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ABSTRACT

We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence
of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory
and predicts stochastic MFs with an amplitude of the order of 0.02 μG and small magnetic helicity. We employ
direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a “weakly
helical” turbulence regime, when magnetic helicity increases during decay, and “fully helical” turbulence, when
maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the
most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude
of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the
seed MF for galaxies and clusters.
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1. INTRODUCTION

The origin of the observed magnetic fields (MFs) in galaxies
and clusters of ∼10−6–10−5 G remains a matter of debate
(Beck et al. 1996; Widrow 2002; Vallée 2004). Recently several
different groups (Neronov & Vovk 2010; Tavecchio et al. 2010;
Dolag et al. 2011; Taylor et al 2011; Huan et al. 2011) reported
the detection of a lower bound on a large-scale correlated MF
amplitude of the order of 10−16–10−15 G, or possibly two
orders of magnitude smaller (Dermer et al. 2011; Takahashi
et al. 2012) at Mpc scales through blazar observations. One
of the possible explanations of the large-scale correlated MF
assumes the presence of a seed primordial magnetic field (PMF)
which was generated during or prior to the radiation-dominated
epoch. This MF should satisfy several conditions: (1) the PMF
should preserve approximate spatial isotropy, it has to be weak
enough when its energy density can be treated as a first order
of perturbation; (2) the PMF should be smaller than the MF in
galaxies by a few orders of magnitude at least, since during
structure formation PMFs get amplified; (3) since the PMF
energy density ρB contributes to the radiation field, the big bang
nucleosynthesis bound implies ΩBh2

0 = ρB/ρcr � 2.4 × 10−6

(Grasso & Rubinstein 2001), where ρcr is the critical density,7

and h0 is the Hubble constant in units of 100 km s−1 Mpc−1.
The possible origin of the PMF from the two major cos-

mological phase transitions, the electroweak phase transition
(EWPT) and the QCD phase transition (QCDPT; see Grasso &
Rubinstein 2001; Widrow 2002; Widrow et al. 2012 for reviews)
is of particular importance for cosmology. Because of the larger
scale of the resulting seed MF and the nature of the QCD bub-
ble walls during a first-order QCDPT, it is more likely that the

7 The ratio of ρB to the energy density of the radiation ρrad is constant during
cosmological evolution if the PMF is not damped by an MHD (or other)
process and therefore stays frozen into the plasma.

QCDPT rather than the EWPT produces a PMF that accounts
for the observed galactic and cluster MFs.

In this paper, we consider one of several possible mechanisms
of PMF generation. In particular we re-address the model
proposed by Kisslinger (2003), in which the PMF is generated
via QCD bubble collisions. We consider the coupling of this
initial PMF with the QCD plasma, and study the dynamics
during the expansion of the universe. The main parameters of
the described model are given by the QCDPT temperature T� =
0.15 GeV and the number of relativistic degrees of freedom g� =
15. The interactions between the PMF and the QCD plasma are
studied through numerical MHD simulations using the Pencil
Code (see http://pencil-code.googlecode.com/). We discuss
observational signatures of such a QCDPT PMF, including
observed MFs in galaxies and clusters. We employ natural units
with h̄ = 1 = c and Gaussian units for the MHD formulation.

The outline of the paper is as follows. In Section 2, we
describe the PMF generation model. In Section 3, we determine
the spatial and temporal characteristics of the generated PMF.
The results of our analysis, including the dynamics of the PMF,
are presented in Section 4, where we discuss the resulting MF
in galaxies and clusters. Conclusions are presented in Section 5.

2. MAGNETIC FIELD GENERATION MODEL

In contrast to the EWPT, the QCDPT involves the treatment of
QCD, which, unlike the electroweak theory, is non-perturbative.
Therefore a valid theory starting from basic QCD theory, rather
than a model, must be able to treat non-perturbative QCD. In
Kisslinger (2003), instantons form gluonic bubble walls and
it is the interior gluonic wall that leads to the magnetic seed
described below satisfying that criterion. In this early work, the
main interest was the prediction of polarization correlations in
cosmic microwave background radiation (CMBR). As we can
see below the magnitude of the resulting MF is too small for
current CMBR observations, but it might be measured in the
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future. Because this scenario starts from basic non-perturbative
QCD theory and successfully predicts a primary MF which has
the overall properties that are promising for the PMF, we use it
in our present work.

In this section, we briefly describe the PMF scenario proposed
by Kisslinger (2003). In Section 2.1 we review the MF and
helicity density created during the QCDPT, and in Section 2.2
we give values of these quantities at the present time. Recent
lattice QCD studies have shown that the QCDPT is first
order, so bubbles form and collide (see De Risi et al. 2008;
Fraga & Misher 2009; Bessa et al. 2009; Schwarz & Stuke
2009; Schettler et al. 2011; Boeckel & Schaffner-Bielich 2011,
and references therein); additional references are given by
Kahniashvili et al. (2010b). The first-order QCDPT can result in
the generation of an MF through two (or more) bubble collisions.

2.1. Magnetic Field and Helicity During the QCDPT

The QCD phase transition critical temperature is defined
as T� � 0.15 GeV. A gluonic wall is created as two bubbles
collide, and a magnetic wall is formed by the interaction of the
nucleons with the gluonic wall. The electromagnetic interaction
Lagrangian is

Lint = −eΨ̄γ μAem
μ Ψ, (1)

where Ψ is the nucleon field operator, Aem is the electromagnetic
4-potential, and γ μ are the Dirac matrices. In Kisslinger (2003),
it was shown that the interaction of the quarks in the nucleons
with the gluonic wall aligns the nucleon magnetic dipole
moments, producing a B-field orthogonal to the gluonic wall.

Using an instanton model for the gluonic wall oriented in
the x–y direction (say), one obtains for Bz(x) at the time of the
QCDPT, with T = T�,

Bz(x) = B(QCD)
� e−b2(x2+y2)e−M2

nz2
, (2)

where b−1 = dH � a few km = horizon size at the end of the
QCDPT (t � 10−4 s) and M−1

n = 0.2 fm. B
QCD
� , the magnitude

of the MF within the wall of thickness ζ , is (see Kisslinger 2003)

B(QCD)
� � 1

ζΛQCD

e

2Mn

× 〈Ψ̄σ21γ5Ψ〉, (3)

where ΛQCD � 0.15 GeV is the QCD momentum scale,
γ5 = iγ 0γ 1γ 2γ 3, and σ21 = iγ2γ1 = iγ 2γ 1. A similar form
had been derived earlier using the domain wall model of Forbes
& Zhitnitsky (2000). The value for B(QCD) was found to be

B(QCD)
� � 0.39

e

π
Λ2

QCD � 1.5 × 10−3 GeV2 � 2.2 × 1016 G.

(4)

The asterisk indicates that we refer to the initial value of the MF
at the time of the QCDPT.

We now discuss the magnetic helicity created during the
QCDPT using the scenario proposed by Kisslinger (2003).
Magnetic helicity is an important characteristic that strongly
influences the PMF dynamics. Magnetic helicity is a conserved
quantity during the subsequent evolution past the QCDPT. This
leads to an inverse cascade producing MFs at progressively
larger scales. For this to work, it is important to know the
magnetic helicity that is produced by the QCDPT.

The magnetic helicity is defined as
∫
d3x A · B, with B =

∇×A. In the domain wall model of Forbes & Zhitnitsky (2000),
the magnetic helicity density HM is

HM = A · B = AzBz, (5)

for a PMF in the z-direction, as discussed above. Because of
the violation of charge conjugation and parity invariance of the
strong force (strong CP violation) during the QCDPT, magnetic
helicity is produced through the alignment of magnetic and
electric dipole moments of the nucleons. Thus, the electric
field satisfies Ez � Bz (see Forbes & Zhitnitsky 2000). From
Maxwell’s equations in the Weyl gauge we have

E = −1

c

∂ A
∂t

or Az � − Ezτ, (6)

where τ � 1/ΛQCD is the timescale for the QCDPT. From
Equations (5) and (6) one finds

HQCD
M,� � B2

z /ΛQCD

� (0.22 × 1017 G)2/(0.15 GeV), (7)

where we have assumed statistical homogeneity, so the result is
gauge-independent.

2.2. Comoving Values of Magnetic Field and Helicity

The simple dilation due to the expansion of the universe
significantly reduces the amplitude of both the MF and the
magnetic helicity created during the QCDPT. Defining a� and
a0 as the scale factors at the time of the QCDPT and today,
respectively, we have

a�

a0
� 10−12

(
0.15 GeV

T�

) (
15

g�

)1/3

, (8)

with g∗ = 15, T� = 0.15 GeV.
The comoving (present) value of the PMF field Bin (the

subscript “in” indicates that the QCD field is an initial PMF
for further developed MHD dynamics) is given by Bin =
(a�/a0)2 × B

(QCD)
� , which results in

Bin � 2 × 10−8 G. (9)

As in the case of the PMF amplitude, magnetic helicity density
experiences dilution due to the expansion of the universe. The
comoving (initial) value of the magnetic helicity density is given
by

HM, in =
(

a�

a0

)3

× HQCD
M,� � 10−39(G2 · Mpc). (10)

This value is extremely small, and it is almost ×1019 smaller
than the maximal allowed magnetic helicity (see below). Such a
small value of magnetic helicity density is due to the thickness
of the magnetic wall; see Equation (2) and Kisslinger (2003).
On the other hand, several studies indicate strong CP violation
during QCDPT (Kharzeev 2006; Voloshin 2004; Creutz 2011).
In this case magnetic helicity can reach its maximal value, if we
assume the MF to be correlated over the Hubble scale λH�

, as
will be explained below. Being more conservative we assume
that the MF correlation should coincide with the bubble size
ξM , see Section 3. The resulting magnetic helicity will then be
smaller than the maximal one by a factor of the order of ξM/λH�

.
As we will see in Section 4, the duration of the process is long
enough to ensure that the maximal value of magnetic helicity is
reached during the subsequent evolution.
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3. MAGNETIC FIELD SPECTRUM

Following our earlier studies (Kahniashvili et al. 2010a), we
treat the initial PMF energy density EM as magnetic energy
density injected into the cosmological plasma at the comoving
length scale λ0 which corresponds to the QCD bubble size. We
recall that the PMF has been generated on the thin surfaces
between colliding bubbles, while the correlation length scale of
this PMF might be associated with the bubble length scale. In the
following, we assume that the PMF spectrum in Fourier space
is sharply peaked at k0 = 2π/λ0. After generation, the PMF
evolution (during the PT) depends sensitively on the length scale
under consideration and on the presence of magnetic helicity
(see Harrison 1970; Turner & Widrow 1988; Cornwall 1997;
Jackiw & Pi 2000; Garretson et al. 1992; Field & Carroll 2000;
Giovannini 2000; Vachaspati 2001; Campanelli 2007, 2009;
Durrer et al. 2011 for magnetic helicity generation mechanisms).
The expansion of the universe leads to additional effects, in
particular to a faster growth of the PMF correlation length. A
distinctive effect is the different time behavior of the PMF decay.

In the cosmological context most important is the difference
between the growth of the comoving length scale (L ∝ a) and
the Hubble radius (H−1 ∝ t , where t is physical time). This leads
to additional effects in the PMF evolution (and damping) (see
Son 1999; Banerjee & Jedamzik 2003; Caprini et al. 2009). Note
that to describe properly the dynamics of the perturbations in
the expanding universe, it is appropriate to switch to comoving
quantities and to describe the processes in terms of conformal
time η (Brandenburg et al. 1996). After this procedure, the MHD
equations include the effects of the expansion while retaining
their conventional flat spacetime form. To keep the description as
simple as possible we work with dimensionless quantities, such
as the normalized wavenumber8 γ = λ0/H

−1
� and normalized

energy density defined below.
The coupling between the PMF and the plasma leads to a

spreading of the fixed scale PMF over a wide range of length
scales, thus forming the PMF spectrum. After a few turnover
times the modified PMF spectrum is established (see Section 4
for details of the simulations).

To show the coupling between the initial PT-generated MF
and the plasma we give here the basic MHD equations for an
incompressible conducting fluid (Biskamp 2003):[

∂

∂η
+ (v · ∇) − ν∇2

]
v = (b · ∇)b − ∇p + f K, (11)

[
∂

∂η
+ (v · ∇) − λ∇2

]
b = (b · ∇)v + ∇ × f M, (12)

with ∇ · b = 0, where η is the conformal time, v(x, η) is the
fluid velocity, b(x, η) ≡ B(x, η)/

√
4πw is the normalized MF,

f K (x, η) and f M (x, η) are external forces driving the flow and
the MF ( f K = f M = 0 for the results presented below, but
f M �= 0 for producing initial conditions), ν is the comoving
viscosity of the fluid, λ is the comoving resistivity, w = ρ + p
is the enthalpy, ρ is the energy density, and p is the pressure of
the plasma. Here we are interested in the radiation-dominated
epoch.

8 Here the subscript � indicates again the moment of the PMF generation. γ
can be associated with the number of PMF bubbles within the Hubble radius,
N ∝ γ 3. This value depends on the PT model: for the QCDPT we assume
γ � 0.15.

To proceed we derive the Fourier transform of the PMF two-
point correlation function as

〈b∗
i (k, η)bj (k′, η + τ )〉 = (2π )3δ(k − k′) FM

ij (k, τ ).f [κ(k), τ ],

(13)

Such a presentation allows a direct analogy with hydrodynamic
turbulence (Landau & Lifshitz 1987). In fact, bi represents the
Alfvén velocity. The normalized energy density of the PMF
is then EM = 〈b2〉/2, while the kinetic energy density is
EK = 〈v2〉/2, and the spectral correlation tensor is

FM
ij (k, τ )

(2π )3
= Pij (k)

EM (k, τ )

4πk2
+ iεij lkl

HM (k, τ )

8πk2
. (14)

Here, Pij (k) = δij −kikj /k
2 is the projection operator, δij is the

Kronecker delta, k = |k|, εijl is the totally antisymmetric tensor,
and κ(k) is an autocorrelation function that determines the char-
acteristic function f [κ(k), τ ] describing the temporal decorre-
lation of turbulent fluctuations. The function HM (k, η) is the
magnetic helicity spectrum. Note that EM (k) = k2PB(k)/π2,
where PB(k) is the MF power spectrum.

The power spectra of magnetic energy EM (k, η) and magnetic
helicity HM (k, η) are related to magnetic energy density and
helicity density through EM (η) = ∫ ∞

0 dkEM (k, η) andHM (η) =∫ ∞
0 dkHM (k, η), respectively. The magnetic correlation length,

ξM (η) = 1

EM (η)

∫ ∞

0
dk k−1EM (k, η), (15)

corresponds to the largest eddy length scale. All configurations
of the MF must satisfy the “realizability condition” (Biskamp
2003)

|HM (η)| � 2ξM (η)EM (η). (16)

Also, the velocity energy density spectrum EK (k, η) is related
to the kinetic energy of the turbulent motions through EK (η) =∫ ∞

0 dk EK (k, η).
One of the main characteristics of the PMF is the correlation

length and its growth. The maximal correlation length ξmax for a
causally generated PMF cannot exceed the Hubble radius9 at the
time of generation H−1

� . The comoving length corresponding to
the Hubble radius at generation is inversely proportional to the
temperature T�,

λH�
= 5.3 × 10−7 Mpc

(
0.15 GeV

T�

) (
15

g�

)1/6

, (17)

and is equal to 0.5 pc for the QCDPT with g� = 15 and
T� = 0.15 GeV.

The PMF spectrum is characterized not only by its spatial
distribution, but also by its characteristic times: (1) the largest-
size eddy turnover time τ0 � l0/vA (where vA is the rms Alfvén
velocity), which can also be used to determine the minimal
duration of the source needed to justify the use of the stationary
turbulence approximation (Proudman 1952; Monin & Yaglom
1975); (2) the direct cascade timescale of the turbulence τdc; and
(3) the large-scale turbulence decay time τls.

The temporal characteristics of the MHD turbulence are
given through the form of f (κ(k), τ ), which is due to the

9 The inflation-generated PMF (Turner & Widrow 1988; Ratra 1992)
correlation length can exceed the Hubble horizon today.
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complex process of MHD turbulence decorrelation (Terry &
Smith 2007) and is currently not fully understood. To proceed we
employ Kraichnan’s approach (Kraichnan 1964) and specify the
decorrelation function fdc[κ(kph), τ ] = exp[−πκ2(kph)τ 2/4]
defined within the inertial range, k0 < k < kd . Here τ is the
duration of the turbulence process and κ(kph) = ε̄

1/3
M k

2/3
ph /

√
2π ,

where kph is the physical wavenumber related to the comoving k
through kph(a) = ka0/a (a0 is the value of the scale factor now),
and ε̄M is the proper dissipation rate per unit enthalpy. Hence,
we have (Kahniashvili et al. 2011)

fdc[k̄, τ ] = exp

[
−2π2

9

(
τ

τ0

)2

k̄4/3

]
. (18)

Here, k̄ = k/k0 is the normalized wavenumber and τ0 corre-
sponds to the largest eddy turnover time. It is clear that after
switching off the forcing, the turbulent motions are decorre-
lated within a few turnover times, and are in fact irrelevant to
influence the large-scale MF.

4. GROWTH OF CORRELATION LENGTH
IN HELICAL TURBULENCE

To assess the importance of a small initial magnetic helicity,
we perform direct numerical simulations of decaying MHD
turbulence with an initial MF of finite relative magnetic helicity
using different values, and a correlation length ξM that is small
compared with the scale of the domain λ1.

4.1. Simulation Technique

We solve the compressible equations with the pressure given
by p = ρc2

s , where cs = 1/
√

3 is the sound speed for an
ultrarelativistic gas. Following our earlier work (Kahniashvili
et al. 2010a), we solve the equations governing equations for
the logarithmic density ln ρ, the velocity v, and the magnetic
vector potential A, in the form

D ln ρ

Dη
= − ∇ · v, (19)

Dv

Dη
= J × B − c2

s ∇ ln ρ + f visc, (20)

∂ A
∂η

= v × B + f M + λ∇2 A, (21)

where D/Dη = ∂/∂η + v · ∇ is the advective derivative,
f visc = ν(∇2v + (1/3)∇∇ · v + G) is the viscous force in
the compressible case with constant ν and Gi = Sij∇j ln ρ as
well as Sij = (1/2)(vi,j + vj,i) − (1/3)δij vk,k being the trace-
free rate of strain tensor. Furthermore, J = ∇ × B/4π is the
normalized current density. We emphasize that f M = 0, except
for producing initial conditions, as explained below.

The bulk motions are always slow enough, so compressibility
effects are not important. Similar to before, we express the MF
in Alfvén units, but now based on the volume average enthalpy,
i.e., b ≡ B/

√
4π〈w〉, where w = 4/3ρ for an ultrarelativistic

gas. We use 5123 mesh points in a domain of size (2π )3, so
the lowest wavenumber in the domain is k1 = 1. We choose
ν = η = 10−5 in units of cs/k1.

Figure 1. Spectra of magnetic energy (solid lines), kinetic energy (dotted), and
magnetic helicity scaled by k/2 (dashed) for a run with σ = 0.03 at three
different times. At early times, HM (k, η) can be negative at small values of k,
which explains why the dashed line terminates in those cases.

(A color version of this figure is available in the online journal.)

4.2. Initial Conditions

A suitable initial condition is produced by simulating
for a short time interval (Δt ≈ 0.5λ1/cs) with a random
δ-correlated magnetic forcing term f M in the evolution equation
for the magnetic vector potential. This forcing term consists of
plane monochromatic waves with wavenumber k0 and fractional
helicity 〈 f M ·∇× f M〉/〈k0 f 2

M〉 = 2σ/(1+σ 2); in the following
we quote the value of σ . This procedure has the advantage that
the magnetic and velocity fields used then for the subsequent
decay calculations are obtained from a self-consistent solution
to the MHD equations.

4.3. Growth of Helical Structures

In Figure 1 we show spectra of magnetic and kinetic energy,
as well as the magnetic helicity scaled by k/2, for a run with
σ = 0.03. Initially, kHM(k, η)/2 is well below the value of
EM (k, η). However, at later times the two approach each other
at large scales. This shows that the relative magnetic helicity
increases during the decay. For the four times shown in Figure 1,
the rms Mach number, vrms/cs , is 0.05, 0.025, 0.012, and 0.007;
brms/vrms is around 3.4, and the Reynolds numbers vrmsξM/ν are
roughly 270 for all cases.

The growth of turbulent structures is particularly clear in the
MF (Figure 2). The MF drives correspondingly larger scale
structures also in the velocity field. However, there are also
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Figure 2. Visualizations of Bx (upper row) and vx (lower row) at three times during the magnetic decay of a weakly helical field with σ = 0.03.

(A color version of this figure is available in the online journal.)

strong small-scale fluctuations in the velocity field that are not
visible in the MF; see the second row of Figure 2.

In agreement with earlier simulations, we find that at small
scales the magnetic energy is re-distributed by a direct cascade
with a Kolmogorov-type spectrum, EM (k) ∝ k−5/3. At large
scales a Batchelor spectrum,10 EM (k) ∝ k4, is established,
which was used as initial condition already in Brandenburg
et al. (1996). This spectrum is in agreement with the analytical
description of Durrer & Caprini (2003) who derived this result
from the requirement of causality and the divergence free
condition. The earlier study of Hogan (1983), which thus
violates causality for magnetic energy, yielded a white noise
spectrum E(k) ∝ k2 (Saffman spectrum) which we do observe
for the spectral distribution of the kinetic energy EK (k) ∝ k2.

4.4. Growth of Turbulent Length Scales

The evolution of magnetic correlation length and magnetic
energy during the MHD turbulence decay can be described using
two indices nξ and nE:

ξM (η) = ξM (η0)

(
η

η0

)nξ

, (22)

EM (η) = EM (η0)

(
η

η0

)nE

. (23)

In this case, we can model the spectral energy density of the
PMF using time-dependent large- and small-scale ranges:

EM (k, η) = E0(η)

{
k̄4 when k < kI (η)

k̄−5/3 when k > kI (η)
, (24)

10 Sometimes this spectral distribution, EM (k) ∝ k4, is called a von Kármán
spectrum (Pope 2000).

where k̄ = k/kI and kI (η) = 2π/ξM (η). Hence, the evolution
of the spectral amplitude E0 for a given MF spectrum will be
(see Equations (22) and (23))

E0(η) = 5

17π
ξM (η0)EM (η0)

(
η

η0

)nξ +nE

. (25)

Magnetic helicity crucially affects the evolution of the PMF
(Biskamp & Müller 1999, 2000; Son 1999; Christensson et al.
2001, 2005; Banerjee & Jedamzik 2003, 2004; Campanelli
2007). If the PMF has been generated with small magnetic
helicity, there are two main stages during the development of
the MF spectrum: during the first stage (sometimes called direct
cascade) the PMF dynamics is similar to that of the non-helical
MF. The energy cascades from large to small scales where it
decorrelates and dissipates: this is a standard forward cascade
development. Since magnetic helicity is conserved, its fractional
value increases and thus the end of this first stage is characterized
by releasing turbulence to a maximally helical state (Banerjee &
Jedamzik 2003; Christensson et al. 2005) when the realizability
condition (16) is reached, the inverse-cascade stage starts. The
conservation of magnetic helicity implies that the magnetic
energy density decays in inverse proportion to the correlation
length growth during the inverse cascade. The realizability
condition implies that

ξM (η) � ξmin
M (η) ≡ |HM (η)|/2EM (η), (26)

so there is a minimum value for the correlation length. In
Figure 3 we plot ξM (η) and ξmin

M (η) for σ = 1, 0.1, and 0.03.
It turns out that, especially in the latter case with σ = 0.03,
the increase of ξM remains slow (∼η1/2) as long as ξM (η) �
ξmin
M (η). However, since HM is essentially constant and EM

decreases approximately like η−1, the value of ξmin
M (η) soon

5
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Figure 3. Evolution of ξM (η) (solid) and ξmin
M (η) (dashed) for σ = 1 (black),

0.1 (blue), and 0.03 (red).

(A color version of this figure is available in the online journal.)

reaches ξM (η). When that happens, the field is essentially fully
helical and the correlation length and the magnetic energy
density evolve according to ξM ∼ η2/3 and EM ∼ η−2/3,
respectively. Hence, we recover two distinctive phases in the
MHD turbulence decay process: evolution of a weakly helical
turbulence with nξ = 1/2 and nE = −1, and fully helical
turbulence with nξ = 2/3 and nE = −2/3. Note that in the
latter case E0(η) ∝ ξM (η)EM (η) = const (see Equation (25))
and the inverse cascade develops. Our results are in excellent
agreement with Biskamp & Müller (1999), Biskamp & Müller
(2000), Banerjee & Jedamzik (2003), and Campanelli (2007).
The dynamical process of PMF coupling with the cosmic plasma
stops at the moment of recombination after which the PMF
develops more slowly (Brandenburg et al. 1997).

To calculate the time ηfully when a fully helical state is reached,
we only need to know the initial values ξM (η0) and ξmin

M (η0).
Since the latter approaches the former like η1/2, the result is
ηfully = η0[ξM (η0)/ξmin

M (η0)]2. Thus, in terms of the initial values
of EM and HM , a fully helical state is reached at the time

ηfully = 4η0ξ
2
ME2

M/H2
M. (27)

Note that this time increases quadratically with the decreasing
initial value of HM . In case of the strong CP violation during the
QCDPT, when the initial magnetic helicity can reach values that
are only ξM/λH�

times less than the maximal one (see Section 2),
we get ηfully = η0/γ

2.

4.5. Observed Magnetic Fields

Galactic and cluster MFs are usually measured through
Faraday rotation (see Vallée 2004) and, as mentioned above,
the value of the coherent MF is of the order of a few μG with a
typical coherence scale of 10 kpc,11 and cluster MFs have lower
limits of the order of 10−6 G, and at least a few nG, with similar
coherence scales (Clarke et al. 2001) and additional lower limits
on the steepness of the magnetic power spectrum in clusters.
Furthermore, simulations starting from a constant comoving
MF of 10−11 G suggest that MF generation in clusters can be
sufficiently strong to explain Faraday rotation measurements
(Dolag et al. 2002; Jedamzik & Sigl 2011).

11 Strong MFs have been detected through Faraday rotation of distant quasars
proving that the MFs comparable to those observed today are seen at high
redshift z ∼ 3 (Bernet et al. 2008).

Figure 4. Spectral energy density of the turbulent magnetic field logEM (k)
(color coded) in a representation of magnetic correlation length vs. temperature.
The thick solid line shows the evolution of the magnetic correlation length
ξM (T ). The magnetic correlation length starts to grow after the QCD phase
transition at T� = 0.15 GeV, when ξM = 0.075 pc. The transparent dashed area
corresponds to decorrelated magnetic field. White arrows show the direction
of the evolution during the expansion of the universe. Here nξ = −1/2 and
nE = 1.

(A color version of this figure is available in the online journal.)

Figure 4 shows the spectral energy density of the
QCDPT-generated MF (see Kisslinger 2003) with respect to
temperature and correlation length in weakly helical turbulence.
Initially the integral scale of the MHD turbulence is set by the
QCDPT bubble scale (lower right corner of the diagram). The
thick solid line marks the division between the evolution of
large-scale (plain colored region) and small-scale (hashed col-
ored region) MFs. White arrows indicate the direction of the
evolution during the universe expansion. At scales below the
integral scale of the turbulence, the MF undergoes exponential
decorrelation, see Equation (18). The integral scale of the MHD
turbulence increases, reaching ξM = 1 kpc at T = 1 eV. Here we
have used nξ = 1/2, nE = −1, with initial magnetic helicity
corresponding to that given by Equation (10).

Figure 5 shows the spectral energy density of a
QCDPT-generated MF in the case when the initial helical tur-
bulence reaches the fully helical case during the expansion of
the universe with ηfully/η0 = 1/(0.15)2. The thick solid line
marks the evolution of the magnetic correlation length until the
magnetic helicity reaches its maximally allowed value. In this
time interval the decay law for weakly helical turbulence with
nξ = 1/2 and nE = −1 is applied. After the time ηfully when
maximal magnetic helicity is reached, the correlation length fol-
lows the black dashed line and the MF evolution follows that
of the fully helical case with nξ = 2/3 and nE = −2/3. The
integral scale of the MHD turbulence reaches ξM = 10 kpc
at T = 1 eV.

The presented model is somewhat idealized since it ignores
the time of Silk damping due to large correlation lengths for
photon and neutrino viscosity (see Jedamzik & Sigl 2011). This
is justified since it delays the evolution but does not destroy
the field (Brandenburg et al. 1997). Therefore, we can present
here only upper values for QCDPT MFs within the model by
Kisslinger (2003).

The final amplitude of the MF can be estimated through two
different approaches. (1) We compute the total magnetic energy
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Figure 5. Similar to Figure 4, but for the case in which the magnetic field
reaches a fully helical state within the considered expansion time of the universe.
Initially, during the growth of magnetic helicity correlation length (solid line)
and energy evolve according to nξ = −1/2 and nE = 1. After reaching a fully
helical state, correlation length (dashed line) and energy evolve according to
nξ = −2/3 and nE = 2/3.

(A color version of this figure is available in the online journal.)

density, i.e., EM = ∫ ∞
0 dk EM (k) and make the assumption that

all energy is again given only at one scale that corresponds
to the integral scale at this moment, i.e., Beff = √

8πEM .
(2) Another approach is to compute the strength of the MF,
B(λ), at a given scale λ. Since observations (Vallée 2004) do
not allow us to properly reconstruct the configuration of the MF
we adopt first an “effective” MF approach (see Kahniashvili
et al. 2011). The resulting value of the effective MF in our
model of weakly helical turbulence with ξM = 1 kpc reaches
5 × 10−4 nG, while in the case of a fully helical configuration
with ξM = 10 kpc we find 7 × 10−3 nG.

5. CONCLUSIONS

In this paper, we have considered QCDPT-generated PMFs
and their evolution in an expanding universe accounting for
the effects of MHD turbulence to explain the seed MFs of
clusters and galaxies. We consider the MF generation model
proposed by Kisslinger (2003), which yields an initial state of
weakly helical MHD turbulence. We also study the possibility
of strong CP violation according to Forbes & Zhitnitsky (2000),
which yields an initial state with much higher magnetic helicity
at a time when maximal helicity of the MHD turbulence is
reached during the expansion of the universe. The initial seed
MF is generated via QCDPT bubble collisions with a comoving
correlation length of the order of 0.1 pc and with a comoving
amplitude of the order of 20 nG. The initial magnetic helicity is
determined by the thickness of the surface between two colliding
bubbles and is extremely small if no strong CP violation is
assumed (Kharzeev 2006; Voloshin 2004; Creutz 2011). During
the expansion of the universe there are different processes that
affect the correlation length and the strength of the MF: first
of all, during the PT the field is initially peaked at a given
scale and then spreads out within a wide range of wavelengths,
establishing a Kolmogorov-like spectrum, EM (k) ∝ k−5/3, at
small scales and a Batchelor spectrum, EM (k) ∝ k4, at large
scales. If the PMF was generated without being maximally
helical, the magnetic helicity experiences a steady growth. One

of the results obtained in this paper is an estimate of the timescale
within which the field starts to be fully helical. In the case of an
extremely weakly helical field (Kisslinger 2003), the available
time to produce a fully helical PMF may be too long. The
growth of the correlation length follows then a ξM ∝ T −1/2

law. For moderate or reasonably small initial magnetic helicity
(even for σ � 10−6–10−5), the evolution timescale is long
enough so that during the first stage of evolution, magnetic
helicity grows to its maximal value. During the next stages
(after magnetic helicity has reached its maximal value) the
correlation length experiences a steady growth with the scaling
law ξM ∝ T −2/3 while the energy density is decreasing in the
opposite way keeping magnetic helicity almost constant. Finally,
at recombination the growth of the correlation length slows
down. The resulting correlation length in the most optimistic
scenarios is around 10 kpc and the amplitude of the MF is around
0.007 nG. Assuming that the MF is amplified during the growth
of structures (Dolag et al. 2002), such a field might well be strong
enough to explain the observed MF in galaxies and clusters.
On the other hand, observations of the CMB fluctuations are
sensitive to PMFs of the order of a few nG (see Shaw & Lewis
2010; Yamazaki et al. 2010, and references therein).

Another possible signature of QCDPT-generated MFs is a
gravitational wave signal (Kahniashvili et al. 2010b) that might
be indirectly detected through pulsar timing (Durrer et al. 2011).
The gravitational wave signal from PTs is usually computed
assuming short duration of the source (either turbulence or
PMF anisotropic stress). On the other hand, due to the free
decay of MHD turbulence, the source of gravitational waves
acts also after the end of PTs. For short-duration sources, the
peak frequency of the gravitational waves is fully determined by
the source characteristics. In particular, for QCDPT-generated
gravitational waves it is far too weak to be detected though
gravitational waves via ground or space-based missions. Long-
duration sources might in principle substantially change the
peak frequency as well as the amplitude of the signal. We plan
to address this issue in future work.
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