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Edge states in 2D lattices with hopping anisotropy and Chebyshev polynomials
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Analytic technique based on Chebyshev polynomials is developed for studying two-dimensional
lattice ribbons with hopping anisotropy. In particular, the tight-binding models on square and tri-
angle lattice ribbons are investigated with anisotropic nearest neighbouring hoppings. For special
values of hopping parameters the square lattice becomes topologically equivalent to a honeycomb
one either with zigzag or armchair edges. In those cases as well as for triangle lattices we perform
the exact analytic diagonalization of tight-binding Hamiltonians in terms of Chebyshev polynomi-
als. Deep inside the edge state subband the wave functions exhibit exponential spatial damping
which turns into power-law damping at edge-bulk transition point. It is shown that strong hopping
anisotropy crashes down edge states, and the corresponding critical conditions are found.

I. INTRODUCTION

The concept of edge states dates back to Tamm [1] who
pointed out in 1932 that the energy levels of a crystal can
give birth to ”surface states” where electrons are localized
along the crystal surface. Subsequent studies of the issue
were carried out by different authors [2–5] till late 1930’s.

The physics of edge states acquired new life in last
decades due to the progress in fabrication of low-
dimensional electron structures and novel materials. Cur-
rent carrying edge states play decisive role in the for-
mation of integer [6–8] and fractional [9–11] quantum
Hall states observed in GaAs heterostructures, oxides het-
erostructures [12–14] and in graphene [15–17]. Interest in
physics of edge states has been considerably heated up by
the discovery of topological insulators [18, 19]. These are
systems with insulating bulk and topologically protected
conducting edge states (see Ref. [20] for recent review).
One can exemplify other physical systems e.g. optical lat-
tices [21] and photonic crystals [22] where the edge states
do emerge.

Edge states were usually studied in 2D lattice electron
systems and within the framework of tight-binding mod-
els [8, 23–25], though the Dirac equation approaches have
been also carried out [26, 27] (see Ref. [28-30] for more
mathematical treatment).

After seminal theoretical papers by Fujita et al. [31] it
became clear that edges have strong impact on the low-
energy electronic structure and electronic transport prop-
erties of nanometer-sized graphene ribbons [31–34]. Be-
cause edge states substantially determine infrared trans-
port and magnetic properties of graphene nanoribbons,
considerable efforts were devoted during the last decade
to studying the effect of edges in graphitic nanomaterials
(see Ref. [35] for review).

Synthesis of two-dimensional boron nanoribbons with
triangular crystal structure has been reported recently
[36]. Theoretical estimates show that monolayers of a
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boron built up of triangular and hexagonal structural el-
ements are energetically more stable than the flat trian-
gular sheets [37]. Therefore general perception of a mono-
layer boron sheet is that it occurs as a buckled sheet with
triangular and hexagonal components. As a result elec-
tronic band structure of boron nanoribbons with mixed
structure has become the subject of subsequent theoret-
ical and numerical analysis [38] while the edge states in
pure triangular ribbons have not been studied in details.

In this paper we consider tight-binding models of free
electrons living on two-dimensional square and triangu-
lar lattice ribbons. In the case of square-lattice ribbon
electron delocalization process is characterized by four
different hopping parameters tu, td, tl, tr, while in the
case of triangular-lattice ribbon – by three different hop-
ping parameters t1, t2, t3 parameterising hoppings along
the three linear directions on the triangular lattice.

In Section 2 we study the square-lattice ribbon. For
the particular regimes of hopping parameters the Hamil-
tonian under consideration is reduced to that of an elec-
tron on a honeycomb ribbon with either zigzag or arm-
chair edges. For these physically important sets of hop-
ping amplitudes we solve the eigenvalue problem exactly
and express the solutions in terms of Chebyshev poly-
nomials. In the case of zigzag boundaries we reproduce
the flat band of edge states [31, 32]. Inclusion of hopping
anisotropy allows to trace out the corresponding response
of the system. In particular, we show that the formation
of edge states depends on strength of anisotropy and may
not occur at all if the anisotropy between certain direc-
tions is sufficiently strong.

In Section 3 we deal with triangle-lattice ribbons. We
consider three different options for edge configurations
and solve the diagonalization problems in terms of Cheby-
shev polynomials. Prior attention is paid to the occur-
rence of edge states and the corresponding necessary con-
ditions on hopping parameters are found.

Results are summarized in Section 4. Calculational
details are collected in Appendix.

http://lanl.arxiv.org/abs/1401.6770v1
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II. ANISOTROPIC SQUARE RIBBON

In this Section we consider electrons on a square lattice
shown in Fig. 1 with four different hopping amplitudes
tu, td, tl, tr. The lattice is finite in x-direction comprising
of N one-dimensional chains, and infinite in y-direction.
In response to the particular hopping anisotropy the lat-
tice is considered as consisting of two Bravais sublat-
tices labeled by µ = •, ◦. Integers 1 6 n 6 N and
−∞ < m < +∞ parameterize the unit cell indicated
by dashed area in Fig. 1.

a

n − 1 n n + 1

m

m − 1
m + 1

tr

tu

tl

td

FIG. 1: Square-lattice ribbon with hopping anisotropy.
Dashed area represents the unit cell. The ribbon is y-periodic
with periodicity 2a.

The tight-binding Hamiltonian appears as

H = tu
∑

m

N
∑

n=1

[

c†◦(n,m)c•(n,m) + h.c.
]

+

+ td
∑

m

N
∑

n=1

[

c†◦(n,m− 1)c•(n,m) + h.c.
]

+

+ tr
∑

m

N−1
∑

n=1

[

c†◦(n+ 1,m)c•(n,m) + h.c.
]

+

+ tl
∑

m

N
∑

n=2

[

c†◦(n− 1,m− 1)c•(n,m) + h.c.
]

(1)

where c†µ(n,m) and cµ(n,m) are electron creation and
annihilation operators.
Note that the terms with n = N and n = 1 are absent

in third and fourth terms of (1) respectively. This reflects
the absence of hoppings away beyond the boundaries.
Separation between the nearest sites is a, and the lat-

tice is periodic in y-direction with the period 2a, hence

we employ the Fourier transform in y-direction

cµ(n,m) =
1

√

π/a

∫

BZ

e+ik(2a)mcµ,n(k)dk (2)

where the length of the Brillouin zone is 2π/(2a) = π/a.
Introducing ψµ = (cµ1, . . . , cµN ) and Ψ = (ψ◦, ψ•) we

rewrite the Hamiltonian (1) as

H =

∫

Ψ†(k)H(k)Ψ(k)dk (3)

H =













0 T

T † 0













(4)

where

T = tu + tde
+2ika + trβ

† + tle
+2ikaβ. (5)

Here β is the N ×N matrix

β =









































0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0









































. (6)

The eigenvalue equation for H leads to the system of
entangled equation

(tu + tde
+2ika + trβ

† + tle
+2ikaβ)ψ• = Eψ◦ , (7a)

(tu + tde
−2ika + trβ + tle

−2ikaβ†)ψ◦ = Eψ• . (7b)

We consider three cases when this entanglement be-
comes soluble.

❶ Instead of HΨ = EΨ one may consider H2Ψ = E2Ψ
where the entanglement is absent. However, the linear
combination of β and β† involved in (7) is a tri-diagonal
matrix. Consequently, the matrices appearing in H

2 are
penta-diagonal and lead to five-term recurrence relations
for the components of ψ• and ψ◦. Taking tl = 0 the
penta-diagonal form of H

2 turns into tri-diagonal one
and the equationH

2Ψ = E2Ψ gives out three-term recur-
rence relation which appears soluble in terms of Cheby-
shev polynomials. Switching off the tl-hoppings in Fig. 1
the lattice turns into the one shown in the left panel of
Fig. 2 which is topologically equivalent to a honeycomb
ribbon with zigzag edges.

❷ Taking tl = tr we find [T †, T ] = 0 i.e. the two
matrices in the left hand sides of (7a) and (7b) can be
diagonalized simultaneously and we come to three-term
recurrence relation soluble in terms of Chebyshev polyno-
mials. This case can be reduced further to a honeycomb
with armchair edges by taking td = 0 as shown in the
right panel of Fig. 2.

❸ We study zero modes (E = 0) in the anisotropic
square lattice. In that case the system (7) trivially decou-
ples into two independent equations each of three-term
recurrence form.
We consider these three options separately in the fol-

lowing subsections.
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FIG. 2: Removing tl-links in the initial ribbon the sys-
tem turns into a honeycomb ribbon with zigzag edges (left).
Equalizing tl = tr and putting td = 0 the initial ribbon turns
into an armchair edged honeycomb ribbon (right).

A. Zigzag honeycomb (tl = 0)

For tl = 0 the square ribbon is topologically equivalent
to a honeycomb with zigzag edges. The eigenvalue system
(7) takes the form

(ξ + β†)ψ• = ωψ◦ , (8a)

(ξ∗ + β)ψ◦ = ωψ• . (8b)

where ξ = (tu + tde
+2ika)/tr and ω = E/tr.

Squared system appears as

(ω2 − |ξ|2 − β†β − ξβ − ξ∗β†)ψ◦ = 0 (9a)

(ω2 − |ξ|2 − ββ† − ξβ − ξ∗β†)ψ• = 0 (9b)

and the two equations can be solved independently.
In the matrix form these appear as

















w̃ −ξ 0 · · · 0 0
−ξ∗ w −ξ · · · 0 0
0 −ξ∗ w · · · 0 0
...

...
...

...
...

0 0 0 · · · w −ξ
0 0 0 · · · −ξ∗ w

















ψ◦ = 0 (10a)

















w −ξ 0 · · · 0 0
−ξ∗ w −ξ · · · 0 0
0 −ξ∗ w · · · 0 0
...

...
...

...
...

0 0 0 · · · w −ξ
0 0 0 · · · −ξ∗ w̃

















ψ• = 0 (10b)

where w̃ = ω2 − |ξ|2 and w = ω2 − |ξ|2 − 1.
Secular equation determining the spectrum ω1, . . . , ωN

appears as (see Appendix)

UN

(

w

2|ξ|

)

+
1

|ξ|UN−1

(

w

2|ξ|

)

= 0 (11)

where Un is the Chebyshev polynomials of second kind
which are set by the recurrence relation Un(x) =
2xUn−1(x) − Un−2(x) with U0 = 1 and U−1 = 0.[39]
Since the quantities tu, td, tr, k are all combined in ξ

and ω, it is reasonable to present the properties of the
system in terms of these two parameters.
Fig. 3 depicts ω1, . . . , ωN versus |ξ| for N = 5 and

N = 13.
Employing the technique described in Appendix we

solve (10a) and (10b) separately and obtain

ψ◦n = e−i(n−1)ϑ

(

Un−1 +
1

|ξ|Un−2

)

ψ◦1 (12a)

ψ•n = e+i(N−n)ϑ

(

UN−n +
1

|ξ|UN−n−1

)

ψ•N (12b)

where ϑ = arg(ξ) and Un ≡ Un(
w
2|ξ| ).

Expressions (12) are obtained by solving the homo-
geneous equations (10) and therefore comprise free con-
stants ψ•1 and ψ◦N . Equations (8) interrelate them as

e+iNϑψ◦1 + ωUNψ•N = 0 (13)

and the remnant free one is fixed by normalization.
We show that the states located within the shaded area

in Fig. 3 are bulk states, and the ones left beyond are
edge states.

ω

1

0
0 1 |ξ|

ω

1

0
0 1 |ξ|

0 1|ξ|

u = ∞

u = 0 (edge-bulk transition) bulk

edge

FIG. 3: Dispersion ω(|ξ|) for N = 5 (top left) and N = 13 (top
right). Only the positive subbands are shown. Curves across
the energy bands represent the ellipse set by (18). Lower panel
shows the edge subband in more details.

1. Bulk states

Shaded area shown in Fig. 3 is bounded from three
sides by ω = |ξ| ± 1 and ω = 1− |ξ|, which imply that in
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the interior of this area we have

− 1 6
ω2 − |ξ|2 − 1

2|ξ| 6 +1. (14)

Denoting ω2−|ξ|2−1
2|ξ| = cosv we use the relation

Un(cosv) =
sin[(n+ 1)v]

sinv
. (15)

This allows to write the eigenstates (12) as

∣

∣

∣

∣

ψ◦n

ψ◦1

∣

∣

∣

∣

=
sin[nv]

sinv
+

sin[(n− 1)v]

|ξ|sinv (16a)

∣

∣

∣

∣

ψ•n

ψ•N

∣

∣

∣

∣

=
sin[(N − n+ 1)v]

sinv
+

sin[(N − n)v]

|ξ|sinv (16b)

where from the oscillating behaviour with respect to n is
evident. Consequently, none of the states represented by
the interior of shaded area can be localized at boundaries
(n = 1 and n = N). These are all bulk states.
Differentiating (11) we find

dω

d|ξ| =
ω

|ξ|
Nω2 + (N + 2)|ξ|2 −N

(2N + 1)ω2 + |ξ|2 − 1
(17)

where we used (x2−1)U ′
n(x) = nxUn(x)−(n+1)Un−1(x)

and Un+1(x) = 2xUn(x)− Un−1(x) together with (11).
From (17) it follows that the extrema of subbands (nu-

merator vanishes) are located along the ellipsis set by

ω2 +
N + 2

N
|ξ|2 = 1. (18)

Alongside with the extrema there is an extra point (in-
dicated in bold) where the ellipsis intersects the energy
bands. As shown in the next subsection this represents
the edge-bulk transition points, and the subbands located
beyond the shaded area are edge states.

2. Edge states

The only energy band left beyond the shaded area is
the one shown in Fig. 3. In this case we have

− chu ≡
ω2 − |ξ|2 − 1

2|ξ| 6 −1. (19)

Taking v = iu in (15) we obtain

Un(chu) =
sh[(n+ 1)u]

shu
. (20)

Using (20) in secular equation (11) we find

|ξ| = sh(Nu)

sh[(N + 1)u]
(21)

which substituted into (19) leads to

ω2 =
sh

2(Nu)

sh
2[(N + 1)u]

− 2chush(Nu)

sh[(N + 1)u]
+ 1. (22)

Expressions (21) and (22) set the function ω(|ξ|) param-
eterically via 0 6 u <∞.
Employing (20) and (21) in (12) we obtain

ψ◦n

ψ◦1
= e−i(n−1)ϑ sh[(N − n+ 1)u]

sh(Nu)
(23a)

ψ•n

ψ•N
= e+i(N−n)ϑ sh(nu)

sh(Nu)
(23b)

These are depicted in Fig. 4.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.0
0.12

0.01

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.0
0.12

0.01

FIG. 4: Moduli of the wave functions
∣

∣

ψ◦n

ψ◦1

∣

∣ (left) and
∣

∣

ψ•n

ψ
•N

∣

∣

(right) versus n for N = 30 and u = 1.0, 0.12, 0.01.

From (20) and (22) we find ω2U2
N = 1. Then (13) gives

|Ψ|2 =

N
∑

n=1

|ψ◦n|2 +
N
∑

n=1

|ψ•n|2 =

=
sh[(2N + 1)u]− (2N + 1)shu

2shush2(Nu)
|ψ◦1|2 (24)

where from we fix the value of |ψ◦1| so that |Ψ| = 1.
Taking u = 0 in (21) and (22) we find

|ξ|cr =
N

N + 1
(25a)

|ω|cr =
1

N + 1
(25b)

which represents the edge-bulk transition point indicated
in bold in Fig. 3.
So far we discussed the properties with respect to |ξ|,

while the physical variable is the momentum k. Varying
k within the Brillouin zone the quantity |ξ| varies in the
interval

|tu − td|
tr

6 |ξ| 6 tu + td
tr

. (26)

Therefore, occurrence of edge states depends on the val-
ues of tu, td, tr as follows
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• For |tu − td| > tr|ξ|cr edge states never emerge.

• For tu+td < tr|ξ|cr edge states do emerge but never
turn into bulk states.

• For |tu−td| 6 tr|ξ|cr 6 tu+td edge states do emerge
and the system exhibits the edge-bulk transition.

B. Left-right isotropic case (tl = tr)

In this case we take advantage of [T †, T ] = 0, hence
the two matrices can be diagonalized simultaneously. We
thus avoid the ”square up” trick, i.e. are faced with three-
term recurrence relation which is soluble in terms of same
polynomials.

Introduce ψ• = e−
i

2
kaGφ• and ψ◦ = e+

i

2
kaGφ◦ where

the matrix G is given by

G = diag
(

e−ika, e−2ika, · · · , e−iNka
)

(27)

Using G†βG = e−ikaβ we rewrite (7) as

(tr[β + β†] + tue
−ika + tde

+ika)φ• = Eφ◦ , (28a)

(tr[β + β†] + tue
+ika + tde

−ika)φ◦ = Eφ• . (28b)

i.e. we can employ the eigenstates of β + β†. These are

(β + β†)fj = 2cos
πj

N + 1
fj (29a)

(fj)n = Un−1

(

cos
πj

N + 1

)

=
sin

(

πjn
N+1

)

sin

(

πj
N+1

) (29b)

where j = 1, 2, . . . , N enumerates the eigenstates.
We put φ◦ = A◦fj and φ• = A•fj reducing (28) to

(

2trcos
πj

N + 1
+ tue

−ika + tde
+ika

)

A• = EA◦, (30a)

(

2trcos
πj

N + 1
+ tue

+ika + tde
−ika

)

A◦ = EA•. (30b)

Then the solubility condition leads to

E2
j

4t2r
=

(tu − td)
2

4t2r
sin

2(ka)+

+

[

cos
πj

N + 1
+
tu + td
2tr

cos(ka)

]2

. (31)

The eigenstates (29b) oscillate with respect to n.
Hence, in the square lattice with tl = tr (including arm-
chair honeycomb for td = 0) there are no edge states.
However, Kohmoto and Hasegawa [40] have shown that
edge states emerge in armchair honeycomb provided tl 6=
tr. In the following subsection we reproduce this result
for general anisotropic square lattice.

C. Zero mode edge states

We discuss zero mode (E = 0) solutions to (7). The
corresponding equations in the component form look as

(tu+ tde
+2ika)ψ•n+ trψ•n−1+ tle

+2ikaψ•n+1 = 0, (32a)

(tu+ tde
−2ika)ψ◦n+ trψ◦n+1+ tle

−2ikaψ◦n−1 = 0, (32b)

where ψ•0 = ψ◦0 = 0 and ψ•N+1 = ψ◦N+1 = 0 are
assumed.
Solutions to (32) can be written in various forms. As-

suming tr 6 tl the most appropriate form is (up to nor-
malization)

ψ•n = (−1)ne−inka

[

tr
tl

]
n

2

Un−1

(

tue
−ika + tde

+ika

2
√
trtl

)

,

(33a)

ψ◦n = (−1)ne−inka

[

tr
tl

]
N−n

2

UN−n

(

tue
+ika + tde

−ika

2
√
trtl

)

,

(33b)

where the boundary conditions ψ•0 = ψ◦N+1 = 0 are
satisfied due to the definition U−1(x) = 0. The ones
ψ•N+1 = ψ◦0 = 0 lead to a single equation

UN

(

tue
−ika + tde

+ika

2
√
trtl

)

= 0. (34)

Provided the zeroes of Un(x) are given by xj = cos
πj
n+1

(j = 1, 2, . . . , N) we resolve (34) as

tue
−ika + tde

+ika

2
√
trtl

= cos
πj

N + 1
. (35)

Substituting this into (33) and using (15) we find

ψ•n = (−1)ne−inka

(

tr
tl

)n/2
sin

πnj
N+1

sin
πj

N+1

, (36a)

ψ◦n = (−1)ne−inka

(

tr
tl

)(N−n)/2
sin

πnj
N+1

sin
πj

N+1

. (36b)

where irrelevant multiplicative factor is omitted in (36b).
Provided tr < tl the wave function ψ•n is exponentially

suppressed from the left edge towards the bulk due to the
factor of (tr/tl)

n/2. Analogously, ψ◦n is suppressed from
the right edge towards the bulk. For tr > tl the function
ψ•n is localized at the right edge, while ψ◦n at the left
edge. For tr = tl suppression disappears so the edge
states never occur.
Due to the trigonometric factors the moduli of these

wave functions oscillate with respect to n as shown in
Fig. 5. Note that such oscillations are absent in the edge
states observed in zigzag honeycomb.
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FIG. 5: |ψ•n| versus n for N = 30 and tr = 0.9tl with j = 1
(left) and j = 5 (right).

We end this subsection by discussing the condition (35)
required the zero modes (36) would occur at all. Appar-
ently the left hand side of (35) must be real, hence there
are two cases.
• k = 0. In this case we find

tu + td
2
√
trtl

= cos
πj

N + 1
. (37)

• tu = td. In this case we come to

cos(ka) =

√
trtl
tu

cos
πj

N + 1
. (38)

We comment on the first case which for td = 0 turns
into a honeycomb with armchair edges (td = 0 is unac-
ceptable in the second case where tu = td).
Remark, that (37) imposes the following restriction

tu + td 6 2
√
trtl. (39)

Summarizing, the condition (37) and hence (39) are
necessary for occurrence of the zero mode, while tr 6= tl is
necessary this zero mode would be localized at the edges.

III. ANISOTROPIC TRIANGULAR RIBBON

We consider triangular anisotropic ribbons with three
different types of boundaries: 1) linear, 2) single side
zigzag and 3) two side zigzag cases as shown in Fig. 6.
These are all soluble in terms of Chebyshev polynomials.
We consider them separately in the following subsections.

A. Linear edges

In this case (upper panel Fig. 6) the tight-binding
Hamiltonian is given by

H = t1
∑

m

N
∑

n=2

[

c†(n− 1,m)c(n,m) + h.c.
]

+

+ t2
∑

m

N−1
∑

n=1

[

c†(n+ 1,m+ 1)c(n,m) + h.c.
]

+

+ t3
∑

m

N
∑

n=1

[

c†(n,m− 1)c(n,m) + h.c.
]

. (40)

m

n − 1 n n + 1

a
t2t1

t3

FIG. 6: Triangular-lattice ribbons with different boundaries:
linear edges (upper), single side zigzag (lower left) and two
side zigzag (lower right). All three cases are periodic in y-
direction with periodicity a.

Employ the Fourier transform

c(n,m) =
1

√

2π/a

∫

BZ

e+ikamcn(k)dk (41)

where the width of Brillouin zone is 2π/a.
Then the Hamiltonian (40) takes the form

H =

∫

ψ†(k)H(k)ψ(k)dk (42)

where ψ = (c1, . . . , cN ) and

H = 2t3cos(ka) + ζ∗β + ζβ† (43)

with ζ = t1 + t2e
−ika and β given by (6).

The eigenvalue equation takes the form

















w −ζ∗ 0 · · · 0 0
−ζ w −ζ∗ · · · 0 0
0 −ζ w · · · 0 0
...

...
...

...
...

0 0 0 · · · w −ζ∗
0 0 0 · · · −ζ w

















ψ = 0 (44)

where w = E − 2t3cos(ka).
Eigenvalues and eigenstates are given by

Ej = 2t3cos(ka) + 2|ζ|cos πj

N + 1
(45a)

(ψj)n = e+i(n−1)ϑ
sin

πjn
N+1

sin
πj

N+1

ψ1 (45b)
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where ϑ = arg(ζ) and j = 1, . . . , N labels the eigenstates.
Form (45b) it is obvious that eigenstates exhibit oscil-

lations with respect to n, i.e. these are bulk states.

B. Single side zigzag

We consider the case shown in the lower left panel of
Fig. 6. The corresponding Hamiltonian is obtained by
removing the n = 1 term from the t3-piece of (40). The
eigenvalue equation takes the form

















w + τ −ζ∗ 0 · · · 0 0
−ζ w −ζ∗ · · · 0 0
0 −ζ w · · · 0 0
...

...
...

...
...

0 0 0 · · · w −ζ∗
0 0 0 · · · −ζ w

















ψ = 0 (46)

where w = E − 2t3cos(ka) and τ = 2t3cos(ka).
Secular equation appears as

UN

(

E − τ

2|ζ|

)

+
τ

|ζ|UN−1

(

E − b

2|ζ|

)

= 0 (47)

and determines the eigenvalues E1, . . . , EN . The corre-
sponding eigenstates (up to normalization) are

(ψj)n = e+inϑ

[

Un−1

(

Ej − τ

2|ζ|

)

+
τ

|ζ|Un−2

(

Ej − τ

2|ζ|

)]

.

(48)
We are mainly interested in revealing the conditions

necessary for the formation of edge states. Reminding
the relation (15) we conclude that for −1 < E−τ

2|ζ| < 1 the

eigenstates (48) oscillate with respect to n and therefore
represents bulk states. Consequently, the edge states may
occur only in the following two cases

E − τ

2|ζ| = ±chu. (49)

We examine if these conditions can be satisfied by the
energy bands determined by (47).
Substituting (49) into (47) and using (20) we find

τ

|ζ| = ∓sh[(N + 1)u]

sh[Nu]
. (50)

Squaring up this relation and using the explicit expres-
sions τ = 2t3cos(ka) and |ζ|2 = t21 + t22 + 2t1t2cos(ka)
we arrive to quadratic equation with respect to cos(ka).
Two solutions corresponding to ”±” signs in (49) are

cos(ka) =
t1t2 ∓

√

t21t
2
2 +A2(t21 + t22)t

2
3

A2t23
(51)

A =
2sh[Nu]

sh[(N + 1)u]
. (52)

−π +πka

E

2

0

−2

−4

|t1−t2 |
2t3
< N

N+1

t1+t2
2t3
< N

N+1

FIG. 7: Energy spectrum for N = 5 and t1,2,3 = 0.9, 0.1, 1.
Shaded area is bounded in vertical directions by E−τ

2|ζ|
= ±1,

so that in the interior we have −1 < E−τ
2|ζ|

< 1. Therefore the

energy band segments located within the shaded area are bulk
states, while the ones beyond represent the edge states. For
the particular values of hopping parameters the relations (54)
are both satisfied. Correspondingly, we have two subbands
of edge states. One of them located below the shaded area
occurs due to t1+t2

2t3
< N

N+1
, while the other above the area

appears due to |t1−t2|
2t3

< N
N+1

.

Without loss of generality we assume t1,2,3 > 0, so the
upper and lower signs in (51) correspond to τ < 0 and
τ > 0 in (50).

The formal solutions (51) make sense only if the right
hand sides are in the interval [−1,+1]. This requirement
leads to

∣

∣

∣

∣

t1 ∓ t2
2t3

∣

∣

∣

∣

<
sh[Nu]

sh[(N + 1)u]
(53)

which can be realized for certain values of u only if the
following conditions are satisfied

∣

∣

∣

∣

t1 ∓ t2
2t3

∣

∣

∣

∣

<
N

N + 1
. (54)

Provided (54) is held, the edge states are parameterized
by the values of u satisfying (53). The corresponding
momentum k and energy E are determined by (51) and
(49). Eigenstates can be obtained by substituting (49)
into (48) and using (20). These appear as

ψn = (±1)n−1e+inϑ sh[(N − n+ 1)u]

sh[Nu]
. (55)

Fig. 7 shows E versus k for t1,2,3 = 0.9, 0.1, 1 with
N = 5. Wave functions (55) are plotted in Fig. 8 where
from it is obvious that localization occurs near n = 1, i.e.
at zigzag edge.
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0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.0
0.12

0.01

FIG. 8: Edge wave function (55) versus n for N = 30 and
different values of u. Phase factor of (±1)n−1e+inϑ omitted.

C. Two side zigzag

We next consider the case depicted in lower right panel
of Fig. 6. The corresponding Hamiltonian is obtained by
removing the n = 1 and n = N terms from the t3-piece
in (40). The eigenvalue equation takes the form

















w + τ −ζ∗ 0 · · · 0 0
−ζ w −ζ∗ · · · 0 0
0 −ζ w · · · 0 0
...

...
...

...
...

0 0 0 · · · w −ζ∗
0 0 0 · · · −ζ w + τ

















ψ = 0 (56)

where w = E − τ and τ = 2t3cos(ka).

Compared to (46) only the last line is modified. As
shown in Appendix the last line determines secular equa-
tion while the rest lines determine the eigenstate compo-
nents. Therefore the eigenstate expressions are the same
as in the case of single side zigzag

(ψj)n = e+inϑ

[

Un−1

(

Ej − τ

2|ζ|

)

+
τ

|ζ|Un−2

(

Ej − τ

2|ζ|

)]

,

(57)
while the secular equation appears as

UN

(

E − τ

2|ζ|

)

+
2τ

|ζ| UN−1

(

E − τ

2|ζ|

)

+

+
τ2

|ζ|2UN−2

(

E − τ

2|ζ|

)

= 0. (58)

Searching for the edge states we employ the same ar-
guments as for single side zigzag edges, i.e. we introduce

E − τ

2|ζ| = ±chu. (59)

Substituting into (58) we come to

sh[(N + 1)u]

sh[(N − 1)u]
± 2sh[Nu]

sh[(N − 1)u]

τ

|ζ| +
τ2

|ζ|2 = 0, (60)

which gives the following four solutions

cos(ka) =
t1t2 ∓

√

t21t
2
2 +A2(t21 + t22)t

2
3

A2t23
, (61a)

cos(ka) =
t1t2 ∓

√

t21t
2
2 +B2(t21 + t22)t

2
3

B2t23
, (61b)

where

A =
2sh[(N − 1)u]

sh(Nu)− shu
, (62a)

B =
2sh[(N − 1)u]

sh(Nu) + shu
. (62b)

Requiring the right hand sides of (61) to lay in the
interval [−1,+1] we obtain

∣

∣

∣

∣

t1 ∓ t2
2t3

∣

∣

∣

∣

<
sh[(N − 1)u]

sh(Nu)− shu
(63a)

∣

∣

∣

∣

t1 ∓ t2
2t3

∣

∣

∣

∣

<
sh[(N − 1)u]

sh(Nu) + shu
(63b)

for (61a) and (61b) respectively.
These can be satisfied for certain values of u only if

∣

∣

∣

∣

t1 ∓ t2
2t3

∣

∣

∣

∣

< 1 (64a)

∣

∣

∣

∣

t1 ∓ t2
2t3

∣

∣

∣

∣

<
N − 1

N + 1
(64b)

respectively.
Substituting (59) into (57) and using (61) in τ and |ζ|

yields

ψn = (±1)n−1e−inϑ sh[(N − n)u]

sh[(N − 1)u]
+

sh[(n− 1)u]

sh[(N − 1)u]
, (65a)

ψn = (±1)n−1e−inϑ sh[(N − n)u]

sh[(N − 1)u]
− sh[(n− 1)u]

sh[(N − 1)u]
, (65b)

for (64a) and (64b) respectively.
Thus, we may have up to four segments of k represent-

ing edge states. Edge states emerge in these intervals of k
only if the corresponding condition from (64) is satisfied.
In Fig. 9 we plot E versus k for N = 5 and various values
of t1, t2, t3. Wave functions (65) are plotted in Fig. 10.

IV. CONCLUSIONS

In this paper we have considered tight-binding models
on particular class of lattice ribbons where the eigenvalue
problems lead to three-term recurrence relations. Such a
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−π +πka

E

2

0

−2

−4

N−1
N+1 <

t1+t2
2t3
< 1

N−1
N+1 <

|t1−t2 |
2t3
< 1

−π +πka

E

2

0

−2

−4

t1+t2
2t3
< N−1

N+1

|t1−t2 |
2t3
< N−1

N+1

FIG. 9: Energy E versus k for N = 5 with t1,2,3 = 1.5, 0.1, 1
(upper) and t1,2,3 = 0.9, 0.1, 1 (lower). Energy band segments
laying beyond the shaded area represent the edge states. In-
equalities express the conditions when the corresponding seg-
ments appear.

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

u = 1.0
u = 0.2

u = 0

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

u = 1.0
u = 0.2

u = 0

FIG. 10: Edge state wave functions (65a) (left) and (65b)
(right) versus n for N = 30 and different values of u. Phase
factors of (±1)n−1e−inϑ are omitted.

selection is motivated by the fact that three-term recur-
rence relations are usually resolved by orthogonal poly-
nomials, which in the cases under consideration turn to
be the Chebyshev polynomials of the second kind. The
technique developed is capable of handling ribbons with
hopping anisotropy. Within the given approach we have
reproduced the results due to Wakabayashi et al. [35] for

isotropic honeycomb ribbons with zigzag and armchair
edges, and the one due to Kohmoto and Hasegawa [40]
for zero mode edge states in anisotropic armchair honey-
comb. Inclusion of hopping anisotropy allowed to trace
out the corresponding influence on the formation of edge
states. Also, anisotropic triangular ribbons with various
edge geometries are studied within the same approach.
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Appendix A

We comment on solving (10a). We first get rid of the
phases of ξ by taking ψ◦n = e−inϑφn with ϑ = arg(ξ).
Then the equation written out in components appears as

|ξ|φ2 =w̃φ1

|ξ|φ3 =wφ2 − |ξ|φ1
|ξ|φ4 =wφ3 − |ξ|φ2

... (A1)

|ξ|φN =wφN−1 − |ξ|φN−2

0 =wφN − |ξ|φN−1

The system is homogeneous hence comprises one un-
determined constant we choose to be φ1. Then φ2 can be
solved out from the first equation. Substituting this into
the second we solve out φ3 and so on. Using induction
method we can show the following relation

φn+1 = Dnφ1 (A2)

where

Dn ≡ det

































w̃

|ξ| 1 0 · · · 0 0

1
w

|ξ| 1 · · · 0 0

0 1
w

|ξ| · · · 0 0

...
...

...
...

...

0 0 0 · · · w

|ξ| 1

0 0 0 · · · 1
w

|ξ|

































n×n

(A3)

Expression (A2) with n = 1, . . . , N−1 resolves the first
N − 1 equations of (A1), while the last equation implies

DN = 0 (A4)

and gives the eigenvalues ω1, . . . , ωN .
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We now calculate Dn. We first calculate

An ≡ det

































w

|ξ| 1 0 · · · 0 0

1
w

|ξ| 1 · · · 0 0

0 1
w

|ξ| · · · 0 0

...
...

...
...

...

0 0 0 · · · w

|ξ| 1

0 0 0 · · · 1
w

|ξ|

































n×n

(A5)

which differs from Dn by w instead of w̃ in the upper left
corner. Expanding (A5) with respect to first row we find

An =
w

|ξ|An−1 −An−2. (A6)

Remind that the Chebyshev polynomials Un(x) satisfy
the recurrence relations Un(x) = 2xUn−1(x) − Un−2(x).

Comparing this with (A6) we come to

An = Un

(

w

2|ξ|

)

. (A7)

Expanding (A3) with respect to the first row we obtain

Dn =
w̃

|ξ|An−1 −An−2. (A8)

Using w̃ = w + 1 together with (A6) and (A7) we find

Dn = Un

(

w

2|ξ|

)

+
1

|ξ|Un−1

(

w

2|ξ|

)

. (A9)

Combining this with (A2) and ψ◦n = e−inϑφn we obtain
(12a). The secular equation (A4) takes the form (11).

Equation (10b) is solved in the same way by expressing
all components via ψ•N (starting from the lower right
corner instead of the upper left).
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