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We study limits on a primordial magnetic field arising from cosmological data, including that from big

bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and

large-scale structure formation. We show that the physically relevant quantity is the value of the effective

magnetic field, and limits on it are independent of how the magnetic field was generated.

DOI: 10.1103/PhysRevD.82.083005 PACS numbers: 98.70.Vc, 98.80.�k

I. INTRODUCTION

There is much interest in the origin of the coherent part
of the large-scale �G magnetic fields in galaxies [1].1 A
leading possible explanation is that these large-scale mag-
netic fields are the amplified remnants of a primordial seed
magnetic field generated in the early Universe [5–7]. Such
early magnetogenesis models include those in which seed
magnetic field generation occurs during inflation or shortly
thereafter, or during a cosmological phase transition (such
as the electroweak or QCD transition). Clearly the strength
of the seed magnetic field should be small enough so as to
not generate a larger than observed cosmological anisot-
ropy. Magnetic field energy density contributes to the
relativistic (radiation) energy density and thus another
requirement is that it not exceed the big bang nucleosyn-
thesis (BBN) bound on the radiation energy density.

There are two main questions that need to be answered:
(1) Are the amplitude and statistical properties of any of
these seed magnetic fields such that, after amplification by
a realistic model, they can explain the strengths and corre-
lation lengths of the observed magnetic fields in large-scale
structures (LSSs) such as galaxies? and, (2) Are any of the
seed magnetic fields detectable through cosmological ob-
servations, such as cosmic microwave background (CMB)
measurements2 or LSS observations? And, if yes, what are

the observational constraints on such primordial magnetic
fields?
In this paper we focus on the second question and con-

sider two cosmological consequences of a primordial mag-
netic field: Faraday rotation of the CMB polarization plane
and the effect on LSS formation. As two of the effects of a
primordial magnetic field, these have been widely discussed
in the literature. See Refs. [8–13] for discussions of
magnetic-field-induced CMB anisotropies,3 Refs. [15–17]
for the Faraday rotation effect, and Refs. [18–22] for effects
of a primordial magnetic field on LSS formation.
It has become conventional to derive the cosmological

effects of a seed magnetic field by using a magnetic field
spectral shape (parametrized by the spectral index nB) and
the smoothed value of the magnetic field (B�) at a given
scale � (which is usually taken to be 1 Mpc). We develop
here a different and more correct formalism based on the
effective magnetic field value that is determined by the
total energy density of the magnetic field. As a striking
consequence, we show that even an extremely small
smoothed magnetic field of 10�29 G at 1 Mpc, with the
Batchelor spectral shape (nB ¼ 2) at large scales, can leave
detectable signatures in CMB or LSS statistics.4

We also show that the conventional approach based on
the smoothed magnetic field results in some confusion
when considering phase-transition generated magnetic
fields [26] with spectral shape sharper (on large scales)
than the white noise spectrum (i.e. with nB > 0). In this*tinatin@phys.ksu.edu
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1On larger scales there have been two recent claims of an

observed lower limit of order 10�15 G on the intergalactic
magnetic field [2,3], as well as one claimed detection of a field
of this strength [4]. Prior to these observations, the intergalactic
magnetic field was observationally only limited to be smaller
than a few nG.

2A cosmological magnetic field induces all three kinds of gravi-
tational perturbations, scalar, vector, and tensor; all three of which
contribute to CMB temperature and polarization anisotropies.

3The effects of a homogeneous magnetic field on the scalar
mode of CMB fluctuations, including the resulting non-
Gaussianity of the CMB temperature map, are discussed in
Refs. [14].

4This strong limit on the primordial magnetic field is the
consequence of the BBN bound and the sharp shape of the
magnetic field at large scales [23,24]. The low efficiency of
gravitational wave production by a cosmological magnetic field
[24] results in a weaker limit on the seed field from the direct
detection of the induced gravitational wave signal [25].
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case the total energy density of the magnetic field, �B, is
mainly concentrated on large wave numbers (small length
scales). In what follows we show that primordial magnetic
field effects on cosmological scales are determined not by
the amplitude of the magnetic field on these scales, but
rather by the total energy density of the magnetic field.

Here we consider limits on a seed magnetic field from the
observational constraint on the CMB polarization plane
rotation angle and observational constraints on the forma-
tion of the first bound structures. Both tests give comparable
limits on the effective magnetic field, ranging from 10�9 to
10�7 G, depending on the spectral shape of the magnetic
field. Note that these limits are of order of the BBN bound.
The best limit on the seed magnetic field is for the scale-
invariant case that can be generated during inflation [27,28].

In a Universe with only scalar mode perturbations, the
CMB B-polarization signal vanishes. The CMB B polar-
ization signal can arise from vector or tensor perturbations,
and thus B-polarization detection-based tests are powerful
tools for probing nonstandard cosmological models and the
relic gravitational wave background. Since a cosmological
magnetic field can source a CMB B-polarization signal, a
crucial test to limit the magnetic field is based on CMB
B-polarization measurements. In a separate paper we will
address the cosmological magnetic field energy density
limits that can result from this test.

The structure of our paper is as follows. In Sec. II we
review magnetic field statistical properties. In Sec. III we
examine the CMB polarization plane Faraday rotation
effect and the resulting magnetic field limits. In Sec. IV
we consider the influence of a magnetic field on LSS
statistics and determine the resulting limits on the magnetic
field. We discuss our results and conclude in Sec. V.

II. MODELING THE PRIMORDIAL
MAGNETIC FIELD

A stochastic Gaussian magnetic field is fully described
by its two-point correlation function. For simplicity we
consider here the case of the nonhelical magnetic field for
which the two-point correlation function in wave number
space is [11]

hB?
i ðkÞBjðk0Þi ¼ ð2�Þ3�ð3Þðk� k0ÞPijðk̂ÞPBðkÞ: (1)

Here i and j are spatial indices, i; j 2 ð1; 2; 3Þ, k̂i ¼ ki=k a

unit wave vector, Pijðk̂Þ ¼ �ij � k̂ik̂j the transverse plane

projector, �ð3Þðk� k0Þ the Dirac delta function, and PBðkÞ
is the power spectrum of the magnetic field.5

We define the smoothed magnetic field B� through the
mean-square magnetic field [11]

B2
� ¼ hBðxÞ �BðxÞij�; (3)

where the smoothing is done on a comoving length � with
a Gaussian smoothing kernel function / exp½�x2=�2�.
Corresponding to the smoothing length � is the smoothing
wave number k� ¼ 2�=�. The power spectrum PBðkÞ is
assumed to be a simple power law on large scales, k < kD
(where kD is the cutoff wave number),

PBðkÞ ¼ PB0k
nB ¼ 2�2�3B2

�

�ðnB=2þ 3=2Þ ð�kÞ
nB ; (4)

and assumed to vanish on small scales where k > kD.
The energy density of the magnetic field is [13]

�Bð�0Þ ¼ B2
�ðkD�ÞnBþ3

8��ðnB=2þ 5=2Þ : (5)

We define the effective magnetic field Beff through �B ¼
B2
eff=ð8�Þ and thus we get for the scale-invariant spectrum

(nB ¼ �3 [27]) Beff ¼ B� for all values of �. The scale-
invariant case is the only case where the values of the
effective and smoothed fields coincide.
We need to define the magnetic field cutoff wave number

kD. We assume that the cutoff scale is determined by the
Alfvén wave damping scale kD � vALS where vA is the
Alfvén velocity and LS the Silk damping scale [10]. Such a
description is more appropriate when we are dealing with a
homogeneous magnetic field and the Alfvén waves are the
fluctuations B1ðxÞ with respect to a background homoge-
neous magnetic field B0 (jB1j � jB0j). In the case of the
stochastic magnetic field we generalize the Alfvén velocity
definition, see Ref. [11], by referring to the analogy be-
tween the effective magnetic field and the homogeneous
magnetic field. Assuming that the Alfvén velocity is
determined by Beff , a simple computation gives the
expression of kD in terms of Beff [24]:

kD
1 Mpc�1 ¼ 1:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞnBþ3h

�ðnB=2þ 5=2Þ

s �
10�7 G

Beff

�
: (6)

Here h is the Hubble constant in units of
100 km s�1 Mpc�1. The BBN limit on the effective
magnetic field strength, Beff � 8:4� 10�7 G [24], gives
an upper limit on the cutoff wave number kD,

kBBND 	 0:17h1=2
ð2�ÞðnBþ3Þ=2

�1=2ðnB=2þ 5=2Þ Mpc�1: (7)

In the case of an extremely large magnetic field it is
possible to have �D > 1 Mpc. At this point it would
seem unreasonable (unjustified) to consider a smoothing
scale � ¼ 1 Mpc as is conventionally done.

5We use

BjðkÞ¼
Z
d3xeik�xBjðxÞ; BjðxÞ¼

Z d3k

ð2�Þ3e
�ik�xBjðkÞ; (2)

when Fourier transforming between position and wave number
spaces. We assume flat spatial hypersurfaces (consistent with
current observational indications, [29]).
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III. CMB POLARIZATION PLANE ROTATION

The presence of a primordial magnetic field during
recombination causes a rotation of the CMB polarization
plane through the Faraday effect [15]. The rms rotation

angle �rms ¼ ðh�2iÞ1=2 induced by a stochastic magnetic
field with smoothed amplitude B� and spectral index nB is
given by

h�2i ¼ X
l

2lþ 1

4�
C�
l ; (8)

where the rotation multipole power spectrum C�
l is [17]

C�
l ’ 9lðlþ 1Þ

ð4�Þ3q2	4
0

B2
�

�ðnB=2þ 3=2Þ
�
�

�0

�
nBþ3Z xS

0
dxxnBj2l ðxÞ:

(9)

Here �0 is the conformal time today, 	0 is the CMB photon
frequency, q2 ¼ 1=137 is the squared elementary charge
in cgs units, jlðxÞ is a Bessel function with argument
x ¼ k�0, and xS ¼ kS�0 where kS ¼ 2 Mpc�1 is the Silk
damping scale. In the case of an extreme magnetic field
which just satisfies the BBN bound, kD might become less
than the Silk damping scale. In this case the upper limit in
the integral above must be replaced by xD ¼ kD�0.

In terms of Beff , Eq. (9) can be rewritten in the following
form:

C�
l ’ 1:6� 10�4 lðlþ 1Þ

ðkD�0ÞnBþ3

�
Beff

1 nG

�
2
�
100 GHz

	0

�
4 nB þ 3

2

�
Z xS

0
dxxnBj2l ðxÞ; (10)

and, as a result,

�rms ’ 0:14

�
Beff

1 nG

��
100 GHz

	0

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nB þ 3

p
ðkD�0ÞðnBþ3Þ=2

�
�X1
l¼0

ð2lþ 1Þlðlþ 1Þ
Z xS

0
dxxnBj2l ðxÞ

�
1=2

: (11)

It is of interest to compare Eq. (11) with the corresponding
result, Eq. (2) of Ref. [15], derived for a homogeneous
magnetic field and at frequency 	0 ¼ 30 GHz,

�rms ’ 1:6

�
B0

1 nG

��
30 GHz

	0

�
2
: (12)

Both expressions agree for nB ! �3 after accounting forP
lð2lþ 1Þj2l ðxÞ ¼ 1 and the fact that Bessel functions

peak at x� l for given l (see the Appendix).
Figure 1 shows the rms rotation angle�rms, Eq. (11), as a

function of the spectral index nB when the effective mag-
netic field is normalized to be 10�9 G. The WMAP 7-year
data limits the rms rotation angle to be less then 4.4
 at
95% C. L. [30]. This allows us to limit the effective
magnetic field as shown in Fig. 2.

IV. LARGE-SCALE STRUCTURE

A primordial tangled magnetic field can also induce the
formation of structures in the Universe. In particular, these
fields can play an important role in the formation of first
structures (see, e.g., Refs. [9,18–22,31,32]).
The magnetic-field-induced matter power spectrum

PðkÞ is / k4 for nB >�1:5 and / k2nBþ7 for nB � �1:5
[19,32]. The cutoff scale of the power spectrum is deter-
mined by the larger of the magnetic Jeans’ wave number kJ
and the thermal Jeans’ wave number ktherm (for a detailed
discussion, see, e.g., Ref. [22]). Here the magnetic Jeans’
wave number is (see, e.g., Ref. [32])
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FIG. 1 (color online). rms rotation angle �rms as a function of
spectral index nB for the case when Beff ¼ 1 nG and 	0 ¼
100 GHz. Circles correspond to the computed values.
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FIG. 2 (color online). Effective magnetic field limits set by the
measurement of the rotation angle �rms for different spectral
indices (nB ¼ �3, �2, �1, 0, 1, 2, from bottom to top). The
horizontal solid line shows the upper limit set by BBN. Vertical
dashed lines correspond to the angles �rms ¼ 3:16
 that are set
by the BBN limit on the effective magnetic field with spectral
index nB ¼ 2 and �rms ¼ 4:4
 set by the WMAP 7-year data.
The numerical values of the effective magnetic field constraints
(in nG at 100 GHz) from the �rms ¼ 4:4
 limit are shown on the
graph for each spectral index value.
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kJ ’ ð230ðnBþ3Þ=2 � 13:8Þ2=ðnBþ5Þ
�
1 nG

Beff

�
Mpc�1: (13)

Unlike the �CDM matter power spectrum, the magnetic-
field-induced matter power spectrum increases at small
scales and can exceed the�CDMmatter one at small scales
(for a comparison of these two spectra, see, e.g. Fig. 3 of
Ref. [19]). And, therefore, one of the more important con-
tributions of the additional power induced by magnetic
fields is to the formation of the first structures in the
Universe (e.g. Refs. [18,20,21] and references therein).

In Fig. 3 we show the linear mass dispersion 
ðMÞ for
matter power spectra induced by a primordial magnetic
field with Beff ¼ 6 nG at z ¼ 10 for different values of nB.
Notable features of Fig. 3 are (a) the mass dispersion on
small scales is larger for a larger value of nB; and, (b) for
nB 	 �1:5, the mass dispersion drops more sharply at
larger scales than for nB � �1:5. We focus here on the
mass dispersion on the smallest scales, as these scales are
more relevant for the formation of the first structures in
the Universe. These first structures were responsible for the
reionization of the Universe at z ’ 10. To obtain mean-
ingful constraints on Beff from the formation of first struc-
tures, we need to know how the curves shown in Fig. 3 vary
as Beff is changed and as the Universe evolves.

The mass dispersion 
ðM; zÞ evolves with the time
dependence of the growing mode of the linear density
perturbations sourced by the primordial magnetic field
[19,32]. The growing mode is / aðtÞ, the scale factor, at
high redshifts, the same as in the ‘‘standard’’ �CDM case
without a magnetic field. To account for this evolution the
curves corresponding to 
 in Fig. 3 must be scaled by
roughly a factor of ’ 11=ð1þ zÞ for redshifts z � 1.

It can be shown that the value of 
 at the smallest scales
(M ’ 106 M�) is invariant under a change in Beff if the
cutoff scale is determined by kJ: an increase/decrease in

the value of Beff is compensated by a decrease/increase in
the value of kJ. However, if Beff is decreased to a value at
which ktherm � kJ, then the value of 
 decreases with a
decrease in Beff , as the cutoff scale becomes independent
of the value of Beff .
It has been shown that the dissipation of magnetic fields

in the post-recombination era can substantially alter the
thermal and ionization history of the Universe [18,20,22].
In particular, this dissipation raises the matter temperature
and therefore the Jeans’ scale in the IGM (intergalactic
medium). For Beff 	 1 nG the matter temperature rises to
’ 104 K as early as z 	 100, [20], resulting in a steep rise
in the Jeans’ scale as compared to the usual case. The
Jeans’ wave number corresponding to this temperature is
ktherm ’ 10 Mpc�1 (see, e.g., Fig. 4 of Ref. [22]).
WMAP results show that the Universe reionized at z ’

10. This reionization was caused by the nonlinear collapse
of the first structures, followed by star formation and the
emission of UV photons from the collapsed halos. For a
virialized structure in the spherical collapse model, the
linear mass dispersion 
 ’ 1:7. This implies that the value
of 
 at the scales of interest at z ’ 10 is not expected to be
much higher than 1.7. Consider the nB ¼ 2 model in Fig. 3;
the value of mass dispersion at the smallest scales is ’ 100,
which means that the first structures formed at z ’ 650 in
this case (the redshift of the collapse of first structures is ’
6:5
max, where 
max is the maximum value of 
 at z ’ 10),
which can certainly be ruled out by the WMAP data on
CMB anisotropies. A similar argument can be used to rule
out almost all the models shown in Fig. 3. Only the nearly
scale-invariant models with nB ’ �3 do not put strong
constraints on the strength of the magnetic field. As argued
above, the value of mass dispersion at the smallest scales to
collapse is nearly independent of the magnetic field strength
unless Beff decreases to a value such that kJ ¼ ktherm. In this
case, the value of 
 decreases below those shown in Fig. 3.
We have explored a wide range of Beff for the range of
spectral indices shown in Fig. 3. We find that the range of
acceptable values is 1–3 nG. In Fig. 4 we show the Beff

corresponding to kJ ¼ ktherm. Notwithstanding various com-
plications discussed above, this figure gives a rough sense of
the acceptable range of Beff over the entire range of nB.
In the foregoing, we neglect the impact of the �CDM

model on the process of reionization. As the density fields
induced by the �CDM model and the magnetic field are
uncorrelated, the matter power spectra owing to these two
physical phenomena would add in quadrature. The smallest
structures to collapse at z ’ 10 in the WMAP-normalized
�CDM model are 2:5
 fluctuations of the density field as
opposed to the magnetic field case where 1
 collapse is
possible (Fig. 3). This means the number of collapsed halos
is more abundant in the latter case. Therefore, depending
on the star-formation history, if the magnetic-field-induced
halo collapse made an important contribution to the reio-
nization process, the far rarer halos from �CDM would
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FIG. 3 (color online). The mass dispersion at z ¼ 10 for
Beff ¼ 6 nG as a function of magnetic field power spectral index
nB. From top to bottom (at the left-hand side of the plot), the
curves correspond to nB ¼ 2, 1, 0, �1, �2, �2:8.
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have made a negligible impact (for further details and
references see Ref. [21]).

V. CONCLUSIONS

In this paper we study the large-scale imprints of a
cosmological magnetic field, such as the rotation of the
CMB polarization plane and formation of the first bound
structures. We derive the corresponding limits on a pri-
mordial magnetic field energy density, expressed as limits
on the effective value of the magnetic field, Beff . These
limits are identical to limits on the smoothed magnetic
field B� (smoothed over a length scale � that is conven-
tionally taken to be 1 Mpc) only in the case of the scale-
invariant magnetic field (when nB ¼ �3). For a steep
magnetic field with spectral index nB ¼ 2 the difference
between B�¼1 Mpc and Beff is enormous (greater than

1015). We show that using the smoothed magnetic field
can result in some confusion; e.g. an extremely small
smoothed magnetic field on large scales does not mean
that this field cannot leave observable traces on cosmo-
logical scales.

An intergalactic magnetic field of effective value larger
than 1–10 nG (with, depending on magnetic spectral
index, corresponding values of B�¼1 Mpc in the range

10�8–10�26 G) is ruled out by cosmological data. These
limits of 1–10 nG are consistent with recent observational
bounds on the intergalactic magnetic field [2–4] if the field
was generated in the early Universe with spectral shape
nB � 1. This favors the inflationary magnetogenesis
scenario.
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APPENDIX: EVALUATING THE RIGHT-HAND
SIDE OF EQ. (11) WHEN nB ! �3

The
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nB þ 3

p
factor in the numerator of the right-hand

side of Eq. (11) is compensated by a corresponding
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nB þ 3

p
from the Bessel function integral when the

spectral index nB ! �3 and so the expression for �rms

remains finite in this limit. To establish this we use prop-
erties of the Bessel function. Recall that j2l ðxÞ peaks at

x� l, as shown in Fig. 5. This allows us to replace the
factor lðlþ 1Þj2l ðxÞ by x2j2l ðxÞ (the accuracy of this ap-

proximation is of order 15%–20%). The next step is to
perform the sum over l. It is obvious that there is cutoff
multipole number lC that corresponds to the cutoff wave
number, lC �minðxD; xSÞ. Now j2l ðxÞ satisfiesX1

l¼0

ð2lþ 1Þj2l ðxÞ ¼ 1; (A1)

while we are interested in computing
PlC

l¼0ð2lþ 1Þj2l ðxÞ.
The Silk damping scale cutoff multipole number is
lS ’ 16 000, [17]. Figure 6 shows that the sum to lS
converges to 1.
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FIG. 4 (color online). Constraint on the magnetic field strength
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