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Microwave background signatures of a primordial stochastic magnetic field
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A stochastic magnetic field in the early universe will produce anisotropies in the temperature and polariza-
tion of the cosmic microwave background. We derive analytic expressions for the microwave background
temperature and polarization power spectra induced by vector and tensor perturbations from a power-law
magnetic field. For a scale-invariant stochastic magnetic field smoothed over a comoving scale of 1 Mpc, the
Microwave Anisotropy Probe satellite has the potential to constrain the comoving mean-field amplitude to be
no greater than approximately 231029 G. Limits improve as the power-law slope increases: for causally
generated power-law magnetic fields, the comoving mean-field amplitude has an upper bound of approximately
4310213 G. Such constraints will surpass all current limits on galactic-scale primordial stochastic magnetic
fields at decoupling.
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I. INTRODUCTION

Magnetic fields ofmG strength are ubiquitous in galaxie
@1# and clusters of galaxies@2#. The origin of these fields
however, remains an outstanding problem in cosmology.
usually postulated that thesemG fields grew either via some
magnetohydrodynamical~MHD! dynamo mechanism@3,4#
or via adiabatic compression of a primordial magnetic fi
during the collapse of a protogalactic cloud@5–7#. A MHD
dynamo requires tiny seed magnetic fields of comoving a
plitude 10220 G in conventional cold-dark-matter
~CDM-!like cosmological models or even as tiny as 10230 G
in a universe with a nonzero cosmological constant@8# as
suggested by recent measurements of type Ia supern
@9,10# and the microwave background power spectrum@11–
15#. On the other hand, the adiabatic compression scen
requires a far larger primordial seed field with a comovi
amplitude of 1029 G to 10210 G.

Persistent questions about the effectiveness of MHD
namos@16–23# together with the observation ofmG mag-
netic fields in high-redshift galaxies@1# raise the possibility
of a significant primordial magnetic field in galaxies a
clusters of galaxies. The origin of such a magnetic field
mains a mystery. Essentially all viable magnetogene
mechanisms incorporate speculative ideas in high-ene
theory, including ~among others! inflation @24–29#, elec-
troweak @30,31# or QCD @32,33# phase transitions, charg
asymmetry@34#, or a ferromagnetic Yang-Mills vacuum sta
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@35#. As the properties of the primordial magnetic field pr
dicted vary among these mechanisms, future detections
primordial magnetic field may aid us in identifying the co
rect magnetogenesis mechanism. On the cosmological fr
a primordial magnetic field may have affected early-unive
processes such as phase transitions, baryogenesis, an
cleosynthesis~see@36# for a review!. Relic magnetic fields
could provide a direct source of information about these p
cesses. A primordial magnetic field may also have influen
structure formation via contributing to density perturbatio
on galactic scales@37–40# and preserving magnetic energ
in Alfvén modes on scales below the Silk damping sc
during recombination@41,42#. In short, significant primordial
magnetic fields would impact both cosmology and parti
physics.

The presence of a magnetic field in the early unive
affects the evolution of metric perturbations, and as a res
produces temperature and polarization anisotropies in
cosmic microwave background~CMB!. High-resolution
measurements of the microwave background provide a c
and model-independent test for primordial magnetic fiel
We demonstrate in this paper that fields large enough to
sult in observed fields via adiabatic compression will like
leave observable and distinctive fluctuations in the vario
power spectra of microwave background temperature
polarization fluctuations.

Substantial progress has been made in understanding
effects of a primordial magnetic field on the CMB. The F
Infrared Absolute Spectrophotometer~FIRAS! upper limits
on chemical potentialm and Comptony distortions in the
CMB blackbody constrain the present strength of the m
netic field with comoving coherence length between 400
and 0.6 Mpc to beB0,331028 G @43#. The case of a ho-
©2002 The American Physical Society04-1
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mogeneous magnetic field has been considered by se
authors. The best current constraint on the primordial hom
geneous magnetic field strength is B0,3.4
31029(V0h50

2 )1/2 G (h50 is the present Hubble constant
units of 50 km s21 Mpc21), obtained by doing statistica
analysis on the 4-year Cosmic Background Explorer~COBE!
data for temperature patterns of a Bianchi type VII ani
tropic spacetime@44#. A primordial homogeneous magnet
field can produce distortions of the CMB acoustic peaks
fast magnetosonic waves@45#; meanwhile, Alfvén wave ex-
citations can amplify vector perturbations and induce ad
tional correlations in temperature multipole moments@46#. It
is shown in Ref.@47# that a primordial homogeneous ma
netic field of present strength 1029 G at decoupling can in-
duce a measurable Faraday rotation in the CMB polariza
of 1° at a frequency of 30 GHz. Additional CMB polariza
tion effects arising from a primordial homogeneous magn
field via Faraday rotation include a parity-odd cross corre
tion between temperature and polarization anisotropies@48#
and the depolarization of the original CMB polarization@49#,
which leads to a reduction in the damping of temperat
anisotropies on small angular scales.

The case of a stochastic magnetic field is perhaps m
realistic, because such fields are observed within galaxy c
ters @50–53# and predicted by all causal magnetogene
mechanisms@36#. Some numerical estimates of CMB tem
perature and polarization power spectra from density per
bations induced by a primordial stochastic magnetic field
presented in Ref.@54#, whereas corresponding analytic es
mates, though somewhat crude and valid only for tempe
ture anisotropies on large angular scales, are given in
@55#. Effects of Alfvén waves induced by a primordial sto
chastic magnetic field on CMB temperature andB-type po-
larization anisotropies are considered in Refs.@56# and @57#
respectively. Finally, a primordial stochastic magnetic fie
also generates gravitational waves; the resulting tensor C
temperature power spectrum is given in Ref.@58#.

Although a variety of effects of a primordial stochas
magnetic field on the CMB have been investigated, the
sults are fragmented and a systematic approach is lack
Besides the temperature power spectrum from tensor pe
bations given in Ref.@58#, no other CMB power spectra hav
been derived. We consider a statistically homogeneous
isotropic stochastic magnetic field with a power-law pow
spectrum, generated at some early epoch of the radia
dominated universe. Based on the computational techniq
in Ref. @58# and the total angular momentum method f
calculating CMB anisotropies introduced by Hu and Wh
@59#, we have completed a comprehensive and unified a
lytic calculation of all types of CMB power spectra arisin
from a primordial stochastic magnetic field. This paper
cuses on the induced vector and tensor perturbations. A
mordial magnetic field acts as a continuous source of vor
ity until decoupling and gravitational radiation until matte
radiation equality. The resulting vector and tens
perturbations are one of the few cosmological sources
B-type polarization@60,61#, along with primordial tensor
perturbations@62# and gravitational lensing of the CMB@63#.
Scalar perturbations induce CMB anisotropies smaller t
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those from vector and tensor perturbations and hence will
be considered here~see Sec. VIII!.

In Sec. II we derive the power spectrum for a primord
stochastic magnetic field. We then project the vector and
sor pieces from the electromagnetic stress-energy ten
from which we calculate their two-point correlation fun
tions and derive their isotropic spectra. Details of the deri
tion of the vector isotropic spectrum are presented in
Appendix. Section III computes the magnetic damping sca
of the induced vector perturbations at decoupling and ten
perturbations at matter-radiation equality. In Sec. IV we
view the vector and tensor contributions to the metric ten
and give their corresponding evolution equations. We obt
solutions to these equations, which can be expressed as
tions of the magnetic-induced isotropic spectra derived
Sec. II. Using the total angular momentum method of R
@59#, we compute analytically the CMB power spectra f
temperature in Sec. V, polarization in Sec. VI, and t
temperature-polarization cross correlation in Sec. VII. S
tion VIII concludes with the physical interpretation of the
results and a discussion of current and future limits on p
mordial magnetic fields from the microwave backgroun
For the vector perturbations, theB-type is slightly larger than
the E-type polarization power spectrum, whereas theE-type
polarization and the cross-correlation power spectra are
proximately identical. For the tensor perturbations, the po
ization power spectra are actually comparable to the te
perature power spectrum forn.23/2, where n is the
magnetic field power-law spectral index. As we will show
Sec. III, the tensor perturbations are damped on sma
scales than the vector perturbations. The magnetic cu
wave number determines the overall amplitude of the CM
power spectra, so the tensor-induced CMB anisotropies
be larger than the vector anisotropies forn.23/2. For a
scale-invariant stochastic magnetic field smoothed over a
moving scale of 1 Mpc, near-future microwave backgrou
temperature measurements will constrain the comov
mean-field amplitude to be no greater than approximatel
31029 G. Limits improve asn increases: for causally gen
erated power-law magnetic fields withn>2, the comoving
mean-field amplitude will soon have an upper bound of
proximately 4310213 G. These will be the strongest curre
constraints on galactic-scale primordial stochastic magn
fields at decoupling. Eventually, precision measurements
the microwave background temperature and polarization
give significantly stronger constraints.

In this paper, we focus on the induced CMB anisotrop
for l<500, where the analysis is relatively clean, simple, a
free from complications arising from the last-scattering m
crophysics. For simplicity, we consider the case of a
universe with a vanishing cosmological constant. We emp
the following notational conventions:a is the scale factor,h
is the conformal time, overdots are derivatives with resp
to h, and 0 subscripts denote the present time. We setc51
and normalize the scale factor to unity today. As usual, Gr
indices run from 0 to 3 and Latin ones from 1 to 3. A
calculations are done in Fourier space, unless real-space
pendence is indicated explicitly~as in Sec. II!. All magnetic
4-2
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field amplitudes are comoving values, unless an explicit ti
dependence is displayed.

II. MAGNETIC POWER SPECTRUM AND CORRELATION
FUNCTIONS

Consider a primordial stochastic magnetic field created
some specific moment during the radiation-dominated epo
The energy density of the magnetic field is treated as a fi
order perturbation to a flat Friedmann-Robertson-Wal
~FRW! background cosmology. In other words, we do n
decompose the magnetic field into a large homogene
component and a small fluctuating piece as in most case
the literature. Within the linear approximation, the magne
field evolves as a stiff source and we discard all MHD flu
backreactions onto the field itself@58#. Prior to decoupling,
the conductivity of the primordial plasma is very larg
@24,64# and for practical purposes can be assumed infinite
the comoving frame, this implies the ‘‘frozen-in’’ conditio
E52v3B, wherev is the plasma peculiar velocity andE is
the electric field induced by plasma motions. Infinite cond
tivity leads to a vanishing electric field in linear perturbati
theory (v!1) and allows the time evolution of the magne
field to decouple from its spatial structure on sufficien
large scales. As the universe expands, magnetic field l
are simply conformally diluted due to flux conservatio
B(h,x)5B(x)/a2. On small scales, however, a primordi
magnetic field is damped due to photon and neutrino visc
ties @41,42#. As in Ref.@58#, we parametrize this damping b
introducing a hard ultraviolet cutoff wave numberkD in the
magnetic power spectrum. We will compute the magne
damping cutoff wave numberskD’s for both vector and ten-
sor perturbations in Sec. III.

A statistically homogeneous and isotropic magnetic fi
must have the two-point correlation function@58,65#

^Bi~k!Bj* ~k8!&5~2p!3Pi j P~k!d~k2k8!, ~2.1!

where

Pi j [d i j 2 k̂i k̂ j ~2.2!

is a projector onto the transverse plane:

Pi j Pjk5Pik , Pi j k̂ j50, ~2.3!

and k̂i5ki /k. We adopt the Fourier transform convention

Bi~k!5E d3x exp~ ik•x!Bi~x!. ~2.4!

Note the projection tensor of Eq.~2.2! is valid only for the
case of a flat universe where perturbations can be dec
posed into plane waves; for nonzero spatial curvatures,
analog to a plane-wave basis must be employed~see, e.g.,
@66#!. A specific magnetogenesis model consists of spec
ing the functionP(k), which we take to be a power law

P~k!5Akn. ~2.5!
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Our primary interest is to constrain the primordial comovi
magnetic field strength on a certain comoving length sc
We therefore convolve the field with a 3D-Gaussian fil
transform of comoving radiusl, Bi(k)→Bi(k)* f k , where
f k5exp(2l2k2/2), and normalize as

^Bi~x!Bi~x!&ul5Bl
2 . ~2.6!

ThusBl is the magnetic comoving mean-field amplitude o
tained by smoothing over a Gaussian sphere of comov
radiusl. The corresponding mean-square valueBl

2 is then
given by the Fourier transform of the product of the pow
spectrumP(k) and the square of the filter transformf k ,

Bl
25

2

~2p!3E d3kP~k!u f ku2.
2A

~2p!2

1

ln13
GS n13

2 D ,

~2.7!

with the factor 2 coming from the trace of the projectio
tensor of Eq.~2.2!. We require the spectral indexn.23 to
prevent infrared divergence of the integral over the spectr
of long wavelengthsk→0. Solving for the normalization
constantA and using Eqs.~2.1! and ~2.5!, we arrive at the
two-point correlation function for a primordial stochast
magnetic field

^Bi~k!Bj* ~k8!&5
~2p!n18

2

Bl
2

GS n13

2 D Pi j

kn

kl
n13

d~k2k8!,

k,kD , ~2.8!

where kl52p/l. The spectrum vanishes for all scale
smaller than the damping scalek.kD . The conditionn.
23 guarantees that superhorizon coherent fields are
overproduced; the limitn→23 approaches a scale-invaria
spectrum. The casen50 corresponds to a white noise spe
trum where we have equal power at all wavelengths. Fo
causally generated stochastic magnetic field, we requirn
>2 @58,65,67#.

The induced electromagnetic stress-energy tensor is g
by the convolution of the magnetic field@68#

t i j
(B)~k!5

1

~2p!3

1

4pE d3pFBi~p!Bj~k2p!

2
1

2
d i j Bl~p!Bl~k2p!G . ~2.9!

It can be geometrically decomposed into scalar, vector,
tensor perturbation modes,t i j

(B)5P i j
(S)1P i j

(V)1P i j
(T) , accord-

ing to their three-space coordinate transformation proper
on the constant-time hypersurface@69#. In the linear approxi-
mation, all types of cosmological perturbations are dec
pled from each other dynamically; thus we can consider e
type of perturbation independently. From the tensorP i j

(V) we
can construct a vectorP i

(V) that sources the vorticity pertur
bations, whereas the tensorP i j

(T) sources the gravitationa
4-3
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wave perturbations. To obtain CMB power spectra, we n
to derive two-point correlation functions forP i

(V) and P i j
(T)

and extract their corresponding isotropic spec
uP (V),(T)(k)u2. This is the subject to which we now turn.

A. Vector projection and correlation function

We begin by illustrating how to project from a gener
spatial metric perturbationdgi j its vector piecedgi j

(V) . A vec-
tor spatial metric perturbation must have the form@69#

dgi j
(V)5j i k̂ j1j j k̂i , ~2.10!

where j i is a divergenceless three-vector. A possible c
struction forj i is given by

j i5 k̂mdgmi2 k̂i k̂mk̂ndgmn . ~2.11!

The projection then follows from substituting Eq.~2.11! into
Eq. ~2.10!:

dgi j
(V)5~ k̂mdgmi2 k̂i k̂mk̂ndgmn!k̂ j

1~ k̂mdgm j2 k̂ j k̂mk̂ndgmn!k̂i

5~Pink̂j1Pjnk̂i !k̂mdgmn . ~2.12!

Using Eq. ~2.12!, the vector part of the electromagnet
stress-energy tensor is given by

P i j
(V)5~Pink̂j1Pjnk̂i !k̂mtmn

(B) , ~2.13!

from which we can construct a vectorP i
(V) via contracting

with the unit vectork̂ j ,

P i
(V)5P i j

(V)k̂ j5Pink̂mtmn
(B) . ~2.14!

The physical meaning ofP i
(V) is clear upon examining the

Lorentz force vector. In the infinite conductivity limit, th
Lorentz force vector in real space is given by@55,68#

L „x….2
1

4p
$B~x!3@¹3B~x!#%

5
1

4p H @B~x!•¹#B~x!2
1

2
“B2~x!J . ~2.15!

Fourier transforming Eq.~2.15!, extracting the correspondin
vortical componentLi

(V) which satisfies the divergencele

condition Li
(V)k̂i50, and comparing with Eq.~2.14! shows

that

Li
(V)5kP i

(V) . ~2.16!

The vectorP i
(V) will appear in the evolution equations fo

vector perturbations in Sec. IV A.
The stochastic and transverse nature ofP i

(V) lead us to
define the two-point correlation function

^P i
(V)~k!P j

(V)* ~k8!&[Pi j uP (V)~k!u2d~k2k8!.
~2.17!
12300
d

a

-

The vector isotropic spectrumuP (V)(k)u2 can be obtained
using Eq.~2.14! for P i

(V) , evaluating the two-point correla
tion function of the electromagnetic stress-energy tenso
Eq. ~2.9!, and comparing the result with Eq.~2.17!. A
lengthy calculation in the Appendix gives

uP (V)~k!u2.
1

8p~2n13! F ~2p!n15Bl
2

2GS n13

2 D kl
n13G 2

3S kD
2n131

n

n13
k2n13D , k,kD .

~2.18!

The first term dominates whenn.23/2, whereas the secon
term dominates when23,n,23/2. For the casen.
23/2, the vector isotropic spectrum becomes approxima
white noise~independent ofk) and depends on the ultravio
let cutoff wave numberkD . This is because the induced ele
tromagnetic stress-energy tensor of Eq.~2.9! is quadratic in
the stochastic magnetic field and the convolution of the m
netic field couples the large and small scale modes. E
mode of the vector isotropic spectrum is then affected by
scales of the magnetic power spectrum of Eq.~2.8! and for
the case ofn.23/2, the cutoff scale perturbations com
pletely dominate the large scale modes~see also Sec. V of
Ref. @58#!. Note that the term within the square brackets
the normalizationA of the magnetic power spectrum in Eq
~2.5!. To simplify the calculation, we will only consider th
corresponding dominant term for a given spectral indexn,
although including the contributions from both terms is
straightforward extension of the calculation presented h
In the neighborhood ofn523/2, both terms must be in
cluded to handle correctly the removable singularity.

B. Tensor projection and correlation function

Gravitational radiation is produced by the transverse a
traceless piece of the electromagnetic stress-energy te
given by ~see, e.g.,@58#!

P i j
(T)5~PimPjn2 1

2 Pi j Pmn!tmn
(B) . ~2.19!

It follows from the transverse and traceless properties of
tensor P i j

(T) that its two-point correlation function can b
written as@58#

^P i j
(T)~k!P lm

(T)* ~k8!&[M i j lm uP (T)~k!u2d~k2k8!.
~2.20!

The tensor structureMi j lm is

Mi j lm[Pil Pjm1PimPjl 2Pi j Plm

5d i l d jm1d imd j l 2d i j d lm1 k̂i k̂ j k̂l k̂m

1d i j k̂l k̂m1d lmk̂i k̂ j2d i l k̂ j k̂m2d jmk̂i k̂l

2d imk̂j k̂l2d j l k̂i k̂m ~2.21!
4-4
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and satisfiesMi j i j 54 andMi i lm5Mi j l l 50. The tensor iso-
tropic spectrumuP (T)(k)u2 can be obtained using Eq.~2.19!
for P i j

(T) , evaluating the two-point correlation function of th
electromagnetic stress-energy tensor of Eq.~2.9!, and com-
paring the result with Eq.~2.20!. A similar calculation as in
the case of the vector isotropic spectrum gives

uP (T)~k!u2.
1

16p~2n13! F ~2p!n15Bl
2

2GS n13

2 D kl
n13G 2

3S kD
2n131

n

n13
k2n13D , k,kD .

~2.22!

The tensor isotropic spectrum differs from its vector cou
terpart only by a factor of 2, due to the ratio of traces of th
corresponding tensor structuresPi j and Mi j lm . Again, the
first term dominates whenn.23/2, whereas the secon
term dominates when23,n,23/2. For the case ofn.
23/2, the cutoff scale perturbations completely dominate
large scale modes and hence the tensor isotropic spec
depends on the ultraviolet cutoff wave numberkD ; the re-
sulting tensor CMB temperature power spectrum then p
sesses the well-known behavior of a white noise sou
l 2Cl} l 3 @58#. We will demonstrate that this is also true fo
tensor CMB polarization and temperature-polarization cr
correlation. As above, the term within the square bracket
the normalizationA of the magnetic power spectrum in E
~2.5!. As with the vector case, we will only consider th
dominant term of Eq.~2.22! for a given spectral indexn.

III. MAGNETIC DAMPING SCALES

The evolution and damping of primordial magnetic fiel
are studied in Refs.@41,42#. These authors consider cases
which either the magnetic field is linearized about a cons
background field@41# or a magnetic field with a tangle
component of unrestricted amplitude is superposed per
dicularly on a homogeneous field@42#. We are interested in a
stochastic magnetic field with a power-law power spectru
We will first briefly recapitulate the findings of Refs.@41,42#.
Based on these results, we then proceed to compute the
netic damping scales separately for vector and tensor pe
bations for a power-law magnetic field.

Primordial magnetic fields are damped by radiative v
cosity, which arises from the finite mean free paths of n
trinos and photons. Damping of MHD modes by neutri
viscosity is the most efficient around neutrino decoupl
(T;1 MeV). At that time, the neutrino physical mean fre
path (l n dec'1011 cm) and the Hubble length (Hn dec

21 '5
31010 cm) are comparable, hence the dissipation of m
netic energy can only occur on relatively small scales. P
ton viscosity, on the other hand, damps MHD modes fr
after e1e2 annihilation (T;20 keV) until recombination
(T;0.25 eV); thus it is capable of dissipating magnetic e
ergy on larger scales. There are three types of propaga
MHD modes: fast and slow magnetosonic waves, with
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fluid velocity making an arbitrary angle with the backgrou
magnetic field, and Alfve´n waves, with the fluid velocity
oriented perpendicular to the wave vectork and the back-
ground magnetic field. Alfve´n waves induce neither densit
nor temperature perturbations. Fast magnetosonic waves
similar in nature to sound waves. Like the acoustically os
lating density fluctuations, they are Silk-damped by radiat
diffusion on scales below the radiation diffusion lengt
Meanwhile, slow magnetosonic and Alfve´n waves posses
similar behaviors. During the radiation diffusion regim
(kphys

21 . l n,g), these waves either oscillate negligibly or b
come overdamped, hence the dissipation of magnetic en
becomes inefficient. It is only upon entering the fre
streaming regime (kphys

21 , l n,g) before recombination tha
these waves will suffer additional damping. The resulti
maximum damping scale for these waves is dependent on
background magnetic field strength and is on the order of
Alfvén velocity times the comoving Silk scale. Since Alfve´n
modes describe incompressible motions, we can obtain
magnetic damping scales for vector and tensor perturbat
via computing the damping scales of such modes fo
power-law magnetic power spectrum.

A. Vector perturbations

Since vector perturbations induce CMB anisotropies
vorticity at recombination, we need to evaluate the Alfv´n
wave damping scales at recombination for a power-law m
netic field. Around recombination, all Alfve´n modes are
overdamped. The modes that suffer the most damping w
overdamped are those in the free-streaming regime@41,42#.
For a nonlinear Alfve´n mode propagating in a uniform back
ground fieldB̄, its free-streaming damping scale at recom
nation is given by Eq.~8.11! of Ref. @42#:

kD
215

lD

2p
'A3

5
VALS'5.731023S B̄

1029 G
D h21/2 Mpc,

~3.1!

whereLS is the comoving Silk scale at recombination and w
have assumedTdec50.25 eV, Vbh250.0125, and a matter
dominated universe at recombination. The Alfve´n velocity
VA arises from the uniform background fieldB̄. For a linear-
ized Alfvén mode, we have to replaceVA by VAcosu, where
u is the angle between the wave vector and the zero-o
background field@cf. Eq. ~108! of Ref. @41##.

For a stochastic magnetic field with a power-law pow
spectrum, the effective homogeneous magnetic field resp
sible for the Alfvén velocity can be obtained via smoothin
the stochastic field. As in Ref.@57#, we assume the field
smoothed over the damping scalelD acts as the effective
homogeneous fieldB̄eff . For each spectral indexn, Bl

2

}l2(n13) @cf. Eq. ~2.7!#, and B̄eff is related toBl through
@see also Eq.~26! of Ref. @58##

B̄eff5BlS kD

kl
D (n13)/2

. ~3.2!
4-5
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Smoothing the stochastic magnetic field on scales larger
the damping scale will result in a smaller effective homog
neous field, hence a smaller effective Alfve´n velocity and a
larger momentum cutoff wave numberkD . Since for n.
23/2 the vorticity source becomes approximately wh
noise ~independent ofk) and is kD-dependent@cf. Eq.
~2.18!#, a larger momentum cutoff wave numberkD will give
rise to larger CMB anisotropies in this regime as we will s
The estimation in Eq.~3.2! is therefore a conservative on
Substituting Eq.~3.2! into ~3.1! yields

kD'~1.73102!2/(n15)S Bl

1029 G
D 22/(n15)

3S kl

1 Mpc21D (n13)/(n15)

h1/(n15) Mpc21. ~3.3!

Note that for a given spectral indexn, Bl
2/kl

n13}A, whereA
is the normalization of the magnetic power spectrum in E
~2.5!.

B. Tensor perturbations

Since the sourcing of gravitational radiation after the u
verse becomes matter-dominated is negligible~see Sec. IV B
and also Ref.@58#!, the relevant tensor damping scales a
the Alfvén wave damping scales at equality. As in recom
nation, all Alfvén modes are also overdamped around equ
ity, hence the modes that are undergoing free streaming
fer the most damping. The situation is clearly depicted
Fig. 1 of Ref.@41#. The Alfvén wave free-streaming dampin
scale at equality is@cf. Eq. ~106! of Ref. @41# and Eq.~8.10!
of Ref. @42##

kD
215

lD

2p
'A3

5
VALg

diff~Teq!, ~3.4!

whereLg
diff(Teq) is the photon comoving diffusion length a

equality,

Lg
diff~Teq!'19.5S Teq

0.25 eVD
25/4

h21/2S Vbh2

0.0125D
21/2

Mpc

'0.41h23 Mpc, ~3.5!

assumingTeq55.5 eV(V0h2), V051, andVbh250.0125.
Substituting Eq.~3.5! into Eq. ~3.4!, a similar manipulation
as in the case of vector perturbations gives

kD'~8.33103!2/(n15)S Bl

1029 G
D 22/(n15)

3S kl

1 Mpc21D (n13)/(n15)

h6/(n15) Mpc21. ~3.6!

Note again that for a given spectral indexn, Bl
2/kl

n13}A,
whereA is the normalization of the magnetic power spe
trum in Eq.~2.5!.
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Several comments are in order. First, since the ten
source contributes earlier~at equality! than the vector source
~at recombination!, tensor perturbations are damped
smaller scales as illustrated by Eqs.~3.3! and ~3.6!. For n
.23/2, CMB power spectra are dependent on the mom
tum cutoff wave numberkD and scale with it askD

2n13 . We
therefore expect tensor perturbations to generate la
anisotropies than the vector perturbations in this regime
least for l<500 that we are considering. Second, in R
@58#, the magnetic damping cutoff wave number for tens
perturbations is found to be 4.5 Mpc21. This value is de-
rived based on the assumption that the Alfve´n modes are
undergoing damped oscillatory motions. Our analysis, ho
ever, shows that for the magnetic field strengths conside
here, the Alfve´n modes should be in the overdamped fre
streaming regime around equality, as also illustrated in Fig
of Ref. @41#. Finally, as pointed out in Ref.@41#, the Alfvén
damping scale at equality could in principle be larger th
that given by Eq.~3.4! since additional damping could aris
due to a possible breakdown of the WKB approximation
the regime where the Alfve´n mode is undergoing over
damped free streaming. In the absence of an accurate q
titative treatment for Alfve´n damping scales in this regime
Eq. ~3.4! is our best-educated guess. Nevertheless, we
tion the readers that with a possible larger damping scalekD

21

than that given by Eq.~3.4!, the induced tensor anisotropie
for n.23/2 will be reduced accordingly.

IV. METRIC PERTURBATIONS AND THEIR EVOLUTION

A primordial stochastic magnetic field generates CM
anisotropies via its gravitational effects on the metric tens
The full metric tensor can be decomposed into its ba
ground and perturbation pieces,gmn5gmn

(0)1dgmn ; for a flat
universe with the usual conformal FRW metric,gmn

(0)

5a2hmn , where hmn5diag(21,1,1,1) is the Minkowski
metric tensor. The vector~Sec. IV A! and tensor~Sec. IV B!
perturbations are calculated separately; scalar perturba
will generally result in smaller CMB anisotropies compar
to vector and tensor contributions, as argued in Sec. VIII, a
so will not be considered here. We review the various me
tensor contributions and give the corresponding evolut
equations due to a primordial stochastic magnetic field.
then obtain solutions to these equations, which can be
pressed as functions of the isotropic spectra derived in S
II.

A. Vector perturbations

Vector perturbations to the geometry are described by
divergenceless three-vectorsz i andj i with the general form
@see Eq.~2.10! also#

dg0i
(V)52a2z i , dgi j

(V)5a2~j i k̂ j1j j k̂i !. ~4.1!

Vector perturbations represent vorticity; the divergencel
condition for vectorsz i and j i guarantees the absence
density perturbations. Vector perturbations exhibit gau
freedom, which arises because the mapping of coordin
4-6
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between the perturbed physical manifold and the backgro
is not unique. From vectorsz i and j i , we can construct a
gauge-invariant vector potentialVi5z i1 j̇ i /k that geometri-
cally describes the vector perturbations of the extrinsic c
vature@70,71#. We now exploit the gauge freedom by expli
itly choosingj i to be a constant vector in time; it follow
that dg0i

(V)52a2Vi . Vector perturbations of the stres
energy tensor can be parametrized by a divergenceless t
vectorv(V) that perturbs the four-velocityum5(1,0,0,0) of a
stationary fluid element in the comoving frame@46#:

dum5~0,v(V)/a!. ~4.2!

We can now construct a gauge-invariant, divergence
three-vector termed the ‘‘vorticity,’’

V i5v i
(V)2Vi . ~4.3!

Two Einstein equations govern vector perturbation evo
tion. The first describes the vector potential evolution un
the influence of a primordial stochastic magnetic field:

V̇i~h,k!12
ȧ

a
Vi~h,k!52

16pGP i
(V)~k!

a2k
, ~4.4!

where P i
(V)(k) is given by Eq.~2.14! and we neglect the

vector anisotropic stress of the plasma, which is in gen
negligible. The magnetic field source termsP i

(V)(k) and
P i j

(T)(k) are expressed in terms of present comoving m
netic field amplitudes. Since both of these terms depend
the magnetic field quadratically, the explicit time depende
of the magnetic stress is given byP(h,k)5P(k)/a4. In the
absence of the magnetic source term, the homogeneou
lution of this equation behaves likeVi}1/a2. The complete
solution including the magnetic source is simply

Vi~h,k!52
16pGP i

(V)~k!h

a2k
. ~4.5!

During the radiation-dominated epoch we havea}h; a mag-
netic field therefore causes vector perturbations to decay
rapidly (1/a instead of 1/a2) with the universe’s expansion
The second vector Einstein equation is a constraint that
lates the vector potential to the vorticity:

2k2Vi~h,k!516pGa2~r1p!V i~h,k!. ~4.6!

Vector conservation equations can be obtained via co
riant conservation of the stress-energy tensor. Since ve
perturbations cannot generate density perturbations, we

dg5db50. ~4.7!

Before decoupling, photons are coupled to baryons via
omson scattering. The magnetic field affects the phot
baryon fluid dynamics via the baryons; we therefore int
duce the Lorentz force term into the baryon Euler equati
The Euler equations for photons and baryons are respect
@55,59#
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V̇g i1 ṫ~vg i
(V)2vbi

(V)!50, ~4.8!

V̇bi1
ȧ

a
Vbi2

ṫ

R
~vg i

(V)2vbi
(V)!5

Li
(V)~k!

a4~rb1pb!
.

~4.9!

In the above,Vg,b5vg,b
(V)2V represent vorticities of photon

and baryons;ṫ5nesTa is the differential optical depth
wherene is the free electron density andsT is the Thomson
cross section;R[(rb1pb)/(rg1pg).3rb/4rg is the mo-
mentum density ratio between baryons and photons; andLi

(V)

is the vortical piece of the Lorentz force given by Eq.~2.16!.
Again, we neglect the small effects due to the vector ani
tropic stress of the plasma. This set of vector conserva
equations is similar to the one that describes Alfve´n waves in
Ref. @45#. Equations~4.4!, ~4.6!, ~4.8!, and ~4.9! are not in-
dependent. Using the definitions ofR, Li

(V) , and the fact that
(rg1pg)}1/a4, and solving the Euler equations in the tigh
coupling approximationvg i

(V).vbi
(V) , we obtain the following

approximate solution for the vorticity:

V i~h,k!.
kP i

(V)~k!h

~11R!~rg01pg0!
. ~4.10!

Note that the same result can be obtained using Eqs.~4.5!
and ~4.6!. The factor 11R represents reduction in the vo
ticity due to the Compton drag of baryons. At decouplin
the momentum density ratio between baryons and pho
has an approximate value ofRdec.3rb0/4rg0zdec.0.35,
where we have assumedzdec51100 andVbh250.0125. The
vorticity solution of Eq. ~4.10! is valid for perturbation
wavelengths larger than the comoving Silk scaleLS , where
photon viscosity can be neglected compared to the Lore
force. Fork.kS , wherekS52p/LS , the Euler equation tha
includes the viscous effect of photons is@56#

S 4

3
rg1rbD V̇ i1S rb

ȧ

a
1

k2x

a
DV i5

Li
(V)~k!

a4
, ~4.11!

wherex5(4/15)rgLga is the photon shear viscosity coffi
cient andLg5 ṫ21 is the photon comoving mean-free pat
In this regime, the vorticity can be obtained using t
terminal-velocity approximation. Equating the photon v
cosity term to the Lorentz force, we obtain@56#

V i~h,k!.
P i

(V)~k!

~kLg/5!~rg01pg0!
, k.kS . ~4.12!

The next step is to introduce two-point correlation fun
tions for the vector potential and the vorticity. Defining the
two-point correlation functions as in Eq.~2.17! for the vector
P i

(V) , and taking ensemble averages of Eqs.~4.5!, ~4.10!,
and ~4.12! the rms isotropic spectra for the vector potent
and the vorticity are simply

V~h,k!52
16pGP (V)~k!h

a2k
, ~4.13!
4-7
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V~h,k!.H kP (V)~k!h

~11R!~rg01pg0!
, k,kS ;

P (V)~k!

~kLg/5!~rg01pg0!
, k.kS .

~4.14!

Vector perturbations induce CMB temperature anisot
pies via a Doppler and an integrated Sachs-Wolfe effect@46#:

Q (V)~h0 ,k,n̂!52v(V)
•n̂uhdec

h0 1E
hdec

h0
dh V̇•n̂, ~4.15!

wherehdec represents the conformal time at decoupling. T
decaying nature of the vector potentialV implies that most
of its contributions toward the integrated Sachs-Wolfe te
are aroundhdec. Neglecting a possible dipole contributio
due tov(V) today, we obtain@46#

Q (V)~h0 ,k,n̂!.v(V)~hdec,k!•n̂2V~hdec,k!•n̂

5V~hdec,k!•n̂. ~4.16!

Vector CMB temperature anisotropies are due to the vorti
at decoupling.

B. Tensor perturbations

Tensor perturbations to the geometry are described b

dgi j
(T)52a2hi j , ~4.17!

wherehi j is a symmetric, transverse (hi j k̂ j50), and trace-
less (hii 50) three-tensor. Unlike vector perturbations, ten
perturbations have no gauge freedom.

The tensor Einstein equation that describes the evolu
of gravitational waves sourced by a stochastic magnetic fi
is

ḧi j ~h,k!12
ȧ

a
ḣi j ~h,k!1k2hi j ~h,k!58pGP i j

(T)~k!/a2,

~4.18!

whereP i j
(T)(k) is given by Eq.~2.19! and as in the case o

the vector perturbations, we neglect the tensor anisotro
stress of the plasma, which is in general negligible. Grav
tional waves induce CMB temperature anisotropies by ca
ing photons to propagate along perturbed geodesics@58,71#:

Q (T)~h0 ,k,n̂!.E
hdec

h0
dh ḣi j ~h,k!n̂i n̂ j . ~4.19!

Our task is, therefore, to obtain the solution forḣi j . To cal-
culate tensor CMB power spectra, we need to define t
point correlation functions forhi j andḣi j as in Eq.~2.20! for
the tensorP i j

(T) , with rms isotropic spectrah and ḣ respec-
tively. Solutions to the homogeneous equation withP (T)(k)
50 are easily obtained. During the radiation-dominated
och, a}h and h} j 0(kh) or y0(kh), while during the
matter-dominated epoch,a}h2 and h} j 1(kh)/kh or
y1(kh)/kh, where j l and yl are the usual spherical Bess
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functions. Assuming the primordial stochastic magnetic fi
is generated ath in , a Green function technique yields th
following inhomogeneous solution for the radiatio
dominated epoch:

h~h,k!5
2pGP (T)~k!zeq

2 heq
2

~322A2!kh

3E
h in

h
dh8

sin@k~h2h8!#

h8
, h,heq,

~4.20!

where heq denotes the conformal time at matter-radiati
equality. The magnetic source term on the right hand side
Eq. ~4.18! decays more rapidly withh in the matter-
dominated epoch than in the radiation-dominated epoch.
approximate solution, therefore, can be obtained by match
the radiation-dominated inhomogeneous solution of E
~4.20! to the matter-dominated homogeneous solutions
equality. Retaining the dominant contribution, we obtain@58#

ḣ~h,k!.4pGh0
2zeqlnS zin

zeq
D kP (T)~k!

j 2~kh!

kh
, h.heq.

~4.21!

V. TEMPERATURE POWER SPECTRA

We employ the total angular momentum representat
introduced by Hu and White@59# to compute the CMB
power spectra induced by a primordial stochastic magn
field. By combining intrinsic angular structure with that o
the plane-wave spatial dependence, this representation
ders a transparent description of CMB anisotropy format
as each moment corresponds directly to an observable a
lar sky pattern via its integral solution of the Boltzman
equations. The CMB temperature power spectrum toda
given by Eq.~56! of Ref. @59#:

Cl
QQ(X)5

4

pE dk k2
Q l

(X)~h0 ,k!

2l 11

Q l
(X)* ~h0 ,k!

2l 11
, ~5.1!

where X stands forV or T, and Q l ’s are the temperature
fluctuationDT/T moments. Note that Eq.~5.1! is larger than
the corresponding expression in Ref.@59# by a factor of 2 as
we have already taken into account the fact that both ve
and tensor perturbations stimulate two modes individua
corresponding tom561,62 respectively in the notation o
Ref. @59#. Our strategy is to evaluate the Boltzmann tempe
ture integral solutions to obtain theQ l ’s due to the vector
and tensor perturbations. We then substitute them into
~5.1! to yield the corresponding CMB temperature fluctu
tions spectra. Though the tensor results are already give
Ref. @58#, the vector results derived here are new.

A. Vector temperature power spectra

The Boltzmann temperature integral solution for vec
perturbations is given by Eqs.~61! and ~74! of Ref. @59#:
4-8
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Q l
(V)~h0 ,k!

2l 11
5E

0

h0
dh e2t$~ ṫvb

(V)1V̇! j l
(1V)@k~h02h!#

1 ṫP(V) j l
(2V)@k~h02h!#%, ~5.2!

where

P(V)5
A3

9

k

ṫ
vb

(V).
A3

9

k

ṫ
V ~5.3!

is the vector polarization source that is generated when t
coupling breaks down on small scales, where the photon
fusion length and the perturbation wavelength become c
parable. The approximation in Eq.~5.3! is obtained using Eq
~4.3! and noting thatV dominatesV at decoupling@cf. Eqs.
~4.13! and ~4.14!# for k*0.006 Mpc21, resulting inV con-
tributing negligibly compared toV upon integrating overk’s
to obtain the vector temperature power spectrum in Eq.~5.1!.
Unlike scalar perturbations, vector perturbations cannot p
duce compressional modes due to the lack of pressure
port. In the usual case of vector perturbations in cosmolo
cal fluids without a magnetic field, tight-coupling expansi
of photon and baryon Euler equations givesvb

(V)'V, result-
ing in the vector polarization source being dependent on
vector potential instead@see Eq.~94! of Ref. @59##. A primor-
dial stochastic magnetic field thus enhances vector polar
tion by sourcing the vorticity. The vector temperature rad
functionsj l

(1V) and j l
(2V) , which describe how distant source

contribute, are given by Eq.~15! of Ref. @59#:

j l
(1V)~x!5Al ~ l 11!

2

j l~x!

x
,

j l
(2V)~x!5A3l ~ l 11!

2

d

dxS j l~x!

x D . ~5.4!

The optical depth betweenh and h0 is defined ast(h)
[*h

h0dh8 ṫ(h8), thusdt/dh52 ṫ. Integrating Eq.~5.2! by

parts usingde2t/dh5 ṫe2t and j l
(2V)(x)5A3@ j l

(1V)(x)#8
and Eqs.~4.3! and ~5.3!, we obtain

Q l
(V)~h0 ,k!

2l 11
5E

0

h0
dh ṫe2tH V j l

(1V)@k~h02h!#

1
A3

9

k

ṫ
~V13V! j l

(2V)@k~h02h!#J .

~5.5!

For the usual vector perturbations without a magnetic fie
the term proportional toj l

(1V) is strongly suppressed sinc
vb

(V)'V at decoupling@59# and henceV.0 as mentioned
above. Here we have a primordial stochastic magnetic fi
sourcingV; the term proportional toj l

(2V) is then suppresse
relative to the term proportional toj l

(1V) due to the factor

k/ ṫ. Moreover, j l
(2V) has less angular power compared

j l
(1V) ~see Fig. 3 of Ref.@59#!. Thus to simplify the calcula-
12300
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tion, we consider only the term proportional toj l
(1V) in com-

puting the vector temperature integral solution. Including
small corrections due to the angular dependence of polar
tion coming from the term proportional toP(V) j l

(2V) and also
the vector potential will yield an additional contribution of
most a few percent toward our final estimate of the vec
temperature power spectra. The combinationṫe2t is the
conformal visibility function, which represents the probab
ity that a photon last scattered withindh of h and hence is
sharply peaked at the decoupling period. Forl<500, we can
approximate the vector temperature integral solution reas
ably well as

Q l
(V)~h0 ,k!

2l 11
.Al ~ l 11!

2
V~hdec,k!

j l~kh0!

kh0
, ~5.6!

using Eq.~5.4! and the fact thath0@hdec. The vector CMB
temperature anisotropies are due to the vorticity at dec
pling, as also illustrated by Eq.~4.16!. Substituting Eq.~5.6!
into the CMB temperature power spectrum expression of
~5.1! and using Eqs.~4.14! and ~2.18!, we obtain

Cl
QQ(V)5

~2p!2n111

4
l ~ l 11!

vAl
4

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3F hdec
2

~11Rdec!
2E0

kS
dk k1

25

Lg dec
2 E

kS

kDdk

k3 G
3F11

n

n13 S k

kD
D 2n13GJl 11/2

2 ~kh0!, ~5.7!

where we have defined the Alfve´n velocity as vAl

5Bl /@4p(rg01pg0)#1/2.3.831024(Bl/1029 G). Note
that (2p)2n110vAl

4 /$G2@(n13)/2#kl
2n16%}A2, where A is

the normalization of the magnetic power spectrum in E
~2.5!.

Depending on whethern.23/2 or 23,n,23/2, we
retain only the corresponding dominant term of the vec
isotropic spectrum in Eq.~5.7!. First consider the casen.
23/2, where the vorticity source becomes approximat
white noise~independent ofk) and thatuP (V)(k)u2 is depen-
dent onkD . To obtain an analytic estimate of the integr
*0

kSdk kJl 11/2
2 (kh0), consider the more general integr

*0
xSdx xpJl

2(x) for somep>0. SinceJl
2(x) only begins to

contribute to the integral significantly whenx* l , in this
limit, we employ in the integral theJl(x) asymptotic expan-
sion for large argument@72#: Jl(x);A2/(px)cos@x2(2l
11)p/4#. Approximating the oscillations by a factor of1

2

then gives

E
0

xS
dx xpJl

2~x!.E
l

xS
dx xpJl

2~x!.H xS
p2 l p

pp
, p.0;

1

p
lnS xS

l D , p50.

~5.8!
4-9
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The approximation tends to underestimate; it is good t
few percent forp.1 and is within 30% for 0<p<1. The
integral *0

kSdk kJl 11/2
2 (kh0) corresponds to the casep51;

the remaining integral on the rhs of Eq.~5.7!
*kS

kDdk k23Jl 11/2
2 (kh0) can be well-approximated by (kS

23

2kD
23)/(3ph0), which is good to within 20%. As in Eq

~5.8!, this approximation is obtained via employing th
Bessel function asymptotic expansion for large argume
which is justified sincekh0. l for kS<k<kD and l<500.
Keeping only the highest-order term inl, we obtain the vec-
tor CMB temperature power spectrum forn.23/2:

l 2Cl
QQ(V)5

~2p!2n110

2

vAl
4 l 4

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3H S hdec/h0

11Rdec
D 2

~kSh02 l !1
25

3 S h0

Lg dec
D 2

3F 1

~kSh0!3
2

1

~kDh0!3G J , n.23/2. ~5.9!

The dominant contribution comes from the term proportio
to (kSh02 l ), which arises from the nondamped vorticity fo
k,kS . The remaining term arising from the damped vort
ity for kS,k,kD gives a negligible contribution of,1%. A
numerical evaluation of Eq.~5.7! shows that its second inte
gral on the rhs, which arises from the damped vorticity,
ways contributes negligibly (,1%) compared to its first in-
tegral for l<500 and all cases ofn. Therefore, we will
neglect the damped vorticity contribution when evaluat
the remaining vector CMB temperature power spectra.

For 23,n,23/2, the needed integral i
*0

kSdk k2n14Jl 11/2
2 (kh0). We must consider three cases d

pending on whether the exponent 2n14 is greater than,
equal to, or less than zero. For22,n,23/2, using Eq.
~5.8! for p52n14, we obtain

l 2Cl
QQ(V)5

~2p!2n110

4 S hdec/h0

11Rdec
D 2

3
vAl

4 nl4

G2S n13

2 D ~2n13!~n12!~n13!~klh0!2n16

3@~kSh0!2n142 l 2n14#, 22,n,23/2.

~5.10!

For n522, again using Eq.~5.8! for p50, we obtain

l 2Cl
QQ(V)52~2p!5S hdec/h0

11Rdec
D 2 vAl

4 l 4

~klh0!2
lnS kSh0

l D ,

n522. ~5.11!
12300
a

t,

l

-

-

-

For 23,n,22, numerical evaluation shows that for
22.3&n,22, the integral*0

kSdk k2n14Jl 11/2
2 (kh0) can be

well-approximated by @(kSh0)2n142 l 2n14#/@2p(n
12)h0

2n15#, which underestimates by at most 30–40 %. T
resulting temperature power spectrum is then formally id
tical to that of the case22,n,23/2:

l 2Cl
QQ(V)5

~2p!2n110

4 S hdec/h0

11Rdec
D 2

3
vAl

4 nl4

G2S n13

2 D ~2n13!~n12!~n13!~klh0!2n16

3@~kSh0!2n142 l 2n14#, 22.3&n,22.

~5.12!

For 23,n&22.3, the dominant contribution to the integr
*0

kSdk k2n14Jl 11/2
2 (kh0) is coming from long wavelengths

k→0; we therefore approximate by integrating overk to in-
finity. The resulting integral can be evaluated analytically
using 6.574.2 of Ref.@73#,

E
0

`

dk Jp~ak!Jq~ak!k2b

5

ab21G~b!GS p1q2b11

2 D
2bGS 2p1q1b11

2 DGS p1q1b11

2 DGS p2q1b11

2 D ,

Re~p1q11!.Reb.0, a.0; ~5.13!

and 8.335.1 of Ref.@73#,

G~2x!5
22x21

Ap
G~x!GS x1

1

2D . ~5.14!

Keeping only the highest-order term inl, we finally obtain

l 2Cl
QQ(V)5

~2p!2n110

22n17 S hdec/h0

11Rdec
D 2 G2~2n22!

G~22n24!G2S n13

2 D
3

vAl
4 nl2n18

~2n13!~n13!~klh0!2n16
,

23,n&22.3. ~5.15!

Our approximation overestimates, as expected, and the a
racy improves asn decreases since more contribution aris
from smallk and hence the result will be less sensitive to t
upper limit of the integral, which we have approximated
be infinity. It is good to within 30% for22.5<n&22.3 and
a few percent for23,n,22.5. The temperature powe
4-10
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spectrum of each case above has the samel and kD ~with
kl ,kS→kD) dependence as the corresponding spectrum
duced by a primordial homogeneous magnetic field@46# ~the
correspondence between the spectral index of Ref.@46# and
ours isn→2n13). For the sake of completeness, we no
that the vector potential contribution arising from thej l

(2V)

term in Eq. ~5.5! will induce temperature power spect
l 2Cl

QQ(V)} l 3 for n.23/2 andl 2Cl
QQ(V)} l 2n16 for 23,n

,23/2.
We now consider the casen523/2 and show that this

apparent singularity is removable by considering both te
of the vector isotropic spectrum in Eq.~2.18!. In the limit
n523/21«, we have

uP (V)~k!u2.
~2p!6

16

Bl
4

G2~3/4!kl
3

3
1

2« F12S 12
2«

3 D S 11
2«

3 D 21S k

kD
D 2«G .

~5.16!

Upon expanding the expression within the square bracke
O(«) and using the small-x expansion to the first order, i.e
ln(11x);x for x[(k2kD)/kD , we obtain

uP (V)~k!u2.
~2p!6

16

Bl
4

G2~3/4!kl
3 S 5

3
2

k

kD
D , n'23/2.

~5.17!

The same result can be obtained via direct substitution on
523/2 in Eqs.~A9!–~A11!. Using Eqs.~5.17! and~5.8! for
p51 and 2, a similar calculation as in Eq.~5.9! gives

l 2Cl
QQ(V)5

~2p!7

4 S hdec/h0

11Rdec
D 2 vAl

4 l 4

G2~3/4!~klh0!3

3F10

3
~kSh02 l !2

~kSh0!22 l 2

kDh0
G ,

n'23/2, ~5.18!

thus showing that the singularity atn523/2 is indeed re-
movable. For the rest of the paper, we will not produce
plicit power spectrum expressions for the casen523/2.
Readers who are interested can easily derive the corresp
ing results via a straightforward extension of the calculat
outlined above.

B. Tensor temperature power spectra

The Boltzmann temperature integral solution for ten
perturbations is given by Eqs.~61! and ~74! of Ref. @59#:

Q l
(T)~h0 ,k!

2l 11
5E

0

h0
dh e2t@ ṫP(T)2ḣ# j l

(2T)@k~h02h!#,

~5.19!

where
12300
n-

s

to

-

nd-
n

r

P(T)52
1

3

ḣ

ṫ
~5.20!

is the tensor polarization source andj l
(2T) is the tensor tem-

perature radial function given by Eq.~15! of Ref. @59#:

j l
(2T)~x!5A3

8

~ l 12!!

~ l 22!!

j l~x!

x2
. ~5.21!

Using Eq.~4.21! and definingx[kh and x0[kh0, we ap-
proximate the tensor temperature integral solution as@see
also Eq.~18! of Ref. @58##

Q l
(T)~h0 ,k!

2l 11
.22pA8

3

~ l 12!!

~ l 22!! FGh0
2zeqlnS zin

zeq
D G

3P (T)~k!E
0

x0
dx

j 2~x!

x

j l~x02x!

~x02x!2
.

~5.22!

The integral above can be numerically approximated as
Eq. ~19! of Ref. @58#,

E
0

x0
dx

j 2~x!

x

j l~x02x!

~x02x!2
5

p

2E0

x0
dx

J5/2~x!

x3/2

Jl 11/2~x02x!

~x02x!5/2

.
7p

20
Al E

0

x0
dx

J5/2~x!

x

Jl 11/2~x02x!

~x02x!3

.
7p

50
A3l

2

Jl 13~x0!

x0
3

, ~5.23!

where in going from the second to the third line, we ha
inserted a factor ofA3/2 for better numerical agreement an
used 6.581.2 of Ref.@73#:

E
0

a

dx xb21~a2x!21Jp~x!Jq~a2x!

5
2b

aq (
m50

`
~21!mG~b1p1m!G~b1m!

m!G~b!G~p1m11!

3~b1p1q12m!Jb1p1q12m~a!,

Re~b1p!.0, Req.0. ~5.24!

Numerical evaluation shows that the approximation in
second line of Eq.~5.23! is good to 10% forl &500. Substi-
tuting Eq.~5.23! into Eq. ~5.22! yields

Q l
(T)~h0 ,k!

2l 11
.2

7

50
~2p!2Al ~ l 12!!

~ l 22!!

3FGh0
2zeqlnS zin

zeq
D GP (T)~k!

Jl 13~kh0!

~kh0!3
.

~5.25!
4-11
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Using Eqs.~2.22!, ~5.1!, and~5.25!, we obtain

Cl
QQ(T)5

49

10000
~2p!2n112l 2~ l 21!~ l 11!~ l 12!

3FGh0
2zeqlnS zin

zeq
D G2 Bl

4

G2S n13

2 D ~2n13!h0
3

3
~kDh0!2n13

~klh0!2n16 E0

kD
dk k24

3F11
n

n13 S k

kD
D 2n13GJl 13

2 ~kh0!. ~5.26!

Note that (2p)2n110Bl
4/$G2@(n13)/2#kl

2n16%}A2, whereA
is the normalization of the magnetic power spectrum in E
~2.5!.

For n.23/2, the gravitational wave source
kD-dependent, and the resulting temperature fluctua
spectrum possesses the well-known behaviorl 2Cl} l 3. The
integral *0

kDdk k24Jl 13
2 (kh0) can be evaluated using Eq

~5.13!; retaining only the highest-order term inl, we obtain

l 2Cl
QQ(T)5

49

7500
~2p!2n111FGh0

2zeqlnS zin

zeq
D G2

3
Bl

4l 3

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16
,

n.23/2. ~5.27!

For 23,n,23/2, a similar calculation gives

l 2Cl
QQ(T)522n25

49

625
~2p!2n112FGh0

2zeqlnS zin

zeq
D G2

3
G~122n!

G2~12n!G2S n13

2 D
Bl

4n

~2n13!~n13!

3S l

klh0
D 2n16

, 23,n,23/2. ~5.28!

Equivalent tensor perturbation results are given in Eqs.~20!–
~22! of Ref. @58#.

VI. POLARIZATION POWER SPECTRA

Polarization of the CMB comes in two flavors:E-type and
B-type with electric (21)l and magnetic (21)l 11 parities
respectively@74,75#. Physically, they represent polarizatio
patterns rotated byp/4 due to the interchanging of Q and
Stokes parameters. Vector and tensor perturbations ind
both types of polarizations. Scalar perturbations, howe
cannot generateB-type polarization due to azimuthal sym
metry. A detection of theB-type polarization from future
high sensitivity CMB polarization measurements theref
would provide compelling evidence for vector and/or ten
12300
.

n

ce
r,

e
r

contributions. Similar to the CMB temperature power spe
trum of Eq.~5.1!, the E-type andB-type polarization power
spectra are respectively

Cl
EE(X)5

4

pE dk k2
El

(X)~h0 ,k!

2l 11

El
(X)* ~h0 ,k!

2l 11
, ~6.1!

Cl
BB(X)5

4

pE dk k2
Bl

(X)~h0 ,k!

2l 11

Bl
(X)* ~h0 ,k!

2l 11
, ~6.2!

where X stands forV or T. The correspondence betwee
notations of Ref.@59# and ours for polarization moments
El

(61)→El
(V) and Bl

(61)→6Bl
(V) , and similarly for the ten-

sor perturbations.

A. Vector polarization power spectra

1. E-type polarization

The E-type polarization integral solution for vector pe
turbations is@59#

El
(V)~h0 ,k!

2l 11
52A6E

0

h0
dh ṫe2tP(V)e l

(V)@k~h02h!#,

~6.3!

where

e l
(V)~x!5

1

2
A~ l 21!~ l 12!F j l~x!

x2
1

j l8~x!

x G ~6.4!

is the vectorE-type polarization radial function given by Eq
~17! of Ref. @59#. Using Eq.~5.3! for P(V) and the spherica
Bessel function recurrence relation@72#

l

x
j l~x!2 j l8~x!5 j l 11~x!, ~6.5!

we approximate the vectorE-type polarization integral solu
tion as in Eq.~5.6!:

El
(V)~h0 ,k!

2l 11
.2A~ l 21!~ l 12!

18
kLg decV~hdec,k!

3F ~ l 11!
j l~kh0!

~kh0!2
2

j l 11~kh0!

kh0
G , ~6.6!

where Lg dec5 ṫdec
21.3.39 Mpc is the photon comoving

mean-free path at decoupling, assumingTdec50.25 eV and
Vbh250.0125. For the tight-coupling approximation to b
valid, we requirekLg dec,1. Substituting Eq.~6.6! into ~6.1!
and using Eqs.~4.14! and ~2.18!, we obtain
4-12
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Cl
EE(V)5

~2p!2n111

36
~ l 21!~ l 12!S hdech0

11Rdec
D 2

3
vAl

4

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3Lg dec
2 E

0

kS
dk k5F11

n

n13 S k

kD
D 2n13G

3F ~ l 11!
Jl 11/2~kh0!

~kh0!2
2

Jl 13/2~kh0!

kh0
G 2

.

~6.7!

As in the computation of the vector temperature power sp
tra in Sec. V A, we have neglected the damped vortic
term, which again contributes negligibly (,3%) for l
<500 and all cases ofn. Note that (2p)2n110vAl

4 /$G2@(n
13)/2#kl

2n16%}A2, whereA is the normalization of the mag
netic power spectrum in Eq.~2.5!.

Again, depending on whethern.23/2 or 23,n
,23/2, we retain only the corresponding dominant term
the vector isotropic spectrum in Eq.~6.7!. A further simpli-
fication occurs by noting that although the cross term prop
tional to Jl 11/2(kh0)Jl 13/2(kh0) is difficult to evaluate ana-
lytically, a numerical evaluation shows that its value
approximately minus twice that of the term proportional
Jl 11/2

2 (kh0) for all cases ofn. First consider the casen.
23/2, where the vorticity source becomes approximat
white noise and iskD-dependent. The relevant integrals a

~ l 11!2E
0

xS
dx xJl 11/2

2 ~x!

and

E
0

xS
dx x3Jl 13/2

2 ~x!, ~6.8!

where we have definedx[kh0 and xS[kSh0. Using Eq.
~5.8! for p51 and 3 respectively for these two integrals, w
obtain

l 2Cl
EE(V)5

~2p!2n110

18 S hdec/h0

11Rdec
D 2S Lg dec

h0
D 2

3
vAl

4 l 4

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3F ~kSh0!32 l 3

3
2 l 2~kSh02 l !G ,

n.23/2. ~6.9!

Comparing to the numerical evaluation of Eq.~6.7! shows
that our approximation is good to a few percent.
12300
c-
y

f

r-

y

For 23,n,23/2, we need to evaluate

~ l 11!2E
0

xS
dx x2n14Jl 11/2

2 ~x!

and

E
0

xS
dx x2n16Jl 13/2

2 ~x!. ~6.10!

Since the exponent within the first integral 2n14 changes
sign whereas the exponent within the second integraln
16 remains positive throughout23,n,23/2, as in the
vector temperature power spectra calculation, we cons
cases depending on whether 2n14 is greater than, equal to
or less than zero in this regime. For22,n,23/2, the two
integrals of Eq.~6.10! can be approximated using Eq.~5.8!
for p52n14 and 2n16 respectively, hence

l 2Cl
EE(V)5

~2p!2n110

36 S hdec/h0

11Rdec
D 2S Lg dec

h0
D 2

3
vAl

4 nl4

G2S n13

2 D ~2n13!~n13!~klh0!2n16

3F ~kSh0!2n162 l 2n16

n13

2 l 2
~kSh0!2n142 l 2n14

n12 G , 22,n,23/2.

~6.11!

Here our approximation is good to within 10%. Forn522,
using Eq.~5.8! for p50 and 2 respectively for the two inte
grals of Eq.~6.10!, we obtain

l 2Cl
EE(V)5

~2p!5

9 S hdec/h0

11Rdec
D 2S Lg dec

h0
D 2 vAl

4 l 4

~klh0!2

3H ~kSh0!22 l 2F2 lnS kSh0

l D11G J ,

n522. ~6.12!

Comparing to the numerical evaluation of Eq.~6.7!, the ap-
proximation here is good to within 10% in general. Fo
23,n,22, as discussed in Sec. V A, a numerical evalu
tion shows that the first integral of Eq.~6.10! can be well-
approximated by l 2@(kSh0)2n142 l 2n14#/(2n14)p for
22.3&n,22 @cf. Eq.~5.12!# whereas for23,n&22.3, it
can be approximated using Eq.~5.13! since the dominant
contribution to the integral arises from long wavelengthsk
→0 @cf. Eq. ~5.15!#. The approximation of the second inte
gral of Eq. ~6.10! using Eq. ~5.8! tends to underestimate
This, however, can be compensated via approximating
first integral of Eq.~6.10! by l 2@(kSh0)2n142 l 2n14#/(2n
14)p throughout the regime23,n,22. The resulting
4-13
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vector E-type polarization power spectrum is then forma
identical to that of the case22,n,23/2, with accuracy
good to within 15% in general. Hence

l 2Cl
EE(V)5

~2p!2n110

36 S hdec/h0

11Rdec
D 2S Lg dec

h0
D 2

3
vAl

4 nl4

G2S n13

2 D ~2n13!~n13!~klh0!2n16

3F ~kSh0!2n162 l 2n16

n13

2 l 2
~kSh0!2n142 l 2n14

n12 G , 23,n,22.

~6.13!

2. B-type polarization

The B-type polarization integral solution for vector pe
turbations is@59#

Bl
(V)~h0 ,k!

2l 11
52A6E

0

h0
dhṫe2tP(V)b l

(V)@k~h02h!#,

~6.14!

where

b l
(V)~x!5

1

2
A~ l 21!~ l 12!

j l~x!

x
~6.15!

is the vectorB-type polarization radial function. Using th
same approximation in Eq.~6.14! as in Eq.~5.6!, we obtain

Bl
(V)~h0 ,k!

2l 11
.2A~ l 21!~ l 12!

18
kLg decV~hdec,k!

j l~kh0!

kh0
,

~6.16!

which upon substituting into Eq.~6.2! and using Eqs.~4.14!
and ~2.18!, yields

Cl
BB(V)5

~2p!2n111

36
~ l 21!~ l 12!S hdech0

11Rdec
D 2

3
vAl

4

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3Lg dec
2 E

0

kS
dk k5F11

n

n13 S k

kD
D 2n13G

3
Jl 11/2

2 ~kh0!

~kh0!2
, ~6.17!
12300
where again we have neglected the contribution coming fr
the damped vorticity term, which is negligible (,4%) for
l<500 and all cases ofn. Note that (2p)2n110vAl

4 /$G2@(n
13)/2#kl

2n16%}A2, whereA is the normalization of the mag
netic power spectrum in Eq.~2.5!. Except for the order of the
Bessel function, Eq.~6.17! is identical to the term propor
tional toJl 13/2

2 (kh0) in the vectorE-type polarization power
spectrum expression of Eq.~6.7!. For n.23/2, using Eq.
~5.8! for p53, we obtain@cf. Eq. ~6.9!#

l 2Cl
BB(V)5

~2p!2n110

54 S hdec/h0

11Rdec
D 2S Lg dec

h0
D 2

3
vAl

4 l 4

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3@~kSh0!32 l 3#, n.23/2. ~6.18!

For 23,n,23/2, the exponent within the integral 2n16
remains positive throughout; thus using Eq.~5.8! for p
52n16, we obtain@cf. Eq. ~6.11!#

l 2Cl
BB(V)5

~2p!2n110

36 S hdec/h0

11Rdec
D 2S Lg dec

h0
D 2

3
vAl

4 nl4

G2S n13

2 D ~2n13!~n13!2~klh0!2n16

3@~kSh0!2n162 l 2n16#, 23,n,23/2.

~6.19!

Our accuracy here is good to the quality of the analytic
proximation in Eq.~5.8! and is always within 20%.

B. Tensor polarization power spectra

1. E-type polarization

TheE-type polarization integral solution for tensor pertu
bations is@59#

El
(T)~h0 ,k!

2l 11
52A6E

0

h0
dhṫe2tP(T)e l

(T)@k~h02h!#,

~6.20!

whereP(T) is given by Eq.~5.20!, and

e l
(T)~x!5

1

4 F2 j l~x!1 j l9~x!12
j l~x!

x2
14

j l8~x!

x G
~6.21!
4-14
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is the tensorE-type polarization radial function. Using Eq
~4.21! and~6.5! and the spherical Bessel function recurren
relation @72#

l 11

x
j l~x!1 j l8~x!5 j l 21~x!, ~6.22!

and definingx[kh andx0[kh0, we approximate the tenso
E-type polarization integral solution as

El
(T)~h0 ,k!

2l 11
.

2p

A6
FGh0

2zeqlnS zin

zeq
D GP (T)~k!

3E
0

x0
dx

j 2~x!

x H F221
~ l 11!~ l 12!

~x02x!2 G
3 j l~x02x!2

2

x02x
j l 11~x02x!J . ~6.23!

A similar manipulation as in Eq.~5.23! gives

El
(T)~h0 ,k!

2l 11
.2

7

100
~2p!2Al FGh0

2zeqlnS zin

zeq
D GP (T)~k!

kh0

3H F12
l 2

2~kh0!2G
3Jl 13~kh0!1

Jl 14~kh0!

kh0
J . ~6.24!

Substituting Eq.~6.24! into Eq. ~6.1! and using Eq.~2.22!,
we obtain

Cl
EE(T)5

49

40000
~2p!2n112l FGh0

2zeqlnS zin

zeq
D G2

3
Bl

4h0

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3E
0

kD
dk F11

n

n13 S k

kD
D 2n13G H F12

l 2

2~kh0!2G
3Jl 13~kh0!1

Jl 14~kh0!

kh0
J 2

. ~6.25!

Note that (2p)2n110Bl
4/$G2@(n13)/2#kl

2n16%}A2, whereA
is the normalization of the magnetic power spectrum in E
~2.5!. For n.23/2, using Eqs.~5.8! and~5.13! and keeping
only the highest-order terms inl gives
12300
e

.

l 2Cl
EE(T)5

49

20000
~2p!2n111FGh0

2zeqlnS zin

zeq
D G2

3
Bl

4l 3

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3F lnS kDh0

l D2
5

6G , n.23/2. ~6.26!

For 23,n,23/2, using Eqs.~5.13! and~5.14! and keeping
only the highest-order terms inl, we obtain

l 2Cl
EE(T)522n27

49

625
~2p!2n112FGh0

2zeqlnS zin

zeq
D G2

3
G~22n23!

G2~2n21!G2S n13

2 D
Bl

4~4n213!

~2n13!~n11!~n13!

3S l

klh0
D 2n16

, 23,n,23/2. ~6.27!

From the properties of radial functions, Hu and Wh
place upper bounds on how fast various power spectra
grow with l @see Eq.~78! of @59##. In particular, tensor po-
larization power spectra can grow no faster th
l 2Cl

EE,BB(T)} l 2. Our results for the tensorE- and B-type
~Sec. VI B 2! polarization power spectra seem to violate th
constraint forn.22 by an additional factor ofl, which
arises from numerical approximations as in the second
of Eq. ~5.23!. Within the tensor integral solutions of Eq
~5.22!, ~6.23!, and ~6.30!, we have to evaluate integrals o
the form *0

x0dx @ j 2(x)/x#@ j l(x02x)/(x02x)p#. The piece

j 2(x)/x comes from the gravitational wave solutionḣ of Eq.
~4.21! whereas the piecej l(x02x)/(x02x)p comes from the
radial functions. In Ref.@59#, only the radial function prop-
erties are used to determine the upper bounds on the po
spectra growth rate, whereas the source behavior has
entirely neglected. Our numerical approximation in E
~5.23! takes into account the source behavior, i.e.j 2(x)/x,
and this introduces an additional factor ofl in the resulting
power spectra. Note that besides the tensor polariza
power spectra, all the remaining power spectra conform
the growth constraints given by Ref.@59#.

2. B-type polarization

TheB-type polarization integral solution for tensor pertu
bations is@59#
4-15
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Bl
(T)~h0 ,k!

2l 11
52A6E

0

h0
dh ṫe2tP(T)b l

(T)@k~h02h!#,

~6.28!

where

b l
(T)~x!5

1

2 F j l8~x!12
j l~x!

x G ~6.29!

is the tensorB-type polarization radial function. Using Eq
~5.20!, ~4.21! and ~6.5!, and definingx[kh and x0[kh0,
we approximate the tensorB-type polarization integral solu
tion as

Bl
(T)~h0 ,k!

2l 11
.

A6

3
~2p!FGh0

2zeqlnS zin

zeq
D GP (T)~k!

3E
0

x0
dx

j 2~x!

x F ~ l 12!
j l~x02x!

x02x

2 j l 11~x02x!G . ~6.30!

A similar manipulation as in Eq.~5.23! gives

Bl
(T)~h0 ,k!

2l 11
.

7

100
~2p!2Al FGh0

2zeqlnS zin

zeq
D G

3
P (T)~k!

kh0
F l

Jl 13~kh0!

kh0
2Jl 14~kh0!G .

~6.31!

Substituting Eq.~6.31! into ~6.2! and using Eq.~2.22!, we
obtain

Cl
BB(T)5

49

40000
~2p!2n112l FGh0

2zeqlnS zin

zeq
D G2

3
Bl

4h0

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3E
0

kD
dk F11

n

n13 S k

kD
D 2n13G

3F l
Jl 13~kh0!

kh0
2Jl 14~kh0!G2

. ~6.32!
12300
Note that (2p)2n110Bl
4/$G2@(n13)/2#kl

2n16%}A2, whereA
is the normalization of the magnetic power spectrum in E
~2.5!. For n.23/2, using Eqs.~5.8! and ~5.13!, we obtain

l 2Cl
BB(T)5

49

20000
~2p!2n111FGh0

2zeqlnS zin

zeq
D G2

3
Bl

4l 3

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3F lnS kDh0

l D21G , n.23/2. ~6.33!

For 23,n,23/2, a similar calculation gives

l 2Cl
BB(T)522n24

49

625
~2p!2n112FGh0

2zeqlnS zin

zeq
D G2

3
G~22n23!

G2~2n21!G2S n13

2 D
2Bl

4n

~2n13!~n11!~n13!

3S l

klh0
D 2n16

, 23,n,23/2. ~6.34!

VII. CROSS-CORRELATION POWER SPECTRA

Since temperatureQ l has electric parity (21)l , only El

couples toQ l in the Thomson scattering and henceCl
QE is

the only possible cross correlation. The cross-correlat
power spectrum is defined similarly as the temperature
polarization power spectra:

Cl
QE(X)5

4

pE dk k2
Q l

(X)~h0 ,k!

2l 11

El
(X)* ~h0 ,k!

2l 11
, ~7.1!

whereX stands forV or T.

A. Vector cross-correlation power spectra

As discussed in Ref.@59# and shown in its Fig. 5, the
vector dipole radial functionj l

(1V) does not correlate wel
with its E-type polarization radial functione l

(V) whereas its
4-16
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quadrupole radial functionj l
(2V) does. Therefore to comput

the vector cross-correlation power spectra, we need to re
the term proportional toj l

(2V) in the vector temperature inte
gral solution, though in the calculation of the temperatu
power spectra, we have neglected it since it is suppres
relative to thej l

(1V) term.
Beginning with Eq.~5.5!, retaining the j l

(2V) term, ne-
glecting the vector potential, and using Eqs.~5.4! and ~6.5!,
we arrive at the following vector temperature integral so
tion as in Eq.~5.6!:
o

to
y,
rm
e

th
q
e
e-
n,
ox

s

o
i-

-
r
th
t
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in

e
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Q l
(V)~h0 ,k!

2l 11
.Al ~ l 11!

2
V~hdec,k!H j l~kh0!

kh0
1

kLg dec

3

3F ~ l 21!
j l~kh0!

~kh0!2
2

j l 11~kh0!

kh0
G J . ~7.2!

Substituting Eqs.~7.2! and ~6.6! into ~7.1! and using Eqs.
~4.14! and ~2.18!, we obtain
Cl
QE(V)52

~2p!2n111

12
Al ~ l 21!~ l 11!~ l 12!S hdech0

11Rdec
D 2 vAl

4

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16

3Lg decE
0

kS
dk k4F11

n

n13 S k

kD
D 2n13G H ~ l 11!

Jl 11/2
2 ~kh0!

~kh0!3
2

Jl 11/2~kh0!Jl 13/2~kh0!

~kh0!2

1
kLg dec

3 F ~ l 221!
Jl 11/2

2 ~kh0!

~kh0!4
22l

Jl 11/2~kh0!Jl 13/2~kh0!

~kh0!3
1

Jl 13/2
2 ~kh0!

~kh0!2 G J , ~7.3!
od
te.

q.
where again we have neglected the contribution coming fr
the damped vorticity term, which is negligible (,3%) for
l<500 and all cases ofn. Note that (2p)2n110vAl

4 /$G2@(n
13)/2#kl

2n16%}A2, where A is the normalization of the
magnetic power spectrum in Eq.~2.5!. The first two terms
within the curly brackets arise from correlatingj l

(1V) with
e l

(V) . Although the second term proportional
Jl 11/2(kh0)Jl 13/2(kh0) cannot be approximated analyticall
a numerical evaluation however shows that these two te
always roughly cancel each other, which agrees with R
@59# that j l

(1V) does not correlate well withe l
(V) . The remain-

ing three terms arise from correlatingj l
(2V) with e l

(V) . In the
limit l @1, these terms and the three Bessel terms within
vectorE-type polarization power spectrum expression of E
~6.7! are almost identical. To simplify the approximation, w
will neglect the two terms arising from the correlation b
tween j l

(1V) ande l
(V) . Thus apart from an overall minus sig

the resulting power spectra for all cases here are appr
mately equal to the corresponding vectorE-type polarization
power spectra, given in Eqs.~6.9! and ~6.11!–~6.13!.

Since we have neglected two terms in the vector cro
correlation power spectrum expression of Eq.~7.3!, accuracy
here is worse than that of the correspondingE-type polariza-
tion power spectra. Note that the terms arising from the c
relation betweenj l

(2V) and e l
(V) are suppressed by an add

tional factor ofkLg dec relative to the two terms arising from
the correlation betweenj l

(1V) ande l
(V) . Because of this sup

pression factor, a numerical calculation shows that the
siduals of the first two neglected terms can easily be
same order as the remaining retained terms, reducing
m

s
f.

e
.

i-

s-

r-

e-
e
he

accuracy of our approximation. Our approximation is go
to within a factor of 3 in general and tends to underestima

B. Tensor cross-correlation power spectra

Using Eqs.~5.25!, ~6.24!, and~7.1!, we obtain the tensor
cross-correlation power spectrum expression

Cl
QE(T)5

49

20000
~2p!2n112l 3FGh0

2zeqlnS zin

zeq
D G2

3
Bl

4

G2S n13

2 D ~2n13!h0

~kDh0!2n13

~klh0!2n16

3E
0

kD
dk k22F11

n

n13 S k

kD
D 2n13G

3H F12
l 2

2~kh0!2G
3Jl 13

2 ~kh0!1
Jl 13~kh0!Jl 14~kh0!

kh0
J . ~7.4!

Note that (2p)2n110Bl
4/$G2@(n13)/2#kl

2n16%}A2, whereA
is the normalization of the magnetic power spectrum in E
~2.5!. For n.23/2, using Eq.~5.13! and keeping only the
highest-order terms inl, we obtain
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l 2Cl
QE(T)5

49

15000
~2p!2n111FGh0

2zeqlnS zin

zeq
D G2

3
Bl

4l 3

G2S n13

2 D ~2n13!

~kDh0!2n13

~klh0!2n16
,

n.23/2. ~7.5!

For 23,n,23/2, a similar calculation gives

l 2Cl
QE(T)522n26

49

625
~2p!2n112FGh0

2zeqlnS zin

zeq
D G2

3
G~22n21!

G2~2n!G2S n13

2 D
Bl

4~2n21!

~2n13!~n13!

3S l

klh0
D 2n16

, 23,n,23/2. ~7.6!

VIII. RESULTS AND DISCUSSION

The CMB power spectra generated by a stochastic m
netic field are plotted forl 55 to l 5500 in Figs. 1, 2, and 3
Since we are interested in the signatures of the various
crowave background power spectra arising from primord
fields that are large enough to result in the observed gala
fields via adiabatic compression, for each plot, we choose
magnetic comoving mean-field amplitude to beBl

51029 G and fix l51 Mpc, i.e. galaxy and cluster scale
For simplicity, we consider a standard cold dark mat
~SCDM! universe, i.e. a flat universe composed of only d
and radiation (h0.6000h21 Mpc) with Vb50.05 andh
50.5. Including a possible cosmological constant will affe
the scale factor evolution only relatively recently at redsh
of a few and will result in a slightly largerh0. The magnetic
power spectrum cutoff wave numbers for vector and ten
perturbations are given by Eqs.~3.3! and ~3.6! respectively.
Thus for n521 andn52 for example, withBl51029 G
and l51 Mpc, we have kD.27.9 Mpc21 and kD
.14.7 Mpc21 respectively for vector perturbations; where
for tensor perturbations, we obtainkD.80.9 Mpc21 andkD
.27.1 Mpc21 respectively. For the tensor perturbations,
assumezin /zeq5109 as in Ref.@58#; the resulting fluctua-
tions, however, depend only logarithmically onzin . In our
analysis, we do not decompose the magnetic field into a la
homogeneous component and a small fluctuating piece.
stochastic magnetic field then affects the stress-energy te
and hence the metric perturbations quadratically. In comp
ing the source terms of vector and tensor perturbations@cf.
Eqs.~2.18! and~2.22! respectively#, convolution of the mag-
netic field couples the large and small scale modes, resu
in the cutoff scale perturbations completely dominating
large scale modes forn.23/2. Thus forn.23/2, kD will
determine the overall amplitude of the fluctuations.

Throughout the paper, we have been stating explicitly
terms that are proportional to the normalizationA of the
12300
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magnetic power spectrum. Any power-law magnetic field c
be specified completely by the normalizationA and the spec-
tral indexn. Since we are interested in constraining the p
mordial magnetic field strength on galaxy scales, we cho
to fix Bl andl and determineA for eachn using Eq.~2.7!.
If however one is interested in the CMB power spectra w
A fixed, then eachn will give a different value ofBl(n) via
Eq. ~2.7!. Either way will not affect the final constraints fo
the magnetic comoving mean-field amplitude. Indeed,
find it easier to constrain the amplitude by keepingBl fixed.

Figure 1 shows the separate vector and tensor contr
tions to the CMB power spectra for four different values
n. For n,23/2, the CMB power spectra do not depend
kD , and the size of the anisotropies increases asn gets
smaller; a scale-invariant magnetic field withn522.99 gen-
erates the largest anisotropies and hence it will yield the m
stringent limit on the primordial magnetic field~see also Fig.
1 of @58#!. For n.23/2, the CMB power spectra ar
kD-dependent and scale askD

2n13 ; thus more and more strin
gent magnetic field limits can be obtained asn increases
toward causal values.1 For the vector perturbations, theBB
power spectrum is slightly larger than that of theEE’s,
whereas theEE and QE power spectra are approximate
identical. As also pointed out in Ref.@59#, the vector CMB
polarization is dominated by theB-type modes. Naively, the
QE cross correlation would be expected to be larger than
polarization power spectra simply because the tempera
fluctuations are larger than the polarization fluctuatio
However, the temperature fluctuations are dominated by
vector dipole term, which correlates poorly with the rad
function describingE-type polarization. Thus theQE spec-
trum is dominated by a subdominant temperature contri
tion arising from the vector quadrupole term, which th
coincidentally renders the spectrum approximately ident
to theE-type polarization itself. However in reality, theQE
spectrum can be slightly larger than the polarization spe
since our approximation is good to within a factor of 3 a
tends to underestimate in general~see Sec. VII A!. Note that
while n→23 corresponds to a scale-invariant magne
field, the vector power spectrum is not flat for this value. T
reason is that the vorticity, Eq.~4.14!, has an extra factor o
k compared to the magnetic field itself. The vector cro
correlation is always negative; its absolute value is plotte

For the tensor perturbations, theE-type is slightly larger
than the B-type polarization power spectrum. The polari
tion power spectra are actually comparable to the temp
ture power spectrum forn.23/2. This is due to the addi
tional logarithmic dependence on the magnetic damp
cutoff wave number for the polarization power spectra@cf.
Eqs. ~6.26! and ~6.33!#, and also because both the tempe
ture and polarization fluctuations are due to the intrinsic te
perature quadrupole moments, which arise from the grav

1Figure 1 of Ref.@58# shows a weaker and weaker upper bou
for Bl asn increases from23/2. This is because the authors the
have inappropriately adopted a smoothing scale smaller than
magnetic damping scale and have employed a different value
the damping scale~see Sec. III B for details!.
4-18
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tional wave solution ḣ of Eq. ~4.21! instead of being
generated via free streaming the dipoles as in the case o
vector perturbations. Also forn.23/2, the gravitational
wave source term is approximately independent ofk and the
resulting power spectra then possess the well-known be
ior of a white noise sourcel 2Cl} l 3. Furthermore, since ten
sor perturbations are damped on scales smaller than th
the vector perturbations as discussed in Sec. III B, their
duced anisotropies will then be larger than that of the v
tor’s for n.23/2 wherekD determines the overall amplitud
of the microwave background power spectra. As expec
the tensor power spectrum is flat forn→23 since we have a
scale-invariant magnetic field for this value. The tensor cr
correlation is always positive.

The difference between the sign of the vector and ten
cross correlations can be understood from the geome
properties of the projection of their corresponding tempe
ture and polarization sources as anisotropies on the sky@59#.
The sign of the vector and tensor cross correlations is de
mined by respectively@cf. Eq. ~80! of Ref. @59##

sgn@Cl
QE(V)#52sgn@P(V)~ ṫP(V)!#, ~8.1!

sgn@Cl
QE(T)#5sgn@P(T)~ ṫP(T)2ḣ!#. ~8.2!

The sign of the vector cross correlation is therefore alw
opposite to that of the tensor cross correlation.

Each panel in Fig. 2 shows the total vector plus ten
contributions for the various power spectra for a particu
value ofn. Each panel in Fig. 3 replots one of the four pow
spectra for a range of spectral indicesn. As the spectral index
becomes greater than zero, the amplitudes become q
large. Again, this is because forn.23/2, the magnetic cut-
off wave numberkD determines the overall amplitude of th
power spectra. For a scale-invariantn→23 spectral index, a
magnetic comoving mean-field amplitude ofBl51029 G,
and a comoving smoothing scale ofl51 Mpc, at l 5500
for example, the temperature and polarization power spe
are smaller than the amplitudes as expected from sc
invariant density perturbations normalized to COBE~i.e.,
CMB fluctuations in ‘‘standard’’ cosmological models!. But
for n50, the temperature power spectrum is essentiall
factor of 50 whereas the E-type polarization power spectr
is a factor of 104 larger than that expected from the sca
SCDM model atl 5500. Therefore, observational limits wi
be much stronger for causal fields than for scale-invar
fields.

To estimate the potential observational limits on stoch
tic magnetic fields, the induced microwave backgrou
anisotropies must be large enough to be disentangled f
the anisotropies arising from density perturbations. Curr
temperature maps give power spectrum measurements
error bars on the order of 10% out tol 5400 for bins of
width D l 550 @12,14#. The Microwave Anisotropy Probe
~MAP! satellite, which is already in orbit, will make tem
perature measurements out to aroundl 5800 and will reach
the cosmic variance limit,DCl5( l 11/2)21/2Cl , out to l
5400@76#. By the end of the decade, and perhaps within fi
12300
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years, we can expect a cosmic-variance limited tempera
power spectrum measurement tol 53000. Polarization fluc-
tuations will also be detected soon, and the progress in t
measurement will likely lag temperature fluctuations
about a decade. A rough but conservative estimate is th
magnetic-field signal which is at least 10% of the domina
density-perturbation signal will be detectable. The ultima
sensitivity in measuring the temperature power spectrum
say, l 5500 will be significantly better than this, and the e
tent to which magnetic fields can be constrained depe
more on the degeneracy of the magnetic field signal w
shifts in various cosmological parameters. Basic statist
techniques for pursuing such an analysis are well-kno
~see, e.g.,@62#! and will be considered elsewhere.

Using this crude 10% criterion, we can anticipate co
straints on stochastic magnetic fields from upcoming te
perature measurements~e.g., the MAP satellite, currently
taking data! by simply comparing the predicted amplitude
l 5500 to the amplitude of current measurements, which
on the order ofl 2Cl.1029. We assume that the remainder
the power spectrum is used for discrimination between
signals from magnetic fields and other temperature po
spectrum contributors. For the scale-invariant magnetic fi
with n→23, a comoving mean-field amplitude ofBl

51029 G gives temperature anisotropies at the level
;3% of current measurements. Since forn,23/2, l 2Cl

}Bl
4 , the constraint from temperature perturbations on a

moving 1 Mpc scale will be around 1.431029 G, which is
approximately at the same level as the previous constra
for a primordial homogeneous magnetic field@44–46#. The
addition of E-type polarization measurements here will im
prove the constraint, since the ratio of theE-type polarization
to temperature power spectra is larger for stochastic m
netic fields than the dominant density perturbations. Fon
.23/2, the polarization power spectra are comparable to
temperature power spectrum due to the dominant tensor
turbations; thusE-type polarization measurements will yiel
more stringent constraints than temperature measurem
alone. Here we will be conservative and project stocha
magnetic field constraints using temperature measurem
only. For n.23/2, we havel 2Cl}Bl

14/(n15) , where 14/(n
15)541@22/(n15)#(2n13), since l 2Cl}A2kD

2n13 , A
}Bl

2 @cf. Eq. ~2.7!#, and kD}Bl
22/(n15) @cf. Eqs. ~3.3! and

~3.6!#. As n increases towards causal values, the amplitud
the temperature fluctuations increases askD

2n13 and hence the
constraints become stronger. Atn50, l 2Cl at l 5500 is ap-
proximately 531028, which will yield a constraint onBl of

S 531028

0.131029D 25/14

31029 G.10210G.

For the causal fieldn52, the constraint onBl will be as
small as 4310213G. Such constraints will be stronger tha
any current limits on Mpc-scale primordial stochastic ma
netic fields at decoupling.

Ultimately, B-type polarization has the greatest potent
for constraining primordial magnetic fields. This is a clean
signature, because primordial scalar~density! perturbations
4-19
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FIG. 1. The microwave background power spectra for vector~left panels! and tensor~right panels! perturbations from a power-law
stochastic magnetic field with spectral indexn. Solid line representsQQ, dash-dot line representsEE, dotted line representsBB, and
dash-dot-dot-dot line representsQE. The magnetic comoving mean-field amplitude is chosen to beBl51029 G, with a smoothing Gaussian
sphere comoving radius ofl51 Mpc. The magnetic damping cutoff wave numbers for vector and tensor perturbations are given b
~3.3! and ~3.6! respectively. The absolute values of the vector cross correlations are plotted. For the tensor perturbations, we
zin /zeq5109.
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produce none@60,74#. Aside from polarized foreground
emission, the only other expected sources are from prim
dial tensor perturbations and from gravitational lensing@63#.
Tensor perturbations with a spectrum near scale-invar
will give significant anisotropies only at large angular sca
( l ,100), while lensing contributes mainly at small angu
scales (l .500). Stochastic magnetic fields will contribute o
12300
or-

nt
s
r

intermediate scales and should be clearly distinguishabl
foreground emission can be separated from its frequency
pendence, limits onBl from B-type polarization should be
determined purely by measurement error bars onCl

BB . Note
that a primordial magnetic field also generates an additio
B-type polarization signal via Faraday rotation of the CM
polarization@47#. This signal will be negligible compared t
4-20
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FIG. 2. Same as in Fig. 1, except that the microwave background power spectra are for vector plus tensor perturbations
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the direct B-type polarization signal for any frequency o
practical interest.

All of the results in this paper have been obtained
analytic approximations to the exact solutions. Apart fro
the vector cross-correlation power spectrum, the accurac
the results is as good as the quality of the analytic appr
mations to various expressions, except that the vector t
perature case has neglected an additional few percent
perature contribution arising from the angular dependenc
polarization and the vector potential. These approximati
are all discussed in the text; in sum, they are good to wit
20% over the range of parameters considered, with the
ception of the vector temperature case in the regime22.5
<n,22, which is good to within 30%. Meanwhile, accu
racy of the vector cross-correlation power spectrum is o
good to within a factor of 3, since we have neglected the t
terms in Eq.~7.3! arising from the correlation between th
temperature dipole and theE-type polarization radial func-
tions. It is important to realize that errors in these analy
approximations will have negligible effects on the estimat
of the magnetic field limits forn<2 since the amplitude o
each power spectrum scales asBl

4 for n,23/2 andBl
14/(n15)

for n.23/2.
In this paper, we have focused on the magnetic fie

induced microwave background anisotropies forl<500,
where the analysis is relatively simple and free from
detailed microphysics of recombination. We have only co
sidered vector and tensor metric perturbations; for sma
angular scales 500, l ,2000, the magnetic-induced CMB
anisotropies are dominated by vector perturbations@57#. Sto-
chastic magnetic fields will also produce scalar pertur
tions. This case is significantly more complex due to phys
compensation effects and the large number of terms invo
12300
of
i-
-

m-
of
s
n
x-

y
o

c

-

e
-
r

-
l
d

in the relevant expressions. Rough analytic estimates s
that including the scalar results will only modestly impro
the magnetic field constraints given in this paper, since
diation pressure prevents the induced density fluctuati
from growing effectively before recombination and the co
pressional modes are erased up to the Silk scaleLS @41,42#.
Therefore scalar perturbations will generally give a subdo
nant contribution to the microwave background anisotrop

Our results suggest that while it may be plausible for p
mordial stochastic fields withn&0 to result in the observed
galactic fields via adiabatic compression alone, it will
very difficult for causal fields without invoking some form o
dynamo mechanism. In a recent paper@77#, a similar calcu-
lation using the nucleosynthesis bound on gravitational
diation induced by the anisotropic stress of a primordial s
chastic magnetic field yields extremely stringent limits
the galactic-scale magnetic field amplitudes (Bl<10227G)
for fields generated at the electroweak phase transition
earlier, thus ruling out most of the magnetogenesis proce
for primordial fields seeding the observed large-scale coh
ent galactic fields.
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APPENDIX: DERIVATION OF THE VECTOR ISOTROPIC
SPECTRUM

Our objective is to derive the vector isotropic spectru
uP (V)(k)u2 defined in Eq.~2.17!, which will be useful for
calculating vector CMB power spectra. Using Eq.~2.14!, the
two-point correlation function ofP i

(V) is given by

^P i
(V)~k!P i

(V)* ~k8!&5Pibk̂aPid8 k̂c8^tab
(B)~k!tcd

(B)* ~k8!&,
~A1!

wherePid8 5d id2 k̂i8k̂d8 . We simplify our calculation by split-
ting the electromagnetic stress-energy tensor into two pie
t i j

(B)(k)5t i j
(B,1)(k)1t i j

(B,2)(k) where

t i j
(B,1)~k![

1

~2p!3

1

4pE d3p Bi~p!Bj~k2p!, ~A2a!

t i j
(B,2)~k![2

1

~2p!3

1

8p
d i j E d3p Bl~p!Bl~k2p!.

~A2b!

The two-point correlation function of the electromagne
stress-energy tensor in Eq.~A1! will now be described by a
sum of four two-point correlation functions:
12300
s:

^tab
(B)~k!tcd

(B)* ~k8!&5^tab
(B,1)~k!tcd

(B,1)* ~k8!&

1^tab
(B,1)~k!tcd

(B,2)* ~k8!&

1^tab
(B,2)~k!tcd

(B,1)* ~k8!&

1^tab
(B,2)~k!tcd

(B,2)* ~k8!&. ~A3!

Only ^tab
(B,1)tcd

(B,1)* & above has a nonvanishing contributio
toward the two-point correlation function ofP i

(V) in Eq.
~A1!, since each of the remaining correlation functions in E
~A3! contains eitherdab , dcd , or both, and will vanish when
they are acted upon byPibk̂aPid8 k̂c8 . We can now rewrite Eq.
~A1! as

^P i
(V)~k!P i

(V)* ~k8!&5Pibk̂aPid8 k̂c8^tab
(B,1)~k!tcd

(B,1)* ~k8!&.
~A4!

We can evaluate the two-point correlation functio
^tab

(B,1)tcd
(B,1)* & as follows. Beginning with the definition o

Eq. ~A2a!, we assume the random magnetic field is Gauss
and apply Wick’s theorem

^Bi~k i !Bj~k j !Bl~k l !Bm~km!&

5^Bi~k i !Bj~k j !&^Bl~k l !Bm~km!&1^Bi~k i !Bl~k l !&

3^Bj~k j !Bm~km!&1^Bi~k i !Bm~km!&^Bj~k j !Bl~k l !&

~A5!
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and the reality conditionBi* (k)5Bi(2k), and finally use
Eq. ~2.1! for the form of the stochastic magnetic field tw
point correlation function to arrive at~see also@58#!

^tab
(B,1)~k!tcd

(B,1)* ~k8!&

5
1

~4p!2E d3p P~p!P~ uk2pu!

3$~dac2 p̂ap̂c!@dbd2~kÀ̂p!b~kÀ̂p!d#1~dad2 p̂ap̂d!

3@dbc2~kÀ̂p!b~kÀ̂p!c#%d~k2k8!. ~A6!

Substitute Eq.~A6! into Eq. ~A4! and defineg[ k̂•p̂, b[ k̂
•(kÀp̂), andm[p̂•(kÀp̂) to obtain the two-point correla
tion function of the vectorP i

(V) :

^P i
(V)~k!P i

(V)* ~k8!&5
1

~4p!2E d3p P~p!P~ uk2pu!

3@~12g2!~11b2!

1gb~m2gb!#d~k2k8!. ~A7!

The integral above is similar to the mode-coupling integ
I 2(k) in Eq. ~11! of Ref. @56#. Although it cannot be evalu
ated analytically, terms within the square bracket are pr
ucts of cosine factors; hence the square bracket itself ca
approximated by unity, which has essentially been done
Ref. @58#. Comparing with Eq.~2.17! gives

uP (V)~k!u2.
1

8~2p!2E d3p P~p!P~ uk2pu!. ~A8!
,

s.

12300
l

-
be
in

Using the expression forP(k) in Sec. II and choosingk̂ to be
the polar axis, the vector isotropic spectrum becomes

uP (V)~k!u2.
~2p!2n19

32

Bl
4

G2S n13

2 D kl
2n16

3E
0

kD
dp pn12E

21

1

dg~k21p222kpg!n/2.

~A9!

The integral overg is

E
21

1

dg~k21p222kpg!n/2

5
1

kp~n12!
@~k1p!n122uk2pun12#, ~A10!

and the expression within the square brackets above ca
approximated as

~k1p!n122uk2pun12.H 2~n12!kn11p, p,k;

2~n12!kpn11 otherwise.
~A11!

Substituting Eqs.~A10! and ~A11! into Eq. ~A9! and evalu-
ating, we finally arrive at the expression for the vector is
tropic spectrum, Eq.~2.18!.
n,

D

ev.

D

@1# P.P. Kronberg, Rep. Prog. Phys.57, 325 ~1994!.
@2# K.T. Kim, P.P. Kronberg, and P.C. Tribble, Astrophys. J.379,

80 ~1991!.
@3# Ya. B. Zeldovich, A.A. Ruzmaikin, and D.D. Sokoloff,Mag-

netic Fields in Astrophysics~Gordon and Breach, New York
1983!.

@4# E.N. Parker,Cosmical Magnetic Fields~Oxford University
Press, Oxford, 1979!.

@5# J.H. Piddington, Mon. Not. R. Astron. Soc.128, 345 ~1964!.
@6# T. Ohki, M. Fujimoto, and Z. Hitotuyanagi, Prog. Theor. Phy

Suppl.31, 77 ~1964!.
@7# R.M. Kulsrud,Galactic and Intergalactic Magnetic Fields, ed-

ited by R. Beck, P. P. Kronberg, and R. Wielebinski~Dor-
drecht, Kluwer, 1990!.

@8# A. Davis, M. Lilley, and O. To¨rnqvist, Phys. Rev. D60,
021301~1999!.

@9# B.P. Schmidtet al., Astrophys. J.507, 46 ~1998!.
@10# S. Perlmutteret al., Astrophys. J.517, 565 ~1999!.
@11# A.D. Miller et al., Astrophys. J. Lett.524, L1 ~1999!.
@12# S. Hananyet al., Astrophys. J. Lett.545, L5 ~2000!.
@13# A. Balbi et al., Astrophys. J. Lett.545, L1 ~2000!.
@14# P. de Bernardiset al., Nature~London! 404, 955 ~2000!.
@15# A.E. Langeet al., Phys. Rev. D63, 042001~2001!.
@16# C.M. Ko and E.N. Parker, Astrophys. J.341, 828 ~1989!.
@17# S.I. Vainshtein and R. Rosner, Astrophys. J.376, 199 ~1991!.
@18# R.M. Kulsrud and S.W. Anderson, Astrophys. J.396, 606

~1992!.
@19# F. Cattaneo, Astrophys. J.434, 200 ~1994!.
@20# A.V. Gruzinov and P.H. Diamond, Phys. Rev. Lett.72, 1651

~1994!.
@21# E. Blackman, Phys. Rev. Lett.77, 2694~1996!.
@22# R. Kulsrud, S.C. Cowley, A.V. Gruzinov, and R.N. Suda

Phys. Rep.283, 213 ~1997!.
@23# K. Subramanian, Phys. Rev. Lett.83, 2957~1999!.
@24# M.S. Turner and L.M. Widrow, Phys. Rev. D37, 2743~1988!.
@25# S.M. Carroll and G.B. Field, Phys. Rev. D43, 3789~1991!.
@26# W.D. Garretson, G.B. Field, and S.M. Carroll, Phys. Rev.

46, 5346~1992!.
@27# B. Ratra, Astrophys. J. Lett.391, L1 ~1992!.
@28# M. Gasperini, M. Giovannini, and G. Veneziano, Phys. R

Lett. 75, 3796~1995!.
@29# M. Gasperini, M. Giovannini, and G. Veneziano, Phys. Rev.

52, 6651~1995!.
@30# T. Vachaspati, Phys. Lett. B265, 258 ~1991!.
4-23



et

.

ein

. D

v.

ys.

l

,

v.

ANDREW MACK, TINA KAHNIASHVILI, AND ARTHUR KOSOWSKY PHYSICAL REVIEW D 65 123004
@31# K. Enqvist and P. Olesen, Phys. Lett. B319, 178 ~1993!.
@32# J. Quashnock, A. Loeb, and D.N. Spergel, Astrophys. J. L

344, L49 ~1989!.
@33# B. Cheng and A. Olinto, Phys. Rev. D50, 2421~1994!.
@34# A.D. Dolgov and J. Silk, Phys. Rev. D47, 3144~1993!.
@35# K. Enqvist and P. Olesen, Phys. Lett. B329, 195 ~1994!.
@36# D. Grasso and H.R. Rubinstein, Phys. Rep.348, 163 ~2001!.
@37# I. Wasserman, Astrophys. J.224, 337 ~1978!.
@38# E.-J. Kim, A.V. Olinto, and R. Rosner, Astrophys. J.468, 28

~1996!.
@39# C.G. Tsagas and J.D. Barrow, Class. Quantum Grav.14, 2539

~1997!.
@40# C.G. Tsagas and R. Maartens, Phys. Rev. D61, 083519~2000!.
@41# K. Jedamzik, V. Katalinic´, and A.V. Olinto, Phys. Rev. D57,

3264 ~1998!.
@42# K. Subramanian and J.D. Barrow, Phys. Rev. D58, 083502

~1998!.
@43# K. Jedamzik, V. Katalinic´, and A.V. Olinto, Phys. Rev. Lett

85, 700 ~2000!.
@44# J.D. Barrow, P.G. Ferreira, and J. Silk, Phys. Rev. Lett.78,

3610 ~1997!.
@45# J. Adams, U.H. Danielsson, D. Grasso, and H. Rubinst

Phys. Lett. B388, 253 ~1996!.
@46# R. Durrer, T. Kahniashvili, and A. Yates, Phys. Rev. D58,

123004~1998!.
@47# A. Kosowsky and A. Loeb, Astrophys. J.469, 1 ~1996!.
@48# E.S. Scannapieco and P.G. Ferreira, Phys. Rev. D56, 7493

~1997!.
@49# D.D. Harari, J.D. Hayward, and M. Zaldarriaga, Phys. Rev

55, 1841~1997!.
@50# J.W. Dreher, C.L. Carilli, and R.A. Perley, Astrophys. J.316,

611 ~1987!.
@51# R.A. Perley and G.B. Taylor, Astron. J.101, 1623~1991!.
@52# G.B. Taylor and R.A. Perley, Astrophys. J.416, 554 ~1993!.
@53# J.P. Ge and F.N. Owen, Astron. J.105, 778 ~1993!.
@54# S. Koh and C.H. Lee, Phys. Rev. D62, 083509~2000!.
12300
t.

,

@55# D. Lemoine~unpublished!.
@56# K. Subramanian and J.D. Barrow, Phys. Rev. Lett.81, 3575

~1998!.
@57# T.R. Seshadri and K. Subramanian, Phys. Rev. Lett.87,

101301~2001!.
@58# R. Durrer, P.G. Ferreira, and T. Kahniashvili, Phys. Rev. D61,

043001~2000!.
@59# W. Hu and M. White, Phys. Rev. D56, 596 ~1997!.
@60# M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Re

Lett. 78, 2058~1997!.
@61# U. Seljak and M. Zaldarriaga, Phys. Rev. Lett.78, 2054

~1997!.
@62# M. Kamionkowski and A. Kosowsky, Phys. Rev. D57, 685

~1998!.
@63# M. Zaldarriaga and U. Seljak, Phys. Rev. D58, 023003~1998!.
@64# J. Ahonen and K. Enqvist, Phys. Lett. B382, 40 ~1996!.
@65# J.A. Peacock,Cosmological Physics~Cambridge University

Press, Cambridge, England, 1999!.
@66# L.F. Abbott and R.K. Schaefer, Astrophys. J.308, 546 ~1986!.
@67# P. Coles and F. Lucchin,Cosmology: The Origin and Evolution

of Cosmic Structure~Wiley, Chichester, 1995!.
@68# J.D. Jackson,Classical Electrodynamics~Wiley, New York,

1975!.
@69# V.F. Mukhanov, H.A. Feldman, and R.H. Brandenberger, Ph

Rep.215, 203 ~1992!.
@70# J.M. Bardeen, Phys. Rev. D22, 1882~1980!.
@71# R. Durrer, Fundam. Cosmic Phys.15, 209 ~1994!.
@72# M. Abramowitz and I. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1972!.
@73# I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series

and Products, edited by A. Jeffrey~Academic, San Diego,
1994!.

@74# M. Zaldarriaga and U. Seljak, Phys. Rev. D55, 1830~1997!.
@75# M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Re

D 55, 7368~1997!.
@76# See the MAP home page, URL http://map.gsfc.nasa.gov
@77# C. Caprini and R. Durrer, Phys. Rev. D65, 023517~2002!.
4-24


