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Abstract We use data on massive galaxy clusters (Mcluster>

8 × 1014h−1M� within a comoving radius of Rcluster =
1.5h−1 Mpc) in the redshift range 0.05 � z � 0.83 to place
constraints, simultaneously, on the nonrelativistic matter
density parameter Ωm, on the amplitude of mass fluctua-
tions σ8, on the index n of the power-law spectrum of the
density perturbations, and on the Hubble constant H0, as
well as on the equation-of-state parameters (w0,wa) of a
smooth dark energy component.

For the first time, we properly take into account the de-
pendence on redshift and cosmology of the quantities related
to cluster physics: the critical density contrast, the growth
factor, the mass conversion factor, the virial overdensity, the
virial radius and, most importantly, the cluster number count
derived from the observational temperature data.

We show that, contrary to previous analyses, cluster data
alone prefer low values of the amplitude of mass fluctua-
tions, σ8 ≤ 0.69 (1σ C.L.), and large amounts of nonrela-
tivistic matter, Ωm ≥ 0.38 (1σ C.L.), in slight tension with
the ΛCDM concordance cosmological model, though the
results are compatible with ΛCDM at 2σ . In addition, we
derive a σ8 normalization relation, σ8Ω

1/3
m = 0.49 ± 0.06

(2σ C.L.).
Combining cluster data with σ8-independent baryon

acoustic oscillation observations, cosmic microwave back-
ground data, Hubble constant measurements, Hubble pa-
rameter determination from passively evolving red galaxies,
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and magnitude–redshift data of type Ia supernovae, we find
Ωm = 0.28+0.03

−0.02 and σ8 = 0.73+0.03
−0.03, the former in agree-

ment and the latter being slightly lower than the correspond-
ing values in the concordance cosmological model. We also
find H0 = 69.1+1.3

−1.5 km/s/Mpc, the fit to the data being al-
most independent on n in the adopted range [0.90,1.05].

Concerning the dark energy equation-of-state parame-
ters, we show that the present data on massive clusters
weakly constrain (w0,wa) around the values correspond-
ing to a cosmological constant, i.e. (w0,wa) = (−1,0). The
global analysis gives w0 = −1.14+0.14

−0.16 and wa = 0.85+0.42
−0.60

(1σ C.L. errors). Very similar results are found in the case of
time-evolving dark energy with a constant equation-of-state
parameter w = const (the XCDM parametrization). Finally,
we show that the impact of bounds on (w0,wa) is to favor
top-down phantom models of evolving dark energy.

1 Introduction

In the last few years galaxy cluster observations have begun
to provide useful constraints on cosmological parameters
(for a recent review see Ref. [1]). Data on galaxy clusters
are now used to test the validity of the standard cosmolog-
ical model, the so-called Λ cold dark matter (ΛCDM) con-
cordance model, [2], which describes observational data at
large cosmological scales (from galactic scales to the present
horizon scale) reasonably well [3]. In particular, cluster ob-
servations can help tighten the bounds on cosmological pa-
rameters such as the nonrelativistic matter density parameter
Ωm, the amplitude of mass fluctuations σ8, the power-law
index n of the density perturbation power spectrum, and the
Hubble constant H0 [4].

When combined with other cosmological probes—such
as cosmic microwave background (CMB) radiation aniso-
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tropy, baryon acoustic oscillations (BAO) in the matter
power spectrum, Hubble parameter, and type Ia supernovae
(SNeIa) data—galaxy cluster observations provide a unique
insight towards helping understand the evolution of the Uni-
verse, from the inflation era to today.

Despite the observational success of the ΛCDM model, a
number of basic questions remain unanswered. Dark energy
is a major mystery (for reviews on dark energy and modified
gravity see, e.g., Refs. [5–10]). A possibility is that dark en-
ergy is simply a manifestation of a nonzero vacuum energy,
a cosmological constant Λ,1 but dynamical scalar-field mod-
els of dark energy, [16, 17], are also compatible with present
data.2

Measurements of the local abundance and growth of
galaxy clusters from X-ray [18–22] and optical [23] sur-
veys have been recently used to probe the standard cos-
mological model. In particular, the emerging picture is that
a cosmological constant still remains a good candidate for
dark energy. This conclusion does not exclude the possibil-
ity that future cluster surveys will allow us to discriminate
between the ΛCDM model and dynamical dark energy mod-
els [24–27].

The aim of this paper is to use present data on massive
galaxy clusters (Mcluster > 8×1014h−1M� within a comov-
ing radius of Rcluster = 1.5h−1 Mpc) at low and high red-
shifts (0.05 � z � 0.83) to constrain some of the free param-
eters of the standard cosmological model, and to investigate
the possibility that the dark energy density evolves in time,
instead of staying constant.

It is worth noticing that the evolution with redshift of
massive clusters is very sensitive to the cosmological pa-
rameters, especially to σ8 and Ωm [28, 29]. In particular,
the abundance of massive clusters depends exponentially on
σ8, in such a way that high values of σ8 favor the formation

1It has been known for some time that a spatially flat ΛCDM model is
consistent with most observational constraints, see, e.g., Refs. [11–13].
In the ΛCDM model the energy budget is dominated by far by a
cosmological constant, a spatially homogeneous fluid with equation-
of-state parameter wΛ = pΛ/ρΛ = −1 (where pΛ and ρΛ are the
fluid pressure and energy density), with nonrelativistic CDM being the
second largest contributor. Note that the “standard” CDM structure
formation model—which the standard ΛCDM cosmological model
assumes—might have some observational inconsistencies (see, e.g.,
[14, 15]).
2In dynamical dark energy models the dark energy density decreases
in time and so remains comparable to the nonrelativistic matter (CDM
and baryons) energy density for a longer time (than does a time-
independent Λ). This partially alleviates the “coincidence” puzzle of
the ΛCDM model. In addition, some dynamical dark energy scalar-
field models have a nonlinear attractor solution that generates the cur-
rent, tiny, dark energy density energy scale of order an meV from a
significantly higher energy density scale (possibly of a more funda-
mental model) as a consequence of the very slow decrease in time of
the dark energy density during the very long age of the Universe. These
results are often viewed as providing significant theoretical motivation
to consider dynamical dark energy models [16, 17].

of structures at early times, while a low amplitude of mass
fluctuations results in few massive clusters forming at high
redshifts.

In Refs. [28, 29] these data were used to determine the
linear amplitude of mass fluctuations and the nonrelativis-
tic matter density in a Universe with a cosmological con-
stant. We extend the analysis of Refs. [28, 29] to the case
of evolving dark energy, and we properly take into account
the dependence on redshift and cosmology of quantities re-
lated to cluster physics, such as the critical density contrast,
the growth factor, the mass conversion factor, the virial over-
density, and the virial radius. Most importantly, we consider
the dependence on redshift and cosmology of the cluster
number count derived from the observational data. We em-
phasize that the observed number of clusters with masses
exceeding a fixed threshold is calculated as the number of
clusters with X-ray temperature larger than a corresponding
temperature threshold, and that the relation between mass
and temperature depends on the redshift and cosmological
parameters.

It is of great interest to determine if the dark energy is
well-approximated by a cosmological constant or if it de-
creases slowly in time (and so varies weakly in space). Ide-
ally one would very much prefer a model-independent res-
olution of this issue. However, at this point in time, obser-
vational data are not up to this task. One must instead use
the available observational data to constrain model parame-
ters and so determine if the cosmological constant point in
model parameter space is or is not favored over points where
the dark energy density slowly decreases in time. While it is
useful to perform such an analysis using a consistent and
physically motivated model, such as the inverse power-law
potential energy density scalar-field model [16, 17], this is
computationally quite demanding, so here we make use of
a simple parametrization of time-evolving dark energy in a
preliminary attempt to investigate this matter.

In order to discriminate between a cosmological constant
and dynamical dark energy we use the dark energy equation-
of-state parameter parametrization [30, 31]

w(a) = w0 + wa(1 − a), (1)

where a is the scale factor related to the redshift z by
a = 1/(1 + z). The cosmological constant corresponds to
w0 = −1 and wa = 0, the case of constant equation of
state corresponds to w0 = w = const and wa = 0 (known as
the XCDM parametrization of time-evolving dark energy),
while the general case of time-evolving dark energy corre-
sponds to wa �= 0.

In this paper, we consider the case of a smooth dark en-
ergy component, namely the case where the dark energy
does not cluster. For clustering dark energy, it could be ex-
pected that the bounds on dark energy equation-of-state pa-
rameters w0,wa , as well as on the cosmological parameters
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(Ωm,σ8), will be weakened because of the degeneracy be-
tween the above parameters and the effective dark energy
sound speed (which parameterizes the level of dark energy
clustering) [32].

The plan of our paper is as follows. In the next section, we
introduce the basic theory and data on galaxy cluster number
counts used in our analysis. In Sect. 3, we present data from
other types of cosmological probe: baryon acoustic oscilla-
tions, cosmic microwave background radiation anisotropies,
passively evolving red galaxies, and type Ia supernovae. In
Sect. 4, we outline a joint analysis of all data and discuss
the results on the (Ωm,σ8) and (w0,wa) planes, and in the
XCDM case. In Sect. 5, we briefly discuss the impact of our
results on some models of evolving dark energy. In Sect. 6,
we draw our conclusions. Finally, in the Appendices we dis-
cuss in detail the critical density contrast and the growth fac-
tor (Appendix A), the mass conversion factor (Appendix B),
and the virial overdensity and the virial radius (Appendix C).

2 Galaxy cluster number counts

In this section we introduce the basic physical quantities and
observables related to galaxy cluster number counts and we
discuss the available experimental data.

2.1 Theory

Cluster number and comoving volume The comoving
number of clusters in the redshift interval [z1, z2], whose
mass M is greater than a fiducial mass M0, is

N =
∫ z2

z1

dz
dV (z)

dz
N(M > M0, z), (2)

where

V (z) = 4π

∫ z

0
dz′ d2

L(z′)
(1 + z′)2H(z′)

(3)

is the comoving volume at redshift z, and

dL(z) = (1 + z)

∫ z

0

dz′

H(z′)
(4)

is the luminosity distance with H(z) the Hubble parameter.
The “mass function” N(M > M0, z) appearing in Eq. (2)
represents the comoving cluster number density at redshift z

of clusters with masses greater than M0.
For a cosmological model with evolving dark energy

equation-of-state parameter of the form (1), the Hubble pa-
rameter normalized to its present value H0 is

E(z) = H(z)

H0
=

[
ρm(z)

ρ
(0)
cr

+ ρDE(z)

ρ
(0)
cr

]1/2

. (5)

The quantities

ρm(z) = Ωmρ(0)
cr (1 + z)3 (6)

and

ρDE(z) = ΩDEρ(0)
cr (1 + z)3(1+w0+wa)e−3waz/(1+z) (7)

are the energy densities of nonrelativistic matter and dark
energy, respectively. Here, Ωm = ρ

(0)
m /ρ

(0)
cr and ΩDE =

ρ
(0)
DE/ρ

(0)
cr are the matter and dark energy density parameters,

and ρ
(0)
m , ρ

(0)
DE, and ρ

(0)
cr = 3H 2

0 /(8πG) are the present mat-
ter, dark energy, and critical energy densities, respectively,
while G is the Newton constant.

In this paper, for computational simplicity, we restrict
ourselves to the case of a flat universe,3 so

Ωm + ΩDE = 1. (8)

Mass function To compute the mass function, we use the
Press–Schechter (PS) approach [35], as modified by Sheth
and Tormen (ST) [36]. In this approach, the mass function
is written as

N(M > M0, z) =
∫ ∞

M0

dM n(M,z), (9)

and

M = 4π

3
r3(z)ρm(z) = 4π

3
R3ρ(0)

m (10)

is the mass within a sphere of physical radius r(z), whose
corresponding comoving radius is R = (1 + z)r(z).

In Eq. (9), n(M,z)dM is the comoving number density
at redshift z of clusters with masses in the interval [M,M +
dM], and is written as

n = 2ρm

M
νf (ν)

dν

dM
. (11)

Here the multiplicity function νf (ν) is (in the PS and ST
models) an universal function of the peak height

ν = δc

σ
, (12)

and is normalized as∫ ∞

0
dν νf (ν) = 1

2
. (13)

The functional form of νf (ν) is discussed below. The crit-
ical density contrast δc(z) is the density contrast for a lin-
ear overdensity able to collapse at the redshift z, and its de-
pendence on cosmological parameters is discussed in Ap-
pendix A.

The root mean square (rms) amplitude σ of density fluc-
tuations in a sphere of comoving radius R, whose corre-
sponding physical radius r contains the mass M , is related
to the matter power spectrum of density perturbations at red-
shift z, P(k, z), through

σ 2(R, z) = 1

2π2

∫ ∞

0
dk k2P(k, z)W 2(kR). (14)

3This is consistent with the simplest interpretation of the CMB
anisotropy data, see, e.g. [33, 34].
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Here

W(x) = 3(sinx − x cosx)

x3
(15)

is the Fourier transform of the top-hat window function and

P(k, z) = P0(k)T 2(k)D2(z), (16)

with D(z) being the growth factor (discussed in Ap-
pendix A) and T (k) the transfer function.

We assume that the post-inflationary density perturbation
power spectrum P0(k) is a simple power law,

P0(k) = Akn, (17)

with the scale-invariant spectrum corresponding to n = 1.
The normalization constant A is a free parameter of the
model and can be expressed as a function of the other cos-
mological parameters (see below, footnote 4), while the total
transfer function T (k) is taken from Ref. [37]. The transfer
function depends on H0 and on baryon and cold dark matter
density parameters Ωb and Ωc. The total amount of mat-
ter is given by Ωm = Ωb + Ωc and in this paper we take
Ωbh

2 = 0.02, with h defined by

H0 = 100h km/s/Mpc. (18)

In the Press–Schechter parametrization, the form of the mul-
tiplicity function is a result of the assumption that initial den-
sity fluctuations are Gaussian: νf (ν) = e−ν2/2/

√
2π . In this

paper, however, we use the form

νf (ν) = K
[
1 + (

aν2)−p]
e−aν2/2, (19)

introduced by Sheth and Tormen, inspired by a model of
elliptical collapse. The constant

K =
√

a√
2π + 21/2−pΓ (1/2 − p)

(20)

results from the normalization condition (13), Γ (x) is the
Gamma function, while a and p are phenomenological con-
stants to be determined by fitting to N -body simulation re-
sults. We use the values found by Sheth and Tormen, namely
a = 0.707 and p = 0.3. (The Press–Schechter case is recov-
ered for a = 1 and p = 0.)

Finally, putting all this together, we can rewrite the mass
function as

N(M > M0, z)

= 2K
ρm(z)

M0

δc(z)

σ8D(z)

∫ ∞

1

dx

x3

1

Σ2(x)

∣∣∣∣dΣ(x)

dx

∣∣∣∣
×

{
1 +

[
aδ2

c (z)

σ 2
8 D2(z)Σ2(x)

]−p}

× exp

[
− aδ2

c (z)

2σ 2
8 D2(z)Σ2(x)

]
, (21)

where we have introduced the function

Σ2(x) =
∫ ∞

0 dy yn+2T 2(y/R8)W
2(xyR0/R8)∫ ∞

0 dy yn+2T 2(y/R8)W 2(y)
, (22)

and the quantities4

σ8 = σ(R8,0),

R8 = 8h−1 Mpc,

R0 =
(

3M0

4πρ
(0)
m

)1/3

.

(23)

We note that the function Σ(x) evaluated at x = R/R0 is the
present value of the rms amplitude σ at the scale R normal-
ized to its present value at the scale R8:

Σ(R/R0) = σ(R,0)

σ8
. (24)

This result will be used in Appendix A.

2.2 Data

Data on cluster abundance at different redshifts can be ex-
pressed as the comoving number of clusters in the redshift
interval [z1, z2], with mass M ′ within a reference comoving
radius R′

0 greater than a fiducial mass M ′
0 within the same

radius. Here and in the following, a prime is used to distin-
guish quantities related to observed masses and radii from
theoretical ones, discussed in the previous subsection. We
follow Refs. [28, 29] and take

R′
0 = 1.5h−1 Mpc, (25)

M ′
0 = 8 × 1014h−1M�, (26)

where M� 	 1.989 × 1033 g is the solar mass.
Only an effective fraction α(z) of the total comoving vol-

ume at redshift z is observed, so the expected comoving
number of clusters in the redshift interval [z1, z2], with mass
M ′ greater than M ′

0, is

N ′ =
∫ z2

z1

dz
d[α(z)V (z)]

dz
N ′(M ′ > M ′

0, z
)
, (27)

where N ′(M ′ > M ′
0, z) represents the comoving cluster

number density at redshift z of clusters with masses M ′
greater than M ′

0. The mass function N ′(M ′ > M ′
0, z) can be

written as

N ′(M ′ > M ′
0, z

) =
∫ ∞

M ′
0

dM ′ n′(M ′, z
)
. (28)

Here n′(M ′, z)dM ′ is the comoving number density at red-
shift z of clusters with masses M ′ in the interval [M ′,M ′ +
dM ′], and is defined by

n′(M ′, z
)
dM ′ = n(M,z)dM, (29)

where n(M,z) is given by Eq. (11).

4As anticipated, the normalization constant A can be related to
the other cosmological parameters, Ωb , Ωc , h, and n: A =
2π2σ 2

8 Rn+3
8 /

∫ ∞
0 dy yn+2T 2(y/R8)W

2(y).
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Inserting Eq. (29) in Eq. (28) we obtain

N ′(M ′ > M ′
0, z

) =
∫ ∞

g(M ′
0)

dM n(M,z), (30)

where the function g relates the observed mass M ′ to the
virial mass M in the PS or ST parametrization. Conse-
quently, g(M ′

0) is the fiducial virial mass

M0 = g
(
M ′

0

)
(31)

which corresponds to the fiducial mass M ′
0 adopted in the

observations. In Appendix B we describe the procedure that
gives the mass M0 as a function of M ′

0. In general, the func-
tion g depends on the redshift and cosmological parameters.

In Table 1, we show the four redshift bins [z(i)
1 , z

(i)
2 ] (i =

1,2,3,4), centered at z
(i)
c , of the massive clusters data. Also

listed are the values of the effective fraction of the observed
comoving volume of each bin, αi . The αi values are for a
cosmology with (Ωm,w) = (0.3,−1), and were computed
using the results of Refs. [28, 29].

The αi parameters depend, in principle, on the cosmol-
ogy and their values can be obtained using the Σ(1/Vmax)

method applied to observational data [38–41]. However,
the dependence of αi on the cosmology is weak com-
pared to that of the comoving volume. Using the results of
Refs. [28, 29] we get, for example, that passing from the
cosmology with (Ωm,w) = (0.3,−1) to that with Ωm = 1,
the percentage variation of the comoving volume relative to
the third bin, V (z

(3)
2 ) − V (z

(3)
1 ), is 117 %, while that of α3

is about 1 %. Similar results hold for the other bins.
References [28, 29, 38, 39, 42] give X-ray temperature

measurements for massive clusters. For completeness we
show these data in Table 2.

In order to convert temperature to mass, we use the
mass–temperature conversion formula of Refs. [43, 44] (see
Ref. [45] for a different approach to the problem of cluster
mass–temperature conversion):

M(< r) = 1014M� κΔ

TX

keV

r

Mpc
, (32)

where M(< r) is the mass within a physical radius r , TX

is the cluster X-ray temperature, and κΔ is a parameter

Table 1 The four redshift intervals [z(i)
1 , z

(i)
2 ] (i = 1,2,3,4), centered

at z
(i)
c , of the massive clusters data and the references from which data

have been taken. αi is the effective fraction of the observed comoving
volume of the ith bin and the values listed here are for the case with
Ωm = 0.3 and w = −1

bin i z
(i)
1 z

(i)
2 z

(i)
c Ref. αi

1 0.00 0.10 0.050 [38] 0.309

2 0.30 0.50 0.375 [39] 0.012

3 0.50 0.65 0.550 [28, 29] 0.006

4 0.65 0.90 0.825 [42] 0.001

which depends only on Δ′
v . Here Δ′

v is the virial overden-
sity relative to the critical density. It is related to the virial
overdensity relative to the background matter density, Δv ,
through

Δ′
v = Ωm(1 + z)3

E2(z)
Δv. (33)

Table 2 Name and X-ray temperature TX of clusters in the four bins
used in our analysis. Data in the first and second bins are from Ref. [38]
and Ref. [39], respectively, while data for the third and fourth bins are
from Ref. [28, 29] and Ref. [42], respectively. All errors are at the 68 %
confidence level

bin i name TX (keV)

1 A0754 9.00+0.21
−0.21

A2142 8.46+0.32
−0.30

COMA 8.07+0.18
−0.16

A2029 7.93+0.24
−0.22

A3266 7.72+0.21
−0.17

A0401 7.19+0.17
−0.15

A0478 6.91+0.24
−0.22

A2256 6.83+0.14
−0.13

A3571 6.80+0.13
−0.11

A0085 6.51+0.10
−0.14

A0399 6.46+0.23
−0.22

ZwCl1215 6.36+1.79
−1.23

A3667 6.28+0.16
−0.16

A1651 6.22+0.27
−0.25

A1795 6.17+0.16
−0.15

A2255 5.92+0.24
−0.16

A3391 5.89+0.27
−0.20

A2244 5.77+0.37
−0.27

A0119 5.69+0.15
−0.17

A1650 5.68+0.18
−0.16

A3395s 5.55+0.54
−0.40

A3158 5.41+0.16
−0.15

A2065 5.37+0.21
−0.18

A3558 5.37+0.10
−0.09

A3112 4.72+0.23
−0.15

A1644 4.70+0.55
−0.43

2 MS 1008.1 8.2+1.2
−1.1

MS 1358.4 6.9+0.5
−0.5

MS 1621.5 6.6+0.9
−0.8

MS 0353.6 6.5+1.0
−0.8

MS 1426.4 6.4+1.0
−1.2

MS 1147.3 6.0+1.0
−0.7

3 MS 0451–03 10.4+0.7
−0.7

MS 0016+16 8.0+0.6
−0.6

4 MS 1054–03 12.3+1.9
−1.3
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Table 3 The threshold X-ray
temperature, TX,0, and the
observed number of clusters
with masses M ′ > M ′

0, N ′
obs,i ,

in each bin and for each Δ′
v

interval. The uncertainty on the
comoving numbers of clusters,
ΔN ′

obs,i , is also indicated

bin 1
[TX,0 (keV), N ′

obs,1]
bin 2
[TX,0 (keV), N ′

obs,2]
bin 3
[TX,0 (keV), N ′

obs,3]
bin 4
[TX,0 (keV), N ′

obs,4]

Δ′
v ∈ [25,175] [7.37,5+1

−0] [9.6,0+0
−0] [10.9,0+1

−0] [12.8,0+1
−0]

Δ′
v ∈]175,375] [6.15,15+2

−4] [8.1,1+0
−1] [9.1,1+1

−0] [10.7,1+0
−0]

Δ′
v ∈]375,750] [5.54,21+2

−5] [7.3,1+4
−1] [8.2,2+0

−1] [9.6,1+0
−0]

Δ′
v ∈]750,1750] [5.14,24+1

−1] [6.7,2+4
−1] [7.6,2+0

−1] [8.9,1+0
−0]

Δ′
v ∈]1750,3250] [4.91,24+2

−0] [6.4,5+1
−3] [7.3,2+0

−0] [8.5,1+0
−0]

The quantity Δv depends on redshift and cosmology and
is thoroughly discussed in Appendix C.5 As found in
Ref. [43, 44], the parameter κΔ depends on Δ′

v and, in par-
ticular, when

Δ′
v = 100,250,500,1000,2500, (34)

κΔ assumes, respectively, the values

κΔ = 0.76,0.91,1.01,1.09,1.14. (35)

From Eq. (32), it follows that a mass M ′ within a comoving
radius R′

0 = 1.5h−1 Mpc is related to the X-ray temperature
by

M ′ = 1.5 × 1014h−1M�κΔ

TX

keV

1

1 + z
. (36)

This means that clusters in the ith bin, with masses M ′>M0,
will have a temperature exceeding the threshold value

TX,0

keV
= 16(1 + z

(i)
c )

3κΔ

. (37)

In order to apply the above equation to data, we extrapo-
late the parameter κΔ according to the following prescrip-
tion:

κΔ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.76 if Δ′
v ∈ [25,175],

0.91 if Δ′
v ∈]175,375],

1.01 if Δ′
v ∈]375,750],

1.09 if Δ′
v ∈]750,1750],

1.14 if Δ′
v ∈]1750,3250].

(38)

By using Eqs. (37) and (38) and data from Table 2 we
find the values listed in Table 3 for the observed num-
ber of clusters with masses M ′ > M ′

0 in the ith bin,
N ′

obs,i .
The uncertainty in the comoving numbers of clusters,

�N ′
obs,i , derive from the uncertainty in the X-ray tem-

perature of clusters. The threshold X-ray temperature in

5Defining rΔ as the physical radius containing an overdensity of
Δ′

v relative to the critical density, and M(r < rΔ) as the mass
contained in rΔ, the mass–temperature relation (32) assumes the
standard T

3/2
X power-law form [43, 44], namely M(r < rΔ) =

κ
3/2
Δ [3/4πΔ′

vρ
(0)
cr ]1/2(1 + z)−3/2T

3/2
X .

each bin and for each Δ′
v interval is also indicated in Ta-

ble 3.
Finally, we calculate the observed number of clusters in

the four redshift bins as

N ′
i = αi

∫ z
(i)
2

z
(i)
1

dz
dV (z)

dz
N ′(M ′ > M ′

0, z
)
, (39)

where we used Eq. (27) and replaced α(z) with the average
effective fraction αi in the ith bin. Since, as argued above,
the αi only depend weakly on the cosmology, we use in
Eq. (39), for definiteness, the values for the case Ωm = 0.3
and w = −1 listed in Table 1.

In Fig. 1 we plot the various quantities needed in the
computation of the mass function as a function of redshift
and for different choices of (w0,wa). We fixed the val-
ues of the other cosmological parameters to the best-fit val-
ues obtained by using the 7-year WMAP observations [34],
namely (h,n,Ωm,σ8) = (0.71,0.96,0.3,0.80). Although
the comoving volume is very sensitive to the choice of
the cosmological model, the variations of the functions δc ,
D(z), M0/M

′
0, and Δv (discussed in the appendices) with

redshift and cosmology concur to give rise to larger changes
in N ′(M ′ > M ′

0, z), especially at large redshifts. This, in
principle, can be used to put constraints on various models
of dark energy.

Due to the small number of clusters in each bin, the com-
parison between observed and predicted number of clusters
is made using Poisson error statistics. Accordingly, we de-
fine a likelihood function by

L =
4∏

i=1

λ
κi

i e−λi

κi ! , (40)

where we have introduced λi ≡ N ′
i and κi ≡ N ′

obs,i for no-

tational clarity. The χ2 statistics is then introduced as

χ2
CL,nosys(h,n,Ωm,σ8,w0,wa)

= −2 ln L

	 2
4∑

i=1

[
N ′

i − N ′
obs,i

(
1 + ln N ′

i − ln N ′
obs,i

)]
. (41)
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Fig. 1 The comoving volume
V (z), the critical density
contrast δc(z), the growth factor
D(z), the mass ratio M0/M

′
0,

the mass function
N ′(M ′ > M ′

0, z) [see Eq. (30)],
and the virial overdensity
relative to the background
matter density, Δv , as a function
of the redshift z, for different
dark energy equation-of-state
parameters (w0,wa). We fixed
the values of the other
cosmological parameters to
(h,n,Ωm,σ8) = (0.71,0.96,

0.3,0.80)

We also take into account the uncertainty in the comoving
numbers of clusters, �N ′

obs,i , by shifting the observed num-
ber of clusters in each bin as

N ′
obs,i → N ′

obs,i + ξ�N ′
obs,i ≡ N ′′

obs,i (42)

where the “pull” ξ is a univariate Gaussian random vari-
able [46]. Correspondingly, we modify the χ2 as

χ2
CL(h,n,Ωm,σ8,w0,wa, ξ)

= 2
4∑

i=1

[
N ′

i − N ′′
obs,i

(
1 + ln N ′

i − ln N ′′
obs,i

)] + ξ2. (43)

3 Other cosmological data

In this section, we present data from other type of cosmolog-
ical observations. In the next section, we derive joint con-
straints using these data along with those of massive clus-
ters.

Baryon acoustic oscillations The measurement of baryon
acoustic oscillations (BAOs) in the large-scale matter cor-

relation function, fixes the values of a characteristic “BAO
distance parameter”, which we denote C .6

With DV an effective distance defined by

DV (z) = 1

H0

(
z

E(z)

)1/3[∫ z

0

dz′

E(z′)

]2/3

, (44)

the C parameter is the ratio

C = rs(zd)

DV (0.275)
(45)

between the comoving sound horizon at the baryon drag
epoch zd ,

rs(z) = 1√
3H0

∫ ∞

z

dz′

E(z′)

√
4Ωγ (1 + z)

4Ωγ (1 + z) + 3Ωb

, (46)

and the effective distance DV at z = 0.275 [50]. Here, Ωγ is
the photon density parameter that we take equal to Ωγ h2 =

6See Refs. [47–49] for recent discussions of BAO data constraints on
cosmological parameters.
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2.56×10−5 [51].7 For the redshift at the baryon drag epoch,
zd , we use the fitting formula of Ref. [37]:

zd = 1291(Ωmh2)0.251

1 + 0.659(Ωmh2)0.828

[
1 + b1

(
Ωbh

2)b2
]
, (47)

where

b1 = 0.313
(
Ωmh2)−0.419[1 + 0.607

(
Ωmh2)0.674]

, (48)

b2 = 0.238
(
Ωmh2)0.223

. (49)

BAO data give the value Cobs = 0.1390 ± 0.0037 [50]. Ac-
cordingly, we define the χ2 statistic

χ2
BAO(h,Ωm,w0,wa) = (C − 0.1390)2

0.00372
. (50)

Cosmic microwave background The analysis of the CMB
radiation puts a constraint on the reduced distance to the sur-
face of last scattering, the so-called “CMB shift parameter”,

R = Ω
1/2
m

∫ zls

0

dz

E(z)
, (51)

where zls 	 1090 is the redshift at the time of last scatter-
ing. The shift parameter weakly depends on the adopted cos-
mology and here we use the constraint found by Corasaniti
and Melchiorri, Robs = 1.710 ± 0.026 [52], which refers
to a cosmological model with evolving dark energy with
equation-of-state parameter of the form given in Eq. (1). We
then consider the following χ2 statistic:

χ2
CMB(Ωm,w0,wa) = (R − 1.710)2

0.0262
. (52)

Hubble constant A meta-analysis of many measurements
yields H0 = (68±2.8) km/s/Mpc at 1σ C.L. [53, 54].8 Ac-
cordingly, we introduce the penalty

χ2
h(h) = (h − 0.68)2

0.0282
. (53)

Hubble parameter The analysis of spectra of passively
evolving red galaxies enables the determination of the Hub-
ble parameter at different redshifts, [57]. We use data quoted
in Ref. [58] and reported in Table 4 for the sake of complete-
ness. To these data we also add the estimate of the Hubble
parameter at redshifts z = 0.24 and z = 0.43, obtained in

7Since the upper limit of integration of the integral in Eq. (46) is
infinity we must include, in the expression of the normalized Hub-
ble parameter E(z), the contribution due to radiation. Accordingly,
we add the quantity ρr/ρ

(0)
cr = Ωr(1 + z)4 in the argument of the

square root appearing in Eq. (5), where ρr and Ωr are the radiation
energy density and radiation density parameter, respectively. We take
Ωrh

2 = 4.31 × 10−5 [51].
8This is reasonably consistent with both ‘low’ [55] and ‘high’ [56]
recent estimates of the Hubble constant.

Table 4 The observed Hubble parameter Hobs(zi ) with error σH (in
brackets) from passively evolving galaxies (data from Ref. [58]) and
line-of-sight BAO peak position (data are from Ref. [59] and marked
with an asterisk)

zi Hobs(zi ) [km/s/Mpc]

0.1 69 (12)

0.17 83 (8)

0.24 79.69 (2.65)∗

0.27 77 (14)

0.4 95 (17)

0.43 86.45 (3.68)∗

0.48 97 (60)

0.88 90 (40)

0.9 117 (23)

1.3 168 (17)

1.43 177 (18)

1.53 140 (14)

1.75 202 (40)

Ref. [59] by using the BAO peak position as a standard ruler
in the radial direction.9

We then introduce a χ2 statistic as

χ2
Hubble(h,Ωm,w0,wa) =

13∑
i=1

[H(zi) − Hobs(zi)]2

σ 2
H

. (54)

Type Ia supernovae Type Ia supernovae are standardizable
candles and so can be used to discriminate between differ-
ent cosmological models. Indeed, the theoretically predicted
distance modulus μ, defined by

μ(z) = 5 log10

(
dL

1 Mpc

)
+ 25, (55)

depends on the redshift and on the set of cosmological
parameters (h,Ωm,w0,wa) and can be compared to the
one “derived” from the observation of SN lightcurves [66],
namely μB . This, in turn, is deduced from the analysis of
SN lightcurves which, if performed using the “SALT2” fit-
ter [67], gives [66]

μB = mmax
B − M + αx1 − βc. (56)

Here, mmax
B and c are the peak bolometric apparent mag-

nitude and the color correction, respectively, while x1 is
a SALT2 fitter parameter [67]. The absolute magnitude of
SNe, M , and α and β are, instead, nuisance parameters to be
determined, simultaneously with the cosmological parame-
ters from fits to data. In this paper, we use data from the
Union2 SN compilation [66] which consists of 557 SNe.

9See Refs. [60–65] for Hubble parameter measurement constraints on
cosmological parameters.
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However, since the covariance matrices resulting from
the lightcurve fit are not publicly available, we do not have
any information on the correlation between the errors on
mmax

B , x1, and c. Consequently, we follow the analysis of
Refs. [52, 68] as explained in Ref. [69] and introduce the χ2

statistic

χ2
SN(Ωm,w0,wa)

=
∑
ij

(
μ

exp
i − μ̃i

)(
σ−2

ij − Mij

)(
μ

exp
j − μ̃j

)
. (57)

The double sum runs over the 557 SNe, μ
exp
i is the experi-

mental value of the distance modulus of the ith supernova,
and

μ̃i = 5 log10 d̃L + 25, (58)

is the “reduced” theoretical distance modulus. The “re-
duced” luminosity distance d̃L is

d̃L = H0dL, (59)

and σ 2
ij is the covariance matrix (containing both statistical

and systematic errors), while the matrix Mij is given by

Mij =
∑

kl σ
−2
ik σ−2

lj∑
kl σ

−2
kl

. (60)

It is worth noting that d̃L is independent of the Hubble pa-
rameter H0, so the χ2 in Eq. (57) depends only on the cos-
mological parameters (Ωm,w0,wa).

There are many other data sets that can be used to con-
strain cosmological parameters, for example, strong gravita-
tional lensing observations [70–73]; however, for our illus-
trative purposes here the data described above suffice.

4 Combined data analysis

In this section, we present the results of a joint analy-
sis of massive cluster evolution, BAO peak length, CMB
anisotropy, Hubble parameter, and SNe apparent magnitude
data. The χ2 statistic is

χ2(h,n,Ωm,σ8,w0,wa, ξ)

= χ2
CL + χ2

BAO + χ2
CMB + χ2

h + χ2
Hubble + χ2

SN, (61)

and depends on the six cosmological parameters (h,n,Ωm,

σ8,w0,wa), and on the pull ξ .
Since the χ2 depends on seven parameters, a grid-based

analysis is not feasible and we therefore employ a Markov
Chain Monte Carlo approach. We use a modified version
of CosmoMC [68] to produce and analyze the likelihood
chains.

4.1 (Ωm, σ8) results

In the left panel of Fig. 2, we show the results of the anal-
ysis in the (Ωm,σ8) plane for the cluster data alone. Here,
we marginalize over the other parameters, using a flat prior,
and determine the regions shown in the figure by finding
where χ2 increases by 1, 4, and 9, respectively, starting
from the most likely set of values of the parameters. As a
consequence of this convention [74], the projections of the
allowed regions onto each parameter give, respectively, the
1σ , 2σ , and 3σ intervals for that parameter. The filled con-
tours are obtained taking into account only statistical uncer-
tainties (i.e., taking for N ′

obs,i just the best-fit values listed
in Table 3), while empty contours show the effect of includ-
ing systematic errors on the comoving numbers of clusters.

Fig. 2 Left panel. 1σ , 2σ , and 3σ confidence level contours in the
(Ωm,σ8) plane from galaxy cluster number count data. Results ob-
tained by including systematic uncertainties are shown as empty con-
tours, while those ignoring systematics (i.e., keeping just best-fit values
for data) are represented as filled contours. Right panel. Thick contours
are the 1σ , 2σ , and 3σ (�χ2 = 1,4,9) confidence level contours in the

(Ωm,σ8) plane from galaxy cluster number count data (including sys-
tematic errors; the same as in the left panel). Thin continuous and thin
dashed contours are the 95 % contour levels (2 d.o.f., �χ2 = 5.99) for
the first two redshift bins (low z) and last two redshift bins (high z),
respectively, graphically reproduced from Refs. [28, 29]
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As it is apparent, the differences between the two cases are
marginal.

Cluster data prefer large values of Ωm and low values of
σ8 with respect to the standard ΛCDM concordance model.
Indeed, we find the marginalized bounds (including system-
atics),

Ωm ≥ 0.38 (1σ C.L.),

σ8 ≤ 0.69 (1σ C.L.),
(62)

in slight tension at 1σ with those obtained from the 7-year
WMAP observations [34]: σ8 = 0.80 ± 0.03 (68 % C.L.)
and Ωm = 0.265 ± 0.011 (68 % C.L.), although compati-
ble at 2σ confidence level. Note, however, that the WMAP’s
results are obtained assuming a spatially flat universe with
cosmological constant and H0 = 71 km/s/Mpc.

Our results on Ωm and σ8 can be also compared to other
recent cosmological results coming from other galaxy clus-
ter observations, obtained using different strategies and clus-
ter surveys. In particular, studies of X-ray selected clus-
ters, with masses exceeding a fixed mass threshold and dis-
tributed over fixed redshift ranges, yield lower values of Ωm

and larger values of σ8, when compared with our limits (62).
For example, Mantz et al. [19] find Ωm = 0.23 ± 0.04 and
σ8 = 0.82 ± 0.05 in a model with a constant dark energy.
Conversely, the analysis of cluster population over low red-
shift ranges performed in [75] gives a result compatible
with ours, namely Ωm = 0.34+0.09

−0.08 and σ8 = 0.71+0.13
−0.16. Fi-

nally, the study of the evolution of the TX-based mass func-
tion [20] within a model based on a cosmological constant,
gives Ωm = 0.34 ± 0.08, in good agreement with our result.

From our fit we derive the σ8 normalization

σ8Ω
1/3
m = 0.49 ± 0.06 (2σ C.L.): (63)

it is worth comparing our results with those of Refs. [28, 29],
where the same set of cluster data was considered. In
Refs. [28, 29], the authors analyze separately the data of
the first two bins and the data of the last two bins, refer-
ring to low-redshift and high-redshift clusters, respectively
(see Table 1). They find σ8Ω

0.6
m = 0.33 ± 0.03 from a fit to

the data of the first two bins, and σ8Ω
0.14
m = 0.78 ± 0.08

from a fit to the data of the last two bins. The above re-
sults in the (Ωm,σ8) plane are shown in the right panel
of Fig. 2, superimposed to our result. Requiring that both
the above constraints be simultaneously satisfied, the au-
thors in Refs. [28, 29] find Ωm = 0.17 ± 0.05 (1σ C.L.) and
σ8 = 0.98 ± 0.10 (1σ C.L.) for the allowed 1σ overlap re-
gion.

In conclusion, when our analysis is compared with that
of Refs. [28, 29], it is seen that the two analysis agree only
marginally, since our estimate favors relatively large val-
ues of Ωm and low values of σ8. We trace the differences
to our proper treatment of cluster data, which depends on

both redshift and cosmological parameters, and to the cor-
rect calculation of the mass function which takes into ac-
count the dependence of δc and Δv on redshift and cos-
mological parameters. Note that in Refs. [28, 29] the Hub-
ble parameter and the spectral index are fixed (to the value
h = 0.72 and n = 1) and w = −1. Also, the parameter κΔ

in Eq. (32) is assumed to be cosmology-independent and the
value used is simply the arithmetic mean of the values in
Eq. (35), namely κΔ = 0.98. The mass conversion is done
by using the observed cluster profile in the comoving ra-
dius range R ∈ [0.5,2]h−1 Mpc. Since some of the clus-
ters we use in the analysis have comoving radii exceeding
the largest observed radius of 2h−1 Mpc, an extrapolation
to higher value of R is performed by assuming a Navarro–
Frenk–White profile for the virialized halo mass density (see
Appendix B). Finally, the expressions for the critical density
contrast, growth factor, virial overdensity, and virial radius
refer, in Refs. [28, 29], to a matter dominated universe with
Ωm = 1.

Figure 3 shows the results of the analysis in the (Ωm,σ8)
plane when we combine the data on galaxy cluster count
with all the other cosmological data, discussed in Sect. 3.
Closed thick contours show the allowed region obtained
combining cluster data (empty open thin contours) with all
the remaining cosmological data (filled vertical bands), the
latter independent of σ8.

There is a slightly tension between the values of Ωm

preferred by the clusters and those preferred by the other
cosmological probes, which are, however, compatible at 2σ

level.
For the sake of completeness, we quote the 1σ confidence

limits for (Ωm,σ8), derived from the joint analysis (clusters,
BAO, CMB, Hubble parameter, and SNe):

Ωm = 0.28+0.03
−0.02 (1σ C.L.), (64)

σ8 = 0.73+0.03
−0.03 (1σ C.L.). (65)

Let us conclude by giving the values of the minimum of
the χ2 for clusters alone, χ2

CL,min = 0.54, for the remaining

cosmological data, χ2
ALL−CL,min = 539.2, and for the joint

analysis, χ2
ALL,min = 542.5. Taking into account the num-

bers of degrees of freedom, of the same order of the values
assumed by the χ2 or slightly larger, these values confirm
the goodness of our analysis.

4.2 (w0, wa) results

Figure 4 shows the result of our analysis in the (w0,wa)

plane. Empty and filled contours in the left and right panels
refer to the same cases as the left panel of Figs. 2 and 3,
respectively.

It appears that current data on massive clusters do not
allow one to appreciably constrain the equation-of-state pa-
rameters (w0,wa), to either favor or rule out a cosmological
constant as dark energy (see left panel of Fig. 4).
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The allowed 1σ confidence limits for (w0,wa), derived
from the joint analysis (clusters, BAO, CMB, Hubble pa-
rameter, and SNe) are

w0 = −1.14+0.14
−0.16 (1σ C.L.), (66)

wa = 0.85+0.42
−0.60 (1σ C.L.). (67)

The joint analysis is compatible (at 2σ C.L.) with a cosmo-
logical constant as dark energy.

Moreover, we find

H0 = 69.1+1.3
−1.5 km/s/Mpc (1σ C.L.), (68)

Fig. 3 1σ , 2σ , and 3σ confidence level contours in the (Ωm,σ8) plane
from galaxy cluster number count (including systematic errors), BAO,
CMB, Hubble parameter, and SNe observations. Filled vertical bands
are the result of combining BAO, CMB, Hubble parameter, and SN
data (ALL-CL), empty open thin contours give the confidence level
contours for cluster data only (CL), while empty closed thick contours
are from the combination of all data (ALL)

in agreement with a recent determination of the Hubble
constant from the Hubble Space Telescope H0 = 73.8 ±
2.4 km/s/Mpc [76], and ξ = −0.08+0.08

−0.90 (1σ C.L.).
The results of the global analysis are practically indepen-

dent of n in the adopted range [0.90,1.05].
For the sake of completeness, we report that from cluster

data alone we find that the results of the fit are almost in-
dependent of n, that they are only very weakly dependent
on h in the adopted range [0.6,0.8], and that the pull is
ξ = −0.21+0.19

−0.74 (1σ C.L.).

4.3 XCDM results

Figure 5 shows the results of the analysis for the case w0 =
w = const and wa = 0 (the XCDM parametrization), in the
(Ωm,σ8) and (Ωm,w) planes.

Only clusters As in the case of general evolving dark en-
ergy with parameters (w0,wa), cluster data prefer large val-
ues of Ωm, and relatively small values of σ8,

Ωm ≥ 0.43 (1σ C.L.), (69)

σ8 ≤ 0.67 (1σ C.L.), (70)

and put very weak bounds on w (see Fig. 5).
The left panel of Fig. 5 shows the correlation between

Ωm and σ8 that can be approximatively parameterized by

σ8Ω
1/3
m = 0.49 ± 0.05 (2σ C.L.), (71)

with a slightly smaller error on σ8 with respect to Eq. (63).

Fig. 4 1σ , 2σ , and 3σ confidence level contours in the (w0,wa)

plane. Left panel. Results from galaxy cluster number count data ob-
tained by including systematic uncertainties are shown as empty con-
tours, while those ignoring systematics (i.e., keeping just best-fit values
for data) are represented as filled contours. Right panel. Results deter-
mined from galaxy cluster number count (including systematic errors),

BAO, CMB, Hubble parameter, and SNe observations. Filled contours
are the result of combining BAO, CMB, Hubble parameter, and SN
data (ALL-CL), empty open thin contours give the confidence level
contours for cluster data only (CL), while empty closed thick contours
are from the combination of all data (ALL)
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Fig. 5 1σ , 2σ , and 3σ confidence level contours in the (Ωm,σ8) plane
(left panel) and in the (Ωm,w) plane (right panel), for the XCDM
parametrization, determined from galaxy cluster number count (includ-
ing systematic errors), BAO, CMB, Hubble parameter, and SNe obser-

vations. Filled contours are the result of combining BAO, CMB, Hub-
ble parameter, and SN data (ALL-CL), empty open thin contours give
the confidence level contours for cluster data only (CL), while empty
closed thick contours come from the combination of all data (ALL)

Combined data analysis The joint data analysis gives

Ωm = 0.28+0.03
−0.02 (1σ C.L.), (72)

σ8 = 0.73+0.03
−0.03 (1σ C.L.), (73)

w = −0.96+0.08
−0.09 (1σ C.L.). (74)

Also, we find

H0 = 69.0+1.4
−1.4 km/s/Mpc (1σ C.L.), (75)

and ξ = −0.08+0.08
−0.90 (1σ C.L.). These results are almost in-

dependent of n.
Let us quoting, also in this case, the values of the min-

imum of the χ2 for clusters alone, χ2
CL,min = 0.56, for the

remaining cosmological data, χ2
ALL−CL,min = 541.1, and for

the joint analysis, χ2
ALL,min = 544.3. As in the case of evolv-

ing dark energy, these values confirm the goodness of our
fits.

Observational constraints on the XCDM parametrization
have been derived from many different data sets, hence it
provides a useful basis for comparing the discriminative
power of different data. It is well known that SNeIa appar-
ent magnitude versus redshift, BAO peak length scale, and
CMB anisotropy data generally provide the most restrictive
constraints on cosmological parameters. Clearly, currently
available massive cluster evolution data is nowhere near as
constraining as these data. However, cluster data results in
constraints that are comparable to those that follow from an-
gular size versus redshift data [77–81] and lookback time
data [82–85], but are not as restrictive as those from galaxy
cluster gas mass fraction measurements [86–88] or gamma-
ray burst luminosity observations [89–92]. Over all, these
constraints are approximately compatible with each other
and with the ΛCDM model, lending support to the belief
that we are converging on a standard cosmological model.

5 Dark energy models

The above analysis shows that the constraints on the equa-
tion of state of dark energy are only marginally affected by
the inclusion of cluster data. Nevertheless, it is worth dis-
cussing the impact of these constraints on different dark en-
ergy models as in [93], since we include more cosmolog-
ical probes and upgraded data with respect to the analysis
in [93].

The advantage of the parametrization (1) of the dark en-
ergy equation of state is twofold: (i) a number of dark en-
ergy models can be adequately described by an equation of
state of the form (1) at recent enough times (i.e., for a near
unity); and, (ii) at a given redshift (such that a ∼ 1) different
classes of dark energy models correspond to different re-
gions in the (w0,wa) plane [93]. Indeed, roughly speaking,
there exist four classes of dark energy models: “thawing”
models, “cooling” models, “barotropic” fluids (all assumed
to obey the null energy condition w ≥ −1), and “phantom”
models (for which w < −1).10 Introducing the quantity

w′ = dw

d lna
, (76)

the classification is as follows.

Thawing models These satisfy the inequalities [94]

1 + w � w′ � 3(1 + w), (77)

and can arise in models of dark energy implemented by (cos-
mic) scalar fields, such as axions or dilatons, which roll

10This classification is not exhaustive since, as explained in [93], some
models, such as those with oscillating equations of state, do not fall
into it.
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down towards the minimum of their potential. Typical po-
tentials are of the form φm (m > 0), with φ being the scalar
field. The bounds (77) are valid for (1 + w) � 1 so, follow-
ing Ref. [94], we assume w � −0.8 as a practical limit of
applicability. It should be noticed, as recently pointed out
in Ref. [95], that is some scalar-field models, the thawing
model parameter space is slightly larger than the one defined
by Eq. (77).

Cooling models As for the case of thawing models, cool-
ing models may arise in scalar-field models of dark energy.
Typical scalar potentials are of the form φ−m (m > 0). They
lie in the region [94, 96]

−3(1 − w)(1 + w) < w′ � ε(z)w(1 + w), (78)

where ε is a function of the redshift and an investigation of
a variety of scalar-field cooling models indicates that ε(1) 	
0.2 [94]. The upper bound in Eq. (78) is valid for (1 +w) �
1 [94] so, for this bound, we assume w � −0.8. Cooling
models may arise in models of dynamical supersymmetry
breaking and supergravity. So-called k-essence models [97]
with a nonlinear kinetic term belong to this class [98].

Barotropic fluids These are fluids whose pressure p de-
pends only on the energy density ρ. Assuming that c2

s =
dp/dρ > 0, barotropic fluids satisfy the inequality [96]

w′ < 3w(1 + w), (79)

and include (original [99] and generalized [100]) Chaplygin
gas models.

Phantom models These are models which do not obey the
null energy condition (see, however, Ref. [93]), and fall into
the region

w < −1. (80)

To each of the above models, we can associate a specific
region in the (w0,wa) plane at a given reference time. Fol-
lowing Ref. [93], we take as reference time that correspond-
ing to z = 1 which, roughly speaking, is when dark energy
is expected to start to dominate over nonrelativistic matter.
Phantom models at z = 1 can be split in two classes: “Pure
phantom” models which did not cross the phantom divide
line w = −1 recently,

w0 < −1, w(z = 1) < −1, (81)

and models that crossed w = −1 from a lower value to a
higher value,

w0 > −1, w(z = 1) < −1, (82)

which we dub “bottom-up phantom” models.
Finally, we also consider models that crossed w = −1

from a higher value to a lower value:

w0 < −1, w(z = 1) > −1. (83)

Fig. 6 1σ , 2σ , and 3σ confidence level contours in the (w0,wa) plane
from the joint analysis of galaxy cluster number count (with systemat-
ics), BAO, CMB, Hubble parameter, and SNe (the same as in the right
panel of Fig. 4). The shaded areas represent different types of evolving
dark energy model according to the classification of Ref. [93]

These models, which we dub “top-down phantom” models,
are phantom today (z = 0) and non-phantom at z = 1.

The (w0,wa) plane containing all the above regions is
presented in Fig. 6, together with the regions allowed by data
and discussed in Sect. 5.11

Figure 6 shows the 1σ , 2σ , and 3σ confidence level
contours in the (w0,wa) plane (obtained from the global
analysis) superimposed on the regions representing different
types of evolving dark energy model according to the clas-
sification of Ref. [93]. At the 1σ level, phantom models of
evolving dark energy of top-down type are slightly favored
over cooling models and considerably preferred over thaw-
ing, pure, and bottom-up phantom models. Non-phantom
barotropic fluids are ruled out.

6 Conclusions

We have constrained cosmological parameters by using
X-ray temperature data of massive galaxy clusters in the
redshift range 0.05 � z � 0.83 with masses within a co-
moving radius of 1.5h−1 Mpc greater than the fiducial value
8 × 1014h−1M�.

In this analysis, we have accounted for the dependence
of quantities related to cluster physics—such as the criti-
cal density contrast, the growth factor, the mass conversion
factor, the virial overdensity, and the virial radius—on the

11There are a few disadvantages of the parametrization of Eq. (1): (i)
This two parameter (w0,wa ) parametrization has one more parameter
than the simplest consistent and physically motivated scalar-field dark
energy model [16, 17], thus making it more difficult to constrain model
parameters with observational data; and, (ii) even so, the parametriza-
tion is not physically complete as additional information must be pro-
vided if one is interested in the evolution of energy density and other
spatial inhomogeneities [101, 102].
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cosmological model parameters Ωm,σ8, n,w0,wa , and H0.
We have also taken into account the dependence on redshift
and cosmological parameters of the mass–temperature rela-
tion which allow us to convert the observed cluster X-ray
temperatures into cluster masses and to calculate the cluster
number counts.

The analyses show that cluster data prefer small values of
the amplitude of mass fluctuations σ8,

only clusters: σ8 ≤ 0.69 (1σ C.L.), (84)

as well as large values of nonrelativistic matter energy den-
sity,

only clusters: Ωm ≥ 0.38 (1σ C.L.). (85)

The above bounds are in slight tension at 1σ with those ob-
tained from the 7-year WMAP observations, although com-
patible at 2σ confidence level. In addition, we have found
the following normalization of σ8:

only clusters: σ8Ω
1/3
m = 0.49 ± 0.06 (2σ C.L.). (86)

We have found that currently available cluster data do not
tightly constrain the dark energy equation of state, and that a
cosmological constant is consistent with these observations.

Cluster data alone are not sensitive to the value of the in-
dex n of the power-law power spectrum of the density per-
turbations, and are only very weakly dependent on the Hub-
ble constant H0.

In order to break the Ωm–σ8 degeneracy and put more
stringent constraints on cosmological parameters, we have
combined cluster data with BAO peak length scale obser-
vations, CMB anisotropy data, Hubble constant and Hubble
parameter measurements, and type Ia supernova magnitude–
redshift observations. In this case we find

all data: σ8 = 0.73+0.03
−0.03 (1σ C.L.) (87)

and

all data: Ωm = 0.28+0.03
−0.02 (1σ C.L.), (88)

which are in good agreement with previous constraints in
the literature (such as those coming from WMAP).

Regarding the equation-of-state parameters of dark en-
ergy, we find

all data: w0 = −1.14+0.14
−0.16, wa = 0.85+0.42

−0.60

(1σ C.L.),
(89)

which indicates that the joint analysis is consistent with
a cosmological constant. Moreover, the combination of all
data is almost insensitive to n, and constrains the Hubble
parameter to the range,

all data: H0 = 69.1+1.3
−1.5 km/s/Mpc (1σ C.L.), (90)

consistent with recent bounds from Hubble Space Telescope
observations.

Similar results are found in the case of constant equation-
of-state parameter time-varying dark energy (the XCDM
parametrization).

Our results suggest that, among models of dark energy
with varying equation of state (i.e., with wa �= 0), the top-
down phantom models, for which the equation of state
crossed the phantom divide line from a higher value to a
lower value, are preferred over non-phantom thawing and
cooling models. Finally, non-phantom barotropic fluids are
excluded as models of dark energy.

While currently available massive cluster data do not
constrain cosmological parameters as tightly as do SNeIa
apparent magnitude versus redshift measurements, or CMB
anisotropy data, or BAO peak length scale observations,
the cluster measurements do provide constraints compara-
ble to those from some of the other available data sets. They
also play a useful role in constraining cosmological param-
eters when used in conjunction with other data. More im-
portantly, we look forward to superior quality near-future
massive cluster data, and anticipate the significantly more
restrictive parameter constraints that will result from using
the techniques we have developed here.
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Appendix A: Critical density contrast
and growth factor

Critical density contrast The critical density contrast δc

depends on the redshift and on the cosmology and can
be evaluated, using the approach of Ref. [103] (see also
Ref. [104]), as follows. Consider the full nonlinear equation
describing the evolution of the density contrast:

δ′′ +
(

3

a
+ E′

E

)
δ′ − 4

3

δ′2

1 + δ
− 3

2

Ωm

a5E2
δ(1 + δ) = 0, (A.1)

where a prime indicates differentiation with respect to the
scale factor a and

δ = δρm

ρm

= ρcluster − ρm

ρm

(A.2)

is the density contrast with ρcluster being the cluster mat-
ter density. Since the above equation describes the nonlinear
growth of the density contrast, its value at some chosen col-
lapse time tcollapse diverges. The critical density contrast δc

at the time tcollapse is, by definition, the value of the den-
sity contrast at the time tcollapse obtained by solving the lin-
earized version of Eq. (A.1), namely

δ′′ +
(

3

a
+ E′

E

)
δ′ − 3

2

Ωm

a5E2
δ = 0, (A.3)
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with boundary conditions for δ such that the same boundary
conditions applied to the nonlinear equation (A.1) make δ

divergent at tcollapse. Following Ref. [103], we take for the
initial derivative of δ, δ′(ai), the value δ′(ai) = 5 × 10−5

where ai ≡ 5 × 10−5, while the initial value of the den-
sity contrast, δ(ai), is found by searching for the value of
δ(ai) such that δ diverges at the time tcollapse. We assume (as
in Ref. [103]) that the divergency is achieved, numerically,
when δ exceeds the value 107.

In Fig. 1, we plot the critical density contrast, δc, as a
function of the redshift for different values of (w0,wa). For
large redshifts—where the effects of dark energy become
negligible compared to those of nonrelativistic matter—
the Universe effectively approaches the Einstein–de Sitter
model where the critical density contrast is independent
of the redshift and is δc = (3/20)(12π)2/3 	 1.686 [3]. In
Fig. 7, we show the δc-isocontours in the (w0,wa)-plane for
different values of the redshift and for Ωm = 0.27.

Growth factor The z-dependent part of the matter power
spectrum—the growth factor D(z)—is

D(z) = δ(z)

δ(0)
, (A.4)

and satisfies the linearized equation (A.3). The boundary
conditions we impose are D(a = 1) = 1 and D(a = ai) =
ai , where, as before, ai ≡ 5 × 10−5. In Fig. 1 we plot the
growth factor, D(z), as a function of the redshift for differ-
ent values of (w0,wa).

Appendix B: Mass conversion

The virial mass in the PS or ST parametrization needs to
be expressed as a function of the observed mass M ′ within
a reference comoving radius of R′

0 = 1.5h−1 Mpc. As de-
scribed in Sect. 2.2, what we really need is the fiducial
virial mass M0 as a function of the fiducial mass within R′

0

Fig. 7 δc-isocontours in the (w0,wa)-plane for different values of the redshift and for Ωm = 0.27
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adopted in the observation, namely M ′
0 = 8 × 1014h−1M�.

We use the following procedure to accomplish this. We first
determine the physical virial radius rv,0, within which the
virial mass M0 is contained, through the relation

M0(z) = 4π

3
r3
v,0(z)ρm(z)Δv(z) = 4π

3
R3

v,0ρ
(0)
m Δv(z), (B.1)

where Rv,0 = (1 + z)rv,0, and Δv is the virial overdensity
and is discussed in Appendix C. We then scale the virial
mass M0 to the 1.5h−1 Mpc comoving radius assuming a
Navarro–Frenk–White profile for the virialized halo mass
density [105]:

ρcluster(r) = 4ρcluster(rs)

(r/rs)(1 + r/rs)2
, (B.2)

where r is the physical radial distance and rs is a physical
scale radius.

Technically the procedure is as follows. From Eq. (B.2)
we can obtain the mass M(< r) contained in the physical
radius r :

M(< r) = 4π

∫ r

0
dr ′ r ′2ρcluster

(
r ′)

= 16πρcluster(rs)r
3f (rs/r), (B.3)

where

f (x) = x3
[

ln

(
1 + x

x

)
− 1

1 + x

]
. (B.4)

Then applying Eq. (B.3) to the mass M0 within the physical
virial radius rv,0, and to the mass M ′

0 within the physical ra-
dius r ′

0 = R′
0/(1 + z) corresponding to the comoving radius

R′
0, and taking the ratio of these two equations, we get

M0

M ′
0

=
(

Rv,0

R′
0

)3
f (1/cv,0)

f (Rv,0/cv,0R
′
0)

. (B.5)

Here

cv,0 = rv,0

rs
(B.6)

is the “concentration parameter”

cv = rv

rs
(B.7)

—the ratio between the physical virial radius rv and the
physical scale radius rs—evaluated at the physical virial ra-
dius rv,0.

Both Rv,0 and cv,0 in Eq. (B.5) are functions of M0. From
Eq. (B.1) we can express Rv,0 as a function of M0. For cv,0,
we proceed as follows. First we consider the expression for
the concentration parameter found by Bullock et al. [106] in
their N -body simulation:

cv(Mv) = B

1 + z

[
Mv(0)

M∗(0)

]−β

. (B.8)

Here B 	 9, β 	 0.13,12 Mv is the mass within a physical
virial radius rv ,

Mv(z) = 4π

3
r3
v (z)ρm(z)Δv(z), (B.9)

and M∗(z) is a fiducial mass defined by

σ
(
R∗(z), z

) = δc(z), (B.10)

where the comoving radius R∗(z) is defined by

M∗(z) = 4π

3
R3∗(z)ρ(0)

m . (B.11)

Then, evaluating Eq. (B.8) for Mv = M0 [which corresponds
to evaluating Eq. (B.7) for rv = rv,0], we have

cv,0 = cv(M0) = c′
v,0

γ

(
M0

M ′
0

)−β

, (B.12)

where

c′
v,0 = cv

(
M ′

0

) = B

1 + z

[
M ′

0

M∗(0)

]−β

(B.13)

is, formally, the concentration parameter (B.8) evaluated at
M ′

0 [see Eq. (B.8)], and

γ (z) =
[

Δv(z)

Δv(0)

]−β

. (B.14)

Taking into account Eqs. (22), (24), and (B.10), we find that
the quantity M∗(0) does not depend on M0 and is defined by

Σ
(
R∗(0)/R0

) = δc(0)

σ8
. (B.15)

Finally, inserting Eqs. (B.1) and (B.12) in Eq. (B.5), we ob-
tain the equation that gives M0 as a function of M ′

0 [namely
the equation defining the function g in Eq. (31)]:

f

(
R1.5

γ

c′
v,0

(
M0

M ′
0

)β+1/3)
= R3

1.5f

(
γ

c′
v,0

(
M0

M ′
0

)β)
,(B.16)

where

R1.5(z) = [3M ′
0/4πρ

(0)
m Δv(z)]1/3

1.5h−1 Mpc
(B.17)

is the comoving virial radius corresponding to the mass M ′
0,

normalized to 1.5h−1 Mpc.
In a flat universe dominated by nonrelativistic matter

(the Einstein–de Sitter model), the comoving virial radius
corresponding to the mass M ′

0 = 8 × 1014h−1M� is about
1.57h−1 Mpc, which gives R1.5 	 1. This in turn means, us-
ing Eq. (B.16), that M0/M

′
0 	 1, namely the virial mass con-

tained in a sphere of comoving virial radius of 1.5h−1 Mpc
is approximatively M ′

0. Due to the presence of the third root
in Eq. (B.17), the function R1.5(z) is fairly insensitive to

12To be precise, B and β can (weakly) depend on the cosmology and
the values used here are those found in Ref. [106] where a cosmology
with cosmological constant was assumed.
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changes in the adopted cosmology [through ρ
(0)
m and Δv(z)].

Therefore, also in the case of a generic cosmology with
evolving dark energy, we expect values of M0 close to M ′

0.
In Fig. 1, we plot the ratio M0/M

′
0 as a function of the

redshift for different values of (w0,wa). M0, as argued,
turns to be of order (of a few times) M ′

0.

Appendix C: Virial overdensity and virial radius

Virial overdensity The virial overdensity is the ratio of the
cluster mass density and the background matter density at
the time of virialization:

Δv(z = zv) = ρcluster(zv)

ρm(zv)
, (C.1)

where zv is the redshift at the time of virialization.
Using the fact that the cluster mass density is

ρcluster(z) = 3Mcluster

4πr3(z)
, (C.2)

where Mcluster is the halo cluster mass and r(z) the physical
halo radius, we can rewrite Eq. (C.1) as

Δv(z = zv) =
(

rta

rv

)3(1 + zta

1 + zv

)3

ζ, (C.3)

where rta and rv are, respectively, the physical radii of the
halo cluster at turn-around and at virialization (rv is, in other
words, the physical virial radius of the halo cluster), while
zta and

ζ = ρcluster(zta)

ρm(zta)
(C.4)

are, respectively, the redshift and virial overdensity at the
time of turn-around.

The redshift at the virialization time is

zv = zcollapse, (C.5)

and follows from the standard assumption that clusters viri-
alize at the time of collapse.

To find the redshift at the time of turn-around, zta, and to
obtain the virial overdensity at the turn-around time, ζ , we
follow the procedure of Ref. [103]. First, they observed that
the quantity (δ + 1)/a3, where δ is the density contrast that
satisfies the nonlinear Eq. (A.1), is proportional to 1/r3(z):

δ + 1

a3
= 3Mcluster

4πρ
(0)
m

1

r3(z)
, (C.6)

where r(z) is the collapsing sphere’s radius. [It is straight-
forward to get the above equation by using Eqs. (A.2)
and (C.2).] Then since r(z) assumes the maximum value at
the turn-around time, the time of turn-around is found by
minimizing the quantity (δ + 1)/a3, where δ is the solution
of Eq. (A.1) obtained by imposing the boundary conditions
used in Appendix A.

Once the turn-around time is found, the virial overden-
sity at the turn-around time is simply given, from Eqs. (A.2)
and (C.4), by

ζ = δ(zta) + 1, (C.7)

where δ is the solution of Eq. (A.1).
The ratio of the virial radius to the turn-around radius,

rv/rta, as a function of cosmological parameters is analyzed
below.

In Fig. 1 we plot the virial overdensity at the time of
virialization, Δv , as a function of the redshift for different
values of (w0,wa). In an Einstein–de Sitter model (i.e., for
Ωm = 1), the standard assumption that t (zv) 	 2t (zta) to-
gether with the fact that rv = rta/2 and ζ = (3π/4)2, gives
Δv 	 18π2 	 177.653 (independent of the redshift). Indeed,
each curve in Fig. 1 approaches this value for a sufficiently
large value of the redshift since, as already noted, the Uni-
verse then enters the Einstein–de Sitter regime where the
effects of dark energy become subdominant with respect to
those of nonrelativistic matter.

In Fig. 8, we show the Δv-isocontours in the (w0,wa)-
plane for different values of the redshift and for Ωm = 0.27.

Virial radius In order to “estimate” the quantity rv/rta,
we apply energy conservation and the virial theorem to the
spherical collapse of the cluster halo.

We start by considering the total gravitational potential
energy U(r) of a sphere of radius r containing the cluster
mass Mcluster and dark energy:

U(r, z) = Umm(r) + UmDE(r, z), (C.8)

where

Umm(r) = −3

5

GM2
cluster

r
(C.9)

is the familiar gravitational potential self-energy of a sphere
of nonrelativistic matter, and

UmDE(r, z) = −4π

5
GMcluster

[
1 + 3w(z)

]
ρDE(z)r2 (C.10)

is the gravitational potential energy of interaction between
nonrelativistic matter and dark energy.13

Since the potential energy UmDE(r, z) depends explicitly
on the time, the system under consideration is not conser-
vative. Therefore, neither energy conservation nor the virial
theorem can be applied.14

13Here, we are considering the case where the dark energy does not
cluster and does not virialize, so that the only terms in the potential
energy which are relevant for energy conservation and virialization are
those in Eq. (C.8) [107].
14It is straightforward to show that the only case where UmDE(r, z) is
z-independent, and the system is conservative, is that of the cosmolog-
ical constant, namely w(z) = −1 for all times.
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Fig. 8 Δv-isocontours in the (w0,wa)-plane for different values of the redshift. We fixed Ωm = 0.27

In order to get a conservative system, Wang [107]
has suggested replacing the z-dependent quantity [1 +
3w(z)]ρDE(z) with the same quantity evaluated at the turn-
around time.

Here we propose defining an effective potential energy,
which does not depend explicitly on the time, as

U(eff)(r) = Umm(r) + U
(eff)
mDE(r), (C.11)

where

U
(eff)
mDE(r) = −4π

5
GMcluster

〈[
1 + 3w(z)

]
ρDE(z)

〉
r2 (C.12)

is the effective potential energy of interaction and 〈. . .〉 is an
operator that when applied to a z-dependent function ψ(z)

gives a z-independent quantity, i.e.

d〈ψ(z)〉
dz

= 0. (C.13)

The action of the 〈. . .〉-operator is specified below.
The introduction of the effective energy potentials (C.11)

and (C.12), allow us to use the energy conservation theorem

that, applied at the times of virialization and turn-around,
gives

K(rv) + U(eff)(rv) = U(eff)(rta), (C.14)

where K(rv) is the kinetic energy at the virialization time.
Using the virial theorem

K(rv) =
(

r

2

dU(eff)(r)

dr

)
r=rv

, (C.15)

the energy conservation equation (C.14) takes the form

1

2
Umm(rv) + 2U

(eff)
mDE(rv) = Umm(rta) + U

(eff)
mDE(rta). (C.16)

Taking into account Eqs. (C.2) and (C.4), the mass of the
cluster is

Mcluster = 4π

3
r3

taρm(zta)ζ, (C.17)

so that Eq. (C.16) reads
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4ηq(1 + 3wta)

(
rv

rta

)3

− 2
[
1 + ηq(1 + 3wta)

]( rv

rta

)
+ 1

= 0. (C.18)

Here wta = w(zta) and we have defined, following [107], the
quantity

q = ρDE(zta)

ζρm(zta)
. (C.19)

We have also introduced the “deviation parameter”, η, as

η = 〈[1 + 3w(z)]ρDE(z)〉
(1 + 3wta)ρDE(zta)

. (C.20)

It is worth noting that in the case of a cosmological con-
stant the system is conservative (see footnote 14), and the
equation determining rv/rta is formally given by Eq. (C.18)
with η = 1. Hence, the only restriction to the action of the
〈. . .〉-operator is that, when applied to the function [1 +
3w(z)]ρDE(z), it must give η = 1 for w(z) = −1.

Taking 〈ψ(z)〉 = ψ(zta) corresponds to the choice of
Wang, which also implies η = 1 for equation-of-state pa-
rameter w(z). However, taking 〈ψ(z)〉 = ψ(z̄), where z̄ can
be anywhere in the interval [zv, zta], is also a plausible
choice.

In the upper panel of Fig. 9, we plot the ratio of the virial
radius to the turn-around radius in the case η = 1 (Wang’s
choice) as a function of the redshift for different values of
(w0,wa). In the lower panel, we show the same ratio for

Fig. 9 Upper panel. The ratio of the virial radius to the turn-around
radius, x ≡ rv/rta with η = 1 (corresponding to Wang’s choice), as a
function of the redshift for different values of (w0,wa) (the same as
in Fig. 1). Lower panel. The ratio of x to y, where y ≡ rv/rta with η

defined in Eq. (C.21). In both panels, we fixed Ωm = 0.27

the case 〈ψ(z)〉 = ψ(zv). For notational clarity, we indicate
those ratios by

rv

rta
≡

⎧⎨
⎩

x if η = 1,

y if η = (1+3wv)ρDE(zv)
(1+3wta)ρDE(zta)

,
(C.21)

where wv = w(zv). For z � 1, where dark energy effects
can be neglected, the ratio of the virial to the turn-around
radii approaches, as expected, the asymptotic Einstein–de
Sitter value x = 1/2. The variations of x with the choice of
the functional form of the deviation parameter η are of order
of a few percent. The resulting analysis on the growth of
massive galaxy clusters does not appreciably depend on η,
and the results presented in the previous sections are for the
case η = 1.
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