•

•

•

• •

E

552.321.1(479)

. .

,

"

. .

"

Published with the financial support of the LTD "GOLDEN FLEECE"

ა.ვ.ოქროსცვარიძე

კავკასიონის ჰერცინული გრანიტოიდული მაგმატიზმი

წიგნი მომზადდა ავტორის მიერ კავკასიონზე 1980-1995 წლების განმავლიბაში ჩატარებული კომპლექსური გეოლოგიური სამუშაოების შესრულების შედეგად და დასაბეჭდად მზად იყო 1997 წელს, მაგრამ ობირქტური მიზეზების გამო ეს ვერ მოხერხდა. მიუხედავათ იმისა, რომ მას შემდეგ საკმაოდ დიდი დრო გავიდა ვფიქრობთ, რომ შრომა კვლავ ინარჩუნებს აქტუალობას. ამავე დროს, როგორც ჩანს უახლოეს მომავალში არ ისახება კავკასიონის ჰერცინული გრანიტოიდების კვლევის პერსპექტივები, რის გამოც გადავწყვიტეთ მისი გამოქვეყნება ახალი მონაცემების დამატებით.

წიგნის შესავალ ნაწილში მოკლედაა განხილული გრანიტწარმოშობის პრობლემა, მისი კვლევის დღევანდელი მდგომარეობა და გრანიტოიდული მაგმატიზმის როლი და ადგილი დედამიწის ქერქის ევოლუციის და სასარგებლო წიაღისეულის ფორმირების პროცესებში.

წიგნის ძირითადი ნაწილი ემყარება ავტორის მიერ მოპოვებულ მდიდარ მასალას ლითოსფერული თეორიის ფაქტიურ ფილების ფონზე და შესწავლილი კავკასიონის კომპლექსურადაა პერცინული გრანიტოიდული მაგმატიზმი და შემოთავაზებულია მისი გენეტური მოდელი. ამასთან ერთად, შრომის დასასრულს, დეტალურადაა აღწერილი საკენის ჰერცინულ გრანიტოიდულ ინტრიზივთან სივრცობრივად და გენეტურად დაკავშირებული ავტორის მიერ მიკვლეული ჰოკრილა-აჩაპარას ოქროს მადანგამოვლინება.

A.V.Okrostsvaridze

HERCYNIAN GRANITOID MAGMATIZM OF THE GREATER CAUCASUS

The book has been prepared by the author as a result of the research work carried out during 1980-1995 in the Greater Caucasus and it was ready for publication in 1997, but due to certain reasons it was not printed. Though, quite a long time has gone since then, we consider that the work still remains urgent. Besides, the situation shows that the investigation of Caucasian Hercynian granitoids most likely will not be carried out in the nearest future. Due to this reason we have decided to publish it adding new data.

The first part of the book shortly deals with the contemporary situation in the investigation of granitoids- the role and place of the granitoid magmatizm in the evolution of the continental crust, and the processes of formation of mineral resources.

The main part of the book relies on the vast factual material obtained by the author of the book. On the base of the theory of lithospheric plates, Caucasian Hercynian granitoid magmatizm is thoroughly investigated and petrogenetic model is introduced. At the end of the work, a Hokrila-Achapara gold ore-mineralization, revealed by the author of the book, and related in space and genetically to the Sakeni Hercynian granitoid intrusive, is described in detail.

	6
1	0
1. 1.1	0
1.1.	
1.2. 1.3.	
	16
1.4.	
2.	
2.1.	
2.2.	
3.	28
3.1.	
3.2.	- 34
3.3.	
3.3.1.	
3.3.2.	
3.3.3.	
3.3.4.	
3.4.	
4.	
4.1.	
5.	
5.1.	
5.2.	
6.	
6.1.	
6.2.	
6.3.	
7.	114
7.1.	
7.2.	
7.3.	
8.	
8.1.	
8.2.	
8.3.	
8.4.	
9.	
10.	,
10.1.	
Sum	mary177

•

, 12

,

,

-

,

•

7

, , _ _ _ _ . . , . . , _ _ . . , . . , _ . . _ _ _ .

, , , . , , , _ _ _ _ .

Ab –	Ilm -
Act-	Ksp-
Adu-	Mgt-
Alm –	Mikr -
Amph -	Ms -
An -	Ol -
Andl -	Ort -
Andr -	Pl -
Apt -	Px -
Aug -	Qtz -
Bt -	Ser -
Cc –	Sf -
Chl -	Sill -
Cor -	Spi -
Cum -	St -
Ep -	Tu -
Grt-	Zr -
Hbl –	Zs-

 $\begin{array}{cccc} & - & & (Grt_{47}) - \\ (Pl^{20}) & - & , & & (Ksp^{10}) & - \end{array}$

,

"

" " "

1.1.

XIX

. .

XIX .,

80-., "

J.Sederholm (1907).

,

,

"granium", (1700-1785),

, " " " ",

(1726-1797) " ".

50-XX-.

CNK>A>NK , A<NK.

(. 1.1).

1	1
1	•1•

	(Chyes, 1985)		
n	199	158	25
SiO ₂	71.45	67.43	74.01
TiO ₂	0.32	0.55	0.23
Al_2O_3	14.76	14.67	11.59
FeO _T	2.49	4.13	3.08
MnO	0.13	0.12	0.10
MgO	0.78	1.64	0.55
CaO	2.01	3.53	0.48
Na ₂ O	3.72	3.72	4.33
K ₂ O	3.52	3.20	5.09
P_2O_5	0.14	0.17	0.06
Total	99.32	99.16	99.52
A/CNK	1.10	0.93	0.86
NK/A	0.67	0.65	1.09

D.Pearce et al.(1984).

- Rb, Y, Yb, Nb, Ta,

,

(. 1.2).

()	
()		
- ,		-
- ,		-
- ,		-

,

O₂

,

:

(1977)							,		,	
			•		,	Mg/Fe,				
				,			S I			
		,	S	Ι				Ι,	,	
	,			S I			,			

:

	1.3.	S I (Chappel, White, 1974)
N	Ι	S
I	;	;
	,	, , , , , , , , , , , , , , , , , , , ,
II		
III	Na ₂ O	Na ₂ O
IV	Al ₂ O ₃ /(Na ₂ O+K ₂ O+CaO)<1.1	Al ₂ O ₃ /(Na ₂ O+K ₂ O+CaO)>1.1
V		>1%
VI		
VII		
VIII	87 Sr/ 86 Sr= 0.704-0.706	⁸⁷ Sr/ ⁸⁶ Sr >0.708
IX	,	,

80-

M.Loisell, D.Wones (1979)

"

•

,

, H_2O CaO.

> $(>830^{0}C)$,

J.Didier 1982 Η

: () : s

,

B. Barbarin (1991) Η

" " " ".

1979 (),

i

:

K₂O, F, Cl, Ga, Nb, Ta Y

().

"

N.Bowen

. .

n n

(IUGS).

, " ". 1961 P.Larsen R.Poldervaart, . , .Hamilton (1969)

, Si Na,

Zr, Y, Nb

. D.Clarke (1992),

•

(.1.4).

, , ,

, ,

14

1.4	(1992)								
	A>CNK	CNK>A>NK	A <nk< th=""></nk<>						
	, , , , , , , , , , , , , , , , , , , ,	, , ,	, , ,						
	, ,	,							
	, ,	, ,	, , , , , , , , , , , , , , , , , , , ,						
	F/Cl>3	-	- CaO, Al ₂ O ₃ , H ₂ O, Ba, Sr, Eu - SiO ₂ , Na, Fe/Mg, Na+K, Zr, Nb, Ta, REEs, Y F/Cl<3						
⁸⁷ Sr/ ⁸⁶ Sr	0.7050-0.7200	0.7030-0.7080	0.7030-0.7120						
Nd	<<0	=0							
	- ; : Sn- W-U-Mo- Cu Be-B-Li-P	Cu-Mo	Sn-W-U-Mo (Nb-T)						
			-						

).

(

:

"

"

• •

1.3.

••

, , , . . ,

"

"

,

•

,

••

(Taylor, McLennan, 1985).

V.Pollard (1979),

?

Homo sapiens.

,

, S. S. Taylor S. M. McLennan (1985),

,

3.2-2.5

R.L.Armstrong (1968, 1973),

(Morbath,

,

1978; Tailor, McLennan, 1985; Stein, Hofmann, 1994).

2	.5	,				
					Nd	Sr

(DePaolo, 1981, 1988; Samson et al., 1989; Samson, Patchett, (Hensel et al., 1985)

:

?

?

1.4.

(, 1990; .)

(Hall et al., 1974; .).

?

(Rona, 1984; .).

E.Raguin: "

1991)

.

(Raguin, 1976).

				· ·	S
,				Sn, W, Ta, Nb, Be Li	
		Ι	,	, Cu, Mo,	Ag Au,
	-			Zr, Nb .	

.

,

"

,

•

2.

	1004	`	(, 1972,	(2003;	, 1993; , 1979;	, 1970; .)	.),
(, 1984;	.)				•		
			,		,		,	
	•		-			,		
	,						,	
				,				
	(2005)		-				,	
			,					
	•		,					,
							•	,
			,					
		,						

2.1.

(,1937; ,1941; .). 50- 60- .

. . (1958, 1959, 1967), . . (1968, 1970), (1958), . . (1958), . . (1968), . . (1960), . . (1969), . . (1971) . . . (1963, 1964), . . (1968), . . (1965, 1969, 1971), . . (1970), . . (1972) .

1969, 1971), . . (1970), . . (1972) . , , , ,

.

60- .

. . (1960) ,

	(1965)
--	--------

.

(1965) . . (1968)

(, 1968), - (., 1969; , 1970).

. 70- . , (, 1970), -(, 1972).

(, , , , 1971).

. .

1973). 70- .

1972; .). (, 1969, 1972; , ,

(1972),

80-

,

(1978)

1:200 000.

, 1980; ., 1984, 1986; ., 1981, 1989; , 1986; (, 1987) (•• 1989). , 1985; , 1988; (, 1984; . ., 1989; " .). " (., 1991). , , 1979; , 1984; (, , 1982; .).

,

(

2.2.

:

, (. 2.1).

, , 1987).

, 1987). , 1960), (, 1982).

()):

_ 70-

, 1960: , 1984; , 1976; (,), (• , .,1985).

. (1962)

(1970, 1982)

,

1500

,

2000 ,

(:

.,1991).

K-Ar (1968, 1971). 383±20, 373±20 354±10 Rb-Sr 0.70343 (⁸⁷Sr/⁸⁶Sr 376±40 , 1991). Sm-Nd (, 1989).

400±11 460

, 1991), (,

(1974). . . , 1991),

(,

1991). K-Ar

)

(

(1971)), (

,

376±40

. ,

. (1984, 1986),

. K-Ar . 390 . 387 ± 10 . ((470±14 .) (, 1984).

, 1987). (

: Qrt+Bt+Pl+Ksp+Mu+Grt.

(1976)

),

), (. (, 1971). (

(1989) U-Pb ²⁰⁷Pb-²⁰⁶Pb .(1987) -2

. (1991) . . 400-420 1500-2000 -

)

.1000

),

(

 382 ± 20

(U-Pb

•

500

1971),

:

500 (100-800), (1971)

· , · . , · . (1978) · , · . , · . (1978) · , · . , · . , · . , · . , · . , · . , · . . (1974) · , · . . , · (1974)

. Sm-Nd (, , 1990), 320 . . U-Pb . (., 1991).

, (10) . 1000 .

, . . , (. .), (...), (...), (...), (...), (...), (...), (...), (...), (...), (...), (...), (...), (...), (...), (...), (...), (...,1975).

, , , (,1991).

(

3.1. -

12 ²

, ,... _ (, ... , _ (

, 1991),

(

1971). . . (1976) (., 1984).

, (, ,1982). (,1975)

, , , (_____, 1991).

- , - . , , , , _ .

> (0,4-2,0), ,

: Pl¹⁰⁻⁴⁰+Qtz+Chl+Ep±Grt±Sf+Mgt;

, (. 1249).

•

,

15-16 ². (1970) : . 3.2). : Pl+Qrt+Chl±Ep ±Hrb±Bt±Ms±Ser±Sf±Grt±Zr. (0.1-1.3), (0.05-2.0) . (0.2-0.5) 8-12%. : (0.1-1.5) Pl+Qrt±Mikr±Chl±Ep±Ms±Bt±Ser. (0.1-1) . •

: Pl⁴⁰⁻⁷⁰+Qrt±Cpx±Act±Hbl±Ep±Ap±Sf±Grt±Ser.

,

32

(2).

, 1985).

,

(1)

(

,

(1968), . : (1970) : (1972), (1962), (1968), . . (1985). (3-6). , (1968) -Ar 400-450 450-460 . . • . Sm-Nd , 1989). (400 ± 11 460 , 1971). ⁸⁷Sr/⁸⁶Sr Rb-Sr 370 . - 0.70343, . Sm-Nd (_{Nd}) (Allegre, Ben Othman, 1980; De Paolo, 1988; De Paolo et al., 1991), Rb-Sr (Taylor, McLennan, 1985; , 1989). , 400-460 Rb-Sr (370), .). (, ,

(, , 1982).

,

, - - , - , - , - , - , - , , ,

,

, (.). . , , , . , . .) - . . . -

. 3.1). : (,

.

:

:

(..., -, , ..., ..., ..., ..., , ..., ..., , ..., , ..., ..., ..., , ..., ..., , ..., ..., ..., ..., , ..., ..., .

: Hrb+Pl+Chl+Ep+Py+Sf. ,

$Pl+Qrt+Hrb+Bt+Ep\pm Ksp\pm Sf\pm Ap\pm Zr+Ilm.$

Pl+Qrt+Mik+Bt+Hrb+Ep+Chl+Sf+Ap+Zr+Ort+Mgt.

35

, -(), .

, , , . Pl+Qrt+Mik+Hrb+Bt+Chl+Ep+Mu+Ap+Zr+Sf+Ort+Mgt.

:

:

_____, . ____,

. . , . (1967) . . (1972) . . . , . (1967)

. 10

, Pl+Qrt+Mik+Bt±Chl±Mu±Ep±Ap±Zr±Sf±Ru±Mgt.

);

(

,

 Pl^{30-50} +Qrt±Mik±Hrb±Bt±Ep±Chl±II.

•

•

,

-

,

(.3.3.). , 50 , , . (.).

,

:

-

; 3-

),

(

.

:

, .

> . 70².

, , , , , ,

3

,

,_

•

.3.5.

-

.3.6.

•

•

•

•

10

,

; 2-; 4-

, 700-1000

20

; 3-

.

.

(1972).

K-Ar 140-170 (, 1968; , 1969; , 1989).

, . (1990) U-Pb Rb-Sr

305±5 . (U-Pb). 320 (1991) U-Pb 320

.

,

(320), . 320±5 • (305-310 ́). ,

3.3.

. 3.1.) (

 ·
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,

, , . . .

, . . _ , , , , , ,

--, , , ,

.

, , , , .

,

. . . (1958), . . (1965) .

3.10).

. .3.11).

(

.

. 3.11.

•

,

,

0.2 1 .

,

40-45%. 1 5

•

45-75%.

.

, 60-70%.

,

-

-

. 3.12.

•

.3.17),

(

(.3.13).

•

. 3.13.

.

.

. 3.15.

•

•

•

. 3.16.

. 3.17.

(Pl+Qrt; Pl+Qrt+Bt; Pl+Qrt+Bt+Mu), (Pl+Mik +Qrt; Pl+Mk+Qrt+Bt; Pl+Mk+Qrt+Bt+Mu; Mik+Qrt).

,

.

; 2-

; 3-

. 1-

•

:

,

,

-

•

. . 1009. . ., . 4,7x10.

•

(1-3)

.

. 3.23.

" " . .130. . ., . 4,7x10.

, 3.22.

.

,

(.3.24).

. 3.25.

(

700-750 ,

"

.

, , , , , ,

, 1984). -

2 , ··· . , 2 , ···

 $_2$ Na₂O.

3.1.

,

2 SiO₂

2	SiO ₂	2	SiO ₂	
3,73(8)	56,33 (8)	4,46(65)	72,42(65)	
				-
2,09(10)	53,17(10)	2,32(50)	68,73(50)	-
0,59(11)	51,71(11)	0,88(30)	71,15(30)	-

, , , . . .

· , , , , .

2950 , 3-

,

. 3.27.

270-300 , 2700 , 30 , 340^{0} , 340^{0} ,

, " " " , " " " , " " , " " , 270-300 . ,

3.3.4.

:

(0,1-1)

(-2v=60-

(

(-2v =78-85)

(1-2)

(0,1-1,7)

).

. 1-

; 2-

(.3.29).

•

•

45⁰,

. 3.29.

400 ".

Qrt+Pl+Sill+Grt,

· . ·

- Qrt+Pl+Sill+Bt

--

, (1991). , (

(., 1991). , , , ,

400 ,

,

3.31).

,

,

,

,

•

(

. 3.30.

- (2).

(4).

(3).

. 3.31.

(3).

(2).

69

•

•

(4).

(.3.33).

-

.

,

(150 350 . - r). , , (1990) 305±5 · , . . U-Pb 295±10 , Rb-, . Sr U-Pb ,

70

,

,

.%)

(

	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	MnO	CaO	MgO	K ₂ O	Na ₂ O	Ν		
Ι	51.47	0.68	16.57	3.70	6.52	0.17	7.88	6.50	1.02	3.16	15		
II	59.50	0.42	15.69	3.48	3.68	0.11	6.28	4.84	0.75	3.74	25		
III	65.30	0.32	15.41	2.39	3.12	0.10	4.00	2.25	0.66	3.76	30		
IV	71.33	0.25	14.03	1.15	2.14	0.06	2.70	1.13	0.81	4.03	35		
V	77.28	0.11	12.94	0.42	0.65	0.03	1.78	0.60	0.39	4.85	20		
<u> </u>													
Ι	52.87	0.92	16.93	3.56	4.87	0.17	7.60	5.43	1.66	3.16	17		
II	60.02	0.67	17.35	3.29	4.60	0.12	5.60	2.39	1.97	2.77	30		
III	64.60	0.58	16.55	2.33	3.26	0.14	3.86	1.96	3.09	3.43	38		
IV	71.09	0.30	15.28	1.29	1.40	0.07	1.89	0.86	3.57	3.65	47		
<u></u>	<u>.</u> L	1	1	1	-			1	1	1			
II	58.85	0.96	17.27	2.53	5.22	0.14	2.67	3.45	3.49	2.93	10		
III	64.74	0.69	16.37	2.91	4.46	0.13	1.60	2.26	4.16	2.49	30		
IV	70.45	0.31	14.48	1.11	2.71	0.09	1.50	1.60	3.28	2.45	30		
V	75.75	0.33	14.02	0.73	2.31	0.08	1.17	1.49	2.35	2.56	12		
							-						
III	65.05	0.74	16.14	1.60	3.29	0.11	3.32	2.09	2.06	3.25	12		
IV	72.18	0.30	14.71	0.73	1.72	0.07	2.12	0.95	1.48	4.25	35		
V	75.56	0.18	13.48	1.13	0.05	1.34	0.90	1.35	1.35	4.07	25		
				-			-			-			
III	66.06	0.58	16.30	1.81	2.12	0.06	2.10	1.51	4.92	3.01	20		
IV	70.70	0.32	15.01	1.06	1.18	0.05	1.67	0.81	5.20	3.27	45		
V	75.95	0.05	12.77	0.27	0.77	0.03	0.57	0.43	5.92	2.60	25		
	-				-								
III	67.55	0.61	15.66	1.66	2.54	0.07	2.59	1.50	2.81	3.58	8		
IV	71.85	0.25	14.97	0.87	1.22	0.04	1.21	0.65	4.55	3.48	120		
V	75.75	0.15	13.14	0.67	0.77	0.02	0.79	0.51	2.87	3.80	7		
										1			
II	60.53	0.60	17.81	2.17	3.77	2.24	3.12	2.98	2.92	2.78	5		
III	65.52	0.70	16.38	1.87	2.99	0.12	1.72	2.18	3.27	3.36	15		
IV	70.94	0.45	15.49	1.12	2.02	0.06	1.32	1.16	3.83	3.55	15		

•

•

,

N –

An-Or,

(

.4.1), ,

,

_

 $\begin{array}{c} SiO_2\text{-}(Na_2O\text{-}K_2O) \quad Ab-\\ SiO_2\text{-}(Na_2O\text{-}K_2O) \end{array}$

,

•

.
4.2.

	A	F	М	k	f	CaO+	SiO ₂ +	Or	Al	Q	NPl
						$2Al_2O_3$	$2Al_2O_3$				
		-		-							
Ι	17.37	52.6	30.1	11.5	53.3	29.5	79.5	4.5	52.8	42.7	55
Π	22.2	49.6	28.1	10.4	49.8	27.3	82.4	5.0	48.8	46.2	46
III	35.7	43.5	20.8	9.6	56.7	22.5	89.8	4.1	39.7	56.2	42
IV	59.2	29.6	11.2	10.2	55.0	19.6	94.3	5.8	47.3	46.9	25
V	76.5	14.1	9.4	4.8	52.2	17.7	96.6	3.7	47.0	49.7	17
					-						
Ι	27.3	51.6	21.1	35.5	46.5	28.7	81.5	27.9	52.6	19.5	62
II	37.3	44.2	18.5	38.3	57.5	27.5	87.0	28.3	38.8	32.9	52
III	47.6	38.2	14.8	34.7	64.1	24.9	90.4	26.7	34.2	39.1	40
IV	57.8	33.6	10.6	45.4	67.3	21.5	94.0	27.8	31.1	41.1	33
					-						
II	35.7	44.2	20.1	49.3	57.6	25.1	87.3	30.0	31.8	38.2	30
III	42.0	39.7	18.3	45.1	58.5	22.4	89.7	27.4	23.2	49.4	31
IV	53.2	32.0	14.8	40.5	56.7	20.1	92.4	21.8	28.0	50.8	30
V	51.7	30.7	17.6	57.6	52.2	14.5	94.3	29.2	23.0	47.8	19
						,		-			
III	42.7	40.6	16.7	29.5	52.4	23.7	89.1	19.3	42.8	37.9	35
IV	59.3	25.5	15.2	20.0	68.5	20.2	94.5	11.5	44.4	44.1	24
V	68.4	20.3	11.3	19.1	52.7	18.1	56.5	9.9	33.7	56.4	17
							-				
III	57.6	31.6	10.8	46.6	62.5	20.6	94.0	34.6	36.8	28.6	27
IV	78.4	15.3	6.3	52.3	60.5	19.5	96.5	36.7	32.7	30.6	16
V	87.6	9.4	3.0	63.0	65.5	12.2	98.7	50.1	20.1	29.8	10
						• 				1	
III	58.1	30.8	10.1	37.0	60.6	22.0	93.1	25.0	38.8	36.2	24
IV	70.2	21.5	8.7	38.3	67.5	20.2	96.5	27.3	35.2	37.5	15
V	76.6	16.2	7.2	34.2	53.2	16.8	97.6	18.4	35.4	46.2	7
II	37.9	43.6	18.5	38.8	58.7	25.5	88.1	27.9	37.5	34.6	35
III	47.6	37.4	15.0	37.1	58.7	22.7	91.7	25.7	34.6	39.7	20
IV	62.3	27.2	10.5	38.0	59.0	21.1	95.2	24.0	36.4	39.6	15

c

Ι

IV

IV)

(

2,

SiO₂

•

Ab-An-Or (.4.2).

. 4.2.

Ab-An-Or (

(V),

_

(

-, ,

, .

, , ,). , _

_____, ____, ____,

-, , , (

SiO₂ Na₂O

.4.3),

,

(

SiO₂>75,00%, V

,

IV

.4.6).

.

(

2

 SiO_2

(.

₂ Na₂O

₂ /Na₂O

SiO₂ (.4.8),

•

_

 SiO_2

. TiO₂, Fe₂O₃ FeO, F.Evrard

(. 4.11)

,

,

(I II). (III IV), SiO₂,

⊖-3

81

1

(.III)

,

,

(.III)

7-

,

(.III),

84

_

•

 R_1 - R_2

(. 4.13).

 $R_{1}\mbox{-}R_{2} \label{eq:R1-R2} (Batchelor, Bowden, 1985) \ R_{1}\mbox{=}4Si\mbox{-}11(Na\mbox{+}K)\mbox{-}2(Fe\mbox{+}Ti); \ R_{2}\mbox{=}6Ca\mbox{+}2Mg\mbox{+}Al).$

: 1-		,	2-	, 3 –	, 4 –
	, 5 – : 1.	, 6 – -	, 7-	2	, 3.
	_	-	, 4.	-	, 5.

400 Cu, Pb, Zn, Mo, Ni, V, Co, Cr, W, Sn, Li Rb.

Mo V

. 5.1.

	5.1.										
	(/),1	N –									
Cu	Pb	Zn	Mo	Ni	Co	Cr	V	W	Li	Rb	Ν
				-							
65	4.3	70	30	55	17	470	73	7.4	2	10	30
					-						
19	33	87	1.8	36.7	14.5	320	151	22	14	149	70
					-						
15	22	50	1.7	30	13	340	100	14	15	105	50
							-				
14	33	56	2.6	12	8	525	76	17.5	10	38	25
								-			
13	37	51	2.6	11	7.5	403	34	20	18	144	55
11	24	63	2.7	17	15	168	74	21	16.6	88	20
					-						
17	30	54	2.9	16	11	325	30	24	15.5	126	80

(.5.1)

W, Sn,

•

.

_

.5.1. Cu, Pb Zn

(1962).

. 5.2. Mo, Ni Co 5.1.

, 3 I W.S.Pitcher (1982)

· (. 5.2). - 37,5 / (10 /). - 55 / (35 /),

,

,

Cr (.5.3).

/,		Cu	, Mo	Ni. 30 / .	-	,			65 ,
,	. <i>.</i>	u, Mo ,	Ni ,	,		Cu		W.S	.Pitcher, I
	W V						,	•	
		, 		,	4	, _			, -
		Pb, Sn	W.						W, _
	WS	Sn .	24	W, / . W.S.P	itcher	(1982)	S	, ,	
Cr									,
			5.2.						

, () , , , , . 40

		(. 5.2).	W. V. Dounton (1084)
		,	W.V.Douilloii (1984).
			,
,	SiO ₂ –Yb		
		(. 5.5).
-		6	:

10,

.

Eu

. 5.5. SiO₂–Yb

,

,

, Eu

(Wedepol, 1983).

:

95

.

(2204, 2355).

(354, 2592)

. 5.11

. 6.12

•

(. 55, 172,

,

(. 354)

(. 55, 172, 176)

•

(.5.14).

_

, , , - . . - , ,

(. . 5.10)

,

,

,

.

,

, , , ,

, , , , , .

•

•		•	(%)			• 0
		%				
					2	5
		1				
8	-	3	36	0,90	390	410
10		35	20	0,85	600	630
7		20	25	0,85	540	580
10	•	15	20	0,80	470	520
5		7	15	0,80	390	420
5		5	20	0,90	360	390

_

 470^0 (2) 520^0 (5).

,

2

:

	Na	•	,	,	
- , 10	· ,		Na	-	SrO
390 / , 170 140 / .	,			,	,

6.2. %) Fe₂O₃ n SiO₂ TiO₂ Al_2O_3 FeO MnO MgO CaO K₂O Na₂O H_2O^{-1} H_2O^+ 30 36,87 1,23 15,34 6,46 13,17 0,31 9,40 1,46 9,15 0,18 1,50 4,37 99,32 -30 35,92 1,46 18,64 5,48 14,40 0,23 8,56 7,84 0,14 1,03 4,62 99,56 1,56 35,35 1,50 17,45 5,78 13,60 0,25 9,92 1,72 7,78 0,09 1,23 5,14 99,74 10 -30 34,28 0,78 18,36 9,74 14,76 0,31 7,73 3,30 0,14 1,71 6,39 99,74 1,66 -40 35,98 1,80 17,90 8,40 13,22 0,44 8,08 1,49 6,95 0,13 1,62 4,96 99,40

	6.3.												
			(22)					
Si	Al _{IV}	Ζ	Al _{IV}	Ti	Fe ⁺³	Fe ⁺²	Mn	Mg	Y	K	Na	Ca	X
					-								
5,66	2,32	8,00	0,45	0,14	0,74	1,83	0,04	2,15	5,35	1,80	0,04	0,23	2,07
							-						
5,42	2,58	8,00	0,75	0,16	0,60	1,79	0,03	1,88	5,25	1,52	0,02	0,24	1,78
								-					
5,42	2,58	8,00	0,59	0,16	0,69	1,74	0,03	2,26	5,47	1,51	0,02	0,24	1,77
								-					
5,17	2,83	8,00	0,56	0,09	1,23	1,95	0,04	1,82	5,69	0,66	0,04	0,28	0,98
						-							
5,45	2,54	8,00	0,73	0,15	0,89	1,64	0,03	1,79	5,23	1,30	0,03	0,31	1,54

105

6.2.

140

. 6.2, 6.3 6.4.

. 6.1,

M. Foster. - ,

· - , - . - , - . - , , ,

(. 6.3).

. 6.3.

: 1- - , 2 - - , 3 -; 5 - - ; 4 - , 3 -

6.4.

Li Rb (/).							
	Μ	f	1	Li	Rb		
-	47	52	21	110	867		
-	40	58	29	95	685		
	44	54	25	52	447		
	40	56	25	82	599		
· · ·	38	60	26	175	951		

, 1980; , 1985 .)

Rb

(

. 6.4.

Li 6.1.

Rb 6.1.

110

85

,

,

. 6.5 6.6.

,

(%),

						-						
SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	FeO	MnO	MgO	CaO	K_2O	Na ₂ O	H_2O^-	H_2O^+	
-												
45.97	-	30.82	1.95	0.90	-	1.36	1.11	9.50	0.79	1.32	5.32	99.73
-												
47.55	0.75	30.47	1.60	1.01	-	1.23	0.93	9.61	0.64	0.60	5.24	99.76
							-					
46.37	-	29.13	1.75	0.93	0.01	1.29	1.21	10.34	0.83	1.17	6.15	99.84
									-			
46.34	-	31.39	1.44	0.48	-	1.23	1.04	10.56	0.78	0.66	5.48	99.70
46.34	-	30.26	1.43	0.54	-	0.85	0.91	11.40	0.81	0.28	6.48	99.83
											÷	

-

.

				М	f	1
			-			
26	43.0	8.4	48.6	48	51	40
			-	·		
18	36.8	8.3	54.9	49	50	40
				-		
10	48.0	11.1	40.9	48	50	40
				-		
20	44.4	10.6	45.0	57	40	42
				-		
10	56.2	10.8	33.0	41	58	41

. 6.6. () Mu-Phe-Par . K.Kanehira Sh. Bano (1960). . : 1 - . , 2 -. , 3 -. , 4 - . , 5- .

. 6.6). . 6.7

(

Si,

. 6.6)

(

6.8)

(_{Na-Cl})

		•	•			•	CO ₂	N_2	CH ₄
		•			· · (%)	•			
					(_{NaCl})		<u> </u>		
-	Ι	-45 -25	-25 -18	Na-Cl	20-18	90-160	$=-56,6^{\circ}$	$= -210^{\circ}$	$= -185,5^{\circ}$
									-
	II	-	-7 2	-	10 -1	90 - 160	-	-	
	Ι	- 35 -22	-12 -5	Na-Cl	15	90-170	$= 0^{0}$	$= 137^{\circ}$	-
-	Π	-	-3	Mg+Fe	5	90-170	-	-	-
				+Ca			0	0	
	Ι	-45 -20	-29 -19	Na-C	28-21	70-160	$= -11^{\circ}$	$= 143^{\circ}$	-
								-	
-	II	-12 -10	-7 -2	-Na	10-4	70-160	-		-
	Ι	- 49	-15 -10	Na-	19-14	110-170	$=-19^{0}$	-	$= -94,5^{\circ}$
-							-29°		
	Π	-	-6 2	-	9-1	100-170		-	$= -90,5^{\circ}$
							-		
	Ι	-16 -23	-6 -2	Na-Cl	10-4	100-160	-	-	-
	II	-	-6 -1	-	9-2	100-160	-	-	-

- ,

. 7.1.

9 1 %. $100 \quad 170^0$. 2 20-88 23-50. (+31.2[°]). 23-50 20-40%. 2 - 2, 2 2 , -29^{0} -19 ₂ (Brown, Lamb, 1986). 2 $650 \quad 700^{\circ}$, 4.0 - 4.3 (₂ =40 23-52 5.3 - 5.5 2 = 20 .%) %). (94.5⁰ , -80.5⁰. (Lamb, Valley, 1985). 23-52 (), (125), (212-, 214-). (338), (966), (2617), (64- , 68-) , () -5^{0} -25⁰ , -40 -18 8 20 . % NaCl· , 1986; (, 1988). 10 1 .% 90 NaCl• 160^{0} . 7.2), (214- $-50,6^{0}$ 2 2 (, 1988; Sterner, Bodner, 1989), 2. =-34⁰) 2 (3/. PVT_{CO2} (0.92 , 1986), , 700 750⁰ (, 1993).

2

N-CO₂ . (),

(-147[°]) (.7.1.).

, $2.5 \quad 2.8$. . 33. $-137 \quad -144^0$, -137^0 .

- (.20-88), (.23-50, 23-52), (.75), (.9-88),

(. 354)		,		14-19	- , . % _{NaCl}
$+2^{0}$.				100	-6 9 1 . % _{NaCl} 170 ⁰ .
	,	20-88	23-50		(+31.2 [°])
	2 - 2,				$20-40\%, -19 29^{\circ}$. ₂ - ₂ (Collins, 1979).
3.8-4.3	(20%	2)		, , , , , , , , , , , , , , , , , , ,	, 5.0-5.3 (40% ₂)

. 7.5. 2 -2• . . 590 . . 23-52 -80.5° . -94.5⁰, (Lamb, Valley, 1985). (.23-52). (. 33, 80), (. 850, 857, 913), -(.20-44) (.20-63) 28 21 -10 . % -12^0 , NaCl• -7 -2^{0} , 1982), 10 4 2 . 80. $_{2}$ (=111⁰ , V=1.16 ³/), = 550-600⁰

.7.6. .2747. (), (?) (?). . 482 .

. 7.2.

	•	2	S ₂ (/)	650 ⁰	700 ⁰
-	-3 ⁰	-	0,92	6,3	6,7
-	-30 ⁰	-	0,93	(2,3)	(2,6)
-	-1 ⁰	-	1,16	3,5	3,7
	-29^{0}	20%	0,80	5,3	5,5
-	-10	40%	0,80	4,0	4,3

: 1. () 2 N₂ 2, 2 -2 $_{2}$, N_{2} -2, 4 2, 2 2.

 $4 N_2),$, , 2 , 2 4. - , 2, .

, _ _ _

O ₂ , H ₂ S, HCl HF.	6%.	. 7.3.	4	, –
, , , Sawkins 1987)	. 7.3 H ₂ O. 6 / . H ₂ O. , N/C [(N= 0.15-0.50,	11 / , , 10. =2N ₂ ; C=CO ₂ +CH ₄ +3(C _x H _y)] 7 3)	, H ₂ O/ CO ₂	20, 0.15 (Norman, 0.22
Suwkins, 1907).	· · ·	0.081,	,	0.22,
/ .	-	-		2.8
	H ₂ O	H ₂ O/ CO ₂ 20.	3,3,	, -
,	CO_2 , CO.	. CO ₂ . H ₂ O/CO ₂ 1.9 , 3.3	, 2.7.	
NG	CO ₂	, CO.		
N/C . 0.121 0.114,	N/C	, 0.314 0.347,	-	-
-		,	,	-
	2 / ,	(7.3) 5 , 2.	-	- H ₂ O/CO ₂
22.	5,3, ,	- 2,		
3-3.5.		/ 2 N/C, ,	2, ,	0,25
2	, H ₂ O/CO ₂	2.8, ,	,	, N/C

. 7.3		N/C					(/)					
•	H ₂ O	CO ₂	CH ₄	C:H:	H_2	CO	N_2	SO ₂	H ₂ S	Ν	N/C	H ₂ O/CO ₂
					-							
1221	3.461	0.358	0.104	0.014	0.052	0.859	0.116	0.0002	0.0005	5.016	0.228	9.9
1326	3.527	0.312	0.089	0.018	0.047	0.741	0.137	0.0002	0.0007	4.876	0.236	11.3
66	10.558	0.483	0.0039	0.005	0.003	0.650	0.048	0.0003	0.0001	11.792	0.081	21.9
88	8.365	0.502	0.026	0.006	0.005	0.787	0.059	0.002	0.001	9.505	0.074	17.8
						-						
186	1.193	0.402	0.057	0.010	0.072	0.535	0.180	0.0006	0.0005	2.469	0.347	2.7
819	1.102	0.313	0.059	0.007	0.082	0.518	0.143	0.0008	0.0003	2.224	0.314	3.3
2743	1.079	0.660	0.048	0.013	0.809	0.301	0.053	0.0001	0.0001	2.980	0.121	1.6
2882	1.055	0.552	0.029	0.011	0.577	0.461	0.087	0.0008	0.0008	2.754	0.114	1.9
						-						
125	0.660	0.142	0.158	0.110	0.059	0.393	0.0811	0.0001	0.0003	1.407	0.352	4.7
168	0.631	0.120	0.044	0.008	0.042	0.408	0.082	0.0001	0.0001	1.338	0.276	5.3
212	0.507	0.144	0.049	0.011	0.037	0.627	0.111	0.0004	0.0003	1.500	0.254	3.5
214	0.885	0.176	0.046	0.010	0.022	0.576	0.175	0.0003	0.0003	1.946	0.396	5.1
966	0.951	0.222	0.036	0.010	0.018	0.451	0.073	0.0001	0.890	0.176	0.196	4.3
2617	0.788	0.189	0.059	0.013	0.032	0.674	0.129	0.0005	0.0004	1.765	0.498	4.9
							-					
33	0.700	0.438	0.055	0.012	0.033	0.654	0.236	0.0006	0.0003	2.134	0.398	1.6
332	0.902	0.342	0.048	0.010	0.026	0.544	0.121	0.0002	0.0003	1.974	0.205	2.8
984	0.707	0.376	0.037	0.008	0.021	0.380	0.139	0.0001	0.0003	1.672	0.265	1.9
2818	0.880	0.614	0.054	0.011	0.033	0.652	0.182	0.0001	0.0001	2.432	0.175	1.2
							-					
850	2.062	0.190	0.062	0.016	0.032	0.958	0.119	0.0007	0.0003	3.279	0.190	10.8
2044	3.047	0.274	0.147	0.015	0.043	1.455	0.154	0.0016	0.0003	5.137	0.223	11.1
2063	5.450	0.325	0.099	0.039	0.034	1.307	0.103	0.0012	0.0003	7.312	0.201	16.2
						-						
75	2.876	0.316	0.990	0.020	0.018	1.146	0.154	0.0037	0.0001	4.627	0.214	9.1
972	2.116	0.292	0.096	0.022	0.021	1.067	0.177	0.0006	0.0005	3.798	0.233	7.9
2352	2.900	0.375	0.100	0.017	0.026	1.139	0.284	0.0003	0.0007	4.995	0.245	7.8

2 / 2 8.2. N/

:

,

,

,

,

,

, (2)-

,

7.3

,

19-

,

: (1)-

, (3)

•

,

,

.

.

-

, , <u>2</u> /, 5.5 /. , , ,

,

(1989). ($=560-720^{\circ}$, =3.3-3.4; ($=470-580^{0}$, =2.8-3.2) -; =430-) - 550^0 , =2.7-2.9 ; ($=480-630^{\circ}$ =3.2-4.0 ; =520-570⁰, =1.2-2.0 () -=1.5-2.0 ; $=430-520^{\circ}$,) -(=3.2-3.4 $=500-570^{\circ}$,) $=420-580^{0}$, =4.8-5.2 ;) -) - =470-530[°], =6.8-(7.5 , Bt+Sill↔Grt+Cor+Ksp. , : $St+Ms+Qrz \leftrightarrow Bt+Grt+Sill.$ -: Hbl+Grt+Pl+Qtz+Ep; Hbl+Grt+Ep+Pl+Qtz±Bt; Hbl+Phn+Chl+Ab+Qtz+Ep, - Grt +Bt±Chl+Phn+Hbl+Qtz.

:

(

,

(Å),

8.

1977).		
	20	, (. 8.1). -

131

8.1.

,

,

	(Å)		0	
N	(11)			
66	6.705	Pl+ Qtz+ Mikr+Bt+Sill	720	- ,
				,
125	6.703	Pl+Qtz+Bt+Grt+Sill	750	- , ,
966	6.703	Pl+Qtz+Bt+Sill+Grt+Cor	750	- , , , , , , , , , , , , , , , , , , ,
2960	6.716	Pl+Qtz+Bt+Mirk+Ms	630	, ,
202	6.716	Pl+Qtz+Bt+Ms+Grt	630	, ,
228	6.718	Pl+Qtz+Bt+Grt	620	, ,
231	6.718	Pl+Qtz+Bt+Ms+Grt	620	, ,
813	6.716	Pl+Qtz+Chl+Grt	660	, , .
1286	6.718	Pl+Qtz+Chl+Grt	620	- ,
1336	6.718	Pl+Qtz+Chl+Ep	620	- ,

 $\begin{array}{c} . \ 8.1 \\ 660^0 \end{array}$,

 $620\text{-}630^0$.

-

•

-

(620⁰).

 $.750^{0}$.

,

8.2.

Fe, Mg, Mn

-

-

1500 "CAMEBAX MICROBEAM". (1983), -(1983). " " 560-720⁰ , 1989). (. 8.2 700-750⁰ $720-730^0$, 810^0 . _). 2108 2.5 $: \quad Grt_{87\text{-}91} + Bt_{68\text{-}70} + Cor + Sill + Mikr + Pl.$ (0.8-1.8 8.2). Mn, (68-70%), (52%). 39 42%. 720⁰ 650^0 . (. . 8.2) 3.6 - 2.2 . , 720^{0} 3.6 650^{0} 2.2 . 2110, 200 2108. , , , (1-1.6 35-)

133

,

Ν		SiO ₂	TiO ₂	Al_2O_3	FeO	MgO	MnO	K ₂ O	CaO		0
•											
278	Bt	34.57	3.50	18.21	21.80	7.12	0.86	9.60	0.00	,	730°
	Grt	38.10	0.00	20.23	30.55	3.02	7.34	0.00	0.38		
	Bt	33.64	1.94	20.51	24.99	9.10	0.30	7.10	0.00	,	700^{0}
405	Grt	37.77	0.00	19.73	35.70	3.80	0.00	0.00	0.1		
	Cor	50.68	0.00	34.47	10.10	3.63	0.00	0.00	0.34		
966	Bt	33.49	3.35	19.68	24.25	7.52	1.15	8.57	0.00	, .	735°
	Grt	36.61	0.00	20.54	31.67	3.21	7.41	0.00	0.00		
1017	Bt	34.97	2.69	21.58	20.17	8.14	1.18	7.34	0.00	, .	730^{0}
	Grt	38.50	0.00	19.78	29.29	3.51	7.85	0.00	1.14		
125	Bt	34.64	1.10	19.55	21.83	8.35	0.14	8.88	2.70	,	740^{0}
	Grt	40.74	0.00	19.72	29.75	3.88	4,26	0.00	1.35		
105	Bt	35.94	1.44	20.06	20.13	8.42	0.25	7.20	2.70	,	750^{0}
	Grt	39.80	0.00	18.76	26.77	3.52	8.95	0.00	2.03		
2027	Bt	34.39	1.92	18.80	17.54	8.25	0.21	9.39	0.10	,	710^{0}
	Grt	34.82	0.00	21.01	33.96	3.11	4.01	0.00	1.16		
	Bt	36.75	2.23	16.78	25.94	6.45	0.11	9.89	0.00		$.720^{0}$
	Grt	35.32	0.00	19.59	37.56	2.95	3.51	0.00	0.85	,	$.650^{0}$
2108	Grt	34.74	0.00	19.17	36.99	2.04	6.12	0.00	0.72		. 3.6
	Cor	48.22	0.03	32.05	10.08	8.16	0.14	0.00	0.00		. 2.2
	Bt	36.62	2.21	18.35	19.32	10.44	0.17	0.19	0.00		$.730^{0}$
	Grt	35.73	0.00	19.77	37.19	3.01	3.41	0.00	0.91	,	$.660^{0}$
2110	Grt	34.31	0.00	18.92	36.71	1.99	6.29	0.00	0.54		. 3.7
	Cor	48.60	0.00	31.70	9.25	8.00	0.27	0.54	0.00		. 2.2
2374	Bt	36.14	1.71	21.53	19.98	9.06	0.00	9.34	0.00		810^{0}
	Grt	37.64	0.02	20.53	24.04	4.63	11.37	0.00	1.10	,	

,

2087

.2087)

(1.8-2.0)

Q	2
0	.J.

(.%)

					-				•		
Ν	•	SiO ₂	TiO ₂	Al_2O_3	FeO	MgO	MnO	K ₂ O	CaO	,	0
106	Bt	34.93	1.78	17.75	20.20	6.90	0.00	7.10	0.00	Pl ¹⁷ +Mik+Qtz+BT ₇₄ +Grt ₈₂ +Sill	660
	Grt .	36.92	0.00	19.77	35.78	3.73	4.43	0.00	0.92		.640
	Grt .	37.13	0.00	19.35	35.02	3.10	4.11	0.00	1.52		
207	Bt	34.72	1.89	18.05	19.80	6.90	0.00	6.90	0.00	Pl ²² +Mik+Qtz+Grt ₈₀	650
	Grt .	38.05	0.00	20.32	35.80	3.60	6.80	0.00	1.15	, .	.630
	Grt .	37.65	0.00	19.72	35.10	2.90	7.11	0.00	1.74		
214	Bt	35.05	1.62	18.25	20.10	7.70	0.00	7.10	0.00	Pl ²⁰ +Mik+Qtz+Bt ₇₄ +Grt ₇₉ +Mu	635
	Grt .	37.42	0.00	19.81	37.7.	3.44	3.07	0.00	0.05	-	.625
	Grt .	38.15	0.00	20.31	38.26	3.16	3.15	0.00	0.05	,	
20	Bt	35.17	1.32	18.15	20.15	7.80	0.00	0.90	0.00	Pl ²⁵ +Mik+Qtz+Bt ₇₂ +Grt ₈₄	655
	Grt .	37.15	0.00	20.70	36.45	3.75	3.13	0.00	1.32	, .	.635
	Grt .	36.92	0.00	21.07	37.32	3.25	3.37	0.00	1.17		
530	Bt	33.56	1.84	17.14	21.60	7.20	0.00	7.90	0.00	Pl ²⁰ +Mik+Qtz+Bt ₇₅ +Grt ₇₈	665
	Grt .	34.22	0.00	18.00	33.60	2.50	7.15	0.00	0.04		.645
	Grt .	34.85	0.00	18.56	34.10	2.40	6.70	0.00	0.03		

(%)

				-							
Ν	•	SiO ₂	TiO ₂	Al_2O_3	FeO	MgO	MnO	K_2O	CaO	,	0
		_				C		-			
2087	Bt I	35.73	1.75	18.19	20.05	8.19	0.00	10.47	0.00	Pl ²⁵ +Mik+Qtz+Bt ₇₀ +Grt ₈₂ +Ep	. 735
	Bt II	35.31	1.86	18.29	19.89	8.58	0.00	10.38	0.00	-	.725
	Grt .	36.55	0.00	19.62	33.57	4.58	2.61	0.00	0.93		
	Grt .	37.39	0.00	19.37	34.27	4.67	2.51	0.00	1.03		
	Grt .	37.53	0.00	19.49	34.72	4.84	2.482	0.00	1.07		
	Grt .	37.68	0.00	19.05	34.48	4.62	2.53	0.00	0.99		
2087	Bt	35.77	1.96	19.15	18.74	8.25	0.13	10.54	0.00	Pl ²² +Mik+Qtz+Bt ₆₉ +Grt ₈₂ +Chl+Ep	. 720
	Grt .	37.76	0.00	19.99	34.03	4.68	2.58	0.00	0.85	- ,	.710
	Grt .	37.67	0.00	20.81	34.09	4.72	2.58	0.00	0.91		
	Grt .	37.37	0.00	20.10	33.74	4.44	2.36	0.00	0.90		
2033	Bt	35.79	1.34	19.30	19.58	7.88	0.17	9.47	0.13	Pl ²⁰ +Qtz+Bt ₇₁ +Grt+Mik,	. 730
	Grt .	37.14	0.00	20.25	34.52	4.47	2.44	0.00	0.96	- , .	.710
	Grt .	37.86	0.00	19.11	33.74	4.50	2.28	0.00	0.98		
2033	Bt	35.93	1.32	19.29	21.31	7.63	0.04	9.21	0.00	Pl ²⁷ +Qtz+Ksp+Bt ₇₅ +Mu+Grt ₇₇ +Cor+Chl	710
	Grt	37.59	0.00	20.95	30.92	2.27	6.46	0.00	2.01	- ,	3.5
	Cor	4624	0.00	32.25	10.33	6.87	0.02	0.00	3.33		
2397	Bt	34.45	1.49	20.18	20.73	10.49	0.29	10.14	0.00	Pl ²⁰ +Mik+Qtz+Bt ₆₆ +Mu+Grt ₆₇	
	Grt	38.80	0.00	22.36	25.32	4.27	4.27	3.98	0.74	,	735

8.5.

%)

(

Ν		SiO ₂	TiO ₂	Al_2O_3	FeO	MgO	MnO	K ₂ O	CaO	,	0
•											
2111	Bt	36.11	0.99	18/98	20.43	9.38	0.20	9.81	0.00	$Pl^{27}+Qtz+Bt_{68}+Grt_{82}$	655
	Grt	37.96	0.00	20.75	32.29	3.49	3.37	0.00	2.19		
2355	Bt	34.77	1.17	21.29	21.18	9.49	0.16	9.67	0.00	Pl ²⁷ +Qtz+Bt ₆₇ +Mik+Sill+Mu+Grt ₈₀ +Chl	630
	Grt	37.39	0.00	19.75	34.65	3.07	5.07	0.00	0.85		
2387	Bt	36.61	1.72	18.93	22.89	8.80	0.00	9.13	0.00	Pl ³⁰ +Qtz+Bt ₇₂ +Grt+Cor	655
	Grt	35.85	0.01	21.89	33.21	3.16	1.02	0.00	4.66		
2405	Bt	36.22	0.91	21.39	17.90	10.81	0.00	9.21	0.00	$Pl+Qtz+Bt_{82}+Grt_{83}$	655
	Grt	36.03	0,64	21.63	32.92	4.79	1.93	0.00	1.37		
2526	Bt	36.06	1.70	18.12	18.93	8.57	0.00	9,78	0.00	Pl ²⁵ +Qtz+Mik+Bt ₆₈ +Grt ₉₁ +Sill	630
	Grt	38.57	0.00	20.70	32.76	3.16	2.43	0.02	0.07		
2556	Bt	34.96	2.13	17.74	19.66	8.76	0.21	10.35	0.00	$Pl+Qtz+Bt_{69}+Grt_{77}$	655
	Grt	36.70	0.01	20.43	31.67	3.38	4.60	0.01	1.34		
2575	Bt	35.98	1.79	16.92	20.37	9.98	0.15	9.07	0.00	Pl+Qtz+Bt ₇₁ +Mu+Grt+Sill	660
	Grt	38.82	0.00	20.22	28.14	3.19	4.92	0.00	3.72		
2616	Bt	35.68	1.85	18.75	20.08	8.93	0.17	10.47	0.00	$Pl^{33}+Qtz+Bt_{67}+Grt_{77}$	660
	Grt	38.14	0.01	20.62	33.33	3.68	2.63	0.01	0.91		
	A ((A ()	

8.6.

(%)

Ν		SiO ₂	TiO ₂	Al_2O_3	FeO	MgO	MnO	K ₂ O	CaO		0
187	Bt	35.05	2.17	19.02	24.84	6.93	0.68	8.71	0.00	$Pl^{35}+Qtz+Bt_{66}+Andl+Grt_{71}$	625
	Grt	36.95	0.00	21.86	31.05	1.21	9.58	0.00	0.08		
429	Bt	35.69	2.01	20.17	22.30	7.81	8.80	7.83	0.00	$Pl^{35}+Qtz+Bt_{62}+Sill+Andl+Grt_{70}$	610
	Grt	37.92]0.00	21.022	30.92	1.62	10.13	0.00	0.10		
747	Bt	36.60	1.84	20.98	21.46	8.30	0.71	7.56	0.00	$Pl^{27}+Qtz+Bt_{58}+Sill+Andl+Grt_{69}$	600
	Grt	38.19	0.00	20.63	31.19	1.73	10.96	0.00	0.07		
778	Bt	34.32	2.24	18.85	25.72	6.75	0.70	8.,90	0.00	$Pl^{34}+Bt_{69}+Sill+Andl+Grt_{72}$	630
	Grt	37.21	0.00	21.17	30.56	1.16	9.71	0.00	0.08		
2825	Bt	37.74	1.84	19.27	26.14	7.54	0.62	7.90	0,00	Pl ²⁵ +Qtz+Bt ₇₀ +Andl+Grt	620
	Grt	38.07	0.00	20.05	30.62	1.54	10.00	0.00	0.07		

-

. 8.3.

.

				(1)
	610°	7.0 ,		_ (1)
620^{0}	7.5 .		,		

	, 540 ⁰	5.3	,	
8.7 ,	600 ⁰	7.5	(630 ⁰ 4),

		$720-730^{\circ}$.
735 ⁰	710^{0} ,	3,5 .
	- ,	$-600-630^0$,

 $625-660^0$.

7.0-7.5 . , 35-40 . , (.1317) $Pl^{37}+Qtz+Act_{43}+Hrb+Chl_{41}+Ep+Grt$ Mn (5.6 2.73%) Mg (4.4 7.12%),

, , –

,

4.5, $530-540^0$. ,

, ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., , ..., ..., ..., ..., ..., , ..., ..., ..., ..., , ..., ..., ..., ..., ..., , ...

143

 $600-620^{0}$

,

,

(77

69%),

- ,

8.7.

N .	•	SiO ₂	TiO ₂	Al ₂ C	D ₃ H	FeO Mg	gO]	MnO	CaC)	Na ₂ O	K ₂ O				
	1	46.36	0.38	8.6	5 1	4.33 11.	52	0.43	10.8	5	0.43	0.81	93.48			
	2	46.15	0.31	8.5	3 1	4.59 13.	14	0.42	10.8	1	1.06	0.71	95.85]	Pl ⁵⁰⁻⁷⁰ +Avg+F	Irb+Qtz
1399	3	46.76	0.35	9.78	3 1	5.31 12.	44	0.50	10.8	8	1.30	0.93	96.29		C	-
	4	46.35	0.34	9.3	8 8	3.53 14.	49	0.42	10.9	7	1.20	0.71	95.83			
	1	43.00	0.42	10.6	2 1	6.61 10.	90	0.50	10.5	4	1.54	1.52	95.28	P	l ⁰⁻⁴⁰ +Qtz+Hrb	+Chl+Ep
1401	2	43.94	0.42	10.5	4 1	6.70 10.	18	0.50	10.7	6	1.66	1.12	95.85			_
Ν		. 5	Si	Ti	Al^{IV}	Fe	Mg	M	g	Ca	Na		Κ	Al^{VI}		0
	1	6.93	3 0.	04	1.07	1.86	2.67	0.05		1.86	0.33	().16	0.51	5.3	540
	2	6.92	2 0.	03	1.08	1.87	2.99	0.06		1.77	0.30	().12	0.44	6.0	550
1399	3	6.55	5 0.	03	1.45	2.00	2.89	0.06		1.83	0.39	().18	0.36	8.7	630
	4	6.88	8 0.	04	1.32	1.78	2.73	0.05		1.73	0.33	().12	0.15	7.5	600
	1	6.62	2 0.	04	1.38	2.13	2.49	0.06		0.73	0.44	().22	0.54	7.0	610
1401	2	6.64	4 0.	04	1.34	2.16	2.35	0.05		0.79	0.48	().22	0.57	7.0	620

- ,

•

1	Δ	6
1	-	U.

Ν.	•	SiO ₂	Т	iO ₂	Al_2O_3	FeO)	MgO	MnO	CaO	Na ₂ O	K ₂ O			
2710	1	45.61	0	.32	8.46	15.4	1	10.99	0.66	11.14	1.20	0.82	94.65		Pl ³⁸⁻⁵⁰ +Hrb+Bt+Qtz
	2	45.02	2 0	.37	8.06	15.4	15	10.99	0.64	10.99	1.32	0.82	94.31		
2745	1	51.70		52	1470	0.0	0	(1)	0.24	0.02	2.04	0.22	06.92		D140-50 LL 1 0, D
2745	1	51.75		.55	14.70	9.9	9	0.12	0.24	9.03	3.94	0.22	90.83		Pl ^a +Hrb+Qtz+Bt
	2	49.12	2 0	.03	5.64	15.6	52	12.42	0.42	11.30	0.64	0.40	95.68		
1456	1	47.32	2 0	.48	9.82	15.1	2	10.99	0.55	9.62	1.57	0.92	96.39		
	2	46.93	3 0	.45	9.98	15.0)9	11.02	0.56	9.70	1.55	0.96	96.24	Pl	40-60+Hrb+Qtz+Bt+Chl
					1								- I		
Ν			Si	Ti	Al^{IV}	Fe	Mg	Mg	Ca	Na	K	Al^{\vee}	I		0
2710)	1	6.99	0.03	1.01	1.97	2.51	0.08	1.82	0.05	0.16	4.5	5 4	.5	530 ⁰
		2	6.99	0.04	1.98	1.98	2.54	0.07	1.83	0.39	0.16	4.5	6 4	.5	530 ⁰
2745	5	1	7.36	0.02	1.18	1.18	2.77	0.02	1.07	0.25	0.05	1.8	1 4	.1	4300
		2	6.98	0.01	1.85	1.85	3.09	0.05	1.81	0.18	0.09	0.0	1 4	.5	5400
1456	5	1	6.72	0.04	2.03	2.03	2.39	0.06	1.89	0.41	0.18	0.5	6 4	.4	5900
		2	6.70	0.04	2.07	2.07	2.42	0.07	1.90	0.44	0.20	0.5	4 4	.5	5800

Wt% 28-27-

MgO

CaO

No 1227

.

Ma

765432

. 8.5.

8

No 1317

-

,	,		_				,
$coo coo^0$,			:	8.2-8.7	,
620-630°.						600-620 ⁰	
		60	$0-660^{0}$,		_	4.5	
				74	40-750 ⁰		3.6-3.7 . 700-710 ⁰ .
	2.2 .			,	62	$25-660^0$,	-
	710^0 ,		-		3.5		100

8.4.

. 8.6. (Luth, Jahns, Tuttle, 1964). : I - - - , , ; II - NaAlSi₃O₈-KAlSi₃O₈-H₂O; III - KAlSi₃O₈-SiO₂-H₂O; IV - NaAlSi₃O₈-SiO₂-H₂O; V - NaAlSi₃O₈-KAlSi₃O₈-H₂O; VI - NaAlSi₃O₈-H₂O; VI - NaAlSi₃O₈-H₂O; VI - NaAlSi₃O₈-KAlSi₃O₈-H₂O; VI - NaAlSi₃O₈-KAlSi₃O₈-H₂O; VI - NaAlSi₃O₈-KAlSi₃O₈-KAlSi₃O₈-H₂O; VI - NaAlSi₃O₈-KAlSi₃O

,

2 , .

,

,

:

,

,

,

, –

(

,

., 1986).

. ,

:

9.

, 8,2 –8,7 . $620-630^0$. 7,0-7,5 $600\text{-}620^0$. B.W.Chappel A.J.White (1988), I , .%, .%. 2-3 2 SiO₂, 71 52 W V. 171 /, (10-15), (100-150). , 2,5 / , 2 / 2, 2. 2, 10. (4-4,5 670^0 . , 1986). (, :

4,5 , 670^0 .

A.J.White, B.W.Chappel (1988),

J.Didier	I	, (1982),	,B.Barbarin
(1990).		_	
	-	- • ,	,,,
•		-	
:		, , , ,	, , , .
		, ,	, , , , , , .
		,	- , ,
,	,		_ ,
,			, , , ,
			-
		(Na ₂ O=4,25%, $_2 =1,66\%$), (Na ₂ O=3,30%,
2 -3,20%).		· ,	, SiO_2 Al_2O_3 ,
		,	
Pb (37 /)		, - Cu (13 /), Mo (2,6 /) (100-180	Li (18 /), Rb (144 /), W (20 /), Ni (11 /).
).		,	(~ 10-40 Eu,
		(2 /), 1,2-2,8.	- 2 2 / 2 . ,
		,	2 2 / 2

 $700\mathchar`-750^0$.

, , , , , .

. . ,

, , , J.Didier (1982)

J.Didler (1982) s , - .

, _ _ ,

, ,

, .

V

- . 2, 6,5 , - 3,7

3,6 .

, _ ,

: . ,

-A.J.White B.W.Chappel (1974).

-, -, , , - , , .

, , , , - . ,

(SiO₂=68,00-75,00%),

,

•

,

,

_

Ab-Or-Q

,

Li (15,5 /), Rb (125 /), W (24 /) Pb (30 /) Cu (17 /), Mo (2,9 /) Ni (16 /).

A.J.White B.W.Chappel (1974) S . J.Didier (1982)

,

)

5 ².

,

- . 1991

, 1.7-2.5 / , 50-55 / . ,

. (400-500),

150-200 .

.10.2.

:

,

,

,

,

,

,

			10 14	(.
$. 10^{\circ}, 60^{\circ}),$,		480	,
. ,	. 2400	(,): 1 -
-2,2;2-		- 3,7 ;3-	-	1,5 ;
4 -	- 1,7 ; 5 -	- 2,4 .		

1 15 • 21 2,71 / , -5,27 / . 1,76 / , 15 - 2,82 / . 5 1600 / , 2200 / . 25 30 (. $.20^{0}$, . . . 60⁰). , 670): 1--1,3 ; 2-2240 (-9,7 ; 3--2.0 ; 4--1 ; 5--1,4 ;6--4,8 ; 8-3,5 ; 7--2,1 ; 9-1,2 . , 1 20 70% : 24 6,35 / , 15,60 / . 2,11 / , 18 - 3,82 / . 17 21 (. $.10^0, \ldots .60^0$). 250 • 2060 (): 1 -- 1,8 ; 3 - - 1,4 ; 4 -- 3,6 ; 5 - - 2,3 ; 6 -- 1,8 ; 7 - - 2,0 ; 8 -- 1,2 ; 2 -- 3,3 . - 1,7 ; 9 -, 1 10 : ,

161

,

,

, 95%	•
,	
	•

·

 $300^{\rm 0}$.

,

163

)

(

.

. ., . ., . . (, 1982. .30-41.). .: Н , . ., . 16, 1968, 294 . . . (" . 31-104. • •, ••

).

. 86, 1984.

.

.

, 1975, 7, .3-10. • •,

). ., , 1979, 1, (.77-85.

. ., . . , . 1982, . 267, 6, . 1424-1425. . .

, . 9, . 1, . " ", 1968, . 241-.: 253. • •, . .

, . ., 1969, 6, .3-9.,

., 7, 1971, . 3-27. , 1978, . 64-71. . . • •, • •,

.: . , 1990, . 273. . .

. .: • •, , 1987, . 106-110. • •, • •, • •

" ", 1977, 39 . . . • •, ,

. .: , 1976, .45-154. , .,, . .

. ., " ", 1982, . 51-59.

• •, . . ", 1983, . 488. .: , 1962, 20 . . . (4-). . . .

• •, ••• . . , . , ., 1989, 3, .31-43.

. ., ," ", 1970, 108 . .

. 1, . • , 1938, . 55-96. U-Pb • •, 9, 1991, .23-35. (). , 2001, 25 . (1984, 374 . . 1984, 6, . 8-27. . . •• .: ", 1986, . 12-16. (", 1982, . 37-47.). ., " ", 1979, 299 . ", 1986, . 23-27. . 2 . . , . 288, 1986, . 966-969. . . 3, . 117, 1988, . 305-318. 2. . ., . 4, 1986, . 410-422. . . " ", 1990, 143 . 1984, 278 . . . " ", 1979, 318 . 7, 1962, . 28-42. . " 2, 1964, . 103-118. .: ., " ", 1982, . 4-8. .: , 1984, . 105-175. . 1988. 50 . ., " ", 1975, 536, " ", 1985,

. . , . XVI, . . 4, 1937, . 57-60. , 9, 1960, . 18-23. • •, , 3, 1965, . 37-41. . . ", . 24, 1970, 194 . , " ", . 59, 1973, . , 61-67. , " ", 1980, 312 . . . • • •, . .). . 318, 1, 1991, . (160-163. , 2003, 81 . · ·,, , . 60, 1, 1970, . 133-136. · · ·, . . • •, . (). . , .71,

1, 1973, . 145-148.

, 1975, 2, . 377-380.

. ., " ", 1975, 156 . . ., " ", 1975, 156 . . ., 8, 1989, .21-34. . ., 8, 1989, .21-34.

. ., " ", 1984, 75 . . ., . . .

• •,). . (, . , 1967, 202 . ., . 12, . ., (). . . , 1974, 200 . . 46., •• • •, , 4, 1978, . 29-36. . • •, • •

. , . ., 9,

•

1986, . 13-27.

,

· ., · ., · ., · . . (). ., " ", 1990, . 333.

. .: "

". ," ", 1985, . 92-99.

. . , 1984, 52 .

. . . , , 1984, 148

, 1975, 127 .

· ., . ., , 1972, 8, .957-970.

. , . 160, 1, 1965, . 189-192.

. . , 4, 1991, .27-42.

," ", 1985, 198 .

. ., . .

, 10, 1967, . 108-121.

1986, 206 .

• •,

.

.

.

.

.

" ", 1985, 372 .

. . , . , 1965, . 43-53.

(). , ,, " ", 1965, . 380-383.

. , , 1969, 63 .

, . IX, 1971, . 165-175.

, . , 1973, . 103-114. . . . , , , , , , , 1898, 451 .

. . ., , , 1987, 27 .

. , . 129, 1, 1988, . 104-108.

, . 133, 2, 1989, . 345-348.

43.

. . . ., , , , , , , , , , , , 1989, . . 140-141.

, 1990, .129-132.

•••

. . , 1995, 52 .

. . , 1998, . . 176-186. . .,

· ·, · · · , . 134, 3,

1988, . 553-556.

· ·, · · · · , . 140, 3, 1990, . 449-552.

· · · , 10, 1969, . 44-48.

. , , 1982, 168 . . ., . .

189, 5, 1971, . 1137-1141. . . ., " ", 1979, 327 . . , "

. , . 5, 1982, . 514-627.

· ., 2, 1984, .46-61. . . , ", ", 1987, 239.

· · · , 3, 1965, .48-61.

. , 1969, 5, . 91-107.

· · · .," ", 1971, 164 .

.:, " ", 1980, . 122-129. . . VIII . . . (.). . , 1995, .171-173. , . , 2, 1986, . 51-60. , . 190, 4. . 1970, .944-947. . . , . ., . 76, 1982, 74 . . ., -, 1961, 213, " ", 1977, 280 . -, -. . . ., " ", 1988, 379 . , '' ", 1984, 324 . • • •, • • , . 86, 2, 1977, . 393-396. . . • •, , ., 1993, 52 . . . , 1950, 357. ., ., " ", 1980, 327, " ". 1989. 589 . ", 1981, 326 . . ." : . . , 1, 1975, . 125-172. , 1981, 30 . . . 311, 5, 1990, . 68-79. •••, ••, , .1, 5, 1993, .487-492. . . . , . 261, ., 1982, . 965-967. . . , . ., . • . 33, , 1972, 81 , , , , 1966, 198 . • • . . ., , 1971, 30, 1988, 25 .

· ., " ", 1985, 93 .

. (). , .7, 1,1974, .113-116. . , . 6, 2, 1977, .

. 381-384. .: " ", 1941, . 379-415.

, 1971, 161 . . •• . .,

", 1989, . 73-81.

, 1986, 25 . ••

Ι, , 1965, 103 .

7, 1968, . 23-33. _

.: " ". , 1969. . 185-206. •

. 34, , 1972, 247 .

, 1998, . . . 163-169.

, 1989, 26 .

•• •• $300-850^0$. , .

3, 1977, . 661-663. 83.

> • • 6, 1977, . 1407-1409. , . 235, · ·,

". 1991, 232 . ••

. ., , . 103, . 2, 1981, . 361-364.

. ., ٠, , . 274, 6, 1984, . 1450- 1453.,

.

, . 135, 2, . 1989, . 394-396. . .

, . 291, 2, 1986, .444-447.

" . ., " ", 6, 1989, . 49-57. Allegre C.I., Ben Othman D. Nd-Sr in Granitoid Rocks and Continental Crust: A Chemical

Approch to Orogenesis. Nature. 1980. v.286. pp.335-343.

Armstrong R.L. A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev. Geophys. 6. 1968. pp.175-199.

- Armstrong R.L. and Hein S.M. Computer simulation of Pb and Sr isotope evolution of the Earth's crust.e. Geochem. Cosmochem. Acta, N 37. 1973. pp.1-18.
- Batchelor R. A., Bowden P. Petrogeneric interpretation of granitoid rock series using multication parameters. Chem. Geol., N 48, pp.43-55.
- Bateman P.C., Dodge F. C. W. Variation of major chemical constituents across the central Sierra Nevada batholiths. Geol., Soc., Am. Bull., 81, 1970, p.409-420.
- Billay A.Y., Kisters A.F.M., Meyer F.M. et all. The Geology of the Lega Dembi Gold Deposit, Southern Ethiopia: Implication for Pan-African Gold Exploration., J. Mineral. Depos. 1997, N 32, p.491-504.
- Barbarin B. Granitoids: Main Petrogenetic Classifications in Relation to Origin and Tectonic Setting. Geol. J. 1991, N 25, pp.227-238.
- Bodnar R.T. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Dudle diameters and P-V-T-X Properties. Econ. Geol. vol. 78, 1983, pp. 535-542.
- Bounton W.V. Cosmochemistry of the rare Earth Elements; Meteorite Studies. Rare Earth Element Geochemistry. Amsterdam, 1984, pp. 63-114.
- Brown P.E., Lamb W. M. Mixing of H₂O-CO₂ in Fluid Inclusions; Geoparametry and Archean Gold Deposits. Geoch. Cosm. Acta, v. 53, 1986, pp.847-852.
- Chappel B.W., White A. R. Two Contrasting granite types. Pacif. Geol., v.8, 1974, pp. 173-174.
- Chappel B.W., White A.R. Granitoid types and their Distribution in the Lachland Fold Belt. Geol. Soc. Am. Memoir., v. 159, 1987, pp. 23-24, 1983.
- Chappel B.W., White A.R. Some Supracrustal (S-type) Granites of the Lachland Fold Belt. The Oirgin of Granites. Earth Sci., v. 79, 1988, pp. 169-181.
- larke D.B. Granitoid rocks. London. Chapmen and Hall., 1992. 283 p.
- Colleman R., Peterman Z. Oceanic Plagiogranite. J. Geophys. Rev. v. 80, 1976, pp. 1099-1108.
- Collins P.L.F. Gas Hydrates in CO₂ bearing Fluid Inclusions and the Use of Flooding Data for Estimation of Salinity. Econ. Geol., v. 74, 1979, pp. 1435-1444.
- DePaolo D.J. Neodyumium Isotope Geochemistry: An Introduction. New-York, Springer-Verlag, 1988, 187 p.
- DePaolo D. J., Linn A. M., Solubett G. The continental crust age distribution: methods of determining mantle separation age from Sm-Nd isotope data and application to the south-western US. J. Geopys. Res., v.96, 1991, pp. 2071-2088.
- Didier J., Duthon J., Lameyre J. Mantle and Crustal Genetic Classification of Orogenic granites and the nature of their enclaves. J.Volcanol and Geothem. Rev., v. 14, N1-2, 1982, pp. 125-132.
- Emmerman R.A. Petrogenetic model for the origin and evolution of the Hercynian Granite series of the Schwarzwald. Neues. Miner., v. 128, N3, 1975, pp.113-142.
- Ermolov P.V. Granitoid Ore-Magmatic System of Kazakhstan. Abstr. Fourth Hutton Symposium. Clermon-Ferrand, France, 1999, p.232.
- Evrard F. Statistical Relation Betveen TiO₂, Fe₂O₃ Durring the Differentiation of a Titanferum Magma. Bull. Geol. Soc. Amer., v. 58, N3, 1947, pp.197-210.
- Ferry J.M., Spear F.S. Experimental calibration of the partitioning of Fe and Mg between garnet and biotite. Contrib. Mineral. Petrol., v. 66, N2, 1978, pp. 113-117.
- Fourcads S., Allegre C.I. Trace element behavior in granite genesis a case study: The calcalkaline plutonic association from the Quarigus Complex (Pyrenees, France). Contr. Mineral., Petrol., v. 76, N2, 1981, p.177-195.
- Frank M.R., Candela P.A., Piccoli P.M. at al. Experimental Study of Au in Granitoid-Volatile phase system. Abstr. Fourth Hutton Symposium. Clermon-Ferrand, France, 1999, p.233.
- Glassley W.E. The Role of CO₂ in the Chemical Modification of Deep Continental Crust. Geochim., Cosmochim. Acta, 47, 1983, p. 597-616.

- Green T.H., Ringwood A.E. Genetic of the Calcaline Igneous Rock Suite. Comtrib. Moneral. Petrol., v. 18, 1968, pp.125-162.
- Hall W.E., Friedman I., Hash I.T. Fluid Inclusion and Stabile Isotope Study of the Climax Molybdenium Deposits. Colorado Econ. Geol., v. 69, N6, 1974, p.848-852.
- Harker A. The Natural History of Igneous Rooks. London, 1909, p.384.
- Hibbard M. I. Deformation of the Incompletely Crystallized Magma Systems Granitic Gneisses and their Tectonic Implications. J. Geol., v.95, N4, 1987, pp.543-562.
- Irvine T.N., Baragar W.R. A Guide to the chemical Classification of the common Volcanic Rocks. Canada, J. Earth Sci., v.8, N5, 1971, pp.523-548.
- Ishihara S. The magnetic-series and ilmenit-series granitic rocks. Mining geology, 27, 1977, p.293-305.
- Kanehira K., Bano Sh. Ferriphengite and Aegirin Jadeite in Crystalline Schist of the Timori District, Kii Peninsula. J.Geol. Soc., Japan, v. 66, 1960, N781.
- Lamb W.M., Valley L.W. Ca-Na Fluid Calculations and Granitite Genesis. The Deep Proterozoic Crust in the North Atlantic Provinces, 1985, pp. 119-131.
- Lamb W.M., Brown F.E., Valley J.W. Fluid inclusions in Adirondack granulites; Implication for the retrograde P-T path. Contrib. Mineral. and Petrol., v.107, N4, 1991, p.472-483.
- Luth W.C., Jahns R.H., Tuttle O.F. The Granite System at Pressures of 4 to 10 kbar. J. Geophys. Rev., v. 69, 1964, pp.759-773.
- Moorbath S., Thompson R. N., Oxburgh E. R. The relative contributions of mantle, oceanic crust and continental crust to magmas genesis. Phil. Trans. Roy. Soc. Lond., A310, 1984, pp.437-784.
- Norman D.I., Sawkins F.S. Analysis of Volatiles in Fluid inclusions by Massspectrometry. J. Chem. Geol., v. 61, 1987, p.1-10.
- Okrostsvaridze A. V. Petrogenetic model of Hercynian gabbro-plagiogranite series of the Greater Caucasus. Abstr. Intern. Conf. "Metamorfizm, Granitformation and Ore-forming". Tbilisi, 1994, p. 67-68.
- Okrostsvaridze A. V. The geodinamic position of formation of Hersinian granitoid series of the Greater Caucasus. Abstr. Intern. Conf. "Metamorfizm, Granitformation and Oreforming". Tbilisi, 1994, p. 74-75.
- Okrostsvaridze A. V. The first data of gas chromatographic research in Hercynian Granitoids of the Greater Caucasus. Bull. of the Georgian Acad. of Sci., v.153, N3, 1996, p. 94-97.
- Okrostsvaridze A. V. Petrogenetic Model of the Hersinian Plutonic seres of the Greater Caucasus. Bull. of the Georgian Acad. of Sci., v.155, N3, 1997, p. 399-402.
- Okrostsvaridze A. V. Granitoid melt generation in the Hercynian plutonic series of the Greater Caucasus. IV Hatton Symposium, Cleromnt-Ferrand, 1999, p. 217-218.
- Okrostsvaridze A.V., Mgaloblishvili I. Z., Bluashvili D. I. Plagiogranite of Szgimazuki Massif and ore mineralization related to it. Bull. of the Georgian Acad. of Sci., v.163, N1, 2000, p. 116-120.
- Okrostsvaridze A.V., Bluashvili D.I. Horkila-Achapara Ore-Bearing Zone in the Crystalline Basement of the Greater Caucasus (Svaneti, Georgia). In "Granites and Associated Mineralization". IGCP Project 373. Helsinki, 2000, p.50-53.
- Okrostsvaridze A.V., Bluashvili D.I., Chagelishvili R.L. New Data About the Hokrila-Achapara Gold Ore-Mineralization (Svaneti, Georgia). Bull. Georg. Acad. Sci., 2005, v.172, N 1, p.108-110.
- O'Connor J. A Classification of Quarts-rich Igneous Rocks Based on Feldspar Reaction. US Geol. Surv. Prof., 1987, 525 p.

Pearce J. A., Harris N. B. W., Tindle A. G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. N25, 1984, p. 956-983.

- Pitcher W.S. The Anatomy of a Batholiths. Geol., Soc., v. 135, 1978, p. 157-182.
- Pitcher W. S. Granit type and tectonic environment. In: Montain Building Processes, Academic Press, London, 1982, p. 19-40.

- Pitcher W.S. Granites and Yet More Granites Forty Years on. Geologishe Rundachan, Sd. 76, N1, 1987, p.51-79.
- Potter R.W., Brown D.L. The Volumetric Properties of Aqueous Sodium Chloride Solutions from O⁰ to 500^oC and Pressures up to 2000 Bars. US Geol., Surv. Bull., v. 1421, 1977, p.36.
- Potter R.W., Clynne M.A., Brown D.L. Freezing Point Depression of Aqueous Sodium Chloride Solutions. Econ. Geol., v. 73, 1978, p. 284-285
- Quidotti C.V. Compositional Variation of Muscovites as a Function of Metamorphics Grade and Assemblage in Metapelites from Northwestern Maine. Contr. Mineral. and Petr., v.42, N1, 1973, . 272-289.
- Quidotti C.V., Cheney I.T., Quggeniheim S. Distribution of Titanium Between Coexisting Muscovite and Biotite in Politite Schist from Northwestern Maine. Amer. Miner., v.62, N5-6, 1977, p.438-448.
- Raguin E. Geologie du Granite. 1976, p. 330.
- Roedder R. Fluid Inclusions. Review in Mineralogy, v. 12, 1984, p. 644.
- Rona P.A. Hydrothermal Mineralization at Seafloor Spreading Centers. Earth-Sci. Rev., v.20, N1, 1984, p.104-117.
- Samson S. D., Patchett P. J. The Canadian Cordillera as modern analogue of Proterozoic crustal growth. Jour. Earth Sciences, V.38, 1991, p. 595-611.
- Sederholm J.J. On Granite and Gneiss, their Origin the Pre Cambrian Complex of Fenno-Scandia. Bull. Comm. Geol. Finl., v. 23, 1907, p. 42.
- Shengela D. M., Okrostsvaridze A. V. The prospects of using magmatic and metamorfic rocks of Georgia as facing building material. Bull. of the Georgian Acad. of Sci. v. 162, N1, 2000, p. 120-123.
- Sterner S.M., Bodnar R.J. Synthethic Fluid Inclusions VII Re-Equilibration of Fluid Inclusions in Quartz, Durring Laboratory simulated Metamorphic burial and uplift. J. Metamorph. Geol., v. 7, N12, 1989, p. 243-260.
- Stormer J.C. A Practical Two-Feldspar Geothermometr. J.Amer. Minerl., v. 60, N7-8, 1975, pp. 667-674.
- Streckeisen A.V. Classification and Nomenclature of Igneous Rock. News Jarhb. Mineral. Abhand., v. 107, 1976, p. 144-240.
- Taylor S.S., McLennan S.M. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Piblication. 1985, 323 p.
- Thompson A.B. Mineral reaction in pelitic Rocks; Prediction of P-T-X (Fe-Mg) phase relation. J. Amer. Sci., v. 276, N4, 1976, pp. 401-424.
- Topchishvili m., Lobjanidze G. About Atsgara granitoids. Bull. Georgian Acad. Sci., v.157, N157, pp.392-394.
- Touret J., Botting Y. Equation d'etet pour le CO₂ application aux inclusions carboniques. Bull. Mineral., v. 102, 1988, pp.577-583.
- Tuttle O.F., Bowen N.L. Origin of Granite in the Light of Experimental Studies in the System NaAlSi₃O₈-KAISi₃O₈-SiO₂-H₂O. Geol. Soc. Am. Memoir., v. 74, 1958, p.153.
- Whalen J. A-type Granites in New Brunswich. Pop. Geol. Surv. Canada, N 86-1/A, 1986, p. 297-300.
- Whalen J., Currie K., Chappel R.W. A-type Granites; Geochemical Characteristics Discrimination and Petrogenesis. J. Mineral. and Petrol., v. 95, N4, 1987, pp.407-419.
- Williams-Jones A.E., Samsom I.M. Theoretical Estimation of Hostile Solubility in the System NaCl-CaCl-H₂O application to Fluid Inclusions. J. Canadian Miner., v. 28, part 2, 1990, pp. 299-304.
- Zaridze G., Shengelia D. Hercynian magmatism und metamorphism of the Greater Caucasus in the light of plate tectonics. Bull. Soc. Geol. France, N3, 1978, p.355-359.

A. V. Okrostsvaridze

HERCYNIAN GRANITOID MAGMATIZM OF THE GREATER CAUCASUS

(S U M M A RY)

Introduction

The Greater Caucasus represents a folded-nappe polycyclic geological formation which has been developed as one of the magastrucrutes of the Paleotethys and nowadays it is the North-East segment of the East Mediterranean orogen. Its width reaches 170 km and it is stretched of 1200 km between the Black and Caspian Seas to the NW-SE direction. Two major stages are distinguished in its formation: Pre-Alpine and Alpine. Pre-Alpine formation makes a heterogeneous crystalline basement complex, the exposed part of which is 200 km long and the width reaches 40 km (Figure 1). It is mainly constructed of Caledonian and Hercynian crystalline schist, amphibolites, granitgneisses, migmatites and granitoids. Four regional structural zones are distinguished in this basement (from the South to the North): Southern slope, Main range, Front range and Bechasyn. During the Alpine tectonic-magmatic activisation these units underwent several tectonic uplifts and as a result of these ororgenic processes the crystalline basement of the Greater Caucasus acquired the up to date structural face. The Main range zone is the best exposing part of the crystalline basement of the Greater Caucasus. Different from the other zones, Hercynian metamorphism and granitoid magmatism are intensively represented in this unit. Metamorphism rate ranges from green schist facies to granulite, but amphibolite facies is mostly found (Shengelia et al., 1991).

Hercynian granitoid magmatizm has been studied in some of the regions of the crystalline basement of the Greater Caucasus, but there does not exist its thorough petrogenetical model and our task is to creat the model, which would thorougly reflec the conditions of formation, the way of evolution and ore-forming potential of this magmatizm.

General Description of Hercynian Granitoids

As a result of complex geological, petrochemical, geochemical and mineralogical study it has been asserted that the Caucasian Hercynian granitoids formation to place in four plutonic series (from the South to the North): (1) gabbro-plagiogranite, (2) gabbro-adamellite, (3) plagiogranite-granite and (4) granodiorite-aliaskite (Figure 1). As we can see in the series asserted, the two are of gabbro-granitoids and the other two of granitoids compositions. As the last one prevails in these series, they can also be called granitoid series. They are localized in the structure in general Caucasian direction and despite intensive Hercynian and Alpine movements, some lateral zonality is still observed in their distribution.

Gabbro-plagiogranite series is exposed in the South edge of the crystalline basement, and is related to Beshta, Kamenistaia and Sgimazuki small tectonic uplifts, which are distributed along the Main fault (Fig.1). According to geological and petrological data, the roots of allochthonous scales of plagiogranites of the Front range zone should be looked for along the Main thrust. Gabbro-plagiogranite series is gneissed and mainly constructed of plagiogranites and also of fewer number of quartz-diorites, diorites and gabbros. They appear in turn in lens-form layers of different thickness. Plagiogranites are mainly constructed of acid plagioclase and quartz (composition: Pl+Qtz+Chl+Ep±Hbl±Grt±Sf+Mgt). Gabbros and diorites represent of protolithe (composition: restite the Pl+Qtz±Cpx+Hbl±Chl±Ep±Ap±Sf±Grt±Mgt). The age of crystallization of plagiographics was defined by Rb-Sr method and it corresponds to 370 ± 20 Ma (I_{sr}=0,70343).

Figure 1. Schematic geological map of the crystalline basement of the Greater Caucasus and geographical position (marked dotted line).

Structural zones: I- Bechasyn; II - Front range; III - Elbrus subzone of Main range; IV- Pass subzone of Main range; V - Southern slope.
Conditional mean of exposes: 1 – Bechasyn zone; 2 – Front range zone; 3 – Elbrus subzone of Main range zone; 4 – Pass subzone of Main range zone;
5-Sothern slope zone. Hercynian plutonic series (6-9): 6-Gabbro-plagiogranite; 7 - Gabbro-adamellite; 8-Plagiogranite-granite; 9-Granodioritealaskite; 10 -Middle Jurassic granitoid intrusive; 11-Stratigraphic and magmatic boundary; 12-Fold systems (MT -main trust); 13-Glaciers.
14- Number in the circle-the main tectonic uplifts: 1-Chugushi, 2-Sofia, 3-Blibi, 4-Beskes, 5-Teberda, 6-Digori, 7-Shkhara, 8-Adaikhokh, 9-Unal, 10-Kuban, 11 – Kislovodsk, 12- Dariali. Notes: The Dariali tectonic uplift transfers from East; HA- Hokrila-Achapara gold ore mineralization zone.

Gabbro-adamellite series is structurally connected with the Passing subzone and makes quite a wide strip of exposures (Fig.1). The rocks of the series participate in the construction of Dariali, Kasar, Adaikhokh, Skhara, Sofia and Chugush tectonic uplifts. Gabbro-adamellite series are exposed in the form of intrusive bodies of different thickness. They are mainly constructed of quartz-diorites and granodiorits, but gabbros, diorites and adamellites are less. There are no strict borders between them and they gradually substitute each other. They are dark gray. medium grained. massive rocks (composition: Pl+Qtz+Mikr+Bit±Hbl+Ep±Chl±Sf+Ap+Zr+Ort+Mgl). The series is characterized by a large number of fine-grained spherical maphic inclusions. Tigel melting and hybridism represented the magma generation mechanism for this series. The isotopic data (U-Pb method) of formation of this series corresponds to 310±12Ma.

Plagiogranite-granite series is structurally connected with Elbrus subzone of the Main range zone and lesser part is also met in the Passing subzone. This series is connected with migmatites spatially and genetically, and makes granite-migmatite complex. Migmatites were formed under the HT-LP metamorphizm conditions, mainly from metaphelit protolite. Plagiogranites make layer-shape conforming bodies of different thickness, which are often medium gneisses. They are gray, grained rocks (composition: Pl±Qtz±Mit±Bt±Ms±Sill±Andl±Gor±Cr+Zr+Ap±Orth±Mgt). Granites principally make mobilized crossing bodies of different thickness (composition:Pl+Mik+Qtz±Bt±Ms±Chl±Ep±Ap±Grt±Zr±Sf±Orth±Mgt). Together with migmatites plagiogranite-granite series undergoes the process of regional microclinization. The age of crystallization of plagiogranite-granite series was defined by Rb-Sr method and it corresponds to 317-325 Ma.

Granodiorit-alaskite series is localized in the Elbrus subzone of Main range zone and is represented by intrusive granodiorite, granite and alaskite (composition: $Pl\pmQtz+Mik\pmBt\pmMs+Ser\pmChl\pm Ep\pmCrt+Ap\pm Zr+Orth+Mgt$). The field research shows that the generation of magma of this series took place as a result of remelting of Caledonian granitegneisses. Different from the series described they do not undergo Hercynian metamorphizm and their crystallization age is dated as $300\pm5Ma$ (U-Pb method) and $295\pm10Ma$ (Rb-Sr method).

Petrochemistry

Petrochemistry was based on variation method investigation of magmatic sistem (Velikoslavinsky et al., 1984). The method gives an opportunity of systematization of great number of chemical and petrochemical data and at the same time, shows graphically their variation tendencies. According to this method chemical analysis are divided into I, II, III, IV and V groups of acidity, where I<57,00% SiO₂; II=57,00-61,99% SiO₂; III=62,00-67,99% SiO₂; IV=68,00-75,00% SiO₂; V>75,00% SiO₂. For each oxygen group chemical and petrochemical parameters (Tab.1) are calculated the average statistic data .

For petrochemical classification of granitoids we have used $SiO_2 - (Na_2O+K_2O)$ discrimination diagram. Diagram-model represents (Mg-Fe)O-CaO-2Al₂O₃-SiO₂ tetrad projection (Fig.2) and gives an opportunity to discuss according to one diagram the fractioning of multy-component magma systems (Velikoslavinsky et al., 1984). It is determined that on a TiO₂-(TiO₂+FeO)
Table 2. The average petrochemical parameters according to acidity groups of Hercynian plutonic series of the Greater Caucasus (N-amount of analysis)

Gr	A	F	М	CaO+	SiO ₂ +	R ₁	R ₂	A/CNK	K	f	Ν
				Al ₂ O ₃	Al ₂ O ₃						

				04000	o piesio	S anno r					
Ι	17.3	52.6	30.01	29.5	79.5	1978	1486	0.81	11.5	53.3	15
II	22.2	49.6	28.01	27.3	82.4	2264	1214	0.85	10.4	49.8	23
III	35.7	43.5	20.8.	22.5	89.8	2600	836	1.04	9.6	56.7	42
IY	59.2	29,6	11.2	19.6	94.3	2714	616	1.09	10.2	55.0	34
Y	76.5	14.1	9.4	17.7	96.6	2949	460	1.10	4.8	52.2	30

Gabbro-nlagiograpite series

Gabbro-adamellite setries

Ι	27.3	51.6	21.1	28.7	81.5	1780	1410	0.82	35.5	46.5	22
II	37.3	44.2	18.5	27.5	87.0	2212	1061	1.04	38.3	57.5	35
III	47.6	38.2	14.8	24.9	90.4	2322	828	1.04	34.7	64.1	44
IY	57.8	31.6	10.6	21.5	94.0	2530	538	1.12	45.4	67.3	54

			Plag	iogranite	s of plagic	ogranite-g	granite s	series			
III	42.7	40.6	16.7	23.7	89.1	2514	774	1.20	29.5	52.4	57
IY	59.3	25.5	15.2	20.2	94.5	2790	556	1.20	20.0	68.5	79
Y	68.4	20.3	11.3	18.1	96.5	2944	320	1.29	19.1	52.7	27

Microcline granites of plagiogranite-granite series

TTT	57.6	31.6	10.8	20.6	04.0	2306	614	1 1 6	16.6	62.5	42
111	57.0	51.0	10.8	20.0	94.0	2300	014	1.10	40.0	02.5	42
IY	78.4	15.3	6.3	19.5	96.5	2638	542	1.11	52.3	60.5	63
Y	87.6	9.4	3.0	17.21	98.7	2750	354	1.11	63.0	66.5	47

	Granodiorite – alaskite series													
III	58.1	30.8	10.1	22.0	93.11	2451	674	1.12	37.0	60.6	42			
IY	70.2	21.5	8.7	20.2	96.5	2512	498	1.19	38.3	67.5	49			
Y	76.6	16.2	7.2	16.8	97.6	2887	364	1.20	34.2	53.3	22			

diagram co-magmatic rocks are distributed on a straight line, and hybrid and metasomatic rocks are not on a straight line (Evrard, 1947). This conformity makes a good genetic criteria and it is conspicuous in our case as well.

Analyzing figure 2 is evident, that different plutonic series start forming in differen magmatic sources. Gabbro-plagiogranite series represents magmatic system which is formed in the area rich in aluminous and femic elements and they trend to eutectic zone. Gabbro adamellite series is also formed in the area rich with these elements, but in their formation the processes of assimilation and hybritization was important. Plagiogranites of plagiogranitegranite series are formed in the area poor of aluminous and femic elements and its composition trends to eutectic field, though silicification deviates from this field. As we can see from the diagram the trend of Caledonian granite-gneisses is continued by Hercynian granodiorite-alaskite series trend, which confirms even more the opinion, according to which the mentioned series represent the Caledonian granite-gneisses remelting product and they trend to eutectic zone.

AFM diagram analysis shows that the first oxidize point of gabbro-plagiogranite series is situated in the tholeiite field, but evolution trend goes through andesite and dacite fields. Gabbro-adamellite series evolution trend follows tholeiite and calc-alkaline field division line and ends in dacite area. The evolution trends of the rest series are distributed in dacite and riolite fields.

Figure 2. The (Mg-Fe)O-CaO-2Al₂O₃-SiO₂ diagram-model for Hercynian plutonic series of the Greater Caucasus.

Trends: 1-Gabbro-plagiogranite series, 2-Gabbro-adamellite series, 3-Migmatite of granite-migmatite complex, 4-Plagiogranites of plagiogranite-granite series, 5-Granites of plagiogranite-granite series, 6-Granodiorite-alaskite series, 7-Caledonian granite-gneisses. **E**-Eutectic zone.

The analysis of R_1 - R_2 diagram shows that two average acidity points of gabbroplagiogranite and gabbro-adamellite series dispose within pre-plate collision field. The last acidity point of gabbro-adamellite series is situated in the syncollision formation field, and of gabbro-plagiogranite series in the borders of syncollision and mantle fractionated fields. According to this diagram, plagiogranite-granite and granodiorite-alaskite series can be treated as syn-collision formation. In both of these series A/CNK (A=molA₂O₃; C=molCaO; N=molNa₂O; K=molK₂O) parameter is >1.1 (tab.1), which is common to S type granitoides. According to this diagram gabbro-adamellite series represents pre-plate collision formation and protolite of gabbro-plagiogranite series is situated in the pre-plate collision field and plagiogranites part is locatied in the mantle fractionates field. According to this diagram, plagiogranite-granite and granodiorite-alaskite series can be treated as syn-collision formation.

Geochemistry

In 400 samples of the studied plutonic series Cu, Pb, Zn, Mo, Ni, Co, Cr, W, Sn, Li and Rb concentrations have been defined. The analyses of the results have show, that they are close to general clark, but some anomalies have also been detected. In plagiogranites of gabbroplagiogranite series composition of Cu (65 g/t) is increased, and Mo (3 g/t) is found. The clark concentrations of these elements correspond to 10 g/t and 1.3 g/t, accordingly. According to V. S. Pitcher (Pitcher, 1982), Cu and Mo increased concentrations are characteristic to I type granitoids. In granitoids of gabbro-adamellite series rare element composition ranges within the clark limits. The exception is W (22 g/t) and V (151 g/t) and the clark concentration of these elements corresponds to 2.2 g/t and 44 g/t, accordingly. In plagiogranite-granite and granodiorite-alaskite series W (accordingly 20 g/t and 24 g/t) and Sn (accordingly 45 g/t and 45 g/t) compositions are increased. The clark concentrations of these elements corresponds to 2.2 g/t and 3 g/t, accordingly. V.S. Pitcher (Pitcher, 1982) considers that high concentration of these elements is characteristic to S type granitoids. Cr concentration in Hercynian granitoids of the Greater Caucasus deserves special attention. It is worth mentioning that in granitoid rocks its clark corresponds to 4.1 g/t, while its minimal concentration (325 g/t) is detected in granodiorite-alaskite series and the maximum (470g/t) in gabbro-adamellite series. Proceeding from these data it is obvious that Hercynian plutonic series of the Greater Caucasus is characterized by general Cr high concentration.

In 40 samples of the studied rocks La, Ce, Nb, Eu, Gd, Dy, Er and Yb concentrations have been defined. Gabbro-plagiogranite series is characterized by Rare Earth Element (REE) low concentrations (Fig.3). Different from gabbro-plagiogranite series, in gabbro-adamellite

Figure 3. Rock-hondrite normalized diagram of REE for Hercynian granitoids of the Greater Caucasus.

Trends:1- Gabbro-plagiogranite series, 2-Gabbro-adamellite series, 3-Plagiogranite-granite series, 4-Granodiorite-aliaskite series.

series REE concentration is increased. In the granitoids of this series light elements concentrations are increased and heavy elements concentrations are decreased, but Eu minimum is poorly marked. REE distribution in plagiogranite-granite series is characterized by typical granitoid trends. Granodiorite-alaskite series is also characterized by REE composition of granite type, but Eu minimum is poorly marked.

The fluid regime of formation

The fluid regime of Hercynian granitoids of the Greater Caucasus has been studied in complex. We have used cryometric and chromatographic methods.

Cryometric method shows, that gabbro-plagiogranite series keeps the information about only slightly mineralized postmagmatic, hydrothermal fluids, the concentration of which does not exceed 5 mass% Equivalent NaCl ($_{NaCl}$). The fluids, which participate in the formation of gabbro-adamellite series, have Na-Cl specialization and the concentration does not exceed 8-9 mass% ($_{NaCl}$).

Two types represent the system of salty water inclusions in plagiogranite-granite series. The first type of inclusions has Na-Ca-Cl composition, its concentration ranges between 20-30 mass% (_{NaCl}). The isochors of these fluids are near PT parameters of metamorphism and ultrametamorphism (Fig.5). These data do not agree with the assumption, according to which during the mentioned processes salty water liquids are represented by Na-Ca chlorides (Williams-Jones and Samson, 1990). The second type of salty water inclusions are represented by weakly mineralized K-Na-Cl liquids, the concentration of which does not

Figure 4. PT diagram fluid evolution for Hercynian granitoids of the Greater Caucasus.

Trends: 1- Salty-water system, $T_{hom} = 100^{\circ}$ C, 10 mass% (E_{NaCl}); 2- Salty-water system, $T_{hom} = 200^{\circ}$ C, 10 mass% (E_{NaCl}); 3- Salty-water system, $T_{hom} = 150^{\circ}$ C, 10 mass% (E_{NaCl}); 4- Salty-

water system, $T_{\rm hom}=120^{0}C,\,25$ mass% ($E_{\rm NaCl}$); 5- Nitrogen system, $S_{\rm N}=3.289$ cm³/gr; 6-Carbon-dioxide gas system, $S_{\rm CO2}{=}0.92$ cm³/gr; 7- Carbon-dioxide gas system, $S_{\rm CO2}{=}0.93$ cm³/gr; 8- H₂O-CO₂ system, H₂O 40 mass% and 20 mass%; 9- Carbon-dioxide gas system, $S_{\rm CO2}{=}1.16$ cm³/gr.

Regression trend of granitoid formation marked by arrow.

exceed 8-10 mas% ($_{NaCl}$). Two types of Ca-Na-Cl salty water liquids are already widely present in the granodiorite-alaskite series. The concentration of the first one ranges between 14-19 mass%, as of the second - between 1-9 mass% ($_{NaCl}$). Gas-fluid inclusion investigation is genetically related to this series. Paleosoma of magmatites, which are genetically related to this series practically have no fluid inclusions. This gives us the right to assume, that fluid part was still formed in the way of phase transformation of minerals. The evolution of the fluid regime process of this series is characterized by regular change. The earliest inclusion in leucosoma of migmatites consists of pure or nearly pure CO₂, but the latest - of H₂O. As H₂O, CO₂, CH₄, N₂ and their mixture determine the whole fluid composition, that points to the fact of heterogeneous fluid participation in the process of ultrametamorphism (Bodnar, 1983). The appearance of CO₂ in fluid system is related to the process of migmatizes CO₂ inclusion points to the existence of granulite facies (Collins, 1979).

By means of chromatographic method we have done quantitative analysis of the following gases: H₂O, CO₂, CH₄, C₃H₈, H₂, N₂, SO₂, O₂, H₂S, HCl, HF. The results show that Hercynian plutonic series of the Greater Caucasus are sharply different according to their gas composition. Plagiogranites of the gabbro-plagiogranite series are distinguished by the large sum composition of gas phase (11.2 ml/g) and concentration of water is the highest in the fluid phase of these rocks ($H_2O/CO_2=20.2$). The gas sum amount in gabbro-adamellite series is sharply decreased (2.80 ml/g), but CO_2 proportion is increased (H₂O/CO₂=3.3). The gas sum amount in protoliths (migmatites) of plagiogranite-granite series is low and does not exceed 2.2 ml/g, and the parameter $H_2O/CO_2=5.3$. In plagiogranites of this series the gas chemical amount does not increase as compared to migmatites, but CO₂ percentage clearly increases ($H_2O/CO_2=2.8$). As compared to plagiographics in porphyroblastic granites of this series the fluid phase sharply increases and its chemical amount reaches 6.2 ml/g. At the same time CO_2 proportion is decreased and H_2O/CO_2 parameter goes up to 12.7. The gas chemical amount (4.5 ml/g) is also high in granodiorite-alaskite series as well as in porphyroblastic granites. The water proportion ($H_2O/CO_2=8.2$) is also high. It is known that N/C parameters (N= $2N_2$; C= CO_2 +CH₄+ $3C_x$) for the continental crust formation ranges in the interval of 0.15-0.50 and for the oceanic crust - is lower than 0.15 (Norman, Sawkins, 1987). According to these parameters gabbro-plagiogranite series corresponds to oceanic crust formation (N/C=0.077) and gabbro-adamellite series both to the oceanic (N/C=0.117) and to the continental crust (N/C=0.330). This parameter in plagiogranite-garnite series is 0.236 and in granodiorite-alaskite series-0.231, which points to their upper crust genesis.

PT regime of formation

Granat-biotite geotermobarometer and granat-cordierite barometer showed quite reliable results in the Hercynian granitoids of the Greater Caucasus (Perchuk et al., 1983). Their data turned out to be the most informative in plagiogranite-granite and granodiorite-alaskite series. In protolites of plagiogranite-granite series the regional migmatization and ultrametamorphic processes started at 730-750^oC temperature range and under 3.7-4.2 kb pressure. The microclinization and pegmatization process thermal regime falls up to $600-620^{\circ}C$ temperature and 2.2-2.7 kb pressure. Granodiorite-alaskite series formation temperature interval is very small (710-735^oC) and pressure ranges in the interval of 3.2-3.5 kb.

According to amphibole geotermobarometer (Mishkin, 1990) the maximal PT regime in the gabbro-plagiogranite series protolites reached 8.2-8.7 kb pressure and $620-630^{\circ}$ C temperature. The crystallization of the plagiogranite melt occurred at the regression stage of regional metamorphism and ultrametamorphism at nearly $600-620^{\circ}$ C temperature and 7.0-7.5 kb pressure conditions. In gabbro-adamellite series according to this geotermobarometre the granitoid melt crystallization occurred in the range of 4.0-4.5kb pressure and $630-670^{\circ}$ C the temperature condition.

Petrogenetic model

We can sum up the results of the research carried out on the petrogenetic model of the Hercynian granitoids of the Greater Caucasus in the following way: Gabbro-plagiogranite series, which is exposed along the main fault in the form of lesser tectonic uplift, was formed at an early stage of the Hercynian orogen evolution $(370\pm20 \text{ Ma})$. The plagiogranites of this series are characterized by Na₂O (3.5-4.5%) surplus K₂O (<1%), Al₂O₃ low percentage (<15%), K₂O/Na₂O parameters, as a rule it is lower than 0.25. In the gabbro-plagiogranite series fluid phase amount reaches 11.2 ml/gr, but CO₂ share is decreased (H₂O/CO₂=20.2). This series both for gabbro and for plagiogranites is characterized by REE toleitic type distribution, which is one more confirmation of their genetic unity. According to the discussed data, the series should have been formed as the result of subducting oceanic crust partial melting (P= 8.2-8.7 kb; T = 620-630⁰C) and water high potential regime condition. Crystallization of plagiogranite melts occurred at 600-620⁰C temperature and 7.0-7.5 kb pressure conditions. According to all characteristics gabbro-plagiogranite series granitoids corresponds to the subducting oceanic crust I type formation.

Gabbro-adamellite series was formed at a late stage of the Hercynian orogen evolution $(310\pm5Ma)$. Its protolite was located just over the subducting oceanic crust and magma generation mechanism was tigel melting. In this series, in contrary to gabbro-plagiogranite, K₂O is increased (>2,5%) and SiO₂ composition changes from 52% to 71%. In REE concentration both toleitic and andesite distribution types are fixed, which show hybrid genesis of the series. In gabbro-adamellite series the fluid phase amount is less (2.8 ml/g), but CO₂ proportion is increased (H₂O/CO₂=3.3). In this series granitoid melt crystallization occurred at the temperature range of 630-670⁰C and 4.0-4.5 kb pressure conditions. According to all characteristics gabbro-adamellites series corresponds to M type formation of mantle crust generation.

Plagiogranite-granite series was formed at a late stage of the Hercynian orogen evolution (317-325Ma) under island arc geodynamic conditions. In metapelite protolite, regional migmatization and ultrametamorphism processes of this series started at 720-750^oC temperature range and under 3.7-4.2 kb pressure. In the evolution processes two stages are distinguished: sinkinematic and postkinematic. On the first stage of plagiogranite composition anatectic magma was formed, which made conformity bodies, and on the second stage the granite composition melts were formed, which mainly made cutting bodies. In early kinematic phase in plagiogranites the fluid phase amount is detected (2 ml/g), CO₂ share is high (H₂O/CO₂=2.8). In the late kinematic granite fluid phase sharp increase can be seen (6.2 ml/g), but CO₂ share is decreased (H₂O/CO₂=12.7). According to all characteristics, plagiogranite-granite series belongs to sincollision anatectic typical S type formation.

Granodiorite-alaskite series was formed at a late stage of the orogen evolution $(300\pm5Ma)$ and it finished the Greater Caucasian Hercynian plutonic magmatizm. The field and petrochemical researches show that magma in this series was formed as a result of remelting of Upper Caledonian granite-gneisses. In granite-alaskite series as compared to plagiogranites of plagiogranite-granite series the fluid phase is increased (4.5 ml/g) but CO₂ share is low (H₂O/CO₂=8.2). The thermobar regime of this series is characterized by stability. Its

crystallization temperature ranges in the interval of $710-735^{0}$ C and pressure is in 3.2-3.5 kb interval. It is characterized by REE distribution granite type, with u sharply expressed minimum. To all existing data the discussed series corresponds to sincollision remelting S type of upper crust formation.

Thus, the research work done enriches our knowledge about the Hercynian granitoids of the Greater Caucasus and gives a chance to form its petrogenetic model. It is evident, that the Greater Caucasian crystalline basement is a collision-accretion construction of a complicated history, where Hercynian orogenic magmatizm played an important role. Relying on petrogenesis of plutonic series and their lateral zones we assume that during the Hercynian orogenic events northward subduction of oceanic crust (the southern edge of Paleotethys) was activated and caused regional metamorphism and granitoid magmatizm. The mentioned activation also comprised the Euro-Asian plate southern edge wich is confirmed by the existence of Hercynian recycling granitoid magmatizm.

Ore mineralization

It is considered that Greater Caucasian crystalline basement is poor in mineral resources. But as a result of the field work, we have revealed three interesting ore manifestations: Thviberi, Szgimazuki and Hokrila-Achapara. Hokrila-Achapara is the most significant among them, which we will describe in detail. Besides, some areas of the investigated granitoids represent very good building and facing material. Among them should be mentioned plagiogranites of the Szgimazuki massif, of the gabbro-plagiogranite series. They are situated in the upper level of the mentioned massif, which are on area of 5 km². They are white-milk color finegrained massif rocks and represent good facing material, because they look like white marble, but different from which are resistant to chemical and mechanic factors.

Tviberi ore-mineralization. It outcrops in the upper reaches of the river Tviberi (right tributary of the river Enguri) and was formed in Lower Jurassic sediments, which are localized as tectonic scale among granitoids of plagiogranite-granite series. In 1991 the left cornice of the river Tviberi fell down and a massif ore-mineralization zone was outcropped, which is of 100-150 m thickness and lies along 700 m. The ore is represented by quartz-pirite-pyrrhotite associations where the gold composition does not exceed 1 g/t. Notwithstanding this fact, the detailed study of the zone is necessary because dimension of ore-mineralization zone is very high.

Szgimazuki ore mineralization. It is located on the Lakchkhilda mountain range, near the southern contact of Szgimazuki plagiogranite massif in the Lower Jurassic sediments. The ore-mineralization outcrop is of 12-15 m thickness and lies along 60 m and other part is covered with deluvial sediments. The ore-mineralization is represented by massif pirite-pirotine ore, where gold consentration ranges between 1.7-2.5 g/t, and the silver composition reaches 50-55 g/t. As we can see this ore-mineralization is rather interesting and needs further investigation.

Hokrila-Achapara ore-mineralization zone

Durring the early nineties of the last century within the crystalline basement of the Greater Caucasus was distinguished quartz-gold low sulfidic hydrothermal genetic type of the Hokrila-Achapara ore-mineralization zone (Okrostsvaridze, 1992, 1995; Okrostsvaridze, Bluashvili, 2000). It is located in the crystalline basement of the Greater Caucasus and structurally related to the regional Alibek fault of general Greater Caucasian direction (SE-NW), along which granite-migmatite complex overthrusts the Sakeni granitoid intrusive.

Granite-migmatite complex is a collisional anatectic formation of the upper crust (S type granitoids), which was formed at Upper Carboniferous (315-325 Ma; U-Pb and Rb-Sr age) under the conditions of HT-LP type of metamorphism and ultrametamorphism. Sakeni

intrusive of gabbro-diorite-quartzdiorite-adamelite composition (outcrop 77 km²) is of lenslike shapes and lies in the common Greater Caucasian (SE-NW) direction. According to petrochemical and geochemical parameters it is metaluminious of mantle-crust genesis the I type formation, which was formed by tigel melting durring Upper Carboniferous (310 ± 5 Ma; U-Pb age).

The Hokrila-Achapara gold ore-bearing zone can clearly be seen in the relief and is build up of highly foliated yellowish-gray and oxidized rocks. It is divided into two parts by Kodory range: the Achapara (west), which is spread on 2 km and the Hokrila (east), which is outcropped nearly at 3 km distance.

Fig. 5. Schematic geological map of the Hokrila area of the Hokrila-Achapara gold oremineralization zone.

1- granite-mignatite complex, 2- Sakeni granitoid intrusive, 3 – gabbro-diabase, 4- milonitization and silicification zone, 5 – ore-containe zone, 6 – ore-bearing body, 7-tectonic faults, 8– Quaternary sediments, 9 – glaciers.

The Hokrila area (Fig. 5) is outcropped on the left bank of the Hokrila river and is localized among broken, silicified, milonitization, chloritization and sericitization rocks. Thickness of the ore-bearing zone reaches maximum in its central part (400-450 m), to the west and east thickness reduces up to 150-200 m. The western border of the ore-bearing zone is represented by a transversal fault and the Kodori ridge. As for the the east border, it is represented by a crossing fault and is covered by deluvial sediments. The southern border is stretched across the Sakeni intrusive rocks and along the Hokrila river to the north is bordered by a of granite-migmatite complex.

The region is characterized by complicated tectonic construction, where the main tectonic unit is the above mentioned Alibek regional fault, which is crossed by younger fault of northwest and north-east direction. The Hokrila ore-bearing area is divided into three blocks: western, central and eastern. Western block is coming upward and the eastern is going downward. The investigation of ore bodies in each block showed that they represent the parts of one ore-mineralization zone later broken and moved. That's why in each block different ore-mineral association is outcropped.

At contemporary erosion level ore-formation is mainly represented by veins, lenses, stringers and nests which mainly fill rock gaps. Non-ore minerals are mainly represented by quartz, carbonate and clay minerals. Ore-minerals are: pyrite, pyrrhotite, marcasite, arsenopirite, antimonite, sphalerite, galena, chalcopyrite, silver and gold. Five associations of ore minerals are distinguished: quartz-scheelitic, quartz-pyritic, quartz-polysulphidic, quartz-antimonitic and quartz-gold. Gold is met in every five, but the highest concentrations are in quartz-gold association.

The west main ore-bearing body (dip azimuth 10° , angle of inclination 60°) has 10-15 m thickness and is mainly represented by quarts-gold association. The central main ore-bearing body (dip azimuth 20° , angle of inclination 60°) has 25-30 m thickness and is represented mainly by quartz-sheelitic and quartz-gold association. The east main ore-bearing body (dip azimuth 10° , angle of inclination 60°) has 17-20 m thickness and is represented by quartz-pyritic, quartz-gold and quartz-polymetal associations.

In the quartz-gold association of the western block the average gold concentration corresponds to 2,71 gr/t (the average of 20 samples) and the maximum reaches 5,27 gr/t. The average gold concentration (the average of 15 samples) in quartz-pyritic association of this block corresponds 1,76 gr/t and maximum reaches 2,88 gr/t. In the central block the average gold concentration (the average of 24 samples) in quartz-gold association corresponds to 6.35 g/t, and maximum 15.60 gr/t. In the same block in quartz-antimonitic association the average gold concentration (the average of 18 samples) corresponds to 2.11 g/t and maximum 3,82 g/t. In the eastern block in quartz-gold association the average of 15 samples) corresponds to 3.82 g/t and maximum 7.11 g/t. In the same block in quartz-polysulphidic association the average gold concentration (the average gold concentration (the average gold concentration (the average of 16 samples) corresponds to 2.64 g/t and maximum 3.52 g/t. In quartz-sheelitic association, which is present only in the western block tungsten average concentration (the average of 5 samples) corresponds to 1600 g/t and maximum reaches 2200 g/t.

As it is known gold-bearing hydrothermal quartz-low-sulphidic deposits which are connected to gabbro-diorite-granodiorite formations are found in many regions of the world. The gold ore-mineralization studied by the author show much in common with the Sechi-Jirme and the Lega-Demby gold deposits (Lapukhov et al., 2000; Billay et al.,1997). Like these deposit the Hokrila-Achapara gold ore-mineralitation belongs to hydrothermal quartz-low-sulphidic genetic type and is connected in space and genetically with gabbro-diorite-

granodiorite formations. Linear tectonic stressed zones represent the ore-forming structural and lithologic factors, which caused strong crashing, milonitization and silicification of the rocks and regressive quartz-epidote, chlorite-sericite mineral association are formed in it.

Thus, comparing our results with other analogical data, we can conclude, that the Hokrila area and very likely the Hokrila-Achapara ore-mineralization zone in all are prospective and as a result of further geological-research work the gold deposit of industrial importance can be discovered.

1.

(%)

	SiO ₂	TiO ₂	Al ₂ 0 ₃	Fe ₂ 0 ₃	FeO	MnO	CaO	MgO	K ₂ O	Na ₂ O	H ₂ O ⁻	H_2O^+	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1205	68,96	0,19	13,94	1,81	2,29	0,07	4,35	1,43	0,80	3,30	0,28	2,15	99,51
1206	68,33	0,33	14,49	1,97	2,71	0,10	3,03	2,14	0,92	3,78	0,32	1,81	100,02
1212	48,72	0,48	18,55	4,96	6,90	0,11	2,50	4,92	0,54	4,00	0,22	1,18	100,07
1218	64,96	0,36	15,30	1,86	3,59	0,07	5,54	1,91	0,60	2,50	0,06	2,62	99,37
1219	67,52	0,35	14,80	2,58	2,17	0,15	1,49	2,35	1,14	4,67	0,24	2,41	99,87
1221	72,70	0,27	12,75	0,45	2,87	0,06	1,22	1,03	1,80	3,20	0,30	2,94	99,79
1227	69,60	0,33	14,45	2,27	1,65	0,07	3,44	1,35	0,40	4,00	0,14	1,68	99,38
1229	70,92	0,22	12,40	-	3,87	0,06	2,88	1,20	1,00	4,00	0,42	2,47	99,35
1233	66,70	0,37	15,64	2,52	1,29	0,05	3,77	1,59	0,90	3,30	0,54	2,91	99,58
1241	74,64	0,18	11,90	0,98	2,72	0,06	1,00	0,20	1,00	5,50	0,30	1,45	99,08
1244	57,54	0,50	16,55	3,19	0,72	0,07	6,04	7,50	0,55	4,60	0,26	2,38	99,90
1246	61,94	0,44	14,88	6,41	0,90	0,13	5,58	4,53	0,82	2,68	0,22	1,38	99,91
1249	68,34	0,19	15,30	0,79	2,15	0,03	5,52	1,18	0,70	3,20	0,08	1,83	99,41
1250	65,46	0,37	16,91	3,14	1,62	0,09	1,92	2,62	0,97	4,40	0,38	2,40	100,28
1274	64,44	0,28	14,45	2,25	3,66	0,14	5,76	2,30	0,70	3,20	0,24	2,00	99,48
1389	47,57	0,63	15,99	4,89	7,94	0,24	9,25	6,53	0,85	3,12	0,06	2,79	99,86
1282	75,12	0,13	13,26	0,38	1,79	0,03	1,66	0,32	1,80	3,60	0,32	1,46	99,87
1302	61,94	0,27	16,66	2,23	3,73	0,14	4,00	2,19	0,70	3,60	0,30	3,91	99,77
1303	71,61	0,26	14,19	1,95	1,44	0,10	3,00	1,43	0,32	4,04	0,22	1,34	99,90
1306	66,39	0,30	14,76	3,47	1,62	0,16	3,70	2,64	0,17	4,66	0,32	1,72	99,91
1314	61,22	0,25	14,55	2,82	4,34	0,25	6,36	4,57	0,28	3,09	0,18	1,59	99,50
1316	68,50	0,27	14,28	1,31	2,51	0,11	4,00	1,43	0,30	3,60	0,28	2,30	99,80
1317	56,26	0,40	15,98	1,74	6,96	0,14	7,65	3,50	0,40	2,80	0,46	3,20	99,10
1323	62,20	0,19	15,64	2,25	4,23	0,14	5,99	2,95	0,10	2,30	0,34	3,20	99,53
1327	68,40	0,31	14,62	0,28	3,73	0,11	4,10	1,59	0,30	3,50	0,70	2,40	100,04
1336	73,26	0,21	13,77	0,70	1,93	0,03	1,44	1,11	1,10	4,00	0,10	1,86	99,51
1337	78,08	0,10	11,39	0,15	1,07	1,03	0,70	0,05	0,30	6,20	0,40	1,28	99,75
1348	56,54	0,43	16,15	3,20	4,95	0,28	3,64	5,24	0,40	2,40	1,00	2,22	99,45
1349	77,52	0,12	12,24	-	1,29	0,03	1,00	0,17	0,60	5,30	0,38	1,48	100,11
1380	45,13	1,23	15,58	4,53	7,74	0,13	9,87	6,95	0,33	3,09	0,07	1,14	99,79
1388	50,30	0,58	15,48	4,81	6,89	0,21	8,49	6,85	0,81	3,25	0,22	1,99	99,85

1	2	3	4	5	6	7	8	9	10	11	12	13	14
1390	54,50	0,53	14,28	4,59	6,72	0,16	8,24	5,79	0,64	3,28	0,07	1,10	99,90
1397	58,34	0,49	15,62	3,22	5,21	0,15	7,48	4,58	0,61	3,23	0,10	0,86	99,89
1401	64,80	0,38	15,82	1,08	3,30	0,08	3,88	1,66	1,79	5,09	0,12	1,76	99,82
1402	56,81	0,70	15,74	3,76	4,10	0,18	6,32	3,52	2,28	4,85	0,18	1,02	99,35
2850	76,30	0,08	13,71	0,62	0,54	0,03	2,68	0,90	0,60	3,81	0,08	0,56	99,91
2852	76,94	0,08	14,34	0,39	0,36	0,02	2,00	0,88	0,12	4,26	0,12	0,40	99,91
2858	79,09	0,05	12,50	0,46	0,36	0,02	1,61	0,95	0,33	4,07	0,06	0,42	99,42
1392	57,59	0,50	14,92	3,90	6,62	0,16	7,24	4,62	0,55	3,57	0,08	0,86	100,61
3005	74,84	0,56	12,57	1,06	2,89	0,05	0,49	1,22	1,21	1,56	0,15	1,82	99,42
3032	47,44	1,31	16,36	0,75	6,45	0,13	7,99	10,66	2,83	2,06	0,38	2,89	99,25
3036	58,10	0,55	16,65	1,63	0,36	0,04	7,26	5,90	2,05	5,47	0,41	1,32	99,74
3042	75,79	0,22	13,53	0,49	0,27	0,02	2,03	0,67	0,41	5,48	0,12	0,63	99,68
3048	72,97	0,07	15,42	1,06	0,36	0,03	1,78	0,38	1,25	5,53	0,12	0,97	99,94
3061	73,20	0,20	15,23	1,12	0,27	0,03	2,36	0,43	0,69	5,17	0,17	1,02	99,89
3070	73,47	0,15	15,24	0,41	0,36	0,02	2,10	0,96	0,18	6,12	0,09	0,82	99,92

: 1205-1282 -

; 1302-1349 -

; 1380-1402 -

; 2850-3070 -

	2.		(%)			-						
	SiO ₂	TiO ₂	Al ₂ 0 ₃	Fe ₂ 0 ₃	FeO	MnO	CaO	MgO	K ₂ O	Na ₂ O	H_2O^{-}	H_2O^+	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
185	61,20	0,50	17,00	1,40	4,80	0,14	5,50	2,50	2,20	3,50	0,25	0,70	99,55
186	64,00	0,45	16,00	1,00	4,00	0,17	4,90	2,40	2,50	3,00	0,15	0,80	99,37
194	62,80	0,50	17,10	1,40	4,20	0,20	5,60	2,30	1,20	3,20	0,15	1,00	99,65
252	58,60	0,53	17,85	2,80	3,50	0,08	7,82	1,19	2,00	3,20	0,37	1,78	99,54
344	47,85	0,82	17,61	3,97	8,05	0,06	8,53	5,81	1,90	3,00	0,27	1,81	99,68
396	62,92	0,72	16,25	1,72	5,04	0,72	4,76	0,87	2,00	3,60	0,20	1,48	100,12
427	64,80	0,39	15,13	1,49	4,55	0,25	5,32	1,83	2,50	2,60	0,19	0,90	99,97
431	63,02	0,38	16,32	2,49	3,36	0,10	4,99	2,55	1,60	3,00	0,30	1,76	99,97
433	60,45	0,49	17,57	1,41	4,76	0,12	5,98	2,72	2,20	3,00	0,20	1,03	99,93
436	62,90	0,37	15,98	1,72	4,76	0,09	5,21	1,91	2,20	3,50	0,20	1,13	99,97
1	2	3	4	5	6	7	8	9	10	11	12	13	14

448	64,41	0,63	14,79	2,17	3,92	0,12	4,99	1,59	2,30	3,00	0,40	1,45	99,67
470	57,57	0,90	18,12	2,95	4,34	0,13	5,98	2,63	1,40	3,20	0,35	2,30	100,03
482	64,78	0,49	15,13	0,47	3,50	0,19	3,55	1,55	2,60	3,60	0,20	1,09	100,17
492	68,10	0,40	15,30	0,86	2,87	0,20	0,51	0,51	3,00	3,00	0,25	1,23	99,57
440	54,05	0,83	17,17	2,80	6,16	0,18	7,67	4,38	2,10	2,50	0,35	1,85	99,04
513	69,92	0,37	14,35	1,55	2,52	0,18	3,10	1,03	3,40	2,40	0,20	0,86	99,98
521	66,45	0,43	15,47	2,48	2,66	0,16	3,88	1,21	2,50	2,50	0,27	1,75	99,74
494	64,60	0,37	18,02	2,32	1,40	0,17	3,43	0,71	3,10	5,00	0,10	0,62	99,81
550	70,23	0,36	14,11	1,09	2,94	0,19	3,88	0,47	3,70	2,00	0,10	0,88	99,88
743	61,38	0,82	16,32	2,88	4,27	0,12	5,32	2,71	2,20	2,00	0,30	1,58	99,90
789	68,28	0,42	14,78	0,63	3,92	0,20	3,77	1,19	3,70	1,90	0,10	1,18	100,07
795	59,73	0,60	18,19	0,22	5,80	0,07	6,76	2,31	2,60	1,40	0,38	1,47	99,53
798	63,46	0,78	16,15	1,79	4,27	0,09	5,54	2,31	2,00	2,00	0,26	1,31	99,96
799	60,85	0,78	17,51	2,33	4,34	0,13	5,54	2,71	2,00	2,30	0,25	1,52	100,28
800	58,43	0,62	16,15	2,93	5,63	0,08	6,84	3,82	1,50	2,00	0,22	1,38	99,50
1426	49,93	0,84	14,30	5,86	5,43	0,44	10,25	6,91	1,04	2,65	0,39	1,49	99,53
1451	65,37	0,76	16,56	2,10	3,61	0,19	2,41	2,57	2,97	1,79	0,31	1,05	99,69
1456	50,73	0,94	15,60	3,89	7,44	0,47	8,83	5,89	1,88	2,85	0,27	1,12	100,11
1460	51,72	1,07	16,15	3,79	6,07	0,19	7,47	5,95	2,09	2,92	0,33	1,52	99,32
2704	68,25	0,36	15,11	3,99	0,00	0,08	3,84	1,19	1,87	3,71	0,08	1,12	99,60
2706	67,46	0,51	15,35	3,82	0,63	0,08	3,38	1,68	2,98	3,14	0,02	0,78	99,83
2708	71,21	0,08	16,66	0,81	0,34	0,03	0,71	0,80	4,29	4,11	0,06	0,78	99,88
2710	52,45	0,81	13,51	3,96	5,92	0,34	7,87	9,11	1,84	2,75	0,04	1,25	99,85
2711	68,59	0,47	14,84	2,70	1,00	0,07	2,69	1,55	4,23	3,09	0,02	0,58	99,83
2713	56,11	1,11	16,31	5,04	3,72	0,22	6,77	3,98	2,54	2,99	0,06	0,86	99,71
2714	72,98	0,06	14,85	1,06	0,00	0,03	0,64	0,63	6,57	2,70	0,02	0,46	99,37
2715	68,15	0,39	14,49	3,32	0,88	0,12	2,36	1,48	4,53	2,45	0,04	1,04	99,45
2716	68,75	0,79	14,49	3,32	0,88	0,12	2,36	1,48	4,55	2,45	0,04	1,04	100,27
2709	69,19	0,42	14,77	1,79	1,46	0,07	2,66	1,26	4,07	3,37	0,02	0,80	99,88
2719	74,82	0,28	10,97	3,05	0,00	0,03	2,81	0,79	2,81	3,27	0,04	1,04	99,87
2721	63,88	0,84	15,74	3,85	2,17	0,12	4,01	2,91	2,41	3,14	0,10	1,10	100,27
2733	63,97	0,71	15,29	5,69	0,00	0,10	3,56	3,14	2,76	3,37	0,40	0,80	99,79
2734	55,60	0,98	15,93	5,79	3,03	0,17	6,15	5,01	2,86	3,03	0,08	1,16	99,79
2736	65,09	0,70	15,89	4,34	0,77	0,09	3,01	1,54	3,80	3,16	0,14	1,26	99,79
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2740	66,64	0,56	15,56	2,63	2,03	0,10	3,29	1,50	3,70	3,31	0,00	0,48	99,80

2744	64,40	0,67	16,012	3,21	2,07	0,09	3,25	2,03	4,30	3,30	0,02	0,42	99,77
2748	73,81	0,30	12,56	2,30	0,00	0,03	3,09	2,45	1,90	2,57	0,06	0,82	99,89
2751	53,01	1,01	16,64	6,08	4,26	0,12	6,19	5,47	1,31	1,94	0,16	3,74	99,93
2739	59,07	1,03	16,79	3,80	3,52	0,14	5,54	2,81	3,12	3,16	0,04	0,60	99,62
2754	67,56	0,45	15,08	3,82	0,00	0,07	3,75	1,33	2,79	3,75	0,08	1,08	99,76
2755	62,83	0,84	15,89	3,81	2,24	0,12	3,97	3,07	2,30	3,54	0,00	1,16	99,77
2841	64,96	0,98	15,41	2,17	3,25	0,09	3,67	2,56	2,01	2,79	0,06	1,91	99,86
2890	50,36	1,11	15,91	5,59	4,43	0,18	8,53	7,48	2,23	2,98	0,08	0,76	99,64
2892	69,63	0,71	15,72	1,19	2,53	0,06	1,54	1,67	0,98	5,00	0,08	0,64	99,75
2895	74,25	0,28	12,38	1,30	0,90	0,06	0,83	0,95	4,46	2,94	0,12	1,40	99,90
2901	68,03	0,68	14,45	1,24	2,71	0,06	2,29	1,79	4,85	3,19	0,12	0,32	99,73
2904	71,32	0,06	18,10	0,77	0,18	0,03	0,40	0,83	3,39	3,92	0,12	0,72	99,78
3007	56,37	1,36	15,95	3,25	5,43	0,18	5,46	4,80	2,76	1,94	0,45	1,63	99,58
3008	71,03	0,11	15,78	1,14	1,08	0,07	0,77	0,38	4,89	3,75	0,21	0,58	99,79
2752	62,26	0,66	16,82	3,26	2,62	0,08	2,66	2,61	3,87	1,98	0,10	2,59	99,51
3010	71,43	0,29	14,98	1,15	1,08	0,05	0,95	0,52	4,76	3,75	0,27	0,52	99,75
3012	46,42	2,46	17,40	1,79	5,23	0,18	11,97	7,76	1,14	2,83	0,42	1,72	99,28
3014	61,71	1,01	16,59	2,09	4,34	0,12	2,79	2,89	3,29	3,56	0,37	0,99	99,75
3017	69,31	0,61	14,74	2,64	1,44	0,09	2,53	1,28	2,11	4,17	0,18	0,63	99,73
3222	60,86	0,89	16,83	2,56	3,43	0,12	4,61	2,98	2,05	3,34	0,23	0,92	99,76
3228	63,33	0,59	15,34	1,68	4,12	0,11	4,11	2,43	2,79	3,93	0,18	0,73	99,81
3616	72,77	0,24	16,20	0,99	0,90	0,03	1,53	0,55	3,48	3,48	0,80	0,92	99,76
3618	55,40	1,02	14,87	2,33	5,43	0,17	8,05	6,88	0,75	3,41	0,08	1,45	99,82
3619	70,06	0,36	16,16	0,75	1,98	0,05	1,27	1,23	3,62	3,58	0,04	0,80	99,65
3673	69,76	0,42	15,50	1,04	2,17	0,06	2,55	0,95	3,23	3,45	0,04	1,23	99,77
3674	54,88	1,12	18,12	4,45	3,43	0,15	6,74	4,51	1,93	3,60	0,08	0,64	99,65
3675	67,82	0,44	15,99	1,16	1,80	0,06	2,44	1,32	3,54	3,62	0,32	1,32	99,83
3679	71,40	0,08	16,44	0,48	1,35	0,09	0,80	0,78	4,59	3,22	0,12	0,56	99,91
3680	69,06	0,11	16,82	0,23	0,90	0,03	0,49	0,92	7,20	2,58	0,12	1,28	99,74
3682	62,97	0,94	18,10	1,91	5,80	0,13	0,44	2,49	3,45	0,71	0,08	2,78	99,80
3685	51,07	1,04	17,08	4,63	4,70	0,22	7,87	5,52	2,13	3,20	0,08	2,17	99,71
3687	70,60	0,21	17,14	0,69	1,08	0,04	0,85	0,61	4,21	3,40	0,04	0,96	93,83
3690	69,13	0,54	14,99	1,32	1,98	0,09	2,11	1,81	3,24	3,48	0,04	1,12	99,85
1	2	3	4	5	6	7	8	9	10	11	12	13	14
4005	56,22	0,31	21,34	2,36	1,65	0,05	5,40	2,73	0,93	7,10	0,40	1,24	100,83
3229	52,79	0,79	16,28	4,20	8,18	0,61	8,61	6,05	2,11	2,77	0,12	0,80	99,85

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$														
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4007	66,08	0,26	17,15	0,30	2,22	0,07	4,41	1,65	2,07	4,25	0,24	1,12	100,14
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4008	60,63	0,80	17,00	1,74	2,70	0,07	6,65	3,14	0,66	3,80	0,10	1,02	99,39
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4002	66,14	0,38	16,92	0,33	1,82	0,05	4,65	1,08	1,62	5,05	0,32	0,91	100,43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4015	67,16	0,34	15,06	1,72	0,80	0,06	3,49	1,22	2,65	3,69	0,80	1,23	100,25
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4025	53,10	0,48	22,73	1,00	1,29	0,05	12,17	1,94	0,15	4,92	0,60	0,96	100,07
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4055	59,82	0,40	19,21	1,65	5,18	0,08	6,72	0,72	1,40	1,10	0,11	1,45	99,05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4058	65,55	0,31	15,64	0,80	6,05	0,07	1,40	1,87	2,16	3,80	0,14	0,04	99,80
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4075	73,59	0,33	13,44	0,63	2,59	0,02	0,98	0,55	3,60	3,46	0,05	0,55	99,55
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4079	73,19	0,27	13,44	0,08	2,80	0,02	0,74	0,44	4,54	3,80	0,05	0,23	99,76
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4081	69,11	0,46	16,00	0,20	3,45	0,04	1,79	0,73	3,00	4,70	0,10	0,56	100,36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4085	72,97	0,27	13,74	0,03	2,70	0,02	1,75	0,41	2,50	4,20	0,08	0,42	99,66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	56,46	0,84	18,71	0,18	7,77	0,10	5,34	3,02	2,64	3,00	0,10	0,34	99,99
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	71	61,29	0,56	18,03	0,59	5,33	0,10	5,29	2,11	1,32	3,46	0,11	1,25	99,48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1096	58,30	0,72	18,19	0,51	6,48	0,10	6,09	2,68	1,32	3,00	0,12	1,11	99,14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	193-6	60,97	0,31	15,85	3,00	3,81	0,25	5,59	3,01	1,00	3,35	0,22	2,28	99,64
160-673,000,0515,281,050,360,101.340,242,505,700,140,54100,32169-674,620,0514,340,580,200,071,140,163,304,800,070,5599,88170-673,090,0515,111,050,360,071,040,322,805,500,530,21100,13192-673,080,6213,120,942,020,072,451,260,804,400,201,40100,38177-674,08-13,281,110,360,071,010,122,606,700,200,0299,55	172-6	73,65	0,05	14,81	0,81	0,14	0,03	1,11	0,32	3,50	4,60	0,04	1,08	100,14
169-674,620,0514,340,580,200,071,140,163,304,800,070,5599,88170-673,090,0515,111,050,360,071,040,322,805,500,530,21100,13192-673,080,6213,120,942,020,072,451,260,804,400,201,40100,38177-674,08-13,281,110,360,071,010,122,606,700,200,0299,55	160-6	73,00	0,05	15,28	1,05	0,36	0,10	1.34	0,24	2,50	5,70	0,14	0,54	100,32
170-673,090,0515,111,050,360,071,040,322,805,500,530,21100,13192-673,080,6213,120,942,020,072,451,260,804,400,201,40100,38177-674,08-13,281,110,360,071,010,122,606,700,200,0299,55	169-6	74,62	0,05	14,34	0,58	0,20	0,07	1,14	0,16	3,30	4,80	0,07	0,55	99,88
192-673,080,6213,120,942,020,072,451,260,804,400,201,40100,38177-674,08-13,281,110,360,071,010,122,606,700,200,0299,55	170-6	73,09	0,05	15,11	1,05	0,36	0,07	1,04	0,32	2,80	5,50	0,53	0,21	100,13
177-6 74,08 - 13,28 1,11 0,36 0,07 1,01 0,12 2,60 6,70 0,20 0,02 99,55	192-6	73,08	0,62	13,12	0,94	2,02	0,07	2,45	1,26	0,80	4,40	0,20	1,40	100,38
	177-6	74,08	-	13,28	1,11	0,36	0,07	1,01	0,12	2,60	6,70	0,20	0,02	99,55

: 185-19	94 -		; 252-1460 -		; 2704-2755 -	;
2890-2904 -		; 3007-3690 -		; 3222-3229 -		; 3616-3619 -
	; 4002-4085 -		; 44-1096 -		(1962
,.); 193-6, 177-6 -		(

. . , 1972).

3.

(%)

	SiO ₂	TiO ₂	Al ₂ 0 ₃	Fe ₂ 0 ₃	FeO	MnO	CaO	MgO	K ₂ O	Na ₂ O	H ₂ O ⁻	H_2O^+	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
39	75,91	0,62	11,2	0,93	3,96	0,13	0,58	1,18	2,28	1,51	0,04	1,52	99,88
42	72,65	0,34	12,58	1,40	4,14	0,11	0,58	2,19	2,46	0,79	0,37	2,25	99,86
66	58,60	0,80	14,96	3,23	5,04	0,13	1,99	3,61	6,48	2,29	0,31	2,43	99,92
77	63,91	0,28	14,45	2,50	4,50	0,28	2,10	2,60	4,80	1,94	0,38	2,17	99,89
169	89,84	0,36	13,60	1,88	3,60	0,10	2,00	2,20	2,34	3,11	0,28	0,44	99,75
113	70,50	0,29	14,45	1,49	1,98	0,10	3,06	1,18	3,57	2,47	0,24	0,32	99,65
115	71,22	0,36	14,28	1,32	1,98	-	3,18	1,52	1,31	3,14	0,38	0,98	98,67
240	68,50	0,35	14,50	0,20	4,60	0,14	3,30	1,70	1,70	4,10	0,20	0,40	99,69
248	67,38	0,38	13,60	1,05	5,00	0,14	2,20	2,70	3,00	3,00	0,28	0,92	99,57
249	60,00	0,45	18,60	1,70	5,50	0,14	1,45	2,00	4,20	1,70	0,17	3,68	99,17
265	52,75	0,79	17,17	0,73	5,81	0,10	1,60	1,95	5,20	1,20	0,44	0,27	100,00
298	72,40	0,18	11,56	0,90	2,44	0,07	1,03	3,60	6,00	2,20	0,44	0,64	99,77
307	59,80	1,20	20,70	1,15	5,58	0,29	1,26	2,60	4,30	1,90	0,32	1,00	99,21
319	65,90	0,28	14,60	1,10	4,80	0,14	2,10	2,50	3,00	2,90	0,20	2,14	99,62
338	63,40	0,48	19,40	1,60	5,60	0,21	1,23	0,24	4,20	1,70	0,25	2,13	99,84
351	75,02	0,10	13,50	0,30	1,94	0,06	1,54	0,86	1,00	4,00	0,27	1,26	99,85
373	62,92	1,05	17,43	2,49	5,79	0,20	1,00	3,10	1,58	3,50	0,50	0,26	99,84
300	75,30	0,28	11,22	0,90	1,32	0,07	1,12	1,80	4,4	1,54	0,40	0,84	99,19
928	68,40	0,35	14,90	1,04	1,26	0,12	0,48	1,88	4,22	4,00	0,32	1,44	99,21
966	60,20	0,95	16,12	0,36	8,44	0,62	1,95	3,25	1,56	2,62	0,58	2,30	99,59
2012	53,40	1,05	21,85	2,27	7,05	0,07	1,29	5,53	3,64	2,19	0,10	1,00	99,44
2020	64,88	1,17	17,38	2,19	4,16	0,06	0,80	2,42	3,87	1,91	0,20	0,84	99,84
2024	52,24	1,33	21,52	2,64	6,16	0,06	1,69	5,56	3,71	2,82	0,16	1,81	99,70
2036	57,23	1,29	17,29	5,95	2,19	0,08	3,88	3,71	3,90	2,97	0,18	0,88	99,55
2047	66,44	0,58	15,53	2,00	4,32	0,17	1,29	2,49	3,76	2,03	0,10	1,04	99,75
2083	66,08	0,48	15,34	1,39	3,78	0,07	2,02	2,97	2,62	3,81	0,11	1,15	99,89
2116	69,32	0,56	15,26	0,71	3,98	0,05	1,20	1,69	2,40	3,14	0,22	1,39	99,92
2391	65,34	0,96	15,53	1,17	5,17	0,07	1,62	2,62	3,12	3,72	0,12	0,49	99,91
2154	64,98	0,75	16,47	2,09	3,61	0,07	1,42	2,63	3,38	2,74	0,16	1,33	99,30
2343	70,40	0,33	15,25	1,12	1,97	0,07	2,45	1,05	2,97	3,27	0,16	0,88	99,92

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2371	57,40	1,01	15,60	2,10	5,37	0.24	6,09	4,42	0,80	3,72	0,30	1,80	99,95
2406	64,45	0,97	15,77	0,76	4,70	0,09	3,82	2,42	2,63	3,39	0,04	0,68	99,72
2432	58,61	0,97	16,88	2,63	4,01	0,15	5,41	4,00	2,75	2,97	0,22	1,19	99,79
2444	67,33	0,50	16,28	1,58	1,54	0,05	1,26	1,13	6,13	3,18	0,30	0,62	99,90
2480	69,57	0,41	15,90	0,88	1,63	0,05	0,52	1,43	6,88	1,63	0,02	0,94	99,86
2486	62,04	1,07	18,07	2,16	4,67	0,18	0,81	2,68	4,68	2,42	0,08	0,97	99,83
2510	76,11	0,32	12,13	0,79	2,04	0,11	1,47	1,26	1,72	3,20	0,04	0,80	99,99
3557	72,18	0,22	17,06	1,28	2,26	0,05	1,09	0,84	1,12	2,43	0,12	1,12	99,77
2151	58,97	1,05	18,02	3,07	5,61	0,09	1,28	4,05	3,98	2,33	0,16	1,25	99,86
3567	63,44	0,67	18,54	1,60	3,61	0,18	0,81	1,54	3,60	3,21	0,20	2,41	99,81
	_												
33	67,09	0,70	14,09	0,76	4,86	0,11	3,74	2,44	1,77	2,70	0,08	1,48	99,82
176	71,50	0,23	15,30	0,30	2,80	0,14	1,30	1,00	1,70	2,70	0,15	1,70	99,49
180	72,40	0,17	14,50	0,30	2,40	0,11	2,70	0,70	0,60	5,40	0,20	0,20	99,68
184	73,00	0,17	14,00	0,30	2,50	0,14	2,00	3,10	0,70	2,80	0,20	0,20	99,59
305	75,28	0,25	13,94	0,60	0,18	0,01	1,40	0,88	1,30	4,60	0,34	0,44	99,24
325	67,20	0,33	14,60	1,20	4,00	0,10	3,70	1,50	2,00	3,20	0,30	1,70	99,84
344	73,50	0,15	14,96	0,45	1,20	0,03	4,00	0,40	1,00	3,80	0,18	0,32	100,00
353	74,77	0,25	13,76	0,36	0,51	0,04	3,07	0,60	1,00	4,50	0,15	0,48	99,49
984	75,80	0,05	14,36	0,24	0,36	0,02	0,96	0,87	1,40	4,50	0,26	0,42	99,25
2039	71,51	0,38	14,81	0,73	2,02	0,05	1,61	0,60	1,56	3,99	0,07	1,26	99,66
2043	67,61	0,63	15,93	1,03	3,07	0,06	2,63	1,00	1,96	4,05	0,19	1,10	99,26
2067	67,28	0,40	16,26	1,46	1,80	0,03	3,30	1,15	1,68	4,56	0,20	1,20	99,32
2071	64,46	0,74	16,61	2,48	2,81	0,06	5,00	1,43	1,74	3,10	0,13	0,11	99,67
2076	62,78	0,83	17,10	1,14	4,12	0,05	4,01	2,11	1,53	3,66	0,26	2,11	99,70
2109	70,36	0,25	15,74	0,60	1,94	0,19	2,14	0,49	2,88	4,11	0,08	1,14	99,92
2122	74,26	0,10	15,03	1,15	0,00	0,02	1,02	0,26	1,14	5,96	0,14	0,74	99,82
2205	70,31	0,42	15,37	0,63	2,49	0,05	2,01	1,02	0,99	5,16	0,14	1,10	99,69
2206	71,78	0,56	14,14	0,42	2,62	0,04	2,15	0,70	1,81	4,24	0,13	0,83	99,42
350	75,05	0,10	13,50	0,30	1,94	0,06	1,54	0,86	1,00	4,00	0,27	1,26	99,88
2374	63,14	1,10	18,36	1,39	4,31	0,82	1,81	3,08	1,93	2,42	0,22	1,07	99,65
2408	62,93	0,84	17,26	2,95	0,24	0,11	4,43	2,89	2,41	2,75	0,31	0,62	99,64
2426	72,49	0,17	16,57	1,08	0,00	0,03	1,11	0,39	1,21	6,03	0,10	0,66	99,84
2473	68,24	0,55	15,50	0,45	3,18	0,04	1,82	2,15	2,98	4,06	0,06	0,86	99,89
1	2	3	4	5	6	7	8	9	10	11	12	13	14

2510	76,11	0,32	12,13	0,79	2,04	0,11	1,47	1,26	1,72	3,20	0,04	0,80	99,99
2611	76,35	0,32	12,51	2,46	0,00	0,03	1,77	0,65	1,70	3,76	0,02	0,34	99,91
3201	73,19	0,52	12,99	1,30	2,35	0,06	3,03	1,13	1,52	3,31	0,03	0,37	99,80
3202	70,32	0,38	15,83	2,15	1,08	0,05	1,86	1,03	1,79	4,21	0,17	0,65	99,52
3560	74,09	0,14	12,17	0,74	0,72	0,03	2,03	0,51	1,32	3,51	0,16	2,48	99,88
2587	63,03	1,07	16,07	2,03	4,41	0,14	4,64	5,25	1,59	2,73	0,02	2,71	99,99
37	73,55	0,20	12,75	1,26	1,26	0,05	1,75	1,00	4,04	2,77	0,06	1,00	99,94
46	72,91	-	12,41	1,36	0,72	0,02	1,64	0,92	5,28	3,59	0,17	0,82	99,85
54	72,02	0.10	13,43	0,70	1,62	0,03	0,93	1,00	5,28	4,06	0,06	0,58	99,86
64	72,85	0,24	12,75	0,56	1,53	0,05	1,68	0,75	5,04	3,98	0,05	0,75	99,83
106	75,48	-	12,56	0,48	1,08	0,03	0,83	0	6,60	2,46	-	0,40	99,85
130	73,64	-	13,26	0,78	1,26	-	1,77	1,18	4,92	2,47	0,04	0,60	99,92
131	75,47	0,05	13,10	0,35	0,45	-	0,52	0,40	6,42	2,32	0,27	0,25	99,06
167	74,29	0,08	14,11	0,42	0,54	-	0,23	0,17	5,70	2,19	0,50	0,94	99,78
172	71,37	0,09	13,94	0,44	1,62	0,02	1,82	0,44	5,76	3,15	0,47	0,61	99,71
174	72,75	0,98	14,14	1,08	1,08	0,02	1,25	0,60	4,15	3,48	0,58	0,83	99,77
223	73,90	0,07	13,53	0,35	0,90	0,02	1,12	0,26	5,12	3,31	0,36	0,70	99,69
286	71,00	0,25	14,62	0,25	1,79	0,03	1,49	0,81	5,30	3,50	0,16	0,56	99,76
335	73,00	0,17	14,37	0,14	0,17	0,07	1,40	0,24	5,70	2,90	0,20	0,90	99,77
360	71,62	0,22	13,45	0,44	1,86	0,06	2,32	0,70	4,00	4,00	0,25	0,75	99,67
832	71,00	0,86	14,10	0,54	1,33	0,03	0,54	1,15	6,20	2,60	0,40	0,52	99,27
845	70,28	0,20	14,10	0,27	1,30	0,02	1,55	1,40	5,70	2,80	0,42	0,92	99,38
870	70,16	0,35	13,60	1,08	2,00	0,07	2,52	1,80	3,46	3,21	0,36	1,20	99,81
940	75,20	0,10	13,95	0,27	0,50	0,53	0,20	0,10	4,62	3,82	0,18	0,62	99,59
953	78,40	0,05	10,90	0,18	0,57	0,01	0,46	0,65	6,45	1,32	0,36	0,24	99,75
973	72,14	0,09	13,42	0,36	0,75	0,01	0,64	0,95	6,80	2,35	0,28	1,44	99,87
997	74,66	0,15	12,60	0,13	1,29	0,03	1,11	0,47	4,40	4,00	0,44	0,56	99,87
1000	73,00	0,15	13,60	0,61	1,00	0,10	1,76	0,47	4,00	4,00	0,38	0,68	99,75
2033	75,22	0,09	13,37	0,09	1,28	0,02	0,77	0,24	5,48	3,07	0,05	0,18	99,86
2034	69,05	0,33	15,80	0,45	3,01	0,04	2,01	0,54	5,24	3,38	0,15	0,55	100,55
2038	67,96	0,43	15,88	1,01	2,37	0,05	2,27	0,98	3,33	3,99	0,20	1,05	99,62
2040	69,68	0,44	14,69	0,86	2,42	0,05	2,25	0,92	4,61	3,06	0,05	0,60	99,63
2063	69,65	0,46	14,86	1,26	2,03	0,05	2,01	1,22	3,12	3,81	0,12	1,24	99,73
1	2	3	4	5	6	7	8	9	10	11	12	13	14
2068	70,64	0,21	15,51	1,70	0,50	0,03	0,92	0,62	4,28	4,07	0,20	0,96	99,64

2072	70,37	0,19	15,39	1,63	0,18	0,02	1,03	0,39	5,49	3,72	0,22	0,98	99,61
2075	68,52	0,30	16,95	0,96	1,66	0,04	1,39	0,59	2,35	5,62	0,23	1,21	99,82
2070	68,72	0,44	15,25	2,10	1,62	0,06	1,47	1,10	3,24	3,67	0,24	1,52	99,43
2077	71,75	0,18	14,98	1,13	0,54	0,02	0,75	0,37	5,61	3,56	0,24	0,68	99,81
2078	70,55	0,21	15,95	1,26	0,64	0,03	0,69	0,57	4,02	4,78	0,16	0,96	99,82
2086	69,26	0,45	15,30	1,09	1,98	0,04	1,51	0,92	3,15	4,84	0,16	1,12	99,82
2087	69,62	0,27	15,76	0,95	1,58	0,04	2,13	0,64	3,63	4,08	0,16	0,96	99,82
2088	70,59	0,28	15,21	1,29	1,44	0,05	2,50	0,49	2,99	4,47	0,16	0,32	99,79
2095	63,38	0,74	16,55	2,07	3,75	0,07	4,05	1,69	3,65	2,79	0,15	0,67	99,56
2105	69,88	0,37	15,20	1,03	1,98	0,03	1,89	0,35	3,55	4,08	0,24	0,76	99,87
2185	72,33	0,36	13,52	2,38	0,54	0,04	1,67	0,60	4,25	2,25	0,10	1,42	99,46
2407	74,70	0,17	13,62	1,47	0,00	0,03	0,30	0,81	5,13	2,49	0,20	0,52	99,93
2444	68,33	0,50	16,28	1,58	2,54	0,05	1,26	1,13	5,13	3,18	0,30	0,62	99,90
2450	62,72	0,76	16,84	1,80	2,68	0,10	2,86	2,36	5,06	3,52	0,28	0,52	99,67
2472	69,61	0,33	16,78	2,30	0,00	0,04	0,74	0,99	5,69	2,64	0,08	0,64	99,84
2479	71,83	0,18	16,48	0,74	0,52	0,02	0,74	0,66	4,88	3,26	0,12	0,44	99,87
2480	69,57	0,41	15,90	0,88	1,63	0,05	0,52	1,43	6,88	1,63	0,02	0,94	99,86
2496	67,36	0,28	15,35	1,65	2,38	0,04	1,64	1,21	5,54	2,81	0,00	1,01	99,27
2517	70,18	0,14	15,80	0,95	0,30	0,02	0,55	0,71	8,18	2,06	0,18	0,62	99,69
2518	67,81	0,44	16,97	0,99	1,49	0,04	0,95	1,11	5,79	3,07	0,10	0,86	99,67
2559	70,05	0,33	16,12	2,30	0,00	0,03	1,23	0,93	5,72	2,53	0,08	0,56	99,88
2596	71,00	0,23	16,46	1,95	0,00	0,05	1,09	0,77	3,56	3,56	0,02	0,78	99,26
2602	69,68	0,40	16,27	2,17	0,36	0,02	1,11	0,85	5,24	2,91	0,04	0,72	99,77
2487	71,21	0,79	17,24	0,96	0,00	0,03	0,49	0,71	5,58	2,72	0,00	0,80	100,53
2934	72,48	0,17	14,33	1,33	0,18	0,04	0,71	0,78	5,54	2,95	0,18	0,98	99,67
3095	67,63	0,77	15,83	2,78	0,90	0,07	1,85	1,56	4,56	3.23	0,10	0,58	99,86
3100	70,48	0,16	17,39	0,81	0,54	0,04	0,86	0,90	4,72	3,14	0,16	0,73	99,93
3234	73,35	0,45	14,25	0,68	1,62	1,62	0,40	0,58	3,43	2,95	0,15	0,49	99,81
3540	71,61	0,25	15,91	0,87	0,90	0,04	0,84	0,63	5,12	2,68	0,08	0,92	99,85
3548	69,96	0,18	17,14	1,15	0,36	0,04	0,73	0,55	5,24	3,24	0,16	1,08	99,83
3605	72,02	0,33	15,12	0,85	1,53	0,07	1,24	0,60	4,25	3,17	0,12	0,56	99,86
3611	68,76	0,49	16,34	1,35	1,44	0,05	0,76	1,15	5,50	2,70	0,08	1,08	99,70

:

: 109-115 -: 39-77 -: 265-273 - . . ; 928-966 - . . ; 2012-2047 -240-249 -. . . ; 2083 - . . . ; 2116 -; 2151-2154 - . . ; 2343-2444 -. . ; 2480-2510 - . . ; 3557-3567 -••• : 33-; 179-184 -; 2039-2043 - . . ; 2067-2076 - . . ; 2109 -; 305-357 - . . ; 984 - ; 2374-2426 - . . ; 2473 -2510 - . . ; . ; 2122 - . . ; 2205-2206 -. . - ; 3201-3202 - . 2587 -; 2611-; 3560 - . . ;

 4.

(%)

	SiO ₂	TiO ₂	Al ₂ 0 ₃	Fe ₂ 0 ₃	FeO	MnO	CaO	MgO	K ₂ O	Na ₂ O	H_2O^{-}	H_2O^+	
2094	67,86	0,32	16,45	0,97	2,35	0,04	1,42	1,38	3,76	3,83	0,24	1,24	99,86
2129	62,51	0,68	17,75	2,29	2,35	0,03	0,83	3,28	3,96	4,13	0,24	1,84	99,89
2154	64,98	0,75	16,47	2,09	3,61	0,07	1,42	2,63	3,38	2,74	0,16	1,33	99,63
2203	67,77	0,59	15,36	1,13	3,26	0,05	3,09	1,25	3,51	2,87	0,15	0,72	99,75
2204	68,27	0,63	15,40	0,52	4,03	0,05	2,33	1,31	2,27	4,34	0,05	0,57	99,77
2217	63,25	0,57	16,23	1,27	4,84	0,11	1,03	3,42	2,42	4,22	0,23	2,20	100,02
2219	64,46	0,63	16,24	4,63	0,63	0,09	3,61	1,64	0,57	4,22	0,23	1,34	99,93
2220	69,58	0,40	15,07	1,84	1,80	0.05	1,26	0,77	2,87	5,12	0,10	0,86	99,72
2355	69,41	0,39	16,78	0,42	2,20	0,05	1,12	1,05	5,04	2,96	0,14	0,26	99,82
2374	59,14	1,10	18,36	1,39	7,31	0,29	1,81	3,08	2,93	2,42	0,22	1,07	99,12
2395	73,32	0,30	15,32	0,58	1,30	0,03	1,39	0,82	2,24	3,67	0,12	0,80	99,89
2488	62,93	0,11	17,26	2,95	0,24	0,20	4,43	2,89	2,91	3,15	0,31	0,62	99,78
2436	66,27	0,88	17,17	0,50	4,71	0,09	0,45	2,24	3,69	1,89	0,24	1,78	99,91
2572	71,37	0,33	16,10	1,64	0,75	0,04	1,91	0,59	2,52	4,24	0,08	0,36	99,82
2616	70,68	0,82	14,66	0,74	4,01	0,11	0,97	1,89	2,56	2,39	0,06	0,98	99,87
2801	70,07	0,39	14,69	1,45	1,62	0,07	1,66	1,67	4,32	2,60	0,06	0,46	99,06
2806	67,40	0,62	15,40	2,12	2,17	0,07	1,96	1,61	3,24	3,03	0,14	1,26	99,02
2818	70,04	0,40	15,90	1,79	0,72	0,05	0,32	1,24	5,19	2,81	0,16	1,12	99,74

			•			
: 2094-2154 -		; 2203-2220 -		; 2355-2436 -	 ; 2572 -	
; 2616	-	; 2801-2818 -				

.

5.

(%)

	SiO ₂	TiO ₂	Al ₂ 0 ₃	Fe ₂ 0 ₃	FeO	MnO	CaO	MgO	K ₂ O	Na ₂ O	H ₂ O ⁻	H_2O^+	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
56	72,21	0,24	13,26	1,13	1,53	-	2,34	1,34	2,34	4,45	0,05	0,89	99,88
75	73,36	0,15	12,58	0,91	4,32	0,11	2,24	-	2,46	3,37	0,12	0,32	99,82
116	70,70	0,20	14,79	1,96	1,26	0,08	3,06	1,18	3,86	2,32	0,24	0,28	99,93
156	73,65	0,07	13,60	0,35	1,08	0,03	1,39	0,45	3,80	3,13	0,64	1,86	100,05
164	72,40	0,10	13,60	1,61	1,44	0,08	2,12	0,50	2,40	3,91	0,45	1,57	99,84
165	72,84	0,09	13,60	1,33	1,08	1,80	1,80	0,50	3,26	3,58	0,46	1,22	99,90
266	73,30	0,08	14,11	0,25	1,07	0,38	1,38	0,48	4,80	3,50	0,45	0,16	99,71
269	71,25	0,30	14,45	0,10	1,65	0,12	1,60	0,89	3,40	5,10	0,11	0,84	99,83
280	71,45	0,30	13,97	0,12	0,62	0,06	2,26	1,37	4,40	3,00	0,12	1,18	99,73
329	69,80	0,20	15,50	0,45	2,20	0,20	2,80	0,80	3,60	3,10	0,20	0,80	99,65
354	69,05	0,45	14,45	0,40	3,59	-	2,09	1,49	4,20	3,20	0,30	0,50	99,72
359	69,12	0,36	15,50	1,20	2,65	-	3,84	0,78	3,00	3,00	0,24	0,22	99,91
360	70,10	0,18	15,12	0,90	1,66	0,20	1,96	1,40	4,20	4,30	0,32	0,52	99,88
853	70,26	0,35	13,92	0,73	2,35	0,15	1,20	1,80	3,30	3,00	0,46	1,80	99,33
899	71,00	0,20	14,82	0,36	0,90	0,20	1,96	1,40	4,56	4,10	0,16	1,12	99,78
849	71,16	-	13,94	0,36	1,60	0,02	1,12	1,32	3,30	5,30	0,26	0,80	99,30
920	73,00	0,20	13,60	0,27	0,50	0,08	0,84	0,68	3,70	3,10	0,30	0,90	100,27
955	71,40	0,18	13,83	0,36	1,83	0,10	0,79	0,88	4,60	2,90	0,38	1,50	99,87
962	72,20	0,29	14,53	0,80	1,08	0,10	1,49	0,95	3,28	2,88	0,32	1,24	99,53
1021	73,60	0,13	13,29	0,27	1,01	0,15	1,23	1,08	4,48	3,60	0,32	1,04	99,22
2005	71,21	0,25	15,04	1,44	1,06	0,04	2,14	0,56	3,10	3,99	0,09	0,87	99,79
2006	71,53	0,23	15,20	1,42	0,72	0,03	1,75	0,47	3,82	3,92	0,20	0,44	99,29
2007	71,70	0,25	15,02	0,79	1,40	0,03	1,67	0,43	4,14	3,41	0,13	0,80	99,77
2008	75,64	0,04	14,58	0,15	0,56	0,02	0,69	0,11	1,85	5,92	0,05	0,44	100,05
2009	71,92	0,25	14,69	0,37	1,85	0,04	1,57	0,47	3,24	4,02	0,18	1,19	99,79
2011	70,56	0,24	15,94	1,11	1,26	0,02	0,32	0,58	5,01	3,47	0,24	0,96	99,98
2014	72,07	0,18	15,10	0,98	0,52	0,01	0,82	0,33	5,75	3,33	0,04	0,62	99,76
2019	70,51	0,31	15,27	0,80	1,46	0,02	1,00	0,66	5,85	2,76	0,05	0,90	99,59
2021	70,42	0,31	15,87	1,66	0,84	0,02	0,97	0,66	5,52	2,93	0,22	0,58	99,70
2049	72,30	0,31	14,50	0,61	1,80	0,02	1,77	0,55	4,50	3,04	0,10	0,38	99,88
2051	72,59	0,26	14,54	0,75	1,06	0,03	0,43	0,58	2,75	6,02	0,13	0,64	99,78
1	2	3	4	5	6	7	8	9	10	11	12	13	14

21	134 3,17	0,15	14,91	0,12	1,58	0,03	0,75	0,46	4,55	3,29	0,19	0,94	99,74
21	136 72,62	0,17	15,19	0,65	1,08	0,03	1,40	0,44	3,27	3,99	0,20	0,84	99,89
21	139 72,89	0,34	14,10	0,80	1,62	0,03	1,39	0,48	4,48	2,85	0,16	0,76	99,90
21	142 75,68	0,28	11,92	1,84	0,90	0,03	0,93	1,16	2,35	2,67	0,24	0,88	99,88
21	144 67,98	0,50	15,82	2,18	1,80	0,05	1,77	1,30	2,99	3,77	0,16	1,60	99,89
21	146 73,34	0,14	14,25	1,33	0,01	0,02	0,58	0,24	5,49	3,59	0,14	0,58	99,76
21	150 71,16	0,24	15,39	1,77	0,27	0,03	1,02	0,36	4,19	4,19	0,14	0,90	99,66
20	052 72,37	0,23	14,70	0,74	1,21	0,03	0,94	0,63	4,19	3,86	0,08	0,86	99,84
21	177 70,01	0,42	15,67	0,81	2,33	0,03	0,62	0,95	3,49	3,74	0,28	1,39	99,74
21	68,73	0,57	16,01	0,79	2,87	0,04	0,91	1,26	2,98	4,07	0,14	1,31	99,64
21	185 72,33	0,36	13,52	2,38	0,54	0,04	1,67	0,60	4,25	2,72	0,10	1,42	100,02
22	206 71,78	0,56	14,14	0,42	2,62	0,04	2,15	0,70	1,81	4,24	0,13	0,83	99,42
22	207 70,84	0,24	15,17	0,35	1,98	0,03	2,07	0,51	3,67	3,88	0,18	3,88	99,98
22	210 67,81	0,57	14,79	0,80	4,32	0,07	2,48	1,54	2,15	3,31	0,26	1,76	99,86
22	216 72,45	0,39	13,95	1,92	0,97	0,04	0,48	0,45	3,84	4,09	0,15	1,09	99,82
22	218 71,24	0,22	14,03	0,01	1,66	0,02	0,90	0,53	4,67	3,07	0,38	3,07	99,80
23	303 67,68	0,62	15,74	1,62	2,08	0,07	2,55	1,58	3,36	3,31	0,10	1,06	99,77
23	68,77	0,36	15,49	1,42	0,93	0,02	1,49	0,90	4,80	4,16	0,93	1,30	100,57
23	69,83	0,34	15,73	0,72	0,02	0,08	1,38	0,90	3,91	3,76	0,20	1,20	99,27
23	324 72,95	0,22	15,48	0,45	1,06	0,03	0,64	1,19	4,12	2,96	0,10	0,70	99,90
23	69,56	0,28	15,66	2,08	0,81	0,05	2,06	1,06	3,07	3,71	0,20	1,32	99,86
23	343 70,40	0,33	15,25	1,12	1,97	0,06	2,45	1,05	2,97	3,27	0,16	0,88	99,91
23	347 71,88	0,28	16,35	0,40	1,13	0,04	1,76	0,92	3,47	2,98	0,42	1,13	99,78
23	349 70,54	0,32	17,17	0,65	1,12	0,03	1,63	1,01	3,63	3,05	0,14	0,80	99,79
23	368 71,03	0,21	16,42	0,85	0,61	0,03	0,62	0,81	5,85	2,83	0,10	0,50	99,86
23	372 72,60	0,22	15,66	0,75	0,50	0,03	1,22	0,39	2,13	5,37	0,10	0,60	99,57
23	69,23	0,42	15,79	1,15	2,24	0,08	0,48	1,68	5,01	2,16	0,08	1,57	99,89
23	69,00	0,35	17,36	1,11	0,88	0,04	1,74	0,92	3,95	2,98	0,10	0,78	99,87
23	69,89	0,39	14,72	0,93	1,48	0,04	2,03	1,02	3,25	3,39	0,40	2,36	99,90
23	389 76,02	0,12	11,92	1,10	0,00	0,02	0,34	0,91	4,19	3,83	0,10	1,38	99,93
24	420 70,45	0,21	17,61	1,38	0,30	0,04	1,42	0,78	3,40	3,37	0,30	0,62	99,48
24	423 70,39	0,21	17,47	1,72	0,00	0,04	1,55	0,92	3,36	3,32	0,20	0,72	99,90
24	439 72,41	0,30	16,09	1,37	0,68	0,03	1,40	0,81	2,26	3,25	0,22	1,06	99,88
24	66,95	0,68	15,99	2,12	1,97	0,08	2,91	1,79	2,65	3,85	0,26	0,54	99,79
	1 2	3	4	5	6	7	8	9	10	11	12	13	14
24	448 70,22	0,64	15,67	1,96	0,64	0,06	2,52	1,45	1,72	4,42	0,20	0,60	100,10

	205												
2456	70,86	0,18	16,99	1,50	0,00	0,03	0,87	0,74	5,18	3,02	0,14	0,38	99,89
2808	69,72	0,44	15,52	1,38	1,44	0,05	1,02	1,30	4,78	2,89	1,18	0,06	99,78
3200	69,26	0,18	17,66	1,03	0,36	0,03	0,85	0,92	5,93	3,04	0,20	0,40	99,86
3205	70,66	0,05	18,35	0,27	0,54	0,03	0,89	0,65	4,28	3,76	0,17	0,38	99,75
3206	72,94	0,05	10,47	0,71	0,36	0,03	1,10	0,75	4,16	3,32	0,15	1,22	99,42
3217	67,94	0,57	16,13	2,11	1,80	0,07	2,43	1,11	3,08	3,82	0,21	0,59	99,86
3230	70,41	0,16	17,13	0,89	0,72	0,04	0,58	0,56	5,21	2,97	0,25	0,86	99,78
3247	73,35	0,45	14,35	0,68	1,62	0,40	0,58	1,04	3,43	2,95	0,23	0,75	99,83
3584	69,85	0,12	17,52	0,79	0,45	0,03	0,74	0,83	5,63	2,84	0,84	0,20	100,84
3585	69,77	0,18	17,70	1,14	0,54	0,06	0,90	0,48	4,35	3,76	0,16	0,88	99,92
3586	67,83	0,28	17,82	1,34	0,72	0,03	1,17	0,84	5,68	3,84	0,12	1,16	99,82

: 56-116 -		; 156-280 -		; 329-360 -	. ; 853-1021 -	
; 2005-2052 -		; 2134-2150 -		; 2176-2188 -	; 2206-2218 -	 ;
2303-2456	; 2808 -		; 3200-3247 -		; 35-3586 -	

	Α	F	М	K	f		\mathbf{Si}_{2}^{+}	Or	Ab	Q	N Pl
1	2	2	4	=	($2AI_2O_3$	$2AI_2O_3$	0	10	11	10
1205	<u> </u>	3	4	5	0	7	ð	9	10	<u> </u>	12
1205	41,4	62,7	22,8	14,5	61,1	22,5	91,5	/,4	41,0	51,0	41
1206	41,5	39,6	18,9	13,3	54,2	21,6	91,0	6,3	42,4	51,3	38
1212	30,8	36,3	32,9	8,2	38,5	38,8	/6,9	-	-	-	-
1218	30,1	51,2	18,9	13,0	61,2	25,4	88,4	5,8	37,0	57,2	54
1219	46,0	35,4	18,6	13,3	52,5	27,4	81,2	7,4	42,0	49,6	27
1221	53,4	38,4	11,4	26,7	65,3	17,6	94,0	13,2	33,8	53,0	15
1227	61,4	28,4	10,2	39,2	59,1	22,3	93,8	29,5	43,0	27,5	30
1229	49,1	39,8	11,1	14,5	64,7	18,9	91,6	8,2	46,4	45,3	26
1233	45,1	37,7	17,2	15,9	67,2	24,5	92,6	8,1	40,4	51,5	37
1241	63,4	34,0	2,6	11,0	91,0	16,5	96,7	7,0	53,3	39,7	8
1244	31,7	22,1	46,2	7,0	21,3	27,3	81,6	6,0	61,4	32,6	54
1246	23,8	45,3	30,9	16,4	45,3	25,4	85,8	2,7	37,7	59,6	37
1249	49,3	36,6	14,1	11,8	57,7	25,1	90,6	6,0	42,3	51,7	47
1250	43,9	35,3	20,8	14,4	49,5	23,8	92,4	7,2	44,5	48,3	36
1274	32,8	47,8	19,4	11,8	58,4	24,8	87,8	6,5	45,7	47,8	45
1302	38,4	61,6	30,0	10,8	59,9	26,4	88,2	6,6	51,9	41,5	40
1303	48,5	35,5	16,0	4,0	56,3	21,1	93,3	3,5	43,3	53,2	39
1306	39,5	38,9	21,6	2,3	51,0	23,0	90,3	6,4	41,2	52,4	26
1314	22,7	46,4	30,9	5,2	46,3	25,3	82,2	3,8	39,2	47,0	34
1316	43,3	38,4	18,3	4,9	59,8	23,3	93,8	2,5	45,1	52,4	37
1317	21,1	55,7	23,2	8,1	58,0	28,8	80,6	5,6	60,8	33,6	60
1323	20,2	54,6	25,2	2,6	54,7	26,2	85,5	0,9	35,3	63,8	58
1327	40,1	44,0	15,9	5,0	58,3	22,6	90,0	2,6	45,2	52,2	38
1336	58,2	29,7	12,1	15,6	56,6	18,8	95,4	8,3	42,2	49,5	15
1337	83,0	16,4	0,6	2,9	94,1	15,2	98,4	1,8	56,1	42,1	5
1348	17,3	49,1	33,6	9,3	54,0	25,4	83,8	4,8	44,9	50,3	45
1349	80,7	17,0	2,3	6,5	81,8	16,4	96,6	3,7	50,5	45,7	11
1388	20,5	49,4	30,1	13,4	53,2	32,2	78,3	-	-	-	-
1389	17,2	53,6	29,0	15,2	48,5	33,4	74,9	-	-	-	-
1390	19,1	52,8	28,1	11,2	52,6	30,1	79,9	-	-	-	-
1	2	3	4	5	6	7	8	9	10	11	12

						51					
1392	21,9	51,9	26,2	9,2	54,1	28,0	82,3	6,9	59,9	33,2	57
1397	20,6	50,7	28,7	11,0	53,6	27,5	82,0	6,2	58,7	35,2	56
1401	61,5	25,5	13,0	26,5	53,1	24,6	91,1	-	-	-	-
1402	41,6	37,8	20,6	23,6	51,5	28,0	84,4	-	-	-	-
2850	68,7	17,2	14,1	9,2	41,3	19,6	95,3	4,1	39,8	51,1	29
2852	73,3	11,9	14,8	1,2	31,0	19,5	96,2	0,7	43,0	56,2	21
2858	71,9	12,6	15,5	5,0	31,2	16,4	96,5	2,0	39,0	58,1	18
3032	21,5	31,4	47,1	47,2	27,2	29,2	69,3	19,3	76,3	4,4	4,4
1380	15,4	53,4	31,2	5,1	36,1	30,4	70,8	-	-	-	-
3036	73,4	18,8	8,8	19,0	53,4	35,9	90,3	19,3	76,3	4,4	43
3042	81,3	9,4	9,3	4,0	37,2	19,1	96,6	2,6	53,6	43,8	16
3048	80,0	15,5	4,5	12,2	66,1	21,4	97,1	8,4	54,3	37,3	15
3061	77,4	16,9	5,7	8	6	21,7	96,6	4,7	52,3	43,0	19
3070	78,8	9,2	12,0	1	30	21,2	95,9	0,7	61,1	38,2	15

Ν	Α	F	М	K	f	CaO ⁺	Si 2 ⁺	Or	Ab	Q	N Pl
						$2Al_2O_3$	$2Al_2O_3$				
1	2	3	4	5	6	7	8	9	10	11	12
185	40,0	42,5	17,5	29,1	58,4	27,6	86,4	22,5	51,6	25,9	47
186	43,0	38,0	19,0	36,0	54,6	24,5	84,6	26,2	44,0	29,8	47
194	36,2	45,9	18,9	20,0	58,1	26,7	84,7	13,0	49,0	38,0	50
252	44,2	46,6	9,2	38,2	73,1	32,1	87,2	24,3	37,0	38,0	68
396	42,9	50,4	6,6	35,6	80,9	26,5	89,8	19,9	33,9	46,2	54
427	39,8	45,9	14,3	49,0	69,2	25,0	87,9	26,2	23,8	50,0	66
431	36,1	43,9	20,0	34,7	55,9	26,5	88,5	16,9	30,1	52,8	59
433	37,3	43,2	19,5	41,8	55,6	28,7	85,8	25,4	33,8	41,0	63
436	41,0	45,3	13,7	38,3	65,2	26,2	87,8	22,8	34,2	43,0	57
448	32,6	36,3	30,9	42,8	67,5	23,6	84,9	24,6	30,8	44,6	59
470	32,3	49,2	18,4	30,6	59,9	30,6	86,7	17,5	37,5	45,0	62
482	52,7	33,9	13,4	43,0	59,6	22,9	91,1	23,2	28,8	48,0	50
492	59,1	35,8	5,1	50,0	80,6	24,1	92,7	26,1	24,5	49,4	54
494	56,0	35,4	8,6	46,7	74,3	27,5	94,9	24,2	26,7	47,1	46
513	54,0	36,4	9,6	59,0	68,4	21,6	93,5	31,0	20,3	48,6	53
521	45,0	44,1	10,9	50,0	69,4	24,5	92,5	30,1	19,7	50,2	59
550	57,0	39,2	4,7	65,0	82,8	22,3	92,8	31,0	15,7	53,3	63
743	30,5	49,8	19,7	52,3	55,9	27,0	87,3	25,3	21,7	52,9	70
789	49,7	39,8	10,5	66,1	67,7	22,6	91,0	30,6	14,8	54,5	59
799	31,0	48,8	20,2	46,7	57,1	24,9	87,2	23,3	25,1	51,6	68
800	22,6	52,9	24,5	43,2	54,8	29,1	82,5	21,4	26,5	52,1	75
2704	53,8	34,7	11,5	24,2	63,3	23,8	93,9	14,4	42,2	43,4	37
2706	51,5	34,3	14,2	38,1	58,2	23,4	93,2	23,5	35,5	40,7	38
2708	81,8	10,4	7,8	40,2	43,3	21,9	97,7	28,3	39,2	32,5	8
2709	63,2	26,1	10,7	44,4	58,2	22,0	93,9	30,4	36,0	33,6	31
2710	19,8	40,9	39,3	30,3	37,2	25,7	72,2	35,3	77,2	12,5	62
2711	59,6	27,8	12,6	47,0	55,0	22,2	93,8	31,5	33,0	35,5	33
2713	31,1	46,4	22,5	35,2	54,3	29,2	82,9	19,7	34,3	46,0	72
1	2	3	4	5	6	7	8	9	10	11	12
2715	56,7	31,3	11,0	54,3	60,2	21,5	94,3	34,5	26,4	39,1	36
2719	63.2	28.5	8.3	36.3	66.4	17.4	95.7	19.4	32.8	47.8	33

2721	40,3	40,8	18,9	33,2	55,2	24,9	89,8	21,5	40,6	37,9	41
2733	42,6	35,6	21,8	34,4	48,2	24,3	91,1	23,3	40,9	35,8	37
2734	30,7	43,1	26,2	38,2	48,1	28,1	82,4	37,9	57,0	4,1	54
2736	52,8	35,5	11,7	44,1	58,2	28,1	93,7	30,0	35,3	34,7	34
2739	39,2	43,3	17,5	39,2	58,0	28,2	76,5	31,8	45,5	22,7	49
2740	54,3	34,1	11,6	42,2	62,2	23,7	92,3	35,5	45,4	19,1	35
2744	52,1	34,0	13,9	46,1	58,1	24,6	91,5	34,6	38,4	27,0	35
2748	49,7	23,0	27,0	32,4	32,2	18,9	92,9	14,8	28,6	56,6	41
2714	85,4	8,8	5,8	61,2	47,1	19,6	98,3	41,9	21,6	33,5	11
2751	17,6	52,7	29,7	30,2	50,2	29,1	80,5	18,7	42,0	39,3	65
2752	41,7	39,6	18,7	56,3	54,2	24,9	90,7	39,8	28,3	31,9	44
2754	57,8	30,4	11,7	32,0	59,0	23,9	93,8	21,6	42,0	36,4	36
2755	40,1	38,9	21,0	29,3	51,2	25,1	89,1	20,8	46,5	32,7	38
2841	38,2	41,4	20,4	32,1	53,1	23,8	89,5	18,4	37,1	44,5	43
2890	23,5	42,7	33,8	32,2	41,1	30,2	74,9	-	-	-	-
2892	53,2	31,9	14,9	11,3	55,2	21,5	93,9	7,1	53,7	39,2	13
2895	71,0	19,9	9,1	49,0	55,2	16,7	96,9	29,4	27,7	42,9	13
2901	58,9	28,0	13,1	50,2	54,1	21,2	92,5	36,4	34,3	29,3	27
2904	81,1	9,6	9,3	36,2	37,1	23,0	98,1	22,5	38,1	39,4	5
3007	4,6	89,2	6,2	56,3	89,1	17,8	56,2	35,7	35,9	28,4	61
3008	78,6	21,3	0,1	46,2	100,1	19,7	99,06	32,1	35,6	32,3	10
3010	76,3	19,0	4,6	45,4	70,2	20,3	97,3	31,7	35,7	32,6	12
3012	21,4	36,8	41,6	20,3	33,2	35,5	71,3	-	-	-	-
3014	42,9	39,0	18,0	37,3	55,2	24,6	88,9	28,8	45,4	25,8	29
3017	55,2	33,5	11,3	24,0	63,4	4,5	92,9	15,7	45,1	39,2	24
3673	62,2	28,9	8,9	380	65,0	36,8	76,5	24,3	37,0	38,7	28
3674	31,6	42,5	25,9	26,3	48,2	31,7	82,3	-	-	-	-
3675	63,2	25,1	11,7	39,4	55,5	23,2	93,8	26,7	39,4	33,9	27
3679	75,3	17,2	7,5	48,6	57,7	21,5	97,7	31,2	31,3	37,4	12
3680	82,8	9,3	7,9	64,3	40,4	22,2	97,2	48,0	24,4	27,6	6
3682	29,4	53,1	17,5	76,5	63,2	23,5	91,0	31,2	9,0	59,7	16
3685	27,0	45,0	28,0	30,2	48,3	31,4	78,2	-	-	-	-
1	2	3	4	5	6	7	8	9	10	11	12
3690	57,4	27,0	15,6	37,0	50,2	21,4	93,3	24,5	38,1	37,4	25
3222	38,2	40,6	21,2	28,3	52,2	26,8	87,4	20,0	47,5	32,5	44
3228	46,2	37,1	16,7	31,2	56,1	24,4	88,3	25,1	51,3	23,6	38

3229	25,9	42,1	32,0	33,2	42,1	30,51	77,3	34,5	65,1	0,4	64
3616	74,8	19,2	5,9	39,0	65,3	21,8	96,8	23,5	34,5	42,0	18
3618	22,4	40,5	37,1	12,3	38,2	27,4	76,3	-	-	-	-
3619	28,8	66,2	5,0	39,2	88,0	21,8	95,1	-	-	-	-
4002	67,5	21,5	11,0	17,1	52,3	26,5	91,7	13,4	60,5	26,1	35
4005	55,3	25,9	18,8	7,3	43,2	33,5	88,1	-	-	-	-
4007	60,4	23,8	15,8	24,2	46,4	26,2	90,7	17,2	52,4	30,4	38
4008	37,6	35,9	26,5	10,4	43,5	25,4	89,4	7,2	59,3	59,3	47
4015	64,0	23,7	12,3	32,2	52,2	23,6	93,4	21,1	41,8	37,1	33
4025	55,1	23,7	21,2	1,5	38,3	41,2	82,7	_	-	-	-
4055	25,3	67,4	7,3	45,9	84,2	31,5	87,0	16,7	19,1	64,2	78
4058	41,8	46,4	12,8	27,2	67,2	21,4	90,2	17,6	45,9	36,5	17
4075	65,8	29,1	5,1	4,1	76,0	18,1	95,9	24,7	33,7	41,5	14
4079	71,5	24,7	3,8	44,5	78,2	17,9	96,0	30,3	36,3	33,4	33
4081	69,8	25,1	6,1	29,3	73,1	22,2	94,1	21,5	49,0	29,5	18
3687	76,7	17,1	6,2	44,4	61,5	22,6	97,2	28,7	33,2	38,1	10
4085	68,0	27,8	4,2	28,0	79,2	19,3	95,1	17,5	42,5	40,0	20
44	34,0	47,8	18,2	36,1	59,0	29,3	82,9	32,4	52,3	15,3	51
71	37,5	46,0	16,5	20,2	61,2	28,1	86,6	14,2	52,7	33,1	47
1096	31,0	49,8	19,2	22,0	59,1	29,4	83,8	16,5	53,3	30,2	54
193-6	31,2	47,2	21,6	16,2	56,1	26,2	85,5	10,4	53,0	36,6	49
172-6	87,2	9,3	3,5	33,1	61,3	20,1	98,1	22,1	41,7	36,2	2
160-6	84,1	13,4	2,5	22,3	76,2	20,89	97,78	16,1	53,0	30,9	12
169-6	90,2	8,0	1,8	31,4	73,3	19,4	98,4	21,3	44,1	34,6	12
170-6	83,6	13,1	3,3	25,2	70,4	20,4	98,0	17,8	50,9	31,3	10
192-6	55,7	30,7	13,6	10,1	56,2	19,2	98,9	5,7	47,0	47,3	25
177-6	86,3	12,6	1,1	20,3	86,0	18,3	98,3	15,8	59,7	2,5	8

Ν	Α	F	Μ	K	f	CaO^+	Si 2 ⁺	Or	Ab	Q	Pl
						$2Al_2O_3$	$2Al_2O_3$				
1	2	3	4	5	6	7	8	9	10	11	12
39	35,2	44,5	20,2	50,0	55,6	14,6	93,3	17,3	16,7	65,8	18
42	29,9	48,4	22,2	67,5	58,0	16,5	93,9	11,2	5,5	83,3	42
66	43,2	39,0	17,8	65,0	59,7	22,9	88,5	34,1	17,5	48,5	45
77	41,9	41,9	16,2	54,8	66,1	21,4	80,3	22,6	17,9	59,5	46
109	43,0	40,0	16,8	31,2	57,7	19,4	92,0	10,3	21,0	68,0	35
113	57,3	31,5	11,2	48,7	61,0	21,6	93,6	15,4	15,3	69,4	56
115	48,7	34,7	16,6	20,3	54,3	21,4	93,1	7,4	27,0	65,6	50
240	49,6	35,8	14,6	21,4	61,8	21,4	90,1	7,9	27,4	64,7	45
245	41,1	40,4	18,6	40,0	55,9	19,4	89,5	14,2	20,1	65,7	44
249	89,3	47,3	13,4	62,5	66,9	26,1	91,0	21,4	12,8	65,8	46
265	43,2	43,6	13,2	74,3	66,2	24,0	90,6	26,1	8,7	65,2	58
298	61,0	24,2	14,8	64,6	53,7	16,1	94,0	42,1	21,9	36,1	18
300	60,2	21,6	18,2	65,3	48,9	15,3	95,3	41,2	29,3	29,5	20
307	40,2	42,9	16,9	59,7	63,5	27,7	90,8	39,7	25,1	35,2	10
319	41,6	40,8	17,6	40,5	57,2	21,3	90,5	14,2	20,2	65,6	41
338	46,6	51,4	1,9	62,5	93,9	26,3	93,9	20,1	11,5	68,4	40
373	31,3	49,5	19,2	25,4	70,0	23,5	90,6	14,6	40,3	45,1	13
928	66,3	18,1	15,6	30,1	50,0	21,7	94,7	23,1	50,5	26,4	12
966	25,8	54,1	20,1	28,8	63,6	22,7	85,2	16,5	38,3	45,2	17
2020	40,3	42,7	17,0	57,2	58,1	23,1	92,3	32,2	22,2	45,6	17
2024	31,6	41,5	26,9	46,0	46,0	29,5	84,5	-	-	-	-
2036	36,1	44,4	19,5	46,2	56,0	28,4	87,8	-	-	-	-
2047	40,2	42,5	17,3	55,0	58,0	21,2	91,1	33,1	25,6	41,3	24
2083	44,8	34,6	20,6	31,2	49,0	21,6	89,9	-	-	-	-
2116	46,7	38,9	14,4	33,2	60,0	20,5	92,9	19,4	37,2	43,4	15
2151	33,6	44,7	21,7	56,2	54,2	24,7	87,6	_	-	-	-
2154	42,9	38,6	18,5	44,2	54,1	22,7	91,5	29,6	34,2	36,2	18
1	2	3	4	5	6	7	8	9	10	11	12
2371	24,8	45,4	29,8	12,4	46,5	28,7	77,4	7,7	87,5	7,7	48
2391	43,7	39,6	16,7	35,2	57,2	21,6	90,1	26,1	40,9	32,0	21

2406	43,5	38,9	17,6	34,0	56,0	24,2	88,4	23,4	44,1	32,5	38
2432	35,5	39,6	24,9	37,0	47,1	27,6	84,5	30,4	46,4	23,2	51
2444	69,5	22,1	8,4	55,0	59,0	22,7	95,6	43,2	31,9	24,9	18
2480	68,8	19,6	11,6	73,0	49,5	20,9	95,9	48,2	16,2	35,6	15
2486	43,3	40,3	16,3	55,2	58,1	24,3	91,3	39,0	29,2	31,8	16
2510	55,1	30,8	14,1	26,2	56,2	16,6	94,8	12,2	32,7	55,1	21
2807	6,9	21,3	14,8	56,0	45,2	22,3	95,5	31,6	22,6	45,8	2
2827	35,8	43,9	20,3	50,0	55,0	21,5	91,5	28,3	25,9	45,8	22
2343	60,7	29,1	10,2	37,2	61,2	21,9	94,1	22,3	35,2	42,5	30
3557	52,2	35,5	12,3	23,0	62,0	22,7	96,5	8,2	27,3	64,5	20
3567	52,2	36,6	11,2	39,2	65,1	24,9	93,7	28,9	36,5	34,6	12
							· I				
33	39,4	43,1	17,5	40,5	59,4	20,5	87,9	25,5	35,2	39,2	44
176	56,3	32,6	11,1	39,2	64,3	21,5	96,4	19,9	27,2	52 9	17
180	64,0	28,5	7,5	6,1	69,6	20,7	94,2	4,2	57,1	38,1	20
184	37,0	29,5	32,5	13,5	36,8	19,0	96,4	5,5	33,9	60,6	33
305	78,7	9,6	11,7	15,9	47,6	18,9	97,0	9,1	45,1	45,8	14
325	44,0	43,0	13,0	28,8	65,7	22,2	91,2	16,7	39,0	44,3	30
344	69,0	29,4	1,6	34,4	91,1	21,0	95,0	21,8	39,1	39,1	37
350	62,0	27,0	10,1	14,5	60,4	18,3	95,5	7,3	40,8	51,9	18
353	75,8	14,0	10,2	13,1	57,1	19,8	95,4	7,5	47,2	45,3	28
984	80,8	7,8	11,2	17,0	33,3	19,1	97,0	9,6	44,4	46,0	9
2039	62,8	30,4	6,8	20,2	71,3	20,4	95,7	12,0	42,2	45,8	14
2043	53,6	37,5	8,9	24,5	70,2	23,3	92,9	15,0	45,8	39,2	23
2067	59,5	29,6	10,9	19,3	60,3	24,4	93,1	13,0	51,6	34,9	21
2071	42,8	44,6	12,6	26,2	66,3	26,7	90,1	16,1	42,2	41,7	48
2076	41,7	41,3	17,0	21,2	58,2	26,2	88,9	14,4	49,7	35,9	36
2109	70,2	24,9	4,9	31,3	74,0	22,3	95,2	21,0	43,5	35,5	21
2122	84,5	12,3	3,2	11,5	69,2	20,1	98,5	7,6	56,7	35,7	8
2205	60,2	29,8	10,0	11,5	63,0	21,6	94,2	7,3	56,0	36,7	16
2206	62,1	30,7	7,2	22,3	70,3	20,3	94,5	13,4	44,9	41,9	16
2374	31,5	50,4	18,1	44,2	63,4	25,6	87,2	29,3	34,8	35,9	26
1	2	3	4	5	6	7	8	9	10	11	12
2408	44,3	36,9	18,8	33,2	53,4	27,6	89,1	26,0	40,8	33,2	44
2426	84,2	11,3	4,5	11,2	59,0	22,1	98,2	7,6	57,6	34,8	9
2473	55,1	28,1	16,8	32,0	48,2	21,5	92.1	22,8	45,0	32,2	20

2510	55,0	30,8	14,2	26,0	56,0	16,6	94,7	12,2	32,7	55,1	21
2587	27,3	39,5	33,2	27,2	40,2	25,5	83,3	17,9	46,3	35,8	48
2611	65,6	26,5	7,9	22,2	66,2	17,7	97,2	11,6	35,5	51,9	21
3201	51,0	37,1	11,9	26,0	63,2	19,5	93,2	11,7	36,7	51,6	35
3202	59,7	30,0	10,3	21,2	62,3	22,2	95,5	13,7	44,1	42,2	20
3560	72,0	20,4	7,6	19,3	61,2	18,0	96,2	9,6	36,4	54,0	25
				L	L						
37	66,8	23,4	9,8	48,9	57,6	18,2	96,1	29,1	29,2	41,7	25
46	75,6	16,5	7,9	49,1	56,0	17,1	95,6	34,9	34,0	31,1	19
54	74,1	17,9	7,0	46,3	55,4	18,5	96,2	32,3	26,3	40,4	11
64	76,4	17,2	6,4	43,9	56,8	18,0	94,5	33,2	38,4	28,4	17
106	85,7	14,3	-	63,9	100,0	18,9	97,6	42,6	23,0	34,4	25
130	70,0	18,6	11,4	55,4	46,4	18,6	96,1	31,3	24,0	44,7	26
131	88,8	7,2	3,8	66,2	52,4	17,7	97,0	44,9	21,1	34,0	10
167	87,8	20,2	12,0	63,5	72,2	18,3	99,4	34,7	20,4	44,9	6
172	78,5	17,6	3,9	54,7	73,7	18,9	98,8	39,1	30,8	50,1	21
174	75,3	18,2	6,5	44,3	62,5	18,8	75,3	28,7	33,7	37,6	15
223	78,5	18,8	2,7	50,0	72,7	17,5	97,8	33,3	30,8	35,9	14
286	76,7	15,3	8,0	54,7	62,4	20,4	95,7	36,3	34,2	29,5	18
335	92,3	5,0	2,7	56,5	79,3	18,2	98,2	37,2	27,0	35,0	17
360	73,0	20,0	7,0	39,2	65,3	19,8	94,9	27,9	40,6	31,5	15
832	74,8	15,4	9,8	65,3	47,2	18,7	97,7	40,0	21,9	38,1	9
845	74,3	13,5	12,2	57,5	39,7	19,9	95,1	40,5	28,2	31,3	22
870	63,8	18,6	17,6	40,9	48,9	20,2	93,1	24,6	33,5	41,9	22
940	90,9	8,0	1,1	44,5	70,6	18,1	99,3	29,4	34,6	36,0	1
953	84,9	8,0	7,1	76,5	42,3	14,2	99,2	40,6	11,6	47,8	4
973	81,9	9,6	8,5	66,0	39,5	18,2	97,5	44,8	21,7	33,5	12
989	74,4	18,3	7,3	39,2	59,2	17,5	96,3	27,2	39,6	33,2	18
997	81,8	18,6	4,6	41,9	64,7	17,8	97,0	28,5	37,2	34,3	14
1000	79,8	15,6	4,7	39,2	67,6	19,4	96,8	26,8	39,1	34,1	19
1001	56,1	34,4	9,2	74,2	69,1	21,4	94,9	34,2	11,2	55,6	22
1	2	3	4	5	6	7	8	9	10	11	12
2038	63,2	28,2	8,6	35,1	65,2	22,9	93,9	25,3	43,4	31,3	22
2040	65,1	27,1	7,8	49,2	66,2	21,3	94,1	34,5	33,3	32,2	22
2063	57,5	30,7	11,8	26,5	59,0	21,1	94,3	15,8	42,0	42,0	22
2034	73,3	22,1	4,6	50,2	73,2	22,4	94,4	38,3	34,7	27,0	22

2068	75,9	18,4	5,6	40,2	65,0	21,1	97,6	28,5	38,9	32,6	7
2070	60,3	30,3	9,4	36,3	64,2	21,5	95,3	24,7	39,1	36,2	13
2072	81,8	14,6	3,5	49,0	70,0	21,3	98,1	36,5	35,6	27,9	7
2075	71,9	22,8	5,3	21,2	71,2	23,3	96,2	16,9	57,6	25,5	11
2077	82,7	14,0	3,3	51,1	70,1	20,3	98,2	36,7	33,5	28,9	8
2078	79,0	15,0	5,1	35,2	64,0	21,4	97,8	27,2	46,0	26,8	6
2086	67,3	24,9	7,8	30,2	67,3	21,5	95,3	22,3	49,6	28,1	44
2087	71,5	22,6	5,9	37,0	68,0	22,5	95,3	26,1	42,7	31,2	21
2088	70,7	24,6	4,7	30,3	75,1	22,2	95,3	21,7	45,9	32,4	23
2095	46,9	40,8	12,3	46,0	65,0	25,8	89,7	33,2	35,9	30,9	42
2105	66,9	25,5	7,6	36,2	65,2	21,5	94,9	25,4	42,7	31,9	20
2185	67,0	26,2	5,8	50,0	72,0	19,5	96,8	30,3	27,9	41,8	26
2407	78,2	13,5	8,3	57,0	48,0	18,2	97,9	33,4	23,5	43,1	15
2444	69,5	22,1	8,4	55,1	59,2	22,7	95,6	43,2	31,9	43,2	18
2450	52,8	32,6	14,6	48,3	56,2	21,6	96,5	41,6	41,4	17,0	28
2472	73,1	18,1	8,8	58,6	54,4	22,5	97,8	37,8	24,9	37,3	4
2479	81,5	11,8	6,6	49,3	50,4	21,6	97,8	32,5	31,1	36,4	11
2480	68,8	19,6	11,6	73,0	49,5	20,9	95,9	48,2	16,2	35,6	15
2487	84,1	8,7	7,2	57,1	41,3	22,4	98,4	33,9	38,0	28,1	17
2496	62,2	28,8	9,0	56,3	64,0	21,9	94,4	40,1	29,4	30,5	21
2517	84,6	9,5	5,9	72,0	48,5	21,9	98,1	52,5	19,0	28,5	5
2518	71,7	19,3	9,0	55,5	55,5	21,7	96,1	39,1	30,7	30,2	10
2559	73,4	18,4	8,2	59,0	55,3	22,2	97,2	39,0	24,5	36,6	21
2596	74,8	17,5	7,6	42,2	56,0	22,2	97,7	26,6	34,2	38,15	15
2602	72,0	20,4	7,6	54,2	60,3	22,3	97,3	35,9	28,3	35,8	15
2934	78,4	14,4	7,2	55,0	53,5	19,3	97,7	36,1	27,5	36,4	12
3095	62,9	27,5	9,61	48,0	62,2	22,9	95,6	32,8	34,1	33,1	22
3100	78,4	12,6	9,6	49,0	44,5	22,9	97,2	32,6	30,7	36,7	13
3234	75,0	18,7	6,3	50,2	63,2	19,3	97,5	28,8	27,5	42,7	13
3540	77,1	16,6	6,3	55,0	66,0	21,2	97,4	34,8	26,1	39,1	15
1	2	3	4	5	6	7	8	9	10	11	12
3548	81,3	13,4	5,3	51,0	59,0	22,8	98,1	35,2	31,0	38,8	9
3605	71,9	22,2	5,8	46,2	68,2	20,6	96,5	29,5	31,5	39,0	18
3611	68,2	22,2	9,6	57,0	56,2	21,9	96,3	38,9	26,5	34,6	11

0

Ν	Α	F	Μ	K	f	CaO ⁺	Si 2 ⁺	Or	Ab	Q	N Pl
						$2Al_2O_3$	$2Al_2O_3$				
1	2	3	4	5	6	7	8	9	10	11	12
2094	62,2	26,4	11,4	39,0	57,0	22,6	94,3	28,6	41,9	29,5	15
2129	51,3	27,9	20,8	38,3	43,1	24,0	92,0	32,7	49,1	18,2	8
2154	43,0	38,6	18,4	44,0	54,2	22,7	91,5	29,6	34,1	36,2	18
2203	53,6	35,9	10,5	44,2	66,3	22,9	92,0	28,7	33,6	37,7	36
2204	53,2	36,2	10,6	25,0	66,2	22,0	92,2	18,0	49,6	32,4	22
2217	41,4	37,3	21,3	27,2	50,1	21,9	89,3	20,1	51,5	28,4	10
2219	37,4	49,8	12,8	8,4	68,3	24,6	89,3	5,3	56,3	37,9	30
2220	65,4	28,3	6,3	27,0	72,2	20,9	95,9	19,8	50,8	29,4	9
2355	68,8	22,2	9,0	52,0	58,0	22,2	95,4	35,9	30,0	34,1	17
2374	31,5	50,4	18,1	44,5	63,2	25,5	87,2	29,8	34,3	35,9	25
2395	69,1	21,3	9,6	22,2	55,3	20,6	96,58	15,5	37,4	47,1	17
2408	44,3	36,9	18,8	33,1	54,2	27,6	89,1	26,0	40,8	33,2	44
2436	43,0	39,7	17,3	56,0	56,0	22,1	92,4	30,4	22,0	47,6	12
25,72	70,7	23,1	6,2	28,2	68,0	22,5	96,5	17,4	43,0	39,6	20
26,16	42,9	40,6	16,5	41,2	58,0	19,4	93,4	20,1	26,6	53,3	20
2801	60,0	25,4	14,6	52,0	50,3	20,6	94,3	30,8	26,5	42,7	12
2806	52,4	34,1	13,5	41,2	59,0	22,2	93,6	24,8	32,7	42,5	17
2818	69,1	20,1	10,8	54,0	51,0	20,9	97,3	34,3	27,8	37,9	2

Ν	Α	F	Μ	K	f	CaO ⁺	Si 2 ⁺	Or	Ab	Q	Pl
						$2Al_2O_3$	$2Al_2O_3$				
1	2	3	4	5	6	7	8	9	10	11	12
56	63,6	23,8	12,5	35,4	62,1	19,3	94,6	16,9	46,0	37,1	20
75	53,4	46,6	-	32,5	100,5	18,4	94,0	19,6	38,6	38,2	24
116	60,7	27,8	11,5	51,9	68,4	22,3	94,5	28,9	25,8	45,3	40
164	65,4	28,9	5,7	28,4	76,9	19,5	96,2	16,9	40,2	42,9	22
165	71,3	23,5	5,2	37,5	72,1	19,4	96,9	23,1	36,0	40,9	21
266	83,3	12,9	4,8	47,7	60,0	21,5	99,5	31,8	32,9	35,3	14
269	76,5	15,6	7,9	43,9	68,4	20,3	95,5	23,1	49,7	27,2	13
280	77,8	7,6	4,6	52,2	42,2	19,0	95,3	30,9	29,8	39,3	15
329	66,3	25,7	7,6	42,4	64,3	22,7	93,9	27,3	33,9	38,8	31
354	57,4	30,7	11,6	46,4	59,2	21,0	95,5	31,8	34,7	33,5	24
359	59,4	33,4	7,5	42,4	64,3	22,8	92,8	24,6	34,7	40,7	42
360	68,7	20,0	11,3	39,5	50,7	21,4	94,5	29,5	42,0	28,5	17
853	57,3	27,3	16,4	42,2	52,1	19,1	94,2	24,7	32,0	43,3	15
899	74,5	11,9	13,6	36,2	35,2	21,0	95,1	24,4	39,1	3,5	20
849	72,6	16,2	17,2	44,6	83,2	16,5	98,9	22,5	51,4	26,1	9
920	82,7	9,1	8,2	48,7	64,3	18,5	97,9	25,2	30,4	44,4	10
2005	70,9	23,6	5,5	33,2	70,0	21,6	95,9	22,3	40,6	37,1	22
2006	75,8	19,6	4,6	39,0	70,2	21,4	96,7	26,4	39,2	34,4	17
2007	74,8	20,9	4,3	44,1	73,1	21,0	96,3	29,8	34,9	35,3	24
2009	73,1	22,1	4,8	34,2	72,0	20,4	95,9	22,8	41,0	36,2	16
2011	74,9	19,9	5,2	68,2	48,5	20,9	97,7	21,8	38,6	40,6	12
2014	84,0	12,3	5,7	55,0	70,2	20,6	98,5	37,1	31,1	30,8	10
2019	75,2	19,1	5,7	58,1	65,0	20,8	96,6	40,5	27,2	32,3	10
2021	75,8	19,2	5,8	55,0	63,3	21,6	97,5	38,1	29,1	32,8	11
2049	72,2	22,5	5,3	49,0	70,2	20,3	95,7	32,0	30,8	37,2	23
2051	79,1	15,6	5,3	23,2	63,0	19,2	97,8	17,6	55,6	26,8	4
2052	76,3	17,8	5,9	41,0	62,4	19,8	96,9	28,3	37,6	34,1	10
2134	78,5	16,9	5,6	47,2	68,0	19,3	97,1	30,9	32,2	36,9	9
2139	72,1	23,1	4,8	50,1	73,2	19,5	96,4	31,1	28,6	40,3	20
2142	57,4	29,3	13,3	36,2	55,4	16,0	96,5	16,7	27,1	56,2	15
1	2	3	4	5	6	7	8	9	10	11	12
2146	86,3	11,4	2,3	50,2	73,0	19,12	99,1	35,2	33,3	31,5	3
------	------	------	------	-------	------	-------	------	------	------	------	----
2150	79,0	17,6	3,4	39,4	74,2	21,1	98,1	28,1	40,3	31,6	8
2177	64,4	27,2	8,4	38,3	64,2	20,7	96,0	25,6	38,9	35,5	4
2179	59,3	30,1	10,6	32,4	61,2	21,5	94,8	22,8	44,3	32,9	7
2185	67,9	26,2	5,9	50,0	72,2	19,4	96,9	30,3	27,9	41,8	26
2206	62,1	30,7	7,2	22,2	70,0	20,3	94,5	13,4	44,9	41,9	16
2207	72,9	22,2	4,9	38,0	71,3	21,6	95,2	26,6	39,7	33,7	21
2210	45,3	41,9	12,8	29,0	65,0	21,5	91,3	18,5	40,2	41,3	29
2144	57,2	31,8	11,0	34,1	62,0	22,4	94,6	23,0	41,3	37,5	19
2216	71,5	24,4	4,1	38,1	77,2	18,7	98,1	25,9	39,3	34,8	4
2218	77,9	16,7	5,3	50,1	64,2	19,3	96,7	30,7	32,8	36,5	14
2303	57,4	33,1	9,5	39,2	65,2	22,6	94,2	25,9	36,9	37,2	30
2307	74,3	18,3	7,4	43,2	58,2	21,9	96,2	32,8	40,3	26,9	17
2314	69,8	21,4	8,8	40,0	58,0	21,8	96,4	27,5	37,2	35,3	17
2324	31,8	42,6	25,6	100,0	51,8	27,7	89,9	28,8	28,0	43,2	11
2342	60,9	24,1	15,0	35,3	48,2	22,1	94,5	22,5	38,1	39,4	22
2343	60,8	29,0	10,2	37,1	61,0	21,9	94,0	22,2	35,3	42,5	30
2347	69,3	20,8	9,9	43,2	54,1	22,3	95,8	24,1	31,7	44,2	25
2349	70,4	19,0	10,6	43,1	50,3	23,2	95,7	27,3	33,4	39,3	23
2368	79,9	12,6	7,45	57,2	49,3	21,6	97,6	39,2	26,8	33,9	11
2372	82,7	12,9	4,4	20,0	63,0	21,2	97,7	13,9	51,3	34,8	11
2376	59,2	27,0	13,8	60,1	52,2	20,7	95,0	36,6	22,1	41,3	11
2379	67,1	23,9	8,9	46,2	60,3	23,9	96,0	28,5	31,4	40,1	25
2382	66,5	23,2	10,3	38,2	56,2	21,2	94,9	24,0	35,0	40,1	26
2389	78,7	11,1	10,2	49,1	38,3	15,4	98,2	26,5	25,5	48,0	6
2420	74,5	16,9	8,6	39,3	53,4	23,7	97,0	24,7	34,3	41,8	20
2423	73,0	16,9	10,1	39,0	49,5	23,7	96,9	23,9	33,7	42,4	21
2439	66,9	23,2	9,9	31,3	57,1	21,7	96,8	16,8	35,9	47,3	29
2441	53,4	31,9	14,7	31,2	55,0	23,7	92,5	21,1	44,1	34,8	29
2448	61,4	24,0	14,6	20,2	48,3	22,6	94,6	12,7	47,4	39,9	25
2456	79,6	13,1	7,3	52,0	51,4	22,6	97,9	34,5	28,9	36,5	14
2808	65,8	23,0	11,2	52,0	54,2	21,1	97,0	33,6	29,1	37,3	14
3200	80,2	11,5	8,3	56,0	44,5	23,4	97,3	39,7	29,6	30,7	11
3205	84,9	8,2	6,9	42,2	41,4	23,8	97,5	28,9	36,4	34,7	9
1	2	3	4	5	6	7	8	9	10	11	12
3206	81,1	10,8	8,1	45,0	43,0	21,6	97,3	28,2	32,0	39,8	15

					218						
3217	58,9	31,6	9,5	34,4	65,1	23,4	94,2	22,9	41,1	36,0	24
3230	79,7	14,8	5,5	53,0	61,0	22,5	97,9	35,1	28,3	36,6	7
3247	66,1	23,1	10,8	43,2	58,2	20,9	96,2	26,8	33,0	40,2	7
3584	80,9	11,1	7,9	56,1	44,1	23,1	97,5	38,2	27,4	34,4	13
3585	79,8	15,4	4,7	43,0	65,2	23,5	23,5	29,7	36,5	35,6	12
3586	75,5	17,1	7,4	56,2	56,2	23,0	23,0	39,4	27,8	32,8	16

219

11.

(/)

Ν	Cu	Pb	Zn	Мо	Ni	Со	Cr	V	W	Li	Rb
1205	-	2	60	14	62	8	750	10	4	2	7
1221	90	3	50	42	22	25	640	150	3	3	12
1229	90	1	50	42	86	7	1000	10	5	1	5
1241	-	2	70	9	81	9	450	10	7	2	8
1248	70	3	60	20	86	7	350	6	13	2	16
1269	40	4	80	90	27	6	780	17	5	1	12
1309	20	10	100	17	29	25	330	280	12	2	9
1317	35	7	90	12	85	9	450	20	10	3	10
1323	60	1	80	24	40	40	470	450	4	2	14
1337	70	4	80	30	52	40	350	30	7	1	6
1349	65	2	50	40	20	10	760	11	6	4	12
2852	52	10	70	23	40	15	240	10	5	1	3
2856	57	6	60	31	20	10	250	29	15	1	15
1389	57	5	80	28	92	17	94	40	9	2	9
1400	144	3	80	32	86	23	155	29	6	2	14

,

-

-

•

220

-

Ν	Cu	Pb	Zn	Mo	Ni	Со	Cr	V	W	Li	Rb
1	2	3	4	5	6	7	8	9	10	11	12
185	-	20	80	2,7	25	17	320	90	30	8	200
192	10	24	100	2,4	30	29	330	480	10	12	180
205	-	18	50	2,5	56	50	190	800	20	20	212
255	20	20	100	2,3	38	18	680	40	30	14	180
384	-	20	100	2,1	24	10	284	300	25	8	165
440	25	25	120	2,0	60	21	300	440	26	7	120
470	21	25	70	2,3	55	7	430	110	20	8	290
492	15	20	20	2,4	45	9,8	900	130	15	5	135
513	-	20	60	2,2	19	6	500	110	20	15	120
550	20	38	50	2,2	23	8,4	720	110	30	20	96
743	20	90	70	2,2	22	12	340	350	15	18	125
799	20	16	150	2,1	29	17	370	320	25	23	79
2704	10	8	60	1	30	5	280	66	30	6	40
2709	10	20	90	3	30	5	280	28	25	12	180
2710	50	10	150	2	150	30	770	95	27	25	120
2714	10	5	50	0,5	20	10	290	11	-	3	195
2733	10	40	60	1	30	10	170	100	26	24	135
2734	30	10	200	3	30	20	130	16	30	26	165
2739	10	5	100	1	30	10	140	96	30	24	195
2740	20	10	70	1,5	30	10	310	150	30	17	160
2744	10	20	70	1	20	10	150	68	25	16	180
2748	10	10	70	3	30	5	500	52	15	15	120
2755	20	20	100	2	20	10	130	78	25	15	106
2890	10	20	120	1	40	30	100	120	27	8	94
2896	20	25	90	1	20	15	420	130	-	8	286
2897	50	15	70	1	20	10	320	6	26	5	192
2905	10	25	50	0,5	20	15	180	33	30	10	180
3672	30	70	130	2	70	17	110	48	21	33	164
3673	20	70	80	2,5	30	12	210	200	25	16	120
3674	50	70	100	2	60	10	210	105	-	15	102
3675	30	80	60	1	30	5	340	80	30	2	102
1	2	3	4	5	6	7	8	9	10	11	12

3679	20	120	30	1	30	8	270	60	18	13	235
3680	30	50	100	2,2	60	20	220	145	25	8	145
3685	30	60	140	2,3	30	18	90	205	32	14	94
3687	20	80	70	1,8	30	17	250	115	-	20	17

,

.

221

13.

222

-

(/)

Ν	Cu	Pb	Zn	Mo	Ni	Со	Cr	V	W	Li	Rb
1	2	3	4	5	6	7	8	9	10	11	12
42	60	35	30	2,7	100	6	650	140	15	30	80
77	18	45	100	2,7	6	6	600	62	27	25	70
109	-	25	100	2,3	10	9	200	210	21	18	120
113	20	45	100	1	6	6	80	160	12	22	230
115	50	30	30	2,3	6	6	500	22	31	17	80
175	48	24	200	2,6	16	15	640	340	31	17	80
237	30	29	80	2,3	40	10	450	200	14	15	127
238	25	16	60	2	60	23	660	600	23	12	115
249	20	29	50	1	110	18	480	300	18	12	118
265	-	20	100	2,7	160	16	860	400	25	19	280
300	-	30	50	2,1	17	17	690	17	23	20	140
307	15	30	30	1,8	210	25	740	380	12	22	130
338	20	38	100	1,8	60	17	480	280	30	23	150
856	40	20	70	2,4	60	60	480	100	15	16	170
928	30	45	300	1,1	18	6	440	64	27	18	129
966	40	40	50	1,5	35	7	680	130	22	26	155
1012	20	30	50	4,7	11	8	420	9	18	15	190
1036	10	70	50	4,7	11	8,1	420	9,6	29	30	160
350	-	27	100	2,3	32	10	1000	13	11	28	125
351	15	35	80	1,8	60	25	90	40	22	26	205
373	20	38	100	2,6	40	18	450	17	15	17	115
2012	10	14	50	2,3	34	56	92	16	13	15	130
2020	6	5	45	2,5	12	11	120	80	20	18	250
2024	9	6	60	2,5	54	20	96	100	33	18	200
2036	8	30	45	2,5	7	8	160	45	20	23	158
2371	10	20	13	1,5	70	50	390	140	7	24	108
2017	7	8	44	3	8,4	5	370	45	10	17	135
	r		T	r		r					
180	20	24	30	2,7	8	6,0	700	80	15	5	12
184	20	20	30	2,6	16	6,0	1000	55	12	7	18

1	2	3	4	5	6	7	8	9	10	11	12
288	20	18	30	2,0	13	8,1	40	330	20	18	49
305	15	35	20	2,5	17	7,0	880	62	14	20	50
353	10	36	50	3,0	14	11,0	480	17	25	8	51
984	10	65	50	1,0	17	15,0	82	6,6	14	7	48
208	-	39	100	2,7	19	9,5	780	11	18	15	65
2067	9	27	-	3	7,4	8,4	400	28	15	5	11
2061	8	70	130	4	8,2	4,1	240	5	10	7	19
2076	20	35	80	3,5	8,1	16	740	140	25	9	13
2205	13	6	60	2,5	8,5	8	460	70	25	8	44
3560	20	30	90	2,0	20	-	160	105	17	9	71
64	10	30	30	1,8	6	6	60	28	25	25	240
131	20	52	30	3,1	3	6	1000	72	15	30	200
174	-	40	25	2,0	11	8	880	12	35	15	180
335	10	45	-	2,3	13	8	780	14	25	18	210
832	-	40	30	2,1	12	7	640	43	12	22	75
953	15	56	-	1,6	14	6	640	6	31	38	190
969	30	50	40	3,6	12	6	270	28	18	41	110
1000	-	30	30	2,8	20	8	700	43	14	27	160
1001	20	25	25	5,0	23	7	700	110	18	24	120
2033	7	16	-	4,5	4	3	150	5	15	14	210
2038	12	12	55	6	6	5,2	200	96	10	42	200
2075	9	60	50	1,5	4	6,6	340	9,8	10	5	73
2077	12	100	50	2	4	5	180	10	10	5	77
2087	14	3	-	3,5	5	6,4	300	27	15	8	78
2088	8	60	50	2,5	4	6,6	180	25	15	7	42
2095	10	20	50	1,1	6	10	100	25	15	7	60
2185	32	-	50	2	7	7	20	32	25	8	75
2479	10	20	60	2	15	15	340	29	20	10	175
2496	15	20	110	1	10	10	260	27	30	16	195
2517	15	60	100	3	5	15	640	14	30	18	190
2548	20	2	130	2	15	10	400	100	30	16	135
2602	10	50	100	2	30	10	460	22	30	18	90
3540	20	50	60	3	20	-	280	17	22	18	190

					224						
	14.				(/)						
Ν	Cu	Pb	Zn	Мо	Ni	Со	Cr	V	W	Li	Rb
2203	27	61	50	3	13	21	102	100	18	27	168
2204	15	18	56	2	14	18	80	132	21	29	120
2217	5	1	60	4	15	12	70	150	25	32	66
2219	6	5	50	2,5	5	13	28	86	15	7	22
2220	8	22	52	2	12	11	65	105	17	18	65
2094	10	37	50	2,5	3	8,6	40	21	15	12	68
2355	20	20	110	6	40	30	300	28	30	10	175
2374	9	13	75	3	12	20	220	82	19	12	85
2395	7	17	61	2,5	9	18	200	75	22	18	65
2572	20	20	50	2	30	-	500	37	30	10	20
2616	13	32	58	2,5	27	15	205	40	20	12	70
2801	2	41	80	1,5	20	10	210	34	25	13	130

, - .

225

-

(/)

Ν	Cu	Pb	Zn	Mo	Ni	Со	Cr	V	W	Li	Rb
1	2	3	4	5	6	7	8	9	10	11	12
30	30	18	5	2	6	6	900	20	18	12	107
56	20	26	10	2	5	4	700	25	15	15	125
165	15	16	-	2	6	6	700	27	20	20	140
280	20	39	80	2,2	13	20	450	60	23	22	137
329	10	35	2	2	9	8	670	22	21	17	120
358	10	38	60	2,6	29	9	880	44	15	20	115
853	15	35	20	1	15	10	710	60	8	21	90
962	20	34	100	1	11	9	360	50	17	16	115
2005	20	16	-	4	6	6,6	280	16	10	26	120
2006	15	15	-	3	5,6	21	210	12	8	27	125
2007	11	18	-	2	5	5,5	350	14	16	25	130
2011	8	17	-	5	4	5	230	16	30	14	180
2019	8	23	35	3	4	5	130	12	25	16	125
2049	7	65	100	3	4	5	180	12	15	20	130
2051	8	47	72	2	4	4	140	16	20	10	128
2052	10	30	90	2	6	4	150	14	15	11	124
2134	10	18	57	4,3	7,8	6	230	7,6	15	14	136
2139	21	15	60	3	10	5	210	12	17	15	125
2142	30	13	52	4	14	10	200	38	20	20	96
2144	24	36	40	3,5	16	12	180	60	25	12	130
2146	20	42	41	3	8	11	90	40	18	15	127
2150	18	48	35	4	6	6	56	21	20	17	136
2177	10	45	43	4,6	7	5	120	36	20	10	110
2185	-	32	50	2	7	7	20	32	25	20	138
2207	12	25	50	2	55	6	100	42	50	7	90
2210	92	135	200	5	42	26	380	120	100	8	68
2216	6	5	40	3,5	16	6,5	96	55	20	27	98
2218	16	25	-	2	12	6	180	6	10	18	132
2314	10	20	50	2,6	30	30	450	24	30	8	145
2324	10	25	40	2,1	30	20	340	20	27	15	100
2347	15	15	70	3	30	30	410	11	30	11	100

226	

1	2	3	4	5	6	7	8	9	10	11	12
2420	12	20	85	2	25	15	370	12	25	8	115
2439	30	17	80	4,6	40	30	55	18	60	16	80
2441	15	30	150	4,6	30	15	410	85	30	18	175
2448	20	35	120	3	25	17	380	70	25	22	150
2456	15	40	30	1,8	20	20	700	15	27	19	185
2808	-	40	90	3,5	20	15	210	23	25	13	130
2372	15	16	90	3,8	30	20	400	10	30	6	120
3584	20	60	50	2,4	20	20	160	18	22	16	160
3585	20	62	65	3,0	10	18	240	20	27	18	180
3586	20	70	100	2,8	15	15	370	22	20	10	190

, - .