepton asymmetry is induced at 1-loop level and decisive role is played by the

tau lepton Yukawa coupling, although in some cases the mu lepton Yukawa coupling is of crucial

importance. On a concrete and predictive neutrino model, which enables to predict the CP vio-
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lating δ phase and relate it to the cosmological CP asymmetry, we demonstrated that the needed

amount of the baryon asymmetry could be generated via the resonant leptogenesis. We presented

one example of renormalizable ultra violet completion of our model and proved the robustness

of all obtained results. To make our study as thorough as possible, we extensively used rigorous

methods based on RG equations. Impact of the decays of the right-handed sneutrinos—the scalar

partners of the RHNs-was estimated through the most detailed investigation (A. Achelashvili and

Z. Tavartkiladze, Phys. Rev. D 96, no. 1, 015015 (2017).).

3) Proved, having studied the rise of cosmological CP asymmetry by radiative corrections through

the charged lepton Yukawa couplings, that in specific neutrino textures only inclusion of the λµ

generates cosmological CP violation at 1-loop level. In most cases, however, decisive role is played

by the λτ coupling. In each case of experimentally favored light neutrino mass matrices we took

into account radiative corrections induced by both, λµ and λτ couplings, considered all two texture

zero 3× 2 Dirac Yukawa matrices of neutrinos and performed detailed analysis of leptogenesis. We

applied the same approach to one texture zero Dirac Yukawa matrices as well and showed com-

patibility of obtained results with current experimental data (A. Achelashvili and Z. Tavartkiladze,

Nucl. Phys. B 929, 21 (2018). A. Achelashvili and Z. Tavartkiladze, AIP Conf.Proc. 1900 (2017)

no.1, 020012.).

4) Obtained, within the scenarios with two (quasi) degenerate RHNs, the general expressions for CP

asymmetry (with corresponding corrections). Although in our work obtained results of the loop in-

duced cosmological CP violation have been used for specific texture zero models (see Refs. [16–18]),

the application can be extended to any model with two (quasi) degenerate right handed neutrinos.

A Renormalization Group Studies

A.1 Running of Yν, Ye and MN Matrices

RG equations for the charged lepton and neutrino Dirac Yukawa matrices, appearing in the super-

potential of Eq. (2.1), at 1-loop order have the forms [56,57]:

16π2 d

dt
Ye = 3YeY

†
e Ye + YνY

†
ν Ye + Ye

[
tr
(

3Y †d Yd + Y †e Ye

)
− caeg2

a

]
, cae = (

9

5
, 3, 0), (A.1)

16π2 d

dt
Yν = YeY

†
e Yν + 3YνY

†
ν Yν + Yν

[
tr
(
3Y †uYu + Y †ν Yν

)
− caνg2

a

]
, caν = (

3

5
, 3, 0). (A.2)
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ga = (g1, g2, g3) denote gauge couplings of U(1)Y , SU(2)w and SU(3)c gauge groups respectively.

Their 1-loop RG have forms 16π2 d
dt
ga = bag

3
a, with ba = (33

5
, 1,−3), where the hypercharge of U(1)Y

is taken in SU(5) normalization.

The RG for the RHN mass matrix at 2-loop level has the form [57]:

16π2 d

dt
MN = 2MNY

†
ν Yν −

1

8π2
MN

[
Y †ν YeY

†
e Yν + Y †ν YνY

†
ν Yν + Y †ν Yν tr(3Y

†
uYu + Y †ν Yν)

]
+

1

8π2
MNY

†
ν Yν

(
3

5
g2

1 + 3g2
2

)
+ (transpose) , (A.3)

Let’s start with renormalization of the Yν ’s matrix elements. Ignoring in Eq. (A.2) the O(Y 3
ν )

order entries (which are very small because within our studies |(Yν)ij| <∼ 10−4), and from charged

fermion Yukawas keeping λτ , λµ, λt and λb, we will have:

16π2 d

dt
ln(Yν)ij ' δi3λ

2
τ + δi2λ

2
µ + 3λ2

t − caνg2
a . (A.4)

This gives the solution

(Yν)ij(µ) = (YνG)ij(ητ (µ))δi3(ηµ(µ))δi2η3
t (µ)ηgν(µ), (A.5)

where YνG denotes Yukawa matrix at scale MG and the scale dependent RG factors are given by:

ηt,b,τ,µ(µ)=exp

(
− 1

16π2

∫ tG

t

λ2
t,b,τ,µ(t′)dt′

)
, ηa(µ)=exp

(
1

16π2

∫ tG

t

g2
a(t
′)dt′
)

ηgν(µ)= exp

(
1

16π2

∫ tG

t

caνg
2
a(t
′)dt′
)

= η
3/5
1 (µ)η3

2(µ), with t = lnµ , t′ = lnµ′ , tG = lnMG. (A.6)

From these, for the combination Y †ν Yν at scale µ = M we get expression given in Eq. (3.14).

On the other hand, for the RHN mass splitting and for the phase mismatch [depending on ξτ,µ

defined in Eq. (3.15)], the integrals/factors of Eqs. (3.11), (3.12), (3.13) and (3.14) will be relevant.

A.2 Relating Mν(MZ) and Mν(M)

Details of derivations, of the results presented in this subsection, are given in Appendix A.2 of

Ref. [16]. At scale M , after decoupling of the RHN states, the neutrino mass matrix is generated

and has the form:

M ij
ν (M) = −


× × ×

× × ×

× × ×

 v2
u(M)

Me−i(ω+ρ)
, (A.7)
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where ‘×’ stand for entries depending on Yukawa couplings. After renormalization, keeping λτ , λt,

λb and ga in the RGs, the neutrino mass matrix at scale MZ has the form:

M ij
ν (MZ) =


× × (×)·rν3

× × (×)·rν3

(×)·rν3 (×)·rν3 (×)·r2
ν3

 m̄ , (A.8)

with m̄ given in Eq. (3.23) and × in Eq. (A.8) denotes entries determined at scale M and corre-

sponding to those in (A.7), and RG factors rν3, rm̄ are given respectively in Eqs. (A.17), (A.18) of

Ref. [16]:

rν3 =

(
ητ (tZ)

ητ (tMS
)

)1/2(
ητ (tMS

)

ητ (tM)

)
, (A.9)

rm̄= η4
λ

(
ηt(tmt)

ηt(tM)

)12(
ηb(tZ)

ηb(tMS
)

)12(
ητ (tZ)

ητ (tMS
)

)4(
η2(tZ)

η2(tM)

)15
2

(
η

3/5
1 (tZ)η

2/5
1 (tMS

)

η1(tM)

)3
2

, (A.10)

where

ηλ = exp

(
− 1

16π2

∫ tMS

tmh

λ(t)dt

)
, (A.11)

and remaining η-factors are defined in Eq. (A.6).

We will also need the RG factor relating the VEV vu(M) to the v(MZ). Thus we define:

rvu =
vu(M)

v(MZ)sβ
. (A.12)

Analytic expression for rvu derived from appropriate RGs is given by Eq. (A.20) of Ref. [16]:

rvu =
vu(M)

v(MZ)sβ
=

(
ηt(tmt)

ηt(tM)

)3(
ηb(tZ)

ηb(tMS
)

)3(
ητ (tZ)

ητ (tMS
)

)(
η3

2(tZ)η−2
2 (tMS

)

η2(tM)

)3
4
(
η3

1(tZ)η−2
1 (tMS

)

η1(tM)

) 3
20

. (A.13)

.

A.3 Calculation Procedure and Used Schemes

To find the RG factors, appearing in the baryon asymmetry and in the neutrino mass matrix

renormalization, we numerically solve renormalization group equations from the scale MZ up to

the MG ' 2 · 1016 GeV scale. For simplicity, for all SUSY particle masses we take common mass

scale MS. Thus, in the energy interval MZ ≤ µ < MS, the Standard Model RGs for MS coupling
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constants are used. However, in the interval MS ≤ µ ≤ MG, since we are dealing with the SUSY,

the RGs for the DR couplings are applied. Below we give boundary and matching conditions for

the gauge couplings g1,2,3, for Yukawa constants λt,b,τ,µ and for the Higgs self-coupling λ.

Gauge couplings αa = g2
a

4π

We choose our inputs for the MS gauge couplings at scale MZ as follows:

α−1
1 (MZ) =

3

5
c2
wα
−1
em(MZ) +

3

5
c2
w

8

9π
ln
mt

MZ

, α−1
2 (MZ) = s2

wα
−1
em(MZ) + s2

w

8

9π
ln
mt

MZ

,

α−1
3 (MZ) = α−1

s (MZ) +
1

3π
ln
mt

MZ

, (A.14)

where logarithmic terms ln mt
MZ

are due to the top quark threshold correction [58, 59]. Taking

αs(MZ) = 0.1185, α−1
em(MZ) = 127.934 and s2

w = 0.2313, from (A.14) we obtain:

α−1
1 (MZ) = 59.0057 +

8c2
w

15π
ln
mt

MZ

, α−1
2 (MZ) = 29.5911 +

8s2
w

9π
ln
mt

MZ

,

α−1
3 (MZ) = 8.4388 +

1

3π
ln
mt

MZ

. (A.15)

With these inputs we run g1,2,3 via the 2-loop RGs from MZ up to the scale MS.

At scale µ = MS we use the matching conditions between DR−MS gauge couplings [60,61]:

at µ = MS :
1

αDR
1

=
1

αMS
1

,
1

αDR
2

=
1

αMS
2

− 1

6π
,

1

αDR
3

=
1

αMS
3

− 1

4π
. (A.16)

Above the scale MS we apply 2-loop SUSY RG equations in DR scheme [56].

Yukawa Couplings and λ

At the scale MS all SUSY states decouple and we are left with the Standard Model with one

Higgs doublet. Thus, Yukawa couplings we are considering and the self-coupling are determined

as:

λt(mt) =
mt(mt)

v(mt)
, λb(MZ) =

2.89GeV

v(MZ)
, λτ (MZ) =

1.746GeV

v(MZ)
, λµ(MZ) =

0.1027GeV

v(MZ)
,

λ(mh) =
1

4

(
mh

v(mh)

)2

, with v(MZ) = 174.1 GeV , mh = 125.15 GeV , (A.17)

where mt(mt) is the top quark running mass related to the pole mass as:

mt(mt) = ptM
pole
t . (A.18)
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The factor pt is pt ' 1/1.0603 [62], while the recent measured value of the top’s pole mass is [63]:

Mpole
t = (173.34± 0.76) GeV. (A.19)

We take the values of (A.17) as boundary conditions for solving 2-loop RG equations [59, 64] for

λt,b,τ,µ and λ from the MZ scale up to the scale MS.

Above theMS scale, we have MSSM states including two doublets hu and hd, which couple with

up type quarks and down type quarks/charged leptons respectively. Thus, Yukawa couplings we

are considering at MS are ≈ λt(MS)/sβ, λb(MS)/cβ and λτ,µ(MS)/cβ, with sβ ≡ sin β, cβ ≡ cos β.

Above the scale MS we apply 2-loop SUSY RG equations in DR scheme [56]. Thus, at µ = MS we

use the matching conditions between DR−MS couplings:

at µ = MS : λDR
t ' λMS

t

sβ

[
1 +

1

16π2

(
g2

1

120
+

3g2
2

8
− 4g2

3

3

)]
,

λDR
b ' λMS

b

cβ

[
1+

1

16π2

(
13g2

1

120
+

3g2
2

8
− 4g2

3

3

)]
, λDR

τ,µ '
λMS
τ,µ

cβ

[
1+

1

16π2

(
−9g2

1

40
+

3g2
2

8

)]
, (A.20)

where expressions in brackets of r.h.s. of the relations are due to the DR −MS conversions [61].

With Eq. (A.20)’s matchings we run corresponding couplings from the scaleMS up to theMG scale.

Throughout this work, above the mass scale MS without using the superscript DR we assume the

couplings determined in this scheme.

B Baryon Asymmetry from RHS Decays

In this appendix we give details of the contribution to the net baryon asymmetry from the right

handed sneutrinos (RHS) - the scalar partners of the RHNs. Estimation of this contribution for

specific textures was given in [1], while more detailed investigation was given in [16] (from the

lepton couplings taking into account only λτ and Aτ in the proper RGs). Since we have seen that

for some cases for the cosmological CP asymmetry decisive is the RG correction via the λµ Yukawa

coupling, here we extend its calculation by taking into account also effects from λµ and Aµ into the

asymmetry generated by the RHS decays.

We will consider soft SUSY breaking scalar potential

V ν
SB = l̃TAνÑhu −

1

2
ÑTBNÑ + h.c.+ l̃†m2

l̃
l̃ + Ñ †m2

Ñ
Ñ , (B.1)
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which will be relevant for deriving RHS masses and their couplings to the components of the l and

hu superfields. Using general expressions of Ref. [56] we write down 1-loop RGs for Aν and BN ,

which have the forms:

16π2 d

dt
Aν = YeY

†
e Aν + 2ÂeY

†
e Yν + 5YνY

†
ν Aν+Aν

[
tr(3Y †uYu + Y †ν Yν) + 4Y †ν Yν − caνg2

a

]
+ 2Yν

[
tr(3Y †u Âu + Y †ν Aν) + caνg

2
aMṼa

]
, (B.2)

16π2 d

dt
BN = 2BNY

†
ν Yν + 2Y T

ν Y
∗
ν BN + 4MNY

†
ν Aν + 4ATν Y

∗
νMN . (B.3)

We parameterize the matrices BN and Aν as:

BN = (MN)12mB

 δ
(1)
BN 1

1 δ
(2)
BN

 , Aν = mAaν , (B.4)

where entries (MN)12,mB, δ
(1,2)
BN and elements of the matrix aν run (their RGs can be derived from

the RG equations given above), while mA is a constant. The matrix Âe (similar to the structure of

Ye Yukawa matrix) is

Âe = Diag (Ae, Aµ, Aτ ) . (B.5)

Assuming proportionality / alignment of the soft SUSY breaking terms and corresponding super-

potential couplings, we will use the following boundary conditions:

at µ = MG : aν = Yν , δ
(1)
BN = δ

(2)
BN = 0, Âe = mADiag (λe, λµ, λτ )

Âu = mAYuG , Âd = mAYdG . (B.6)

Using (B.3) for BN ’s entries in (B.4) we have:

16π2 d

dt
δ

(1)
BN ' 4(Y †ν Yν)21 + 8

mA

mB

(Y †ν aν)21 , 16π2 d

dt
δ

(2)
BN ' 4(Y †ν Yν)12 + 8

mA

mB

(Y †ν aν)12. (B.7)

For the elements of aν we have

16π2 d

dt

(
(aν)ij
(Yν)ij

)
' 2

1

mA

(δi3λτAτ + δi2λµAµ) +
2

mA

(3λtAt + caνg
2
aMṼa

) , (B.8)

which show the violation of the alignment between aν and Yν due to RG effects. At r.h.s. of (B.8)

we kept λµ,τ,t, Aµ,τ,t, gauge couplings and gaugino masses. From this we derive

aν '


1 + ε0 0 0

0 1 + ε0 + εµ 0

0 0 1 + ε0 + ετ

Yν
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with ε0 = − 1

8π2mA

∫ tG

t

dt(3λtAt + caνg
2
aMṼa

) , εµ,τ = − 1

8π2mA

∫ tG

t

dtλµ,τAµ,τ . (B.9)

Keeping in mind that the powers of the Yν couplings can be ignored due to their smallness, the mB

can be treated as a constant, and from (B.9), (B.7), (B.4) we obtain:

at µ = M : BN = mBM

 −αδN(1 + ε̄1) 1

1 −αδ∗N(1 + ε̄2)

 , α = 1 + 2
mA

mB

(B.10)

and

ε̄1 =
1

4π2αδN

∫ tG

tM

dt

(
Y †ν (

α

16π2
YeY

†
e + 2

mA

mB

ε̂)Yν

)
21

, ε̄2 =
1

4π2αδ∗N

∫ tG

tM

dt

(
Y †ν (

α∗

16π2
YeY

†
e + 2

m∗A
m∗B

ε̂∗)Yν

)∗
21

,

with ε̂ = Diag (ε0, ε0 + εµ, ε0 + ετ ) . (B.11)

The form of BN given in Eq. (B.10) will be used to construct the RHS mass matrix. Before doing

this, using Eq. (A.5) and ignoring the coupling λe (as it turns out from the lepton Yukawa couplings

all relevant effects are due to λµ,τ ), for ε̄1,2 at scale µ = M we can get expressions:

ε̄1(M) =
1

4π2αδN
(Y †ν K̂Yν)21

∣∣∣∣
µ=M

, ε̄2(M) =
1

4π2αδ∗N
(Y T

ν K̂Y
∗
ν )21

∣∣∣∣
µ=M

with K̂ =
1

η6
t η

2
gν

Diag

[
2
mA

mB

I0 ,
1

η2
µ

(
2
mA

mB

I
(µ)
1 +

α

16π2
I

(µ)
2

)
,

1

η2
τ

(
2
mA

mB

I
(τ)
1 +

α

16π2
I

(τ)
2

)]
,

I0 =

∫ tG

tM

dtη6
t η

2
gνε0 , I

(µ,τ)
1 =

∫ tG

tM

dtη6
t η

2
gν(ε0 + εµ,τ )η

2
µ,τ , I

(µ,τ)
2 =

∫ tG

tM

dtη6
t η

2
gνλ

2
µ,τη

2
µ,τ . (B.12)

Keeping the BN -term in (B.1) and including the mass2 term Ñ †M †
NMNÑ coming from the

superpotential, the quadratic (with respect to Ñ ’s) potential will be:

V
(2)

Ñ
= Ñ †M †

NMNÑ −
(

1

2
ÑTBNÑ + h.c.

)
. (B.13)

With the transformation of the N superfields N = UNN
′ (according to Eq. (3.4), the UN diago-

nalizes the fermionic RHN mass matrix), we obtain:

V
(2)

Ñ
= Ñ

′†(MDiag
N )2Ñ ′ −

(
1

2
Ñ
′TUT

NBNUNÑ
′ + h.c.

)
. (B.14)

With phase redefinition

Ñ ′ = P̃1Ñ
′′ , P̃1 = Diag

(
e−iω̃1/2, e−iω̃2/2

)
, with ω̃1,2 = Arg[mB(1∓ α̃|δN |)] (B.15)
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and by going to the real scalar components

Ñ ′′1 =
1√
2

(ÑR
1 + iÑ I

1 ) , Ñ ′′2 =
1√
2

(ÑR
2 + iÑ I

2 ) , (B.16)

and using (B.10), we will have:

−
(

1

2
Ñ
′TUT

NBNUNÑ
′ + h.c.

)
= −|MmB|

2
|1− α̃|δN ||

(
(ÑR

1 )2 − (Ñ I
1 )2
)

−|MmB|
2

|1 + α̃|δN ||
(
(ÑR

2 )2 − (Ñ I
2 )2
)
−|M |Re(mBδε)

(
ÑR

1 Ñ
R
2 − Ñ I

1 Ñ
I
2

)
+|M |Im(mBδε)

(
Ñ I

1 Ñ
R
2 + ÑR

1 Ñ
I
2

)
with α̃ = α(1 +

ε̄1 + ε̄2
2

), δε = iα|δN |
ε̄1 − ε̄2

2
e−i(ω̃1+ω̃2)/2 . (B.17)

From (B.14) and (B.17) we obtain the mass2 terms:

V
(2)

Ñ
=

1

2
ñ0TM2

ññ
0 , with ñ0T =

(
ÑR

1 , Ñ
I
1 , Ñ

R
2 , Ñ

I
2

)
(B.18)

and

M2
ñ =


(M̃0

1 )2 0 −|M |Re(mBδε) |M |Im(mBδε)

0 (M̃0
2 )2 |M |Im(mBδε) |M |Re(mBδε)

−|M |Re(mBδε) |M |Im(mBδε) (M̃0
3 )2 0

|M |Im(mBδε) |M |Re(mBδε) 0 (M̃0
4 )2

 (B.19)

where

(M̃0
1 )2 = |M |2(1− |δN |)2 − |mBM | |1− α̃|δN || , (M̃0

2 )2 = |M |2(1− |δN |)2 + |mBM | |1− α̃|δN || ,

(M̃0
3 )2 = |M |2(1+|δN |)2−|mBM | |1 + α̃|δN || , (M̃0

4 )2 = |M |2(1+|δN |)2+|mBM | |1 + α̃|δN || (B.20)

The coupling of ñ0 states with the fermions emerges from the F -term of the superpotential

lTYνNhu. Following the transformations, indicated above, we will have:

(lTYνNhu)F → h̃ul
TYνÑ = e−iω̃2/2h̃ul

TYνUN
(
ρue

i(ω̃2−ω̃1)/2, ρd
)
ñ0 ,

with ρu =
1√
2

 1 i

0 0

 , ρd =
1√
2

 0 0

1 i

 . (B.21)

Diagonalizing the matrix (B.19) by the transformation

V T
ñ M

2
ñVñ = (MDiag

ñ )2, ñ0 = Vññ, (B.22)
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the fermion coupling with the scalar ñ mass eigenstates will be

h̃ul
TYF ñ with YF = YνṼ

0Vñ , Ṽ 0 = UN
(
ρue
−iω̃1/2, ρde

−iω̃2/2
)
. (B.23)

The coupling with the slepton l̃ is derived from the interaction term hul̃
T
(
YνM

∗
NÑ

∗ − AνÑ
)
.

Going from Ñ to the ñ states, one obtains:

hul̃
TYBñ with YB = (YνM

∗
N Ṽ

0∗ − AνṼ 0)Vñ . (B.24)

For given values of M,mB and mA, with help of Eqs. (B.19), (B.23) and (B.24), we will have

coupling matrices YF , YB and all other quantities needed for calculation of the baryon asymmetry

created via the decays of the ñ1,2,3,4 states.

B.1 Calculating ñb
s - Asymmetry Via ñ Decays

Due to the SUSY breaking terms, the masses of RHS’s differ from their fermionic partners’ masses.

For each mass-eigenstate RHS’s ñi=1,2,3,4 we have one of the masses M̃i=1,2,3,4 respectively. With

the SUSYMS scale MS

M
<∼ 1/3, the states ñi remain nearly degenerate and for the resonant ñ-decays

the resummed effective amplitude technique [10] will be applied. Effective amplitudes for the real

ñi decay, say into the lepton lα (α = 1, 2, 3) and antilepton lα respectively are given by [10]

Ŝαi = Sαi −
∑
j

Sαj
Πji(M̃i)(1− δij)

M̃2
i − M̃2

j + Πjj(M̃i)
, Ŝαi = S∗αi −

∑
j

S∗αj
Πji(M̃i)(1− δij)

M̃2
i − M̃2

j + Πjj(M̃i)
, (B.25)

where Sαi is a tree level amplitude and Πij is a two point Green function’s (polarization operator

of ñi − ñj) absorptive part. The CP asymmetry is then given by

εsci =

∑
α

(
|Ŝαi|2 − |Ŝαi|2

)
∑

α

(
|Ŝαi|2 + |Ŝαi|2

) . (B.26)

With YF and YB given by Eqs. (B.23) and (B.24) we can calculate polarization diagram’s (with

external legs ñi and ñj) absorptive part Πij. These at 1-loop level are given by:

Πij(p) =
ip2

8π

(
1− M2

S

p2

)2(
Y †FYF + Y T

F Y
∗
F

)
ij

+
i

8π

(
s2
β + c2

β(1− M2
S

p2
)

)(
Y †BYB + Y T

B Y
∗
B

)
ij
, (B.27)

where p denotes external momentum in the diagram and upon evaluation of (B.26), for Π one

should use (B.27) with p = M̃i. In (B.27), taking into account the SUSY masses MS of all non SM

states, we are using the refined expression for the Πij.
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In an unbroken SUSY limit, neglecting finite temperature effects (T → 0), the Ñ decay does

not produce lepton asymmetry due to the following reason. The decays of Ñ in the fermion and

scalar channels are respectivelly Ñ → lh̃u and Ñ → l̃∗h∗u. Since the rates of these processes are

the same due to SUSY (at T = 0), the lepton asymmetries created from these decays cancel each

other. With T 6= 0, the cancellation does not take place and one has

ε̃i = εi(ñi → lh̃u)∆BF , (B.28)

with a temperature dependent factor ∆BF given in [65].12 Therefore, we just need to compute

εi(ñi → lh̃u), which is the asymmetry created by ñi decays in two fermions. Thus, in (B.25) we

take Sαi = (YF )αi and calculate εi(ñi → lh̃u) with (B.26). The baryon asymmetry created from the

lepton asymmetry due to ñ decays is given by:

ñb
s
' −8.46 · 10−4

4∑
i=1

ε̃i
∆BF

ηi = −8.46 · 10−4

4∑
i=1

εi(ñi → lh̃u)ηi , (B.29)

where an effective number of degrees of freedom (including two RHN superfields) g∗ = 228.75 was

used. ηi are efficiency factors which depend on m̃i ' (v sinβ)2

M
2(Y †FYF )ii, and account for temperature

effects once integration of the Boltzmann equations is performed [65].

Calculating the contribution ∆nb
s

= ñb
s
to the baryon asymmetry from the RHS decays, we have

examined various values of pairs (mA,mB) in the range of 100 GeV - few TeV. As it turned out,

the ratio ñb
nfb

is always suppressed(< 3.4 · 10−2). The results for each neutrino scenario, we have

considered in this work, for one specific choice of (mA,mB), are given in Table 20 (see its caption for

more information). The ranges for ñb
s
are due to the fact that for each scenario we have considered

different values of tan β,M and MS. Upon the calculations, with obtained values of m̃i, according

to Ref. [65] we picked up the corresponding values of ηi and used them in (B.29). While giving

the results of the net baryon asymmetry, for each case (see sections 3.3 and 3.4), we have included

corresponding contributions from ñb
s

as well. As we see from the results of Tab. 20, the ñb
s

is

suppressed/subleading for all cases. We have also witnessed (by varying the phases of mA,B) that

the complexities of mA and mB practically do not change the results. This happens because the mA

in the YB coupling matrix appears in front of the Yν [see Eq. (B.24)], which is strongly suppressed.

Irrelevance of themB’s phase can be seen from the structure of (B.19). Suppression of ñb
s
will always

12 This expression is valid with alignment Aν = mAYν , which we are assuming to be true at the GUT scale and

thus Eq. (B.28) can be well applicable to our estimates.
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Neutrino Model 1011× ñb
s

Texture P1, NH, data of tab. 7 0.23− 0.28

Texture P2, NH, data of tab. 8 0.16− 0.23

Texture P3, NH, data of tab. 9 ∼ 0.1

Texture P3, IH, data of tab. 9 0.07− 0.09

Texture P4, NH, data of tab. 10 0.07− 0.08

Texture A′, NH, data of Eqs. (3.46), (3.47) 0.05− 0.07

Texture B1
′, IH, data of Eqs. (3.57), (3.58) 0.04− 0.049

Texture B1
′, NH, data of Eqs. (3.61)− (3.63) ' 0

Texture B2
′, IH, data of Eqs. (3.69), (3.70) 0.042− 0.05

Texture B2
′, NH, data of Eq. (3.73) ≈ 1.4× 10−4

Table 20: Values of ∆nb
s

= ñb
s

- contributions to the Baryon asymmetry via decays of the right

handed sneutrinos for (mA,mB) = (100i, 500) GeV and for various neutrino textures. Asymmetries

are calculated with those values of ai and bj Yukawas that give
(
nb
s

)
max

. (For the latter see sections

3.3 and 3.4.)
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happen for the value of |mB| in the range of 100 GeV - few TeV, because the mass degeneracy of ñi

states is lifted in such a way that resonant enhancement of ñb
s

is not realized. (Unlike the case of

soft leptogenesis [65] which requires |mB| <∼ 10 MeV. Without special arrangement, such suppressed

values of |mB| seem unnatural and we have not considered them within our studies.)

C Issues Related to the Baryogenesis

In this appendix we highlight and discuss some key concepts of Baryogenesis. For comprehensive

reviews we refer to [66], from which we have greatly benefited.

C.1 Freeze Out: Origin of Species

The early history of the universe can be described to a high degree of accuracy in terms of most of its

constituents being in thermal equilibrium. If the thermal equilibrium has been held since the early

period of the universe, the present state of the universe would be completely specified by the present

temperature. However, thermal equilibrium has been disturbed many times, by various processes,

such as: neutrino decoupling, decoupling of the background radiation, primordial nucleosynthesis,

inflation, baryogenesis, decoupling of relic WIMPs etc. To find out whether a particle species is

coupled to or decoupled from the plasma one needs to compare the interaction rate Γ of the particle

with the expansion rate of the universe H:

Γ ≥ H (coupled) , Γ ≤ H (decoupled) (C.1)

where Γ is the interaction rate (per particle) for the reaction(s) that keep the species in equilibrium.

If a massive particle species remained in equilibrium until present, its abundance: n
s
∼
(

m
T

)3/2
exp(−m

T
)

would be absolutely negligible because of the exponential suppression. If the interactions of the

species freezes out(i.e. Γ ≤ H) at a temperature such that m
T
is not much greater than 1, the species

can have a significant relic abundance today.

C.2 Baryon Asymmetry of The Universe

In this section we outline the problem of baryon asymmetry within the Standard Model and demon-

strate how it can emerge, although in insufficient amount, on a more sophisticated level, such as
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an SU(5) GUT. The problem itself is rooted in the observed fact that the Universe seemingly

does not contain antimattter in high concentrations. Such cosmological asymmetry between mat-

ter(baryons) and antimatter(antibaryons) remains a mistery even at the SU(3)xSU(2)xU(1) level.

There is no cosmological model capable of generating just baryons on condition that all relevant

baryon producing interactions conserve baryon nunber. Prior to the advent of GUT based models,

in all cosmological models asymmetric initial conditions were set in advance which seemed unsat-

isfactory. The Standard Model based on baryon number conserving interactions does not fix the

photon number density(corresponding to temperature of 2.7 K) to the observed nucleon density

nN. Such a ratio is introduced by hand as an initial condition:

nN

nγ
' 10−9 (C.2)

When the Universe was not hot enough for baryons(quarks) and antibaryons(antiquarks) to be

produced in pairs, the above mentioned condition would lead to the baryon asymmetry:

δ =
nq − nc

q

nq + nc
q

' 10−9 (C.3)

where nq and nc
q are quark and antiquark number densities respectively. Naturally, the funda-

mental question arises: why shoud there be such an asymmetry with precisely such value of δ?

It would seem much more natural to assume that initially the Universe was in a symmetric state

(irrespectively of initial conditions) and later, because of fundamental interactions of physics ended

up with baryon asymmetry. To realize such a scenario it is necessary to postulate a new, baryon

number changing interaction in addition to those that are already present in SU(3)xSU(2)xU(1)

which would satisfy the following conditions:

1)The new interaction is expected to violate both C and CP invariances.

2)Its existence should be indicative of a period in cosmological expansion of the Universe when

the B, C and CP invariance violating processes were in conflict with thermodynamical equilib-

rium. Obviously, both C and CP symmetries exclude the possibility of non-zero δ defined in (C.3)

because corresponding transformations replaces nq with nc
q and vice versa. The requirement of

violated thermal equillibrium may not seem so obvious but can be justified using CPT invariance

which forces all particle and antiparticle states to have the same masses and therefore to have the

same weights in Boltzmann distribution. Thus, no CPT invariant interaction can lead to non-zero

value of δ in thermodynamical equilibrium. The simplest GUT model based on SU(5) gauge group
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possesses all necessary ingredients guaranteeing non-zero value of δ which, however, is disfavored

by current experimental data, rendering the simplest SU(5) model obsolete. Nevertheless, SU(5)

model and its shortcomings are still worth of studying. It predicts B, C and CP violating processes

involving interactions with X-bosons(and with the Higgs particle as well) after these particle had

been pushed out of equilibrium because of cosmological expansion. To demonstrate this possibility,

we need to figure out the rates of relevant reactions as functions of energy(or, temperature). The

condition of thermodynamical equilibrium requires that reaction rates exceed the rate of cosmolog-

ical expansion of the Universe (C.1). It turns out that in two-body collisions mediated by X and

Y bosons:

uu→ e+dc, ud→ νcdc, ud→ e+uc (C.4)

the required transition from thermodynamical equilibrium to the non-equilibrium state is impos-

sible. However, decays and inverse decays of heavy X-bosons have a threshold and can, therefore,

make the above mentioned transitions possible. When kT > MX, X-bosons must exist in the dy-

namical equilibrium and there number must be comparable to the number of ordinary particles(for

example, NX ' Nγ). Under these circumstances, X and Xc bosons decay violating B and CP in-

variances, producing more quarks than antiquarks. Ordinarily, excess of baryons would eventually

vanish because if inverse decay processes, but when the Universe cools down to the temperature

for which kT < MX the number of X-bosons(and inverse decays) gets suppressed by the Boltzmann

factor exp(−MX

kT
), consequently baryon production virtually stops and the baryon excess generated

earlier gets ’frozen in’. There are two decay channels involving X-bosons; So, four decay widths

should exist accounting for X and Xc boson decays:

γ1 ≡ Γ(X→ lcqc), with B1 = −1/3 (C.5)

γ2 ≡ Γ(X→ qq), with B2 = 2/3 (C.6)

and

γc
1 ≡ Γ(Xc → lq), with B′1 = 1/3 (C.7)

γc
2 ≡ Γ(Xc → qcqc), with B′2 = −2/3 (C.8)

CPT invariance causes total decay widths of particles and antiparticles to be the same:

γ1 + γ2 = γc
1 + γc

2 (C.9)
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At the same time CPT invariance ensures that γ1 = γc
1 and γ2 = γc

2 only in Born approximation.

With C and CP violating interactions, higher order terms can emerge leading to:

γ1 − γ2 = γc
1 − γc

2 6= 0 (C.10)

meaning that, although X and Xc bosons had initially been present in the same amount, the

departure from thermodynamical equilibrium would have forced them to produce excess of baryons

over antibaryons:

δ ∼ γ1B1 + γ2B2 + γc
1B′1 + γc

2B′2 = (γ1 − γc
1)(B1 − B2) (C.11)

This clearly proves that the origin of non-zero δ is related to B, C and CP violation. The problem

is however, that on the other hand, δ must be much smaller than 10−9 , since γ1 − γc
1 is necessarily

a higher order term [67] and is likely to be further multiplied by a small CP-phase [68]. Another

problem associated with the SU(5) model is conservation of B−L. Namely, B−L=0, even if B 6=0, and

any baryon asymmetry generated will be washed out in subsequent topological transitions(C.4).

For successful baryogenesis, generation of non-vanishing B−L is needed. The abovementioned

problems marring the SU(5) GUT model can be alleviated in more complex approaches, such as

SO(10), where neither B nor B−L is conserved and experimentally observable value of γ1 − γc1

can be reached. One of the attractive features of SO(10) is the presence of heavy scalar bosons

and gauge bosons which generate the d=7 operators. These particles have (B−L)-violating two-

body decays, which can generate the observed baryon asymmetry of the universe naturally. This

would not be possible in case of (B−L)-preserving decays of GUT scale particles such as the

ones in SU(5). The idea to use grand unified theories for implementing Sakharov‘s conditions for

baryogenesis was practically abandoned after the realization that the sphalerons, which violate

B+L symmetry would erase any baryon asymmetry that obeyed the ∆(B−L)=0 selection rule [49].

This is because the effective interactions generated by sphalerons are in thermal equilibrium in

the range: 102GeV≤T≤ 1012GeV and violate B+L symmetry. However, if baryon asymmetry was

generated by (B−L)-violating decays of GUT scale particles, they would be immune to sphaleron

destruction. This mechanism of baryogenesis, which also induces the d=7 B-violating operators,

is very efficient and occurs quite generically in SO(10) models(for details and related discussion

see Ref. [69]). The d=7 B and (B−L)-violating operators arise in unified SO(10) models, both in

the non-supersymmetric and SUSY versions. For comparison, the leading baryon number violating

operators in the Standard Model are of dimension 6(d=6), all carrying lepton number L=1 along
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with B=1. Consequently, this operators preserve B−L. The same operators are present in SU(5)

and SO(10) based models, suppressed by two inverse powers of GUT scale masses. For the d=7

operators arising in SO(10), (B−L)=±2. While they are suppressed by one additional power of a

heavy mass scale, they can naturally lead to sphaleron-proof baryogenesis. In several instances there

also was found that these operators may lead to observable (B−L)-violating nucleon decay [69].

C.3 Leptogenesis

In the Standard Model, considering only renormalizable interactions, perturbation theory guaran-

tees conservation of baryon and lepton numbers to all orders. However, certain non-perturbative

effects(like sphalerons) may give rise to baryon and lepton number violating reactions. Such reac-

tions are suppressed by a factor exp
(
−8π2

g2

)
' 10−162, where g is the SU(2) coupling constant. At

temperatures above 300 GeV, this exponential suppression disappears due to thermal fluctuations.

Nevertheless, net baryon/lepton numbers get produced in insufficient amount because the reactions

responsible for baryon/lepton number violation take place in thermal equilibrium and besides, the

same reactions are suppressed by some small parameters, smallness of which is dictated by the need

to violate conservation of both CP and baryon/lepton numbers. An attempt to generate non-zero

baryon number density in the GUT based extensions of the Standard Model, through the decay

processes of leptoquarks is bound to fail, because despite having different values for B and L, the

decay channels have the same value of B-L. This in turn means that in the Universe with equal

numbers of particles and antiparticles of all types, densities of B, L and B-L will inevitably be

equal to zero. To address this problem, it is tempting to introduce in the early Universe some

heavy particle, decays of which would produce a non-zero density of B-L. Generated this way the

non-zero density of B-L number would not vanish in thermal equilibrium and it could become a

source of non-zero density of baryon number. Suppose that in thermal equilibrium there are con-

served quantum numbers Qa and each of the particle species ’i’ being in equilibrium carries a value

qai for the quantum number Qa. Chemical potential µi of a particle of the ’i’ species is conserved

for all interactions in thermal equilibrium and therefore can be expressed as a linear combination

of conserved quantum numbers:

µi =
∑
a

qaiµa (C.12)
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Since these particles are involved in interactions which take place at temperatures above 1016 K (or,

800 GeV), they are highly relativistic and the number density of particle species ’i’ can be written

as:

ni =
gi

(2π~)3

∫
d3p

e(p−µi)/kBT ∓ 1
= 4πgi

(
kBT

2π~

)3 ∫ ∞
0

x2dx

ex−µi/kBT ∓ 1
(C.13)

where x ≡ p
kBT

and gi is the number of helicity (and other sources of multiplicity) states for each

particle and the ’−’ sign corresponds to bosons and the ’+’ sign to fermions. The expression for

antiparticle density n̄i is similar to (C.13) with µi replaced with -µi. Thus,

ni − n̄i = 8πgi

(
kBT

2π~

)3

sinh

(
µi
kBT

)∫ ∞
0

x2exdx

e2x ∓ 2ex cosh(µi/kBT ) + 1
(C.14)

It can be safely assumed that |µi � 1| for all particle species and therefore:

ni − n̄i = 8πgi

(
kBT

2π~

)3(
µi
kBT

)∫ ∞
0

x2exdx

(ex ∓ 1)2
(C.15)

Using (C.12) we re-write the last expression as:

ni − n̄i = f(T )g̃iµi = f(T )g̃i
∑
a

qaiµa (C.16)

This in turn can be used to express density of the conserved quantum number Qa:

na =
∑
i

qai(ni − n̄i) = f(T )
∑
b

Mabµb (C.17)

where

Mab ≡
∑
i

g̃iqaiqbi (C.18)

from (C.17):

ni − n̄i =
∑
ab

g̃iqaiM
−1
ab nb (C.19)

for any particle species ’i’. Using data provided in the table below
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Particle g̃ B L T3 Y

uL 3 1/3 0 1/2 -1/6

dL 3 1/3 0 -1/2 -1/6

uR 3 1/3 0 0 -2/3

dR 3 1/3 0 0 1/3

νL 1 0 1 1/2 1/2

eL 1 0 1 -1/2 1/2

eR 1 0 1 0 1

W+ 4 0 0 1 0

φ+ 2 0 0 1/2 -1/2

φ0 2 0 0 -1/2 -1/2

gluons 4 0 0 0 0

Table 21: Particles of the Standard Model, together with the number g̃ of their helicity and color

states (with an extra factor 2 for bosons), and the values of their baryon number, lepton number,

and gauge quantum numbers. Only one “generation” of quarks and leptons and only one doublet

of scalar fields are shown. The subscripts L and R denote the helicity states of quarks u and d and

leptons ν and e. Antiparticles are not shown separately, and the photon and Z0 are not shown

because they are their own antiparticles, and so do not contribute to the densities of any quantum

numbers. Color quantum numbers are not shown.

we derive a formula for baryon number density in thermal equilibrium.

nB ≡
∑
i

Bi(ni − n̄i) =
∑
i

g̃iBi

(
(B − L)iM

−1
B−L,B−L + YiM

−1
Y,B−L

)
nB−L =

=

(
4

3
M−1

B−L,B−L −
2

3
M−1

Y,B−L

)
NgnB−L =

(
8Ng + 4Nd

22Ng + 13Nd

)
nB−L (C.20)

where Ng and Nd stand for the number of quark/lepton families and Higgs douplets respectively.

Experimentally allowed minimal model involves 3 generations and 1 Higgs doublet, thus giving

nB =
(

28
79

)
nB−L.
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C.4 Instantons, Sphalerons and the Early Universe

Non-Abelian gauge theories allow for the existence of topologically different vacua which are sepa-

rated from each other by a barrier, providing the possibility of topological transitions in the early

Universe. These transitions lead to anomalous non-conservation of fermion number in the Standard

Model. The probability of taking the field from one vacuum to another depends on temperature

and on contributions of two competing processes. The first being the sub-barrier tunneling, which

is the dominant of the two when the temperature at the time of transition is small compared to the

height of the barrier. Corresponding Euclidean solution to the field equations is called an instanton.

The second process dominates when the temperature is high enough for thermal fluctuations to take

the field over the barrier and to another vacuum without tunneling. The static field configuration

corresponding to the maximum of the potential and determining the rate of transitions in this case

is called a sphaleron. Before delving deeper into topological transitions it makes sense to consider

the SU(2)xU(1) group first. Corresponding Lagrangian

Lf = iψ̄Lγ
µ(∂µ + igAµ + ig′YLBµ)ψL + iψ̄Rγ

µ(∂µ + ig′YRBµ)ψR (C.21)

is invariant under both SU(2) transformations:

ψL → UψL, ψR → ψR (C.22)

and U(1) transformations:

ψL → e−ig
′YLλ(x)ψL, ψR → e−ig

′YRλ(x)ψR (C.23)

provided gauge fields Aµ and Bµ transform as:

Aµ → Ãµ = UAµU
−1 +

i

g
(∂µU)U−1 and Bµ → B̃µ = Bµ + ∂µλ (C.24)

respectively. An important role is also played by tensor Fµν defined as:

Fµν ≡ ∂µAν − ∂νAµ + ig(AµAν − AνAµ) (C.25)

and its dual tensor:

F̃αβ ≡ 1

2
εαβγδFγδ (C.26)

To understand the non-trivial structure of the vacuum in non-Abelian theories, it is convenient

to start with SU(N) theory without fermionic and bosonic fields. Vacuum implies vanishing of
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Fµν , but not of the vector potential Aµ. Vanishing of Fµν simply means that vector potential is a

gauge-transform of zero, i.e. vector potential with components:

A0 = 0, Ai =
i

g
(∂iU)U−1 (C.27)

where U(x) is an arbitrary time-independent unitary matrix, also describes vacuum. All possible

U(x) functions form homotopy classes. Two functions belong to the same homotopy class if they

can be related by a non-singular continuous transformation. If not, the functions are said to belong

to different homotopy classes. Homotopy classes are characterized by the winding number:

ν ≡ − 1

24π2

∫
tr
(
εijk(∂iU)U−1(∂jU)U−1(∂kU)U−1

)
d3x (C.28)

where εijk is a totally antisymmetric Levi-Civita symbol. In the electroweak theory at temperatures

T> 100 GeV symmetry is restored and the rate of topological transitions is very high. Since the

SU(2) gauge fields interact only with the left-handed fermions and have the same strength for each

doublet, the left current can be written as:

∂(f)
µ JµL = − g2

16π2
tr(FF̃ ) (C.29)

where f indicates a fermion doublet and runs from 1 to 12. Values f= 1, 2, 3 correspond to leptonic

doublets while f= 4−12 number three quark families. For example, the choice of f= 1 immediately

selects the first lepton family with the corresponding current: f = 1, JµL = ēLγ
µeL + ν̄eγ

µνe. From

two vacuum configurations (C.27) with winding numbers ν0 and ν1 specified on two different space-

like hyperspaces the following relation is true:∫
tr(FF̃ )d4x =

16π2

g2
(ν1 − ν0) (C.30)

which means that the field configurations interpolating between two topologically different vacua

has a non-vanishing field strength and hence, ’in between’ non-zero positive potential energy. From

(C.29) and (C.30) it is clear that a topological transition increasing the winding number by ∆ν units,

decreases the fermion number in each doublet by the same ∆ν units leading to non-conservation of

the total fermion number. With the color index taken into account, there are nine quark doublets

and since the baryon number of each quark is equal to 1
3
, the following relation holds:

∆Le = ∆Lµ = ∆Lτ =
1

3
∆B (C.31)
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where indices e, µ, τ indicate the leptonic doublets, while ∆B stands for an overall change of

the baryon number. Of course, total lepton and baryon numbers change by three units each:

∆L = ∆B = −3. The energy of disappearing fermions is transferred to the remaining and newly

created fermions and antifermions. There are certain interactions in the Electroweak theory which

convert left-handed fermions into right-handed ones. This means non-conservation of the total

fermion number, hence some linear combination of baryon and lepton numbers B + aL (from

(C.20) a = 28/51) should vanish at thermal equilibrium. On the other hand from (C.31) it follows

that B-L is conserved. Topological transitions in the early Universe can ensure equilibrium only

if their rate per fermion exceeds the expansion rate of the Universe. Thus, even if B+aL were

generated in the early Universe, it would be washed out by topological transitions for temperatures:

1012GeV > T > 102GeV. Hence, if B-L=0, no pre-existent baryon number survives.

C.5 Baryogenesis Via Leptogenesis. See-Saw Mechanism

From (C.20) it is obvious that for baryon asymmetry to emerge, non-zero initial value for B-L is

necessary. Even if initially Bi = 0 and Li 6= 0, topological transitions will subsequently ensure

non-zero final baryon number density, given by:

Bf = − a

1 + a
Li, with a =

28

51
(C.32)

As to the non-zero initial value for Li, it can be generated in out-of-equilibrium decays of heavy

neutrinos [5]. Heavy neutrinos can be produced after inflation, either in the preheating phase or

after thermalization. Subsequently, their concentration freezes out and their out-of-equilibrium

decays give rise to lepton asymmetry Li. Heavy neutrinos can be naturally incorporated in the

Standard Model to explain neutrino masses in neutrino oscillations. We start with the Yukawa

coupling term responsible for Dirac masses of neutrinos:

LνY = −f (ν)
ij χν̄

i
Lν

j
R + h.c. (C.33)

where i = 1, 2, 3 is the lepton family index. Invariance of (C.33) requires that the right-handed

neutrinos be SU(2) singlets, with neither color nor hypercharge. On the other hand, respecting all

the gauge symmetries of the theory the Majorana mass term can be introduced as well:

L
(ν)
M = −1

2
Mij(ν̄

c
R)iνjR (C.34)
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where ’c’ stands for charge conjugation. Once the symmetry is broken, the expectation value χ0 of

the χ field emerges and the Dirac masses of neutrino can be evaluated from the matrix:

(MD)ij = f
(ν)
ij χ0 (C.35)

For the sake of simplicity we consider the case of one generation and write the total mass term as:

L(ν) = −1

2

(
ν̄L ν̄cR

) 0 mD

mD M

νcL
νR

+ h.c (C.36)

Under the assumption of mD �M diagonalization of (C.36) leads to the mass eigenvalues:

mν ' −
m2
D

M
, mN 'M (C.37)

and their corresponding eigenstates:

ν ' νL + νcL, N ' νR + νcR (C.38)

which describe light and heavy Majorana fermions. Appropriately choosing the value for M one

can obtain light neutrino masses within a reasonable range. This method of generating light

neutrino masses is called the see-saw mechanism. Confining the theory to just Dirac neutrino mass

terms would result in ending up with unnaturally small Yukawa couplings and unbroken L. Lepton

number violation stems from having both Dirac and Majorana mass terms in Lagrangian. Just

Dirac mass terms are not enough to violate lepton number. However, with heavy Majorana mass,

the lepton number is also violated. Heavy majorana neutrinos, being absolutely identical to their

antiparticles(N = N c), can decay into a lepton-higgs pair N → lφ or into the CP-conjugated state

N → l̄φ̄, thus violating the lepton number by two units. It is worth noting, that in case of three

generations neutrino mass eigenstates do not coincide with flavor(weak) states. Instead, they are

related by lepton mixing matrix. This explains neutrino oscillations and with complex Yuakawa

couplings one can have sources of CP violation.
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