
Proceedings of A. Razmadze
Mathematical Institute
Vol. 160 (2012), 35–51

QUANTUM GROUP ON A HONEYCOMB LATTICE

M. ELIASHVILI, G. JAPARIDZE AND G. TSITSISHVILI

Abstract. The tight-binding model of electrons on a honeycomb
lattice is studied in the presence of a homogeneous magnetic field.
Provided the magnetic flux per unit hexagon is rational of the ele-
mentary flux the one-particle Hamiltonian is expressed in terms of the
generators of the quantum group Uq(sl2). Employing the functional
representation of Uq(sl2) the Harper equation is rewritten as a sys-
tems of two coupled functional equations on a complex plane. For the
special values of quasi-momentum the entangled system admits solu-
tions in terms of polynomials. In that case the system exhibits certain
symmetry relations allowing to resolve the entanglement, and basic
single equation determining the eigenvalues and eigenstates (polyno-
mials) is obtained. Equations specifying the locations of the roots
of polynomials on a complex plane and consequently the one-particle
wave functions are found. Employing numeric analysis the roots of
polynomials corresponding to different eigenstates are solved out and
the diagrams exhibiting the ordered structure of one-particle states
are depicted.

îâäæñéâ. àŽêýæèñèæŽ òæüñî éâïâîäâ ŽàâĲñèæ âèâóðîëêñèæ ïæ-
ïðâéæï ßŽéæèðëêæï ëìâîŽðëîæï áæŽàëêŽèæäâĲæï ŽéëùŽêŽ éŽàêæ-
ðñîæ ãâèæï ìæîëĲâĲöæ. öâïûŽãèæèæŽ öâéåýãâãŽ, îëáâïŽù âèâéâ-
ðŽîñè âóãïçñåýâáöæ éŽàêæðñîæ êŽçŽáæ ûŽîéëŽáàâêï éŽàêæðñîæ
êŽçŽáæï çãŽêðæï îŽùæëêŽèñî êŽûæèï. Žé ìæîëĲæï àŽåãŽèæïû-
æêâĲæå ïæïðâéæï ßŽéæèðëêæŽêæ àŽéëïŽýñèæŽ Uq(sl2) çãŽêðñîæ þàñ-
òæï àâêâîŽðëîâĲæï éâöãâëĲæå. àŽéëõâêâĲñèæŽ çãŽêðñîæ þàñòæï
òñêóùæëêŽèñîæ ûŽîéëáàâêŽ áŽ ïŽçñåîæãæ îæùýãâĲæï ŽéëùŽêŽ áŽ-
õãŽêæèæŽ òñêóùæëêŽèñî àŽêðëèâĲŽäâ, îëéâèïŽù àŽŽøêæŽ Žéëýï-
êâĲæ êŽéáãæè ìëèæêëéåŽ ïæãîùâöæ. ŽóâáŽê àŽéëéáæêŽîâ, õëãâèæ
ïŽçñåŽîæ ãâóðëîæ ýŽïæŽåáâĲŽ öâïŽĲŽéæïæ ìëèæêëéæï êñèâĲæï éâö-
ãâëĲæå. éæôâĲñèæŽ àŽêðëèâĲŽ, îëéâèæù àŽêïŽäôãîŽãï Žé êñèâĲæï
àŽêèŽàâĲŽï çëéìèâóïñî ïæĲîðõâäâ. îæùýãæåæ éâåëáâĲæï àŽéë-
õâêâĲæå àŽéëåãèæèæŽ Žïâåæ êñèâĲæï çëêçîâðñèæ éêæöãêâèëĲâĲæ
ïæïðâéæï éŽýŽïæŽåâĲâèæ ïæáæáââĲæï ïýãŽáŽïýãŽ éêæöãêâèëĲâĲæïŽå-
ãæï. êñèâĲæï àŽêŽûæèâĲŽ çëéìèâóïñî ïæĲîðõâäâ ûŽîéëáàâêæèæŽ
àîŽòæçñèŽá, ïŽæáŽêŽù êŽåèŽá øŽêï êñèâĲæï àŽêèŽàâĲæïŽ, áŽ öâ-
ïŽĲŽéæïŽá, ïæïðâéæï ßŽéëèðëêæï ïŽçñåŽîæ ãâóðëîâĲæï ŽîŽðîæãæ-
Žèñîæ áŽ éëûâïîæàâĲñèæ ïðîñóðñîŽ.
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1. Introduction

The problem of two-dimensional electrons moving in a periodic potential
and a uniform magnetic field has been the subject of intensive studies for
decades. Azbel [1] was the first who pointed out that the spectral properties
of the two-dimensional lattice electrons have a sensitive dependence on the
flux through the plaquette. Later this observation has been developed by
Hofstadter [2] who found the exotic structure of the one-particle energy
spectrum of the system of planar electrons on square lattice in magnetic
field. The same study was extended later for the triangular lattice [3],
generalized square lattices [4, 5] and for the honeycomb lattice [6, 7]. These
studies firmly established the fractal structure of the aforementioned energy
spectrum, whose rich and complex nature originates from the presence of
two, not necessarily commensurate periods. The first is given by the lattice
structure and the second is determined by the magnetic field. The relevant
parameter which determines the band structure is the ratio Φ/Φ0 where Φ
is the magnetic flux per elementary hexagon, and Φ0 = 2π(~/e) is the flux
quantum.

In 1994 Wiegmann and Zabrodin pointed out [8] that the Hamiltonian
responsible for the original result of Hofstadter is closely related to the
quantum group Uq(sl2) (for mathematical treatment see [9]). Namely, it
was shown, that the Hamiltonian is expressible in terms of X± generators
of quantum group Uq(sl2): H = X+ + X− with the deformation parame-
ter q determined by the applied magnetic field. Employing the functional
representation of Uq(sl2) in the space of polynomials, the Harper equation
is reformulated into the functional form where the one-particle eigenstates
appeared as polynomials. The zeros of polynomials unambiguously speci-
fying the one-particle wave functions were shown to be determined by the
Bethe ansatz equations [8]. The fact that eigenstates are related to certain
polynomials associated with the quantum group Uq(sl2) and with the Bethe
ansatz equations provides with possibility to systematically study the struc-
ture of eigenstates. It should be noted that so far the studies were mainly
concentrated on the structure of spectrum.

Hatsugai et al. [10] investigated the Bethe ansatz equations derived in [8]
and found out that the zeros of those polynomial are not scattered randomly,
but are located along concentric circles on the complex plane. This can
be considered as an indication that eigenstates also exhibit nontrivial and
ordered structure.

Alongside with the eigenvalue problem for electrons on a square lattice
in magnetic field, the analogous problem has been studied for a honeycomb
lattice as well [6, 7]. The common observation is that the energy spectrum
differs from the one of square lattice and is still highly nontrivial. After the
connection between the quantum group Uq(sl2) and the problem of square
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lattice electrons in magnetic field was found out in [8], the similar approach
has been applied to honeycomb lattice by Kohmoto and Sedrakyan [11].

In contrast to the square lattice, the honeycomb is not a Bravais lat-
tice, but consists of two interpenetrating triangular lattices (“A” and “B”
sublattices) with one lattice point of each type per unit cell. Therefore
the one-particle Hamiltonian carries additional (2× 2)-matrix structure. In
terms of the generators of Uq(sl2) it appears as

H =

(
0 1I + X−

1I + X+ 0

)
(1)

and carries the anti-diagonal structure in (2×2)-matrix indices. This causes
extra inconvenience which can be overcome by considering H2 instead of H

since the former is diagonal in (2× 2)-matrix indices. Taking advantage of
this observation, the authors of [11] obtained the analog of the Bethe ansatz
equation derived for square lattice [8].

The Hamiltonian (1) describes electrons hopping from a site to the near-
est neighboring ones. The squared operator H2 contains second-order terms
describing double-hoppings A → B → A and B → A → B. The correspond-
ing Bethe-like equations are relatively complex and the nesting procedure is
proposed with the aim to reduce them to the set of simpler equations [11].

In this paper we develop alternative approach to the eigenvalue problem
for the Hamiltonian (1). Tracing out certain symmetry of H we derive
functional equation describing electron hoppings to the nearest sites what
is the basic process encoded in H. Note, that this equation includes as a
corollary the corresponding equation studied in [11].

The paper is organized as follows. In the forthcoming section we present
the derivation of one-particle Hamiltonian from the tight-binding model on
honeycomb lattice in magnetic field. In Section III we rewrite the one-
particle Hamiltonian in terms of the quantum group Uq(sl2) and comment
on the representations of Uq(sl2). Section IV deals with Harper equation
in polynomial representation. Since the honeycomb consists of two triangle
Bravais sublattices, the Harper equation appears in the form of the system
of two coupled equations. This system obeys certain symmetry property
which allows to decouple them and to obtain a single equation describing
the elementary process of nearest neighbouring hopping. Solutions to this
equation are polynomials with real coefficients and Bethe-like equations
determining the zeros of polynomials are derived. In Section V the results
of numerical analysis are presented and the locations of the zeros on the
complex plane are depicted exhibiting nontrivial and ordered structure of
eigenstates.
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2. Spinless Fermions on a Honeycomb Lattice in Magnetic Field

The honeycomb lattice is made up of the two-dimensional array of hexag-
onal unit cells, of side a, with atoms at the vertices. Such a structure is
encountered in solid state physics in various crystals, while the ideal real-
ization of the two-dimensional honeycomb lattice is graphene [12]. The unit
cell is a rhombus of the side a

√
3 with angles π/3 and 2π/3 at its vertices.

There are two atoms (see Figure 1) in each unit cell, A and B.
We consider the tight-binding model of spinless fermions on a honeycomb

lattice with the nearest neighbouring hoppings only. In the presence of
homogeneous magnetic field the Hamiltonian under consideration is given
by

H =
∑
n,r

[
eiγn(r)c†A(r)cB(r + δn) + h.c.

]
, (2)

where the summation is implied over r = j1a1 + j2a2. Here c†A(r) (cA(r))
and c†B(r+δn) (cB(r+δn)) are the spinless fermion creation (annihilation)
operators on site r of the sublattice “A” and on site r+δn of the sublattice
“B”, respectively.

Magnetic field B is included in the Hamiltonian via the Peierls phases

γn(r) =
e

~

r+δn∫

r

Adl, (3)

where the vector-potential is taken in the Landau gauge A = (−By, 0). We
put eB < 0 in what follows.

a1a2 δ3

δ1

δ2

A

B

Figure 1. Locations of A-sites are set by r = j1a1 + j2a2

where a1,2 = 1
2 (±1 ,

√
3)a and j1,2 integers. The three B-

sites, nearest to a given A-site are located at r + δ1,2,3.
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Rewriting (2) in the Fourier representation we find

H =
∫

FBZ

[
eika1cA(k + k0)c

†
B(k) + h.c.

]
dk+

+
∫

FBZ

[
ei(k−k0)a2cA(k − k0)c

†
B(k) + h.c.

]
dk+

+
∫

FBZ

[
c†A(k)cB(k) + h.c.

]
dk, (4)

where cA(k) and cB(k) are the Fourier transforms of cA(r) and cB(r + δn)
respectively, and the integration covers the first Brillouin zone (FBZ).

The vector k0 is related to the magnetic field

k0 = −eaB
2~

(0, 1) =
2π√
3a

Φ
Φ0

(0, 1). (5)

We consider
Φ
Φ0

=
ν

N
, (6)

where ν and N are coprime integers. Then the Hamiltonian (4) can be
presented as follows (see Appendix A)

H =
∫

MBZ

Ψ†(k)H(k)Ψ(k)dk, (7a)

H(k) =




0 1I + X−(k)
1I + X+(k) 0


 , (7b)

where Ψ(k) is a (2N)-component column, and the integration covers the
magnetic Brillouin zone, which is the 1

N ’th part of the first Brillouin zone.
The N ×N matrices X±(k) are given by

X+(k) = e−ika1β†Q + e−ika2Qβ, (8a)

X−(k) = e+ika1Q†β + e+ika2β†Q†, (8b)

where

β =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
1 0 0 · · · 0 0




(9)

and
Q = diag

(
q1, q2, . . . , qN

)
(10)
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with
q = e+iπ(ν/N). (11)

3. The Quantum Group Uq(sl2)

Using the relation Q†βQ = q2QβQ† we find
[
X+, X−]

= i2(q − q−1)(K −K−1), (12a)

KX±K−1 = q±2X±, (12b)

where

K(k) = qe+ik(a1−a2)QβQ†β, (13a)

K−1(k) = q−1e−ik(a1−a2)β†Qβ†Q†. (13b)

Relations (12) constitute the definition of the quantum group Uq(sl2)
[13] (we use the normalization for X± slightly different from the standard
one). Remark that (12) are valid irrespectively of the particular values of k
and a1,2.

3.1. Cyclic and highest weight representations. In this subsection
we bring some details on the cyclic and highest weight representations of
Uq(sl2). Below we discuss the case of ν = even to ensure the method (case
ν = odd will be considered elsewhere).

Introduce the states ψ1, ψ2, . . . , ψN in the form of the N -component
columns

ψj = N− 1
2
{
qj , q2j , q3j , . . . , qNj

}
T. (14)

These vectors form the orthonormal complete set of states
N∑

n=1

(ψ†i )n(ψj)n = δij , (15a)

N∑

j=1

(ψ†j )m(ψj)n = δmn (15b)

and can be used as a basis in the space of representation.
The action of matrices β and Q on the states (14) is expressed by the

following relations

βψj = qjψj , (16a)

β†ψj = q−jψj , (16b)

Qψj = ψj+1, (16c)

Q†ψj = ψj−1, (16d)

where the cyclic identifications ψN+j = ψj is understood in (16c) and (16d).
Later is possible due to qN = 1.
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Using (16) we find

X+ψj = q−
1
2 e−

i
2

√
3kyatj+1ψj+1, (17a)

X−ψj = q+ 1
2 e+ i

2

√
3kyatj ψj−1, (17b)

Kψj = e+ikxaq+2jψj , (17c)

K−1ψj = e−ikxaq−2jψj , (17d)

where
tj = e+ i

2 kxaqj− 1
2 + e−

i
2 kxaq−j+ 1

2 . (18)

Due to (17a) and (17b) the operators X+ and X− can be regarded as
rising and lowering ones respectively.

From (17a) and (17b) we find

DetX± = q∓
1
2 Ne∓

i
2 N

√
3kya(t1t2 · · · tN ). (19)

For those values of kx when tj 6= 0 for all j, the operators X± possess
only non-vanishing eigenvalues. In other words, there is neither highest nor
lowest weight states. Hence (8) and (13) form the cyclic representation of
(12). Acting on ψj by X+ we obtain ψj+1, and so on until we come to ψN .
The subsequent action takes us back to ψ1. The similar is true for X−.

On the other hand, for the specific value of kx, one of t1, . . . , tN vanishes.
For example, setting eikxa = −q we obtain that t1 = tN+1 = 0. Then (17a)
and (17b) yield X+ψN = 0 and X−ψ1 = 0 so that ψN and ψ1 appear now
as the highest and the lowest weight vectors, respectively.

We should remark here on an important detail: as we see, depending on
the values of the momentum, the cyclic and the highest weight representa-
tions can be switched one to another. Such an interplay has been known
for a long time [14].

3.2. Functional representation. Consider an N -component vector f =
(f1, f2, . . . , fN ). Writing out the action of X±(k) and K±1(k) on f in the
component form we obtain

(X+f)n = e−ika1qn−1fn−1 + e−ika2qnfn+1, (20a)

(X−f)n = e+ika1q−nfn+1 + e+ika2q−n+1fn−1, (20b)

(Kf)n = e+ik(a1−a2)fn+2, (20c)

(K−1f)n = e−ik(a1−a2)fn−2, (20d)

where the identification fN+n = fn is implied.
Introduce the interpolating function of complex variable f(z) such that

fn = f(e−
i
2

√
3kyaqn− 1

2 ). (21)
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Then the relations (20) can be written as

X+f(z) = e−
i
2 kxaq−

1
2 zf(q−1z) + e+ i

2 kxaq+ 1
2 zf(qz), (22a)

X−f(z) = e+ i
2 kxaq−

1
2 z−1f(qz) + e−

i
2 kxaq+ 1

2 z−1f(q−1z), (22b)

Kf(z) = e+ikxaf(q2z), (22c)

K−1f(z) = e−ikxaf(q−2z). (22d)

These relations determine the functional representation of Uq(sl2).

4. The Eigenvalue Equation

We study the eigenvalue equation


0 1I + X−(k)
1I + X+(k) 0







ξ

ζ


 = E




ξ

ζ


 . (23)

Employing the functional representation (22) the eigenvalue equation
(23) can be rewritten in the form of two coupled equations

ξ(z) + e+ i
2 kxaq+ 1

2 zξ(qz) + e−
i
2 kxaq−

1
2 zξ(q−1z) = Eζ(z), (24a)

ζ(z) + e+ i
2 kxaq−

1
2 z−1ζ(qz) + e−

i
2 kxaq+ 1

2 z−1ζ(q−1z) = Eξ(z). (24b)
The main disadvantage in resolving (24) is the entanglement of ξ(z) and

ζ(z), and the appropriate way is to decouple the sought for functions. This
can be done by applying 1I+X− to (24a) and 1I+X+ to (24b) thus leading
to (ϕ = kxa)

3ξ(z) + e+iϕqξ(q2z) + e−iϕq−1ξ(q−2z) + e+ i
2 ϕq−

1
2

(
1
z

+ qz

)
ξ(qz)+

+ e−
i
2 ϕq+ 1

2

(
1
z

+ q−1z

)
ξ(q−1z) = E2ξ(z), (25a)

3ζ(z) + e+iϕq−1ζ(q2z) + e−iϕqζ(q−2z) + e+ i
2 ϕq−

1
2

(
1
z

+ qz

)
ζ(qz)+

+ e−
i
2 ϕq+ 1

2

(
1
z

+ q−1z

)
ζ(q−1z) = E2ζ(z). (25b)

Equations (25) have been studied in [11] where the nesting procedure is
applied with the aim to reduce them to the set of simpler equations. Re-
mark, that in that paper the Θ-function representation is employed without
restricting the values of k. In this scope the representation of Uq(sl2) used
in [11] is cyclic. Remind, that in the paper [8] it is stated, that for a square
lattice the relevant representation is a highest weight one.

We now derive the equation describing the elementary process of the
nearest site hoppings. For this purpose we first reduce the functional repre-
sentation to the polynomial representation. Consider monomials fj(z) = zj
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as the basis in the space of analytic functions. We then find

X+fj(z) = tj+1fj+1(z), (26a)

X−fj(z) = tjfj−1(z), (26b)

Kfj(z) = q+2jfj(z), (26c)

K−1fj(z) = q−2jfj(z), (26d)

where tj has been defined by (18).
The action of X± can be expressed as

· · ·

X+

X−

fj
X+

X−

fj+1

X+

X−

· · · . (27)

Taking eikxa = −q we find X−f0 = X+fN−1 = 0 i.e. the chain (27)
breaks down at j = 0 and j = N − 1 respectively. Then the subspace of
(N−1)’th order polynomials f(z) = c0+c1z+· · ·+cN−1z

N−1 is the invariant
subspace and the equations (24) can be resolved in terms of (N−1)’th order
polynomials.

Provided we set eikxa = −q the system (24) appears as

ξ(z) + iqzξ(qz)− iq−1zξ(q−1z) = Eζ(z), (28a)

ζ(z) + iz−1ζ(qz)− iz−1ζ(q−1z) = Eξ(z). (28b)

Remark that (28) admits solutions not merely in terms of polynomials,
but in terms of real polynomials, i.e. with real coefficients. This can be
verified by expanding ξ(z) and ζ(z) in a series of zj and rewriting (28) for
the expansion coefficients.

Now it is important to remark, that equations (28a) and (28b) are related
one to another by the symmetry transformation

ζ(z) À z2Jξ(−z−1), (29a)

where 2J = N − 1.
Note, that this observation is the key point of our consideration allowing

to present the solution to (28) as



ξ(z)
ζ(z)


 =




f(z)
+z2Jf(−z−1)


 E = +λ , (30a)




ξ(z)
ζ(z)


 =




f(z)
−z2Jf(−z−1)


 E = −λ , (30b)

where the function f(z) satisfies the equation

f(z) + iqzf(qz)− iq−1zf(q−1z) = λz2Jf(−z−1) (31)

generating N eigenvalues λ1, λ2, . . . , λN .
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Since f(z) is a polynomial we can write down

f(z) =
2J∏

j=1

(z − zj), (32)

where z1, z2, . . . , z2J are the zeros of f(z).
Substituting (32) into (31) and setting z = −z−1

n we obtain

izn =
2J∏

j=1

1 + qznzj

1 + znzj
−

2J∏

j=1

1 + q−1znzj

1 + znzj
. (33)

The last equation is the honeycomb analog of the Bethe ansatz equation
obtained in [8] for square lattice. Due to the fact that (28) is soluble in
terms of real polynomials, the solutions to the equation (31) are also real
polynomials. Correspondingly, if zn is a root then z∗n must be the root as
well. This agrees with the invariance of (33) under the complex conjugation.

Setting z = zn, z = qzn and z = q−1zn in (31) we find

λ

2J∏

j=1

(1 + znzj) = iqzn

2J∏

j=1

(qzn − zj)− iq−1zn

2J∏

j=1

(q−1zn − zj), (34a)

λ

2J∏

j=1

(1 + qznzj) =
2J∏

j=1

(qzn − zj) + iq2zn

2J∏

j=1

(q2zn − zj), (34b)

λ

2J∏

j=1

(1 + q−1znzj) =
2J∏

j=1

(q−1zn − zj)− iq−2zn

2J∏

j=1

(q−2zn − zj). (34c)

Expressing the products standing in (33) in terms of (34) we obtain the
equation

−q2
2J∏

j=1

(q2zn− zj)−q−2
2J∏

j=1

(q−2zn−zj)+i

(
1
zn

+qzn

) 2J∏

j=1

(qzn−zj)−

− i

(
1
zn

+ q−1zn

) 2J∏

j=1

(q−1zn − zj) = 0. (35)

This equation is the same as (25a) for the value z = zn.
Rewriting (31) as

λ =
2J∏

j=1

z − zj

1 + zzj
+ iqz

2J∏

j=1

qz − zj

1 + zzj
− iz

q

2J∏

j=1

q−1z − zj

1 + zzj
(36)
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and taking the limit z → 0 we find

λ =
{

1− z

[ 2J∑

j=1

(
1
zj

+ zj

)
− iq − 1

iq

]} 2J∏

j=1

zj + O(z2), (37)

where the right hand side must be z-independent. Then

λ =
2J∏

j=1

zj (38)

and
2J∑

j=1

(
1
zj

+ zj

)
= iq +

1
iq

. (39)

Taking now the limit z →∞ in (36) we find

λ2 = 1 + i(q − q−1)
2J∑

j=1

zj + O

(
1
z

)
, (40)

where again the right hand side is z-independent yielding

λ2 = 1 + i(q − q−1)
2J∑

j=1

zj . (41)

Using (39) we can rewrite (41) in the alternative

λ2 = 3− q2 − q−2 − i(q − q−1)
2J∑

j=1

1
zj

. (42)

We have thus derived the relation among an eigenvalue and the roots
of the corresponding polynomial. The roots are determined by (33). Once
the roots of a polynomial are known, the corresponding eigenvalue can be
calculated using any of (38), (41), (42).

4.1. Comparison to Square Lattice. Studying the case of square lattice
the authors of [8] have arrived to the equation

(
X+ + X−)

f = Ef which
in the polynomial representation takes the form

i

(
1
z

+ qz

)
f(qz)− i

(
1
z

+ q−1z

)
f(q−1z) = Ef(z). (43)

Substituting

f(z) =
2J∏

j=1

(z − zj) (44)
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into (43) and setting z = zn one obtains the Bethe ansatz equation

1 + qz2
n

1 + q−1z2
n

=
2J∏

j=1

q−1zn − zj

qzn − zj
. (45)

Taking the limits z → 0 and z →∞ one finds

E = i(q − q−1)
2J∑

j=1

zj . (46)

There is another relation following from (43) which is not presented in
[8]. Considering the limits z → 0 and z → ∞ in (43) and comparing the
next-to-leading order terms we find

2J∑

j=1

(
zj +

1
zj

)
= 0 (47)

which is the analog of (39).

5. Numeric Analysis

Let us discuss the results of numeric analysis of how the roots are dis-
tributed over the complex plane.

We first present the case of Φ
Φ0

= 2
89 where we have 89 eigenvalues and the

corresponding 89 polynomials determined by (31). Each polynomial is of
order of N − 1 = 88, i.e. for every eigenvalue we have 88 roots. For demon-
strative purposes we present the root distributions for some characteristic
cases, describing how the locations of roots depend on eigenvalues (Figure
2). For the eigenvalues of maximal magnitude the roots are depicted in the
left panel, while the subsequent panels depict the roots corresponding to
the eigenvalues of smaller magnitude. The right panel corresponds to the
eigenvalue of minimal magnitude.

For the maximal value of λ2 the roots are arranged in two spirals related
via the complex conjugation. Decreasing λ2 we observe the appearance of
the new branch which is a circle to high accuracy. Further decrease of λ2

causes the conversion of spirals into another circle, and for the minimal
value of λ2 the two circles become transformed into what is shown in the
right panel.

We next present the case of Φ
Φ0

= 30
89 ≈ 1

3 in Figure 3. For the maximal
λ2 the roots are arranged into two groups: straight lines with equiangular
separation of π/3 and the six points indicated in blue. Few couples of points
are somewhat deviated from the straight lines. This can be explained by
relatively small value of N . Increasing N the deviation will presumably dis-
appear. For the eigenvalues of less magnitude we observe that roots regroup
from the straight lines into a hexagon and eventually, for the eigenvalue with
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minimal magnitude we observe the almost-perfect hexagon. The points left
beyond the hexagon might be treated as relic of the straight lines shown on
left panel.

Figure 2. Root distributions on a complex plane for Φ
Φ0

= 2
89 .

Figure 3. Root distributions on a complex plane for Φ
Φ0

=
30
89 ≈ 1

3 .

We finally present the case of Φ
Φ0

= 22
89 ≈ 1

4 in Figure 4. Interplay among
the two groups of roots is again the case. One group consists of 8 straight
lines with equiangular separation of π/4, and the other one resembling cer-
tain closed contour. Changing λ2 we observe that roots rearrange from
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Figure 4. Root distributions on a complex plane for Φ
Φ0

=
22
89 ≈ 1

4 .

one group into another and vice versa. For the lowest λ2 the roots are lo-
cated basically on the aforementioned closed contour which appears to be
an octagon as shown in the right panel.

6. Conclusions

We have considered the tight-binding model of spinless particles on a hon-
eycomb lattice in magnetic field. The corresponding one-particle Hamilton-
ian turns out to be expressible in terms of the generators of the quantum
group Uq(sl2). We have shown that varying the momentum k the cyclic
representation of Uq(sl2) can be continuously deformed into the highest
weight one. Involving the functional representation of Uq(sl2) the Harper
equation is reformulated as a system of functional equations which is sub-
sequently reduced to a single equation (31) admitting solutions in the space
of polynomials. Bethe-like equations determining the values of the roots
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of polynomials is obtained and the locations of roots on the complex plane
is investigated numerically. Using graphical plots we have shown that the
roots distributions are highly organized and arranged in a regular geometric
figures. Such observations make it clear that the analytic study of the equa-
tion (31), and of its symmetries in particular, would be of certain interest.
This however, lays beyond the scope of a given account and is the matter
of separate consideration.

Appendix A

The first Brillouin zone participating in (4) is usually drawn as a hexagon
depicted in the left panel of Figure 5. For our purposes we rearrange it into
the one shown in the right panel. The advantage of the rectangular one is
that the limits of kx-integration are independent of the value of ky and vice
versa.

kx

ky

ã1

ã2

kx

ky

ã1

ã2

Figure 5. Left panel represents the first Brillouin zone.
Using the vectors of equivalence ã1,2 = (±1 , 1√

3
) 2π

a we re-
arrange the Brillouin zone into what is shown in the right
panel.

Consider first the case of ν = even. We then have

|k0| =
1
2ν

N

4π√
3a

, (48)

where 1
2ν is integer, i.e. |k0| is the multiple of the N ’th part of the Brillouin

zone. We then split the integration area in (4) into N horizontal strips of
the height 1

N
4π√
3a

. Introducing N -component vectors (µ = A,B)

Ψµ(k) = {cµ(k), cµ(k − k0), . . . , cµ(k −Nk0 + k0)} (49)

and combining ΨA and ΨB into Ψ = {ΨA,ΨB} we eventually come to (7).
In the case of ν = odd we have to write (A1) as

|k0| = ν

2N

4π√
3a

(50)
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i.e. |k0| is now the multiple of the (2N)’th part of the Brillouin zone.
Performing the same steps as in the case of ν = even, the magnetic

Brillouin zone seems to be the 1
2N ’th part of the original one. However this

is not so and below we comment on the corresponding details.
We first split the integration area of (4) into (2N) equal horizontal strips

and rewrite (4) as

H =
∫

FBZ/(2N)

{
H†(k) +H(k)

}
dk, (51)

where FBZ/(2N) denotes any separate strip and

H =
2N∑
n=1

c†A(k − nk0 + k0)cB(k − nk0 + k0)+

+
2N∑
n=1

ξn(k)c†A(k − nk0 + k0)cB(k − nk0)+

+
2N∑
n=1

ζn(k)c†A(k − nk0)cB(k − nk0 + k0) (52)

with ξn(k) = q−ne+ika1 and ζn(k) = q−ne+ika2 .
We then decouple the summations into 1 6 n 6 N and N + 1 6 n 6 2N

and introduce (µ = A,B)

χµn(k) =
1√
2

cµ(k − nk0 + k0)+

+
(−1)niN√

2
cµ(k −Nk0 − nk0 + k0). (53)

We then construct

Ψµ(k) = {χµ1(k), χµ2(k), . . . , χµN (k)} (54)

and further Ψ = {ΨA, ΨB} which leads to the same (7). In other words,
the (2N) amount of modes involved in (A5) appear via the N -independent
combinations (A6).
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