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Microwave background signatures of a primordial stochastic magnetic field
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A stochastic magnetic field in the early universe will produce anisotropies in the temperature and polariza-
tion of the cosmic microwave background. We derive analytic expressions for the microwave background
temperature and polarization power spectra induced by vector and tensor perturbations from a power-law
magnetic field. For a scale-invariant stochastic magnetic field smoothed over a comoving scale of 1 Mpc, the
Microwave Anisotropy Probe satellite has the potential to constrain the comoving mean-field amplitude to be
no greater than approximately>x2l0~° G. Limits improve as the power-law slope increases: for causally
generated power-law magnetic fields, the comoving mean-field amplitude has an upper bound of approximately
4x10 ¥ G. Such constraints will surpass all current limits on galactic-scale primordial stochastic magnetic
fields at decoupling.
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[. INTRODUCTION [35]. As the properties of the primordial magnetic field pre-
dicted vary among these mechanisms, future detections of a
Magnetic fields ofuG strength are ubiquitous in galaxies primordial magnetic field may aid us in identifying the cor-
[1] and clusters of galaxig2]. The origin of these fields, rect magnetogenesis mechanism. On the cosmological front,
however, remains an outstanding problem in cosmology. It ig primordial magnetic field may have affected early-universe
usually postulated that thegeG fields grew either via some processes such as phase transitions, baryogenesis, and nu-
magnetohydrodynamicgMHD) dynamo mechanisni3,4]  cleosynthesigsee[36] for a review. Relic magnetic fields
or via adiabatic compression of a primordial magnetic fieldcould provide a direct source of information about these pro-
during the collapse of a protogalactic clol&-7]. A MHD cesses. A primordial magnetic field may also have influenced
dynamo requires tiny seed magnetic fields of comoving amstructure formation via contributing to density perturbations
plitude 102° G in conventional cold-dark-matter- on galactic scalef37—4(Q and preserving magnetic energy
(CDM-)like cosmological models or even as tinyas ¥ G in Alfvén modes on scales below the Silk damping scale
in a universe with a nonzero cosmological const@itas  during recombinatiof41,42. In short, significant primordial
suggested by recent measurements of type la supernovagagnetic fields would impact both cosmology and particle
[9,10] and the microwave background power spectft+  physics.
15]. On the other hand, the adiabatic compression scenario The presence of a magnetic field in the early universe
requires a far larger primordial seed field with a comovingaffects the evolution of metric perturbations, and as a result,
amplitude of 10° G to 10 1° G. produces temperature and polarization anisotropies in the
Persistent questions about the effectiveness of MHD dyeosmic microwave backgroundCMB). High-resolution

namos[16-23 together with the observation gfG mag- measurements of the microwave background provide a clean
netic fields in high-redshift galaxig4] raise the possibility and model-independent test for primordial magnetic fields.
of a significant primordial magnetic field in galaxies and We demonstrate in this paper that fields large enough to re-
clusters of galaxies. The origin of such a magnetic field result in observed fields via adiabatic compression will likely
mains a mystery. Essentially all viable magnetogenesiteave observable and distinctive fluctuations in the various
mechanisms incorporate speculative ideas in high-energyower spectra of microwave background temperature and
theory, including (among others inflation [24—-29, elec- polarization fluctuations.
troweak [30,31] or QCD [32,33 phase transitions, charge  Substantial progress has been made in understanding the
asymmetnf34], or a ferromagnetic Yang-Mills vacuum state effects of a primordial magnetic field on the CMB. The Far

Infrared Absolute Spectrophotomet@IRAS) upper limits

on chemical potentiak and Comptony distortions in the

*Email address: andymack@physics.rutgers.edu CMB blackbody constrain the present strength of the mag-
"Email address: tinatin@amorgos.unige.ch netic field with comoving coherence length between 400 pc
*Email address: kosowsky@physics.rutgers.edu and 0.6 Mpc to bé8,<3x10 8 G [43]. The case of a ho-
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mogeneous magnetic field has been considered by sevettflose from vector and tensor perturbations and hence will not
authors. The best current constraint on the primordial homobe considered hergee Sec. VI

geneous  magnetic  field strength  is By<3.4 In Sec. Il we derive the power spectrum for a primordial
X 107%(Qoh2)Y? G (hs is the present Hubble constant in stochastic magnetic field. We then project the vector and ten-
units of 50 km §! Mpc™1), obtained by doing statistical sor pieces from the electromagnetic stress-energy tensor,
analysis on the 4-year Cosmic Background Explo@®BE)  from which we calculate their two-point correlation func-
data for temperature patterns of a Bianchi type VIl aniso+ions and derive their isotropic spectra. Details of the deriva-
tropic spacetimg44]. A primordial homogeneous magnetic tion of the vector isotropic spectrum are presented in the
field can produce distortions of the CMB acoustic peaks vigAppendix. Section Ill computes the magnetic damping scales
fast magnetosonic wavéd5]; meanwhile, Alfves wave ex-  of the induced vector perturbations at decoupling and tensor
citations can amplify vector perturbations and induce addiperturbations at matter-radiation equality. In Sec. IV we re-
tional correlations in temperature multipole momed]. It view the vector and tensor contributions to the metric tensor
is shown in Ref[47] that a primordial homogeneous mag- and give their corresponding evolution equations. We obtain
netic field of present strength 18 G at decoupling can in-  sojutions to these equations, which can be expressed as func-
duce a measurable Faraday rotation in the CMB polarizatiogons of the magnetic-induced isotropic spectra derived in
of 1° at a frequency of 30 GHz. Additional CMB polariza- gec ||, Using the total angular momentum method of Ref.
tion effects arising from a primordial homogeneous magneti¢sg) e compute analytically the CMB power spectra for
f!eld via Faraday rotation include ap_anty-odd cross Correla’[emperature in Sec. V, polarization in Sec. VI, and the
tion between temperature and polarization anisotropi& temperature-polarization cross correlation in Sec. VII. Sec-

and the depolarization of the original CMB polarizatia9) tion VIII concludes with the physical interpretation of these

which leads to a reduction in the damping of temperature;esults and a discussion of current and future limits on pri-
anisotropies on small angular scales. P

The case of a stochastic magnetic field is perhaps morg‘c’rdial magnetic fieldg from the microyvave background.
realistic, because such fields are observed within galaxy clud0r the vector perturbations, tietype is slightly larger than
ters [50-53 and predicted by all causal magnetogenesidh® E-type polarization power spectrum, whereas Exg/pe
mechanismg36]. Some numerical estimates of CMB tem- polarization and the cross-correlation power spectra are ap-
perature and polarization power spectra from density pertu,proximately identical. For the tensor perturbations, the polar-
bations induced by a primordial stochastic magnetic field arézation power spectra are actually comparable to the tem-
presented in Ref54], whereas corresponding analytic esti- perature power spectrum fon>—3/2, wheren is the
mates, though somewhat crude and valid only for temperamagnetic field power-law spectral index. As we will show in
ture anisotropies on large angular scales, are given in Refec. lll, the tensor perturbations are damped on smaller
[55]. Effects of Alfven waves induced by a primordial sto- scales than the vector perturbations. The magnetic cutoff
chastic magnetic field on CMB temperature d@ype po- wave number determines the overall amplitude of the CMB
larization anisotropies are considered in R¢ES] and[57]  power spectra, so the tensor-induced CMB anisotropies will
respectively. Finally, a primordial stochastic magnetic fieldbe larger than the vector anisotropies for —3/2. For a
also generates gravitational waves; the resulting tensor CMBcale-invariant stochastic magnetic field smoothed over a co-
temperature power spectrum is given in R&8]. moving scale of 1 Mpc, near-future microwave background

Although a variety of effects of a primordial stochastic temperature measurements will constrain the comoving
magnetic field on the CMB have been investigated, the remean-field amplitude to be no greater than approximately 2
sults are fragmented and a systematic approach is lackings 10~ ° G. Limits improve as increases: for causally gen-
Besides the temperature power spectrum from tensor pertuerated power-law magnetic fields witi=2, the comoving
bations given in Ref.58], no other CMB power spectra have mean-field amplitude will soon have an upper bound of ap-
been derived. We consider a statistically homogeneous argtoximately 4< 10”13 G. These will be the strongest current
isotropic stochastic magnetic field with a power-law powerconstraints on galactic-scale primordial stochastic magnetic
spectrum, generated at some early epoch of the radiatiofields at decoupling. Eventually, precision measurements of
dominated universe. Based on the computational techniqueéke microwave background temperature and polarization will
in Ref. [58] and the total angular momentum method for give significantly stronger constraints.
calculating CMB anisotropies introduced by Hu and White In this paper, we focus on the induced CMB anisotropies
[59], we have completed a comprehensive and unified ander | <500, where the analysis is relatively clean, simple, and
lytic calculation of all types of CMB power spectra arising free from complications arising from the last-scattering mi-
from a primordial stochastic magnetic field. This paper fo-crophysics. For simplicity, we consider the case of a flat
cuses on the induced vector and tensor perturbations. A prisniverse with a vanishing cosmological constant. We employ
mordial magnetic field acts as a continuous source of vorticthe following notational conventions:is the scale factory
ity until decoupling and gravitational radiation until matter- is the conformal time, overdots are derivatives with respect
radiation equality. The resulting vector and tensorto , and O subscripts denote the present time. We set
perturbations are one of the few cosmological sources o&nd normalize the scale factor to unity today. As usual, Greek
B-type polarization[60,61], along with primordial tensor indices run from 0 to 3 and Latin ones from 1 to 3. All
perturbation$62] and gravitational lensing of the CMB3]. calculations are done in Fourier space, unless real-space de-
Scalar perturbations induce CMB anisotropies smaller thapendence is indicated explicitlias in Sec. . All magnetic
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field amplitudes are comoving values, unless an explicit timeDur primary interest is to constrain the primordial comoving

dependence is displayed. magnetic field strength on a certain comoving length scale.
We therefore convolve the field with a 3D-Gaussian filter
Il. MAGNETIC POWER SPECTRUM AND CORRELATION transform of comoving radius, B;(k)—B;(k)*f, where
FUNCTIONS fi=exp(—\%k?/2), and normalize as
Consider a primordial stochastic magnetic field created at (Bi(X)B;(x))|,=B?2. (2.6)

some specific moment during the radiation-dominated epoch.

The energy density of the magnetic field is treated as a firstfhusB, is the magnetic comoving mean-field amplitude ob-
order perturbation to a flat Friedmann-Robertson-Walketained by smoothing over a Gaussian sphere of comoving
(FRW) background cosmology. In other words, we do notradiusA. The corresponding mean-square vaBﬁe is then
decompose the magnetic field into a large homogeneougiven by the Fourier transform of the product of the power
component and a small fluctuating piece as in most cases gpectrumP (k) and the square of the filter transforiy,

the literature. Within the linear approximation, the magnetic

field evolves as a stiff source and we discard all MHD fluid 5 2 5 , 2A 1 n+3
backreactions onto the field itsg%8]. Prior to decoupling, By\= 5 )3f d>kP(k)[f|“= o2 3 | 2 |
the conductivity of the primordial plasma is very large (2m (2m) 27

[24,64] and for practical purposes can be assumed infinite. In

the comoving frame, this implies the “frozen-in” condition \yith the factor 2 coming from the trace of the projection
E=—VXB, wherev is the plasma peculiar velocity arilis  tensor of Eq(2.2). We require the spectral index>—3 to

the electric field induced by plasma motions. Infinite conducyrevent infrared divergence of the integral over the spectrum
tivity leads to a vanishing eleqtnc field in linear perturbatpn of long wavelengthsk—0. Solving for the normalization
theory @ <1) and allows the time evolution of the magnetic -onstantA and using Egs(2.1) and (2.5), we arrive at the

field to decouple from its spatial structure on sufficiently yo-point correlation function for a primordial stochastic
large scales. As the universe expands, magnetic field linggagnetic field

are simply conformally diluted due to flux conservation:

B(#7,x)=B(x)/a%. On small scales, however, a primordial (27)n+8 Bi KN

magnetic field is damped due to photon and neutrino viscosi- (Bi(k)BJ*(k’)): 5 3 Pij w3 o(k—k"),
ties[41,42. As in Ref.[58], we parametrize this damping by nrs K
introducing a hard ultraviolet cutoff wave numbgs in the 2

magnetic power spectrum. We will compute the magnetic
damping cutoff wave numbeis,’s for both vector and ten- k<kp, (2.8
sor perturbations in Sec. lll. )

A statistically homogeneous and isotropic magnetic fieldVhere ky=2m/x. The spectrum vanishes for all scales

must have the two-point correlation functi¢®8,65 smaller than the damping scake-kp . The conditionn>
—3 guarantees that superhorizon coherent fields are not

(Bi(K)B¥ (k")) = (2m)°P;;P(k) 8(k—k"), (2.1  overproduced; the limit— —3 approaches a §cale-_invariant
spectrum. The case=0 corresponds to a white noise spec-

where trum where we have equal power at all wavelengths. For a
causally generated stochastic magnetic field, we require
Py =8 —kik; (22 =21[58,6561. . o
The induced electromagnetic stress-energy tensor is given
is a projector onto the transverse plane: by the convolution of the magnetic fie[68]
PiPi=Pi, Pijk=0, (2.3 (B)(k) = — | d%p|Bi(p)B;(k—
A i [ ijKj 7 (K) (27 47 d*p|Bi(p)Bj(k—p)
andk;=k; /k. We adopt the Fourier transform convention 1
_§5ijBl(p)BI(k_p)}- (2.9

Bi(k)=f dx exp(ik - x)B;(x). (2.9
It can be geometrically decomposed into scalar, vector, and

Note the projection tensor of E¢R.2) is valid only for the tensor perturbation modeg)=T1{>+I1{ +1{" , accord-
case of a flat universe where perturbations can be deconi?d to their three-space coordinate transformation properties
posed into plane waves; for nonzero spatial curvatures, th@n the constant-time hypersurfa@&9]. In the linear approxi-
analog to a plane-wave basis must be emplogss, e.g., mation, all types of cosmological perturbations are decou-
[66]). A specific magnetogenesis model consists of specifypled from each other dynamically; thus we can consider each
ing the functionP(k), which we take to be a power law  type of perturbation independently. From the ter§f’ we
can construct a vectdﬂi(v) that sources the vorticity pertur-
P(k)=Ak". (2.5  bations, whereas the tensﬁri(jT) sources the gravitational
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wave perturbations. To obtain CMB power spectra, we need’he vector isotropic spectruddI)(k)|2 can be obtained

to derive two-point correlation functions fdi (") and IT{"
and extract their corresponding isotropic
[T (M(k)|2. This is the subject to which we now turn.

A. Vector projection and correlation function

We begin by illustrating how to project from a generic

spatial metric perturbatioag;; its vector piecégi(jv) .Avec-
tor spatial metric perturbation must have the fdi68]

sg¥)= (2.10

i _giRj+§jRiy

where &; is a divergenceless three-vector. A possible con-

struction foré; is given by
gizkmggmi_kikm’knégmn- (2.1

The projection then follows from substituting EQ.11) into
Eqg. (2.10:

891" = (kmdgmi — kikmkndgmn) K
+ (Rm(sgmj_ RijRn(sgmn) Ri
(2.12

Using Eq.(2.12, the vector part of the electromagnetic
stress-energy tensor is given by

=( PinRj + I:)jn,ki)km‘sgmn-

57 = (Pinkj + Pjnki)kminn » (2.13

from which we can construct a vectbr") via contracting
with the unit vectork; ,

(2.19

The physical meaning df[i(v) is clear upon examining the
Lorentz force vector. In the infinite conductivity limit, the
Lorentz force vector in real space is given [55,68

l—Ii(V): H|(]V)R] = PianTEnBrZ -

1
L(0=~ 7—{BOOX[VXB() ]}

_1 1ok2
=1 [B(x)~V]B(x)—§VB xX)f. (2.1

Fourier transforming Eq2.15), extracting the corresponding
vortical componemLi(V) which satisfies the divergenceless
condition L{)k;=0, and comparing with Eq2.14 shows
that

LM =k, (2.16
The vectorII{") will appear in the evolution equations for
vector perturbations in Sec. IV A.

The stochastic and transverse naturell§f’ lead us to
define the two-point correlation function

MM K)TIV* (k))y=Py; [TV (k)| 28(k—K").
(2.17

using Eq.(2.149 for Hi(v), evaluating the two-point correla-

spectration function of the electromagnetic stress-energy tensor of

Eqg. (2.9, and comparing the result with Eq2.17). A
lengthy calculation in the Appendix gives

n+5Rp2 2
|H(V)(k)|22 1 (27)""°By
8m(2n+3) n+3\ s
2 - ky

X | k334

n
mk2n+3), k<kp.

(2.18

The first term dominates wher> — 3/2, whereas the second
term dominates when-3<n<-—3/2. For the casen>
—3/2, the vector isotropic spectrum becomes approximately
white noise(independent ok) and depends on the ultravio-
let cutoff wave numbekp, . This is because the induced elec-
tromagnetic stress-energy tensor of E2,9) is quadratic in

the stochastic magnetic field and the convolution of the mag-
netic field couples the large and small scale modes. Each
mode of the vector isotropic spectrum is then affected by all
scales of the magnetic power spectrum of Ef8) and for

the case ofn>—3/2, the cutoff scale perturbations com-
pletely dominate the large scale modsse also Sec. V of
Ref. [58]). Note that the term within the square brackets is
the normalizationA of the magnetic power spectrum in Eq.
(2.5. To simplify the calculation, we will only consider the
corresponding dominant term for a given spectral index
although including the contributions from both terms is a
straightforward extension of the calculation presented here.
In the neighborhood oh= —3/2, both terms must be in-
cluded to handle correctly the removable singularity.

B. Tensor projection and correlation function

Gravitational radiation is produced by the transverse and
traceless piece of the electromagnetic stress-energy tensor,
given by (see, e.g.[58])

Hi(jT):(Piijn_%Pijpmn)ﬁﬁ%' (2.19

It follows from the transverse and traceless properties of the
tensorHi(jT) that its two-point correlation function can be
written as[58]

TP A)IIE* (k")) =M i [TID () [28(k = k).

(2.20
The tensor structuré;j;, is
Mijim=PiiPjm+ PimPj = PijPim
= 81 S+ Oim ;1 — 8 Sim+ kik; ki ki
+ 8 kikt Simkik;— 8 kikm— djmkiky
— Simkiki — &y kikn, (2.20)
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and satisfies\;;;; =4 and M, = Mjj; =0. The tensor iso-  fluid velocity making an arbitrary angle with the background
tropic spectrumI1(M(k)|? can be obtained using E@.19  magnetic field, and Alfve waves, with the fluid velocity

for Hi(jT) , evaluating the two-point correlation function of the oriented perpendicular to the wave vectorand the back-
electromagnetic stress-energy tensor of &39), and com-  ground magnetic field. Alfye waves induce neither density
paring the result with Eq(2.20. A similar calculation as in  nor temperature perturbations. Fast magnetosonic waves are

the case of the vector isotropic spectrum gives similar in nature to sound waves. Like the acoustically oscil-
lating density fluctuations, they are Silk-damped by radiation
1 (2m)"*5B2 2 diffusion on scales below the radiation diffusion length.

| (k)|?= Meanwhile, slow magnetosonic and Alfivavaves possess

- 16m(2n+3) n+3
2T ——

)k2+3 similar behaviors. During the radiation diffusion regime
2

(k,}hlys>ly,y), these waves either oscillate negligibly or be-
n come overdamped, hence the dissipation of magnetic energy
kan+3+ —k2n+3>, k<Kp . becomes inefficient. It is only upon entering the free-
n+3 streaming regime I(;h§5<l,,,y) before recombination that
(2.22  these waves will suffer additional damping. The resulting
maximum damping scale for these waves is dependent on the
The tensor isotropic spectrum differs from its vector coun-background magnetic field strength and is on the order of the
terpart only by a factor of 2, due to the ratio of traces of theirAlfvén velocity times the comoving Silk scale. Since Alfve
corresponding tensor structur®; and M;;, . Again, the  modes describe incompressible motions, we can obtain the
first term dominates whem> —3/2, whereas the second magnetic damping scales for vector and tensor perturbations
term dominates wher-3<n<—3/2. For the case oh> via computing the damping scales of such modes for a
—3/2, the cutoff scale perturbations completely dominate thgower-law magnetic power spectrum.
large scale modes and hence the tensor isotropic spectrum
depends on the ultraviolet cutoff wave numisgy; the re-
sulting tensor CMB temperature power spectrum then pos-
sesses the well-known behavior of a white noise source, Since vector perturbations induce CMB anisotropies via
12C,1® [58]. We will demonstrate that this is also true for vorticity at recombination, we need to evaluate the Atfve
tensor CMB polarization and temperature-polarization crosg/ave damping scales at recombination for a power-law mag-
correlation. As above, the term within the square brackets igetic field. Around recombination, all Alfve modes are
the normalizationA of the magnetic power spectrum in Eq. overdamped. The modes that suffer the most damping while
(2.5). As with the vector case, we will only consider the overdamped are those in the free-streaming regidie42.

X

A. Vector perturbations

dominant term of Eq(2.22) for a given spectral indexr. For a nonlinear Alfve mode propagating in a uniform back-
ground fieldB, its free-streaming damping scale at recombi-
IIl. MAGNETIC DAMPING SCALES nation is given by Eq(8.11) of Ref.[42]:

The evolution and damping of primordial magnetic fields _ \p \[ . B 1
are studied in Ref§41,43. These authors consider cases for Ko =5~ \/gVaks=5.7x1077| - =g~ Jh =% Mpc,
which either the magnetic field is linearized about a constant 3.1)
background field[41] or a magnetic field with a tangled ’

component of unrestricted amplitude is superposed perpen- ) . _ N
dicularly on a homogeneous field2]. We are interested in a whereL g is the comoving Silk scale at recombination and we

_ 2__
stochastic magnetic field with a power-law power spectrumN@ve assumedge=0.25eV, 1,h"=0.0125, and a matter-

We will first briefly recapitulate the findings of Refsi1,49. ~ dominated universe at recombination. The Ativeelocity
Based on these results, we then proceed to compute the mayga arises from the uniform background field For a linear-
netic damping scales separately for vector and tensor pertuized Alfven mode, we have to replagé, by Vcosé, where
bations for a power-law magnetic field. 0 is the angle between the wave vector and the zero-order
Primordial magnetic fields are damped by radiative vis-background fieldcf. Eq. (108) of Ref.[41]].
cosity, which arises from the finite mean free paths of neu- For a stochastic magnetic field with a power-law power
trinos and photons. Damping of MHD modes by neutrinospectrum, the effective homogeneous magnetic field respon-
viscosity is the most efficient around neutrino decouplingsible for the Alfven velocity can be obtained via smoothing
(T~1 MeV). At that time, the neutrino physical mean free the stochastic field. As in Ref57], we assume the field
path (, gee=10"* cm) and the Hubble lengthH; %, ~5  smoothed over the damping scalg acts as the effective
x10'° cm) are comparable, hence the dissipation of maghomogeneous fielB.;. For each spectral index, Bf
netic energy can only occur on relatively small scales. Phos.\ ~(+3) [¢f. Eq. (2.7)], and By is related toB, through
ton viscosity, on the other hand, damps MHD modes fronysee also Eq(26) of Ref. [58]]
after e" e~ annihilation (T~20 keV) until recombination

(T~0.25 eV); thus it is capable of dissipating magnetic en- k| (n+3)72
ergy on larger scales. There are three types of propagating §eﬁ= B}\(—D) (3.2
MHD modes: fast and slow magnetosonic waves, with the K
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Smoothing the stochastic magnetic field on scales larger than Several comments are in order. First, since the tensor
the damping scale will result in a smaller effective homoge-source contributes earliéat equality than the vector source
neous field, hence a smaller effective Alfveelocity and a (at recombinatioy) tensor perturbations are damped at
larger momentum cutoff wave numbé&p . Since forn> smaller scales as illustrated by Ed8.3) and (3.6). Forn
—3/2 the vorticity source becomes approximately white>—3/2, CMB power spectra are dependent on the momen-
noise (independent ofk) and is kp-dependent[cf. Eq.  tum cutoff wave numbekp and scale with it ak%“”. We
(2.18], a larger momentum cutoff wave numbey will give therefore expect tensor perturbations to generate larger
rise to larger CMB anisotropies in this regime as we will see anisotropies than the vector perturbations in this regime, at
The estimation in Eq(3.2) is therefore a conservative one. least for|<500 that we are considering. Second, in Ref.
Substituting Eq(3.2) into (3.1) yields [58], the magnetic damping cutoff wave number for tensor
perturbations is found to be 4.5 Mpt. This value is de-
rived based on the assumption that the Atfveodes are
undergoing damped oscillatory motions. Our analysis, how-
ever, shows that for the magnetic field strengths considered

B, —2/(n+5)

10°° G

kp~ (1.7 102)2““*5)(

K, (n+3)/(n+5) here, the Alfve modes should be in the overdamped free-
X|—— h¥+5) Mpc!. (3.3)  streaming regime around equality, as also illustrated in Fig. 1
1 Mpc of Ref.[41]. Finally, as pointed out in Ref41], the Alfven

. . damping scale at equality could in principle be larger than
Note that for a given spectral index BY/k; “°xA, whereA -, given by Eq(3.4) since additional damping could arise
is the normalization of the magnetic power spectrum in Eqq e to a possible breakdown of the WKB approximation in
2.9. the regime where the Alfve mode is undergoing over-
damped free streaming. In the absence of an accurate quan-
B. Tensor perturbations titative treatment for Alfve damping scales in this regime,
Since the sourcing of gravitational radiation after the uni-Ed- (3.4) is our best-educated guess. Nevertheless, we cau-
verse becomes matter-dominated is negligiskee Sec. IV B tion the readers that with a possible larger damping sqgte
and also Ref[58]), the relevant tensor damping scales arethan that given by Eq(3.4), the induced tensor anisotropies
the Alfven wave damping scales at equality. As in recombi-for n>—3/2 will be reduced accordingly.
nation, all Alfven modes are also overdamped around equal-
ity, hence the modes that are undergoing free streaming sufyy METRIC PERTURBATIONS AND THEIR EVOLUTION
fer the most damping. The situation is clearly depicted in
Fig. 1 of Ref.[41]. The Alfven wave free-streaming damping A primordial stochastic magnetic field generates CMB
scale at equality ifcf. Eq.(106) of Ref.[41] and Eq.(8.10 anisotropies via its gravitational effects on the metric tensor.

of Ref.[42]] The full metric tensor can be decomposed into its back-
ground and perturbation piecegaw=g£f’y)+ 69, for a flat
k_l_)\_DN\/EV | dift T 34 universe with the usual conformal FRW metrigﬁf’y)
0 =7, V5Vaby (Ted B4 _a2,  where 7,,~diag(-1,1,1,1) is the Minkowski

_ metric tensor. The vectdSec. IV A) and tensofSec. IV B
where L‘i‘ﬁ(Teo) is the photon comoving diffusion length at perturbations are calculated separately; scalar perturbations

equality, will generally result in smaller CMB anisotropies compared
to vector and tensor contributions, as argued in Sec. VIII, and

diff Teq |2 L, Qoh? |12 so will not be considered here. We review the various metric

Ly (Teg~19. 0.25eV 0.012 Mpc tensor contributions and give the corresponding evolution

equations due to a primordial stochastic magnetic field. We
~0.41h~% Mpc, (3.5 then obtain solutions to these equations, which can be ex-
pressed as functions of the isotropic spectra derived in Sec.
assumingT¢=5.5 eV(Qoh?), Qp=1, andQph?=0.0125. II.
Substituting Eq(3.5) into Eqg. (3.4), a similar manipulation

as in the case of vector perturbations gives A. Veector perturbations
B —2/(n+5) Vector perturbations to the geometry are described by two
kp~(8.3% 103)2/(n+5)( _—g divergenceless three-vectafsand & with the general form
10°G [see Eq(2.10 alsq|
(n+3)/(n+5) R R
5 Ky he+5) Moc L. (3.6) sgb))=—a%, 591(,'\/): a?(&kj+gky). 4.7
1 Mpc?

Vector perturbations represent vorticity; the divergenceless
Note again that for a given spectral indax B}Z\/k';”ocA, condition for vectors{; and ¢; guarantees the absence of
where A is the normalization of the magnetic power spec-density perturbations. Vector perturbations exhibit gauge
trum in Eqg.(2.5). freedom, which arises because the mapping of coordinates
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petween Fhe perturbed physical manifold and the background QO+ T(v(yY)—vE,Y))=0, (4.8
is not unique. From vector§; and &, we can construct a

gauge-invariant vector potentisi = ¢;+ & /k that geometri- _ a - LM(k)

cally describes the vector perturbations of the extrinsic cur- Qpit — Q= 50 v = —.
vature[70,71. We now exploit the gauge freedom by explic- a R a*(ppt Pp)

itly choosing ¢; to be a constant vector in time; it follows (4.9

M= _g2y. i - I
that 5gg, a’V;. Vector perturbations of the stress- . .o aboveQ., ,=v{)—V represent vorticities of photons
energy tensor can be parametrized by a divergenceless three- S [ . . :
vectorv(Y) that perturbs the four-velocity,, = (1,0,0,0) of a and baryons;r=ng.ora is the differential optical depth

stationary fluid element in the comoving frafws]; whereng is_ the free electron density anc is thg Thomson
cross sectionR=(p,+ py)/(p,+pP,)=3pp/4p, is the mo-
su,=(0xV/a). (4.2  mentum density ratio between baryons and photonsL.afd
is the vortical piece of the Lorentz force given by E2.16).
We can now construct a gauge-invariant, divergencelessgain, we neglect the small effects due to the vector aniso-

three-vector termed the “vorticity,” tropic stress of the plasma. This set of vector conservation
W) equations is similar to the one that describes Alfveaves in
Qi=vi"=V;. (4.3 Ref.[45)]. Equations(4.4), (4.6), (4.8), and(4.9) are not in-

o _ _ dependent. Using the definitions &f L{"), and the fact that
Two Einstein equatlons govern vector perturbatlon eVOIU;(Py+ p7)0C1/a4, and SOlVing the Euler equations in the tlght'

tion. The first describes the vector potential evolution unde ; e (V) (V) . :
. ) . . S coupling approximatiomw';’=vy;’, we obtain the followin
the influence of a primordial stochastic magnetic field: PIng app Wi = Vb 9

approximate solution for the vorticity:
167G (k) )
Wl s k) )

a‘k n (1+R)(pyotpPyo)

where I1{")(k) is given by Eq.(2.14 and we neglect the Note that the same result can be obtained using E4S)
vector anisotropic stress of the plasma, which is in generaind (4.6). The factor 1R represents reduction in the vor-
negligible. The magnetic field source terrbE")(k) and ticity due to the Compton drag of baryons. At decoupling,
Hi(jT)(k) are expressed in terms of present comoving magthe momentum _density ratio between baryons and photons
netic field amplitudes. Since both of these terms depend oRas an approximate value dRye=3pno/4p,0Zdec=0.35,

the magnetic field quadratically, the explicit time dependencévhere we have assumeg.e=1100 and(),h?=0.0125. The

of the magnetic stress is given Bi( 7,k) =II(k)/a*. In the vorticity solution of Eg.(4.10 is valid for perturbation
absence of the magnetic source term, the homogeneous stavelengths larger than the comoving Silk scalg where
lution of this equation behaves liké = 1/a2. The complete Photon viscosity can be neglected compared to the Lorentz

solution including the magnetic source is simply force. Fork>ks, whereks=2m/Lg, the Euler equation that
includes the viscous effect of photong] 6]

: a
Vi(n,K)+27 Vil k)=— (4.10

167GIT{V) (k)
u. (4.5

Vi(n,k)=— 4
' a’k (gpﬁpb

O+

a Ky LM(k)
pba'f‘?)(li— a4 ’ (41])

During the radiation-dominated epoch we haven; a mag- . ) ) :
netic field therefore causes vector perturbations to decay leg¢here x=(4/15)p,L ,a is the photon shear viscosity coffi-
rapidly (14 instead of 14?) with the universe’s expansion. cient andL,=7"' is the photon comoving mean-free path.
The second vector Einstein equation is a constraint that rdn this regime, the vorticity can be obtained using the
lates the vector potential to the vorticity: terminal-velocity approximation. Equating the photon vis-
cosity term to the Lorentz force, we obtdib6]
—k?Vi(n,k)=167Ga%(p+p)Qi( 7,k). (4.6)
" (k)
Vector conservation equations can be obtained via cova- Qi(n,k)= (KL/5)(potpog)’ k>ks. (412
riant conservation of the stress-energy tensor. Since vector )P0 Py
perturbations cannot generate density perturbations, we have The next step is to introduce two-point correlation func-
tions for the vector potential and the vorticity. Defining their
8y=,=0. (4.7 two-point correlation functions as in E(R.17) for the vector
11", and taking ensemble averages of E@&5), (4.10,
and (4.12 the rms isotropic spectra for the vector potential
and the vorticity are simply

Before decoupling, photons are coupled to baryons via Th
omson scattering. The magnetic field affects the photon
baryon fluid dynamics via the baryons; we therefore intro-
duce the Lorentz force term into the baryon Euler equation. 167GITV (k)
The Euler equations for photons and baryons are respectively __167GII"(k)n

V(7,k) : (4.13
[55,59 a’k
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KITM (k) 7 functions. Assuming the primordial stochastic magnetic field
(T R (pot pog)’ <Ks; is generated afp;,,, a Green function technique yields the
Q(5,k)= (V)’/o 7 (4.14  following inhomogeneous solution for the radiation-
I (k) k> ke dominated epoch:
(KL,/5)(pyotPy0)
o . 27GI O (k) Z2m?,
Vector perturbations induce CMB temperature anisotro- h(7,k)=
pies via a Doppler and an integrated Sachs-Wolfe eff&@it (3— 2\/§)k77
. . 0o .. m - sinfk(n—n")]
®(V)(no,k,n)=—v(v)-n|zg + dyV-n, (4.15 Xf dp' —————  7<7eq
ec Ndec in Y
where n4.. represents the conformal time at decoupling. The (4.20

decaying nature of the vector potentialimplies that most where denotes the conformal time at matter-radiation
of its contributions toward the integrated Sachs-Wolfe terme ualitne'?'he maanetic source term on the riaht hand side of
are aroundnge.. Neglecting a possible dipole contribution d Y- g 9

. Eq. (4.18 decays more rapidly withy in the matter-
(V)
due tov'™ today, we obtairj46] dominated epoch than in the radiation-dominated epoch. An

) ) o - approximate solution, therefore, can be obtained by matching
O™ 00,k =V (7ec, K) - =V (7gec k) -1 the radiation-dominated inhomogeneous solution of Eq.
= Q) ﬂdecvk)'ﬁ- (4.16 (4.20 to the matter-dominated homogeneous solutions at

equality. Retaining the dominant contribution, we ob{&8]
Vector CMB temperature anisotropies are due to the vorticity
i . Z; jo(k
at decoupling. h(n,k):4angze(}n(z—m) kH(T)(k)JZ(kﬂn) e
eq

B. Tensor perturbations (4.21

Tensor perturbations to the geometry are described by
. V. TEMPERATURE POWER SPECTRA
59l =2a’h;;, (4.17) .
We employ the total angular momentum representation
whereh;; is a symmetric, transversdi(k;=0), and trace- ntroduced by Hu and Whit¢59] to compute the CMB
less h;;=0) three-tensor. Unlike vector perturbations, tenso?OWer spectra_lr)duc.ed.by. a primordial stochast]c magnetic
perturbations have no gauge freedom. field. By combining intrinsic angular structure with that of
The tensor Einstein equation that describes the evolutio(’é!-‘e plane-wave spatial dependence, this representation ren-

of gravitational waves sourced by a stochastic magnetic fiel ers a transparent description O_f CMB anisotropy formation
is as each moment corresponds directly to an observable angu-

lar sky pattern via its integral solution of the Boltzmann
) a equations. The CMB temperature power spectrum today is
hij(n,k)+25h”—(n,k)+k2hij(77,k)=87rGHi(jT)(k)/a2, given by Eq.(56) of Ref.[59]:

(4.18

whereII{"(k) is given by Eq.(2.19 and as in the case of
the vector perturbations, we neglect the tensor anisotropic
stress of the plasma, which is in general negligible. Gravitawhere X stands forV or T, and ©®,’s are the temperature
tional waves induce CMB temperature anisotropies by caugluctuationAT/T moments. Note that E@5.1) is larger than
ing photons to propagate along perturbed geod¢s81:  the corresponding expression in Rg9] by a factor of 2 as
we have already taken into account the fact that both vector
T ~ |7 : ~on and tensor perturbations stimulate two modes individually,
0M(nok,n)=| “dyhj(nknn;. (419 corresponding tan= *1,+ 2 respectively in the notation of
Ref.[59]. Our strategy is to evaluate the Boltzmann tempera-
Our task is, therefore, to obtain the solution fgy. To cal-  ture integral solutions to obtain th@,’s due to the vector
culate tensor CMB power spectra, we need to define twoand tensor perturbations. We then substitute them into Eq.

point correlation functions fon;; andh;; as in Eq.(2.20 for (5.1 to yield the corresponding CMB temperature fluctua-
! ! tions spectra. Though the tensor results are already given in

Ref. [58], the vector results derived here are new.

|(X)(770ak) |(X)*(770:k)
21+1 21+1 ’

4
cf“’@(x):;f dk K2 (5.1)

7dec

the tensorﬂi(jT), with rms isotropic spectra andh respec-
tively. Solutions to the homogeneous equation WitH’ (k)
=0 are easily obtained. During the radiation-dominated ep-
och, axyn and hxjy(kn) or yg(k#), while during the
matter-dominated epochaxzn? and hoj,(k#n)/ky or The Boltzmann temperature integral solution for vector
y1(k#n)/kn, wherej, andy, are the usual spherical Bessel perturbations is given by Eq§61) and(74) of Ref.[59]:

A. Vector temperature power spectra
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@I(V)( 70,K) 70 W) (1Y) tion, we consider only the term proportionaljtﬁv) in com-
T fo dne {(rvy” +V)ji " [k(no—n)] puting the vector temperature integral solution. Including the
small corrections due to the angular dependence of polariza-
+ TPV @K (o= M1 (5.2  tion coming from the term proportional V)] |(2V)_ and also
the vector potential will yield an additional contribution of at
where most a few percent toward our final estimate of the vector

temperature power spectra. The combinatiaer ™ is the
V) \/— k V) J3 k conformal visibility function, which represents the probabil-
P 9 _U 9 -0 (5.3 ity that a photon last scattered withityy of » and hence is
sharply peaked at the decoupling period. Fe500, we can
is the vector polarization source that is generated when tigiPproximate the vector temperature integral solution reason-
coupling breaks down on small scales, where the photon difably well as
fusion length and the perturbation wavelength become com- W) _
parable. The approximation in E€.3) is obtained using Eq. 01" (70,k)  I1+1) K J1(kn0)
(4.3) and noting that) dominatesV at decouplindcf. Egs. 2141 2 (7dec:k) kno .6
(4.13 and(4.14)] for k=0.006 Mpc !, resulting inV con-
tributing negligibly compared té) upon integrating ovek’s  using Eq.(5.4) and the fact thaty> 74... The vector CMB
to obtain the vector temperature power spectrum in(&d). temperature anisotropies are due to the vorticity at decou-
Unlike scalar perturbations, vector perturbations cannot propling, as also illustrated by E@4.16. Substituting Eq(5.6)
duce compressional modes due to the lack of pressure sujmto the CMB temperature power spectrum expression of Eq.
port. In the usual case of vector perturbations in cosmologi¢5.1) and using Eqs(4.14 and(2.18, we obtain
cal fluids without a magnetic field, tight-coupling expansion
of photon and baryon Euler equations gi\tf§,¥ ~V, result- 00(V)_
ing in the vector polarization source being dependent on th&; 7 (+1)
rz(

4
( )2n+11 Uan (kD770)2n+3

2n+6
3 (2n+3) (k)\nO)

kpdk
f k3

vector potential insteaibee Eq(94) of Ref.[59]]. A primor-

dial stochastic magnetic field thus enhances vector polariza-
tion by sourcing the vorticity. The vector temperature radial
functionsj{*¥) andj(?"), which describe how distant sources
contribute, are given by Eq15) of Ref.[59]:

Mdec fs +
(1+Rde<~)2 0 L2

y dec
o D) o PRSI LS P 57
;)= 5 < n+31{kp 1+ 12AK70), :
310+1) d [j(x) where we have defined the Alfwe velocity as vay
§ ()= _( ! ) (5.4  =B\/[47(p,o+P,0)]"?=3.8x10 %(B,/10 °G).  Note
dxi x that (2m)2" 1% % {12 (n+3)/2]k2™ 01 A%, where A is

The optical depth betweer and 7, is defined asr(7) EgeS)normallzatmn of the magnetic power spectrum in Eq.

=[dn" ('), thusd/dz= — 7. Integrating Eq/(5.2) by Depending on whethen>—3/2 or —3<n<—3/2, we

parts usingde /dp=re"" and j*V)(x)=3[j(*"(x)]’ retain only the corresponding dominant term of the vector

and Eqgs.(4.3) and (5.3, we obtain isotropic spectrum in Eq5.7). First consider the case>

—3/2, where the vorticity source becomes approximately

(1v) white noise(independent ok) and thaiI1®)(k)|? is depen-

I Lk(70— )] dent onkp. To obtain an analytic estimate of the integral
fgsdk k;\zﬂ,z(kno), consider the more general integral
Jo3dx XIP(x) for somep=0. SinceJ{(x) only begins to
contribute to the integral significantly whex=l, in this

5 limit, we employ in the integral thd,(x) asymptotic expan-

(5.5 sion for large argumen{72]: J,(x)~+/2/(mwx)cogx— (2l

For the usual vector perturbations without a magnetic field1)7/4]. Approximating the oscillations by a factor &f

the term proportional tg{*¥) is strongly suppressed since then gives

v~V at decoupling{59] and hence=0 as mentioned

®|(V)(7707k) .
T . dnpre 71 Q

3k
+ g;msvw”[k( 70~ 77)]]-

p_|p

above Here we have a primordial stochastic magnetic field Xs| , p>0;
sourcing(); the term proportional tq'),(zv) is then suppressed fxs 200\ fxs 200 pm

relative to the term proportional tf*") due to the factor 0 BOEI) | R 1 [xs 0
k/7. Moreover,j(*) has less angular power compared to 0T P
j(™) (see Fig. 3 of Ref[59]). Thus to simplify the calcula- (5.9
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The approximation tends to underestimate; it is good to &or —3<n<-—2, numerical evaluation shows that for
few percent forp>1 and is within 30% for &p<1. The —23<n<-2, the |ntegra|fk5dk K432 (k7o) can be

: k

integral [ °dk kfﬂ,z(kno) corresponds to the cage=1;  well-approximated by [(ks7o)?" 4—12""4]/[27(n

the remaining integral on the rhs of Eq(5.7)  +2)53""°], which underestimates by at most 30—40 %. The
kadk k‘3J|+1,2(k7;o) can be well-approximated bykg3 resulting temperature power spectrum is then formally iden-
—kD 3)/(37 ), which is good to within 20%. As in Eq. tical to that of the case-2<n<-—3/2:

(5.8), this approximation is obtained via employing the

(27T)2n+10 / 2
Bessel function asymptotic expansion for large argumenqzC@@(V) 7dec 770)
which is justified sincekny>1 for ks<k<kp and|=<500. 4 1+ Ryec
Keeping only the highest-order term linwe obtain the vec- 4 2
tor CMB temperature power spectrum for — 3/2: v vanl
n+3
2 ——|(2n+3)(n+2)(n+3)(ky 70)°"*°
|2C|®®(v):(277)2n+10 oal’ (Kp70)>"** 2 *
2" ey o™ X[(kem)" 4= 114, ~2.3<n<-2.
2 (5.12
Ndec! M0 z 7o . I .
X 1+ R (kgmo—1)+ Eat For —3<n=—2.3, the dominant contribution to the integral
dec v de fgsdk KeNt432, (k7o) is coming from long wavelengths

k—0; we therefore approximate by integrating oketo in-
, n>-=3/2. (5.9 finity. The resulting integral can be evaluated analytically by
using 6.574.2 of Ref.73],

y 1 1
(ks7}0)3 (ko 770)3

The dominant contribution comes from the term proportional - Y
to (ks7o—1), which arises from the nondamped vorticity for J dk Jy(ak)Jg(ak)k
k<ks. The remaining term arising from the damped vortic-

ity for ks<k<kp gives a negligible contribution o£1%. A a1 (b)T p+q—b+1)
numerical evaluation of Eq5.7) shows that its second inte- 2
gral on the rhs, which arises from the damped vorticity, al- - . [—p+a+b+1) [p+q+b+1| [p—gt+b+1|’
ways contributes negligibly<1%) compared to its first in- 2°T 5 5 r 5
tegral for I<500 and all cases of. Therefore, we will
neglect the damped vorticity contribution when evaluating _
the remaining vector CMB temperature power spectra. Re(p+q+1)>Reb>0, a>0; (5.13
For —3<n<-3/2, the needed integral is
fksdk KRN +432, | (ko). We must consider three cases de-and 8.335.1 of Ref.73],
pending on whether the exponenh24 is greater than, 1
equal to, or less than zero. Fer2<n<—3/2, using Eq. 27 <
(5.8 for p=2n+4, we obtain I'(2x)= \/; FOor| x+ 2/ (5.14
120000 _ (2m)?M 0 pged 10\ Keeping only the highest-order term linwe finally obtain
! 4 1+ Ryec
04 n|4 I2C®(V):(27T)2n+10 ndec/770 2 FZ(—n—Z)
% — AN | 22n+7 1+ Ryec o 4 [‘2(”+3)
n —on— - -
r? — (2n+3)(n+2)(n+3)(ky 70)2""° ( ) 2
2n+8
X[(Ksno) 2™ 4—1214],  —2<n<—3/2. nl
(5.10 (2n+3)(n+3)(k)\770)2n+6
—-3<n=s-2.3. (5.19

For n=—2, again using Eq(5.8) for p=0, we obtain
Our approximation overestimates, as expected, and the accu-
Naed 70\ 2 Vanl? Ks7o racy improves a® decreases since more contrlbufupn arises
1R e from smallk and hence the result will be less sensitive to the
dec/ upper limit of the integral, which we have approximated to
be infinity. It is good to within 30% for-2.5<n=<-2.3 and
n=-—2. (5.11 a few percent for—3<n<-—2.5. The temperature power

12cPOM=2(2m)"

Ky 770)2
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spectrum of each case above has the shmed ky (with 1h
k, ,ks—kp) dependence as the corresponding spectrum in- P(M=— 3 (5.20
duced by a primordial homogeneous magnetic fidil (the T

correspondence between the spectral index of Réi. and

ours isn—2n+3). For the sake of completeness, we note!S the tensor polarization source aj{d" is the tensor tem-

that the vector potential contribution arising from t{fg") ~ Perature radial function given by EGLS) of Ref. [59]:

term in Eqg. (5.5 will induce temperature power spectra 3(1+2)1j(x)
12CP®Moc|® for n>—3/2 andI?CP® Mo |276 for —3<n i@Dx=1/= T (5.21)
<-3/2. 8 (-2 x

We now consider the case= —3/2 and show that this
apparent singularity is removable by considering both term
of the vector isotropic spectrum in EQR.18. In the limit
n=—3/2+¢, we have

0M(70,k) 8 (I+2)!
4 | 0K °
e~ 270 B 2i+1  2"N3 (-2

16 T12(3/14)k3

Using Eg.(4.21) and definingx=k# and xo=kz,, we ap-
?)roximate the tensor temperature integral solution see
also Eq.(18) of Ref.[58]]

Z.
G ngzedn( Z_m)
eq

XH(T)(k)fXOdeZ(X) Ji(Xo—X)
0

2¢e 2e\ "1 k\?% .
1—(1‘?)(“?) (g) - X omx7
(5.22

(5.1
i ) o The integral above can be numerically approximated as in
Upon expanding the expression within the square bracket tgq (19) of Ref. [58],

O(e) and using the smalt-expansion to the first order, i.e.

N
2¢

In(1+x)~x for x=(k—Kkp)/kp , we obtain X0 JoAX) [1I(Xg=X) (%o Jgip(X) Jj4 12 Xo—X)
dx ——== dx
6 4 0 X (x—x)? 2Jo X3 (xg—x)%2
v , (2m) By 5 k
|ITM (k)| =16 Tzai33 k) n~—3/2.
6 rA3mkii3 ko I f 4,252 Ji12X0— %)
(5.17) 20 0 X (XO—X)3
The same result can be obtained via direct substitutiom of
=—3/2 in Egs.(A9)—(A11). Using Egs.(5.17) and(5.8) for 7 [31145(%0) (5.23
p=1 and 2, a similar calculation as in E¢.9 gives - 50 V2 xg ’ ‘
06 27" | Dged M0\ ? z/‘A)\I4 where in going from the second to the third line, we have
12CO0V) = ; )
I 4\ 1+Rged T2(3/4)(k, 70)3 inserted a factor of/3/2 for better numerical agreement and
o used 6.581.2 of Ref73]:
10 (ksﬂo)2_|2 a
X g(ksﬁo—w_w , fo dx X~ (a—x) " 1,(x)I4(a—x)
n~—3/2, (5.18 -
2 (=)™ (b+p+m)I'(b+m)
thus showing that the singularity at=—3/2 is indeed re- B a} m=0 m!T'(b)I'(p+m+1)
movable. For the rest of the paper, we will not produce ex-
plicit power spectrum expressions for the case —3/2. X(b+p+g+2m)dpiprg+2m(d),
Readers who are interested can easily derive the correspond-
ing results via a straightforward extension of the calculation Re(b+p)>0, Req>0. (5.29

outlined above. . . S
Numerical evaluation shows that the approximation in the

second line of Eq(5.23 is good to 10% foit <=500. Substi-
tuting Eq.(5.23 into Eq. (5.22 yields
The Boltzmann temperature integral solution for tensor

B. Tensor temperature power spectra

perturbations is given by Eq&1) and (74) of Ref.[59]: 0V (ng,k) 7 2 [(1+2)!
AT L2
21+1 50 (I1—=2)!
0V (ny.k . .
O (" e 5P DIk m)],
21+1 0 | G2z Jn(ﬁ”l]m(k) Ji+3(kmo)
(519 To%e Zeg (kmo)®

where (5.29
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Using Egs.(2. 22) (5.1), and(5.25, we obtain

COO(T)_ (2 )2n+12|2(|_

19000 D(1+1)(1+2)

2 B;\l

x| G Uozeqln( Zeq) 2( n+ 3)
r (2n+3)
(anO)2n+3

(k>\7lo)2n+6 0
)2n+3

k
dk k4

x| 1+ Jiakno).  (5.26

n+3

ko

Note that (27)2"" 1B /{T'2[ (n+3)/2]k?"*®} =« A2, whereA
is the normalization of the magnetic power spectrum in Eq.
(2.5.

For n>-3/2,
kp-dependent,
spectrum possesses the well-known behailA@;<|3. The
integral ngdk k™ 432, 5(kn) can be evaluated using Eq.
(5.13; retaining only the highest-order term linwe obtain

=l

(Kp70)*"*3
2n+6"’

the gravitational wave source is

|2C|®®(T)_ 7500(2,“.)2n+ 11[67] Zeqln

NE
X

n+3
l"2 > (2n+3) (kﬂ?o)

n>—3/2. (5.27)

For —3<n<-—3/2, a similar calculation gives

el

Bin
(2n+3)(n+3)

I 2C|®®(T) — 22n 5

2n+12
625(277)

r'i—-2n)
n+3
2

r2(1- n)l“z(

, —3<n<-3/2. (5.29

| 2n+6
X
(M’?o)

Equivalent tensor perturbation results are given in B2~
(22) of Ref.[58].

VI. POLARIZATION POWER SPECTRA

Polarization of the CMB comes in two flavois:type and
B-type with electric (1)' and magnetic £ 1)'"? parities
respectively[74,75. Physically, they represent polarization
patterns rotated byr/4 due to the interchanging of Q and U

and the resulting temperature fluctuation

PHYSICAL REVIEW D 65 123004

contributions. Similar to the CMB temperature power spec-
trum of Eq.(5.1), the E-type andB-type polarization power
spectra are respectively

4 EX(79,k) EX* (79,k)
EE(X):_ | 0 | 0>
Ci wj dk K 21+1 21+1 6.
4 B (70,k) BX* (7,k)
BB(X):_ | 0> | 0>
Ci wf dk i 21+1 21+1 6.2

where X stands forV or T. The correspondence between
notations of Ref[59] and ours for polarization moments is
ECVSEM andB(*Y— +B("), and similarly for the ten-
sor perturbatlons

A. Vector polarization power spectra
1. E-type polarization

The E-type polarization integral solution for vector per-
turbations ig59]

EM(70.,k) .
%:‘ﬁfonod’?Te”P‘V)er’[kwo— t
(6.3
where
100 {0
AN (S (E) @N'T} (6.4

is the vectorE-type polarization radial function given by Eq.
(17) of Ref.[59]. Using Eq.(5.3) for P™) and the spherical
Bessel function recurrence relatipr2]

|
;jl(x)_jl/(x):jl+1(x)v (6.9

we approximate the vectdt-type polarization integral solu-
tion as in Eq.(5.6):

EM(79,k) [(I=1)(1+2)
%2— 1—8k|-ydecQ(7ldec-k)
(770) j|+1(k770)
x| 1)(k770) kro | (6.6)

Stokes parameters. Vector and tensor perturbations induce

both types of polarizations. Scalar perturbations, howevewhere L, 4= Tdec 3.39 Mpc is the photon comoving
cannot generat8-type polarization due to azimuthal sym- mean-free path at decoupling, assuming.~0.25 eV and
metry. A detection of theB-type polarization from future ,h?=0.0125. For the tight-coupling approximation to be
high sensitivity CMB polarization measurements thereforevahd we requirekL, 4oc< 1. Substituting Eq(6.6) into (6.1)
would provide compelling evidence for vector and/or tensorand using Eqs(4. 14) and(2.18, we obtain
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CEE(V):(ZW)ZrHll(' 9(+2) Naeclo | For —3<n<-—3/2, we need to evaluate
: 36 1+ Rge xe
|+1)2f dx X432 (X)
% v (kp70)?" "3 ( 0 ok
n+3 2n+6
2l —-|(2n+3) (Kn770) and
, (ks n [ k\2*3 fxsdx X632 o (X). (6.10

X Lydec dk I°| 1+ m k_ 0

0 D

3 K ] K 2 Since the exponent within the first integrah24 changes
x| (1+1) 1+12(K70) _ Ji+31dK0) sign whereas the exponent within the second integral 2

(k70)? k7o +6 remains positive throughout 3<n<—3/2, as in the

6.7 vector temperature power spectra calculation, we consider
' cases depending on whethar24 is greater than, equal to,

As in the computation of the vector temperature power spec?" €ss than zero in this regime. Fer2<n<-—3/2, the two
tra in Sec. VA, we have neglected the damped vorticityintegrals of Eq.(6.10 can be approximated using EG.8)

term, which again contributes negligibly<@%) for | ~ for p=2n+4 and X+6 respectively, hence
<500 and all cases af. Note that (27)2"* %3, /{T?[(n 2wy o o2 2
+3)/2]k{"* °oc A%, whereA is the normalization of the mag-  |2CEE(V) = dec 0) ( Vdec)
netic power spectrum in Eq2.5). 36 1+Reec/ \ 70

Again, depending on whethen>—-3/2 or —3<n
< —3/2, we retain only the corresponding dominant term of %
the vector isotropic spectrum in E€6.7). A further simpli-
fication occurs by noting that although the cross term propor-
tional to J; . 1/2(k70)J; - 312(K7g) is difficult to evaluate ana-
lytically, a numerical evaluation shows that its value is [
approximately minus twice that of the term proportional to
J2, 1(kno) for all cases ofn. First consider the case> K
—3/2, where the vorticity source becomes approximately _|2( S
white noise and i&p-dependent. The relevant integrals are n+2

vmnl?

1‘*2

n+3
T)(2n+3><n+3)(kwo>2“*6

(ksno)2n+6_ | 2n+6

n+3

)2n+4_ | 2n+4

,  —2<n<-3/2.

(6.1

Here our approximation is good to within 10%. For — 2,
using Eq.(5.8) for p=0 and 2 respectively for the two inte-

( +1)2foxsdx P, 15(%)

and grals of Eq.(6.10, we obtain

. 5 2 2 414

f SdXX3J|2+3/2(X), 6.9 |2CIEE(V):(27T) 77dec/770) (LydEC) val

0 9 [1+Reec/ \ 70 | (ky70)?
where we have defined=k#, and xgs=kg7,. Using Eq. . Ks7o
(5.8) for p=1 and 3 respectively for these two integrals, we X1 (ksmo)“ =19 2In| ==+ 1,
obtain

n=-2. 6.1
|2C|EE(V)= (277)2n+10 ndec/no) 2( I—ydec)2 6.12
18 1+Rgec/ | 7m0 Comparing to the numerical evaluation of H§.7), the ap-

proximation here is good to within 10% in general. For

4 14 2n+3
vl (kp770)®"™" —3<n< -2, as discussed in Sec. V A, a numerical evalua-
,(n+3 (ky70)?" "8 tion shows that the first integral of E¢6.10 can be well-
Il ——](@2n+3) approximated by!1%[(ks7o)2" 4~ 12"*4]/(2n+4) 7 for

—2.3=sn<—2[cf. Eq.(5.12] whereas for-3<n=—2.3, it

(ks770)3_|3_|2 Ker—| can be approximated using E¢.13 since the dominant
X 3 (ksmo= 1)1, contribution to the integral arises from long wavelengkhs
—0 [cf. Eq. (5.19]. The approximation of the second inte-

n>—3/2. (6.9 gral of Eq.(6.10 using Eq.(5.8) tends to underestimate.

This, however, can be compensated via approximating the
Comparing to the numerical evaluation of E.7) shows first integral of Eq.(6.10 by 12[(ks7)?"4—12""4]/(2n
that our approximation is good to a few percent. +4)7 throughout the regime-3<n<-—2. The resulting

123004-13



ANDREW MACK, TINA KAHNIASHVILI, AND ARTHUR KOSOWSKY PHYSICAL REVIEW D 65 123004

vector E-type polarization power spectrum is then formally where again we have neglected the contribution coming from
identical to that of the case-2<n<—3/2, with accuracy the damped vorticity term, which is negligible<@l%) for

good to within 15% in general. Hence <500 and all cases ai. Note that (27)2"" %2 /{T?[(n
+3)/2]k2""®1< A2, whereA is the normalization of the mag-
5.7)2n+10 / L 2 netic power spectrum in E@2.5). Except for the order of the
|2CEEM) = (27) "dec ’70) ( YdEC) Bessel function, Eq(6.17) is identical to the term propor-
36 1+ Ryec 7o tional to JZ, 5,(k70) in the vectorE-type polarization power
4 o4 spectrum expression of E@6.7). For n>—3/2, using Eq.
v van (5.8 for p=3, we obtain[cf. Eq. (6.9)]
n+3
r? — (2n+3)(n+3)(ky 70)?"*®
2n+10 2
(Ks7 )2n+6_|2n+6 |2CBB(V) (2m)=" 77dec/770 Lydec
s7o 54 |\ 1+Rge |\ 70
n+3
2(k ) )2n+4_|2n+4 % UA)\l (ano)2n+3
—1 , —3<n<—2. n+3 (k )2n+6
n+2 r —= (2n+3) \770
(6.13

33 _
2. B-type polarization X[(ks7o)* =17, n>=3/2. (6.18

The B-type polarization integral solution for vector per-

turbations ig59] For —3<n< —3/2, the exponent within the integrah2 6
remains positive throughout; thus using E&.8) for p
=2n+6, we obtaincf. Eq. (6.11)]

Bl(v)(ﬂo.k) m .
—1 -~ 6 fo dnre” PM BV Kk(7o— )],
(6.19 12CBB(YV) — (277)2n+10 7]dec/770)2( Lydec)2
Where ! 36 1+ RdEC 7]0
y vanl?
1 ji(x n+3
A0 =5V1-1)(1+2) ¥ (6.19 P2l —=](2n+3)(n+3)(ky 70) " "
2n+6_ 12n+6 _ _

is the vectorB-type polarization radial function. Using the X[ (kso) I 1 3<n<-372.
same approximation in Eq6.14) as in Eq.(5.6), we obtain (6.19
BM(70.k) (1=1)(I +2) (kﬂo) Our accuracy here is good to the quality of the analytic ap-
271 -~ V15 K ydecQ(ﬁdec,k) proximation in Eq.(5.8) and is always within 20%.

7o
(6 16)
which upon substituting into Eq6.2) and using Eqs(4.14)

and(2.18, yields 1. E-type polarization

The E-type polarization integral solution for tensor pertur-
bations is[59]

B. Tensor polarization power spectra

(2 )2n+11 7dec?0 2
BBV """~  (_
c| 36 (- D0+ 7’ ;
Ei(170,K) mo M
% v (kpmo)>"*3 T:_\/Efo dnre” PMelV[k(no— )],
n+3 2n+6
FZ(T (2n+3) (K70 (6.20
R whereP(" is given by Eq.(5.20, and
><L7deC dkk5 1+ =3 E) }
1 (X) jI’(X)
I, (k eMD(x)=~ {— (X)+j (x)+2
% T 7270)’ 6.17 | h Ji X
(k7o) (6.22)
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is the tensolE-type polarization radial function. Using Eqs.
(4.21) and(6.5) and the spherical Bessel function recurrence

relation[72]

+1

[
00+ 00=]1-100, (6.22

and definingk=k#n andxy=k7,, we approximate the tensor

E-type polarization integral solution as

E(M(no.k) 27

BT \/_{Gnozeqln( )

{ (1+1)(1+2)
(Xo— X)2

H(T)(k)

X J1(Xg—X } (6.23
A similar manipulation as in Eq5.23 gives
ED(0.k) , 1M (k)
21+1 100(2”) VI G7gzeqdn ( eq) k7o
|2
-
2(kno)

Ji1a(k
X+ 3(kro) + %’7(’)} (6.24)

7o

Substituting Eq.(6.24) into Eq. (6.1) and using Eq(2.22),
we obtain

49
EE(T) _ 2n+12
C —40000(277) I

2 Zin 2
G 7pZedn -
eq

B} 70 (Kpmo)?"*3

X )2n+6

|1_

Note that (27)2"19B}/{I'?[ (n+3)/2]k2"*®} = A?, whereA

n+3
r?| —-2n+3) (k7o

xf dk
0
Jisalkno)| ®
|
XJ|+3(kﬂo)+%] .

|2

2(k7o)?

n k 2n+3
1+n+3(@)

(6.295
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2 Zin 2
G 7pZedn -
eq

(Kpmp)?"*3

49
2~EE(T) _ 2n+11]
I Cr = 20000 2™

y BJI®

n+3

2| —
2

Kpmo| 5
| _6 , n>-—3/2.

2n+6
(2n+3) (kﬂ]o)

X

(6.2

For —3<n<—3/2, using Egs(5.13 and(5.14) and keeping
only the highest-order terms inwe obtain

2

|2CEE(T):22n 7 (277)2n+12[G7’ 7 n( )
! 625 ed eq

I['(-2n-3) BJ(4n%+3)
n+3\ (2n+3)(n+1)(n+3
F2(—n—1)I? ( )( )( )
2
| 2n+6
) , —3<n<-3/2. (6.27)
K\ 70

From the properties of radial functions, Hu and White
place upper bounds on how fast various power spectra can
grow with | [see EQq.(78) of [59]]. In particular, tensor po-
larization power spectra can grow no faster than
12CEEBBMoc|2, Our results for the tensoE- and B-type
(Sec. VI B 2 polarization power spectra seem to violate this
constraint forn>—2 by an additional factor of, which
arises from numerical approximations as in the second line
of Eqg. (5.23. Within the tensor integral solutions of Egs.
(5.22, (6.23, and (6.30, we have to evaluate integrals of
the form foodx[jz(x)/x][h(xO X)/(Xo—X)P]. The piece

j»(x)/x comes from the gravitational wave solutibrof Eq.
(4.21) whereas the piecg(xo—Xx)/(xo—X)P comes from the
radial functions. In Ref[59], only the radial function prop-
erties are used to determine the upper bounds on the power
spectra growth rate, whereas the source behavior has been
entirely neglected. Our numerical approximation in Eq.
(5.23 takes into account the source behavior, jgx)/x,

and this introduces an additional factorloih the resulting
power spectra. Note that besides the tensor polarization
power spectra, all the remaining power spectra conform to
the growth constraints given by Rg£9].

2. B-type polarization

is the normalization of the magnetic power spectrum in Eq.

(2.5. Forn>—3/2, using Eqs(5.8) and(5.13 and keeping
only the highest-order terms ingives

The B-type polarization integral solution for tensor pertur-
bations is[59]
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B{"(70,k) " 4 re-7p(M g™ Note that (2r)*"* *BY{T?[(n+3)/2]k}" %A, whereA
T \/gfo dynre”"PVB V[k(mo— )], is the normalization of the magnetic power spectrum in Eq.
(6.28 (2.5). Forn>—3/2, using Eqs(5.8) and(5.13, we obtain

where 2
BB(T) _ 2n+11
1%C| 20000(2’#) Gng Zeqln( eq”
1
(D0=5|ii <x)+zu} (6.29 ByI® (kp70)*""?
n+3 2n+6
FZ(T (2n+3) (kx”]o)
is the tensoB-type polarization radial function. Using Egs. ko7
(5.20, (4.21) and (6.5), and definingx=k» and xo=k,, x| In| -2 O)—l}, n>—-3/2. (6.33
we approximate the tens@-type polarization integral solu- I

tion as

B(T)(n0 Kk 6 or —3<n<-—3/2, a similar calculation gives
e NT (M
ST (h)[enozean( ) 1Mk
X0 jo(X Xo— X
XLOdXJZi) (I+ 2)J|( 0—X) |2CPB(M = p2n-4 (2'”)2”“2[67702 qln( ”2
e
625 eq
—Ji+1(Xo=Xx) | (6.30 " ['(—2n-23) —Bgn
n+3\ (2n+3)(n+1)(n+3
r2-n-1rf " (2n+3)(n+1)(n+3)
A similar manipulation as in Eq5.23 gives | \2n+6
) , —-3<n<-3/2. (6.39
Ky 70
B|(T)(7]0, ) 2
S g2 G”Ozef*”( q)
VIlI. CROSS-CORRELATION POWER SPECTRA
XH(T)(k) |~]|+3.(k77o)_J (ko)
k7o k7o +al%70) |- Since temperatur®, has electric parity € 1)', only E,

6.31) couples to®, in the Thomson scattering and her(ﬁf—?E is
' the only possible cross correlation. The cross-correlation
power spectrum is defined similarly as the temperature and

Substituting Eq.(6.31 into (6.2) and using Eq(2.22, we Polarization power spectra:
obtain

4 O (10.,k) EP* (10.k)
49 2 ®E(X)=_J I "\ 70, | 70>
IBB(T) 40000(277.)2n+12| Gﬂozedn( ” C p dk K2 ST+ 1 STF1 . (7.0
Zeq
o Blm  (komp)*?
+3 2n+6
2 nT (2n+3) (knm0)™" whereX stands forV or T.

A. Vector cross-correlation power spectra

n k 2n+3
“Ts(@)

X f dk
0
) As discussed in Ref{59] and shown in its Fig. 5, the
|‘]'+3(k770) — 3 (K 6.3 vector dipole radial functiorjl(lv) does not correlate well
X Kk |+4( 770) . ( . 2) (V) .
7o with its E-type polarization radial functior;”’ whereas its
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quadrupole radial functiop®) does. Therefore to compute OM(59.,k) [(1+1) i1(k70) KL, gec
the vector cross-correlation power spectra, we need to retain SIrL > Ndec:K) T+ ;
0

the term proportional tg{?") in the vector temperature inte-

gral solution, though in the calculation of the temperature 1(K70)  121(K70)

power spectra, we have neglected it since it is suppressed x{(l—l) 1R70) _ Ji+11%%0

relative to thej(*") term. k770)? /)
Beginning with Eq.(5.5), retaining thej(?) term, ne-

glecting the vector potential, and using E¢5.4) and(6.5),

we arrive at the following vector temperature integral solu-Substituting Eqs(7.2) and (6.6) into (7.1) and using Egs.

}. (7.2

tion as in Eq.(5.6): (4.14 and(2.18, we obtain
(2 )Zn“l Ndec0 2 U/‘-‘\x (kp ”’70)2n+3
OE(V)_ _
CPFM = — ————\I(1 - (|+1)(|+2)L1+Rde e

F2($)(2n+3) (ka0

k 2n+3 J?2, 1k J k7g)J k
XL gee Sdk Kl 1+ k_) (1+1) T 7370)_ 1+ 12(K70) |+23/2( 70)
0 3\kop (k7o) (k7o)
4 Kydec kLVdec (12-1 I 1K) o J1+12K70) di 4 312K 770) N I+ 3 ko) ] 73
(kno)* (kno)® (kno)? ])’

where again we have neglected the contribution coming fronaccuracy of our approximation. Our approximation is good
the damped vorticity term, which is negligib|e<6%) for  to within a factor of 3 in general and tends to underestimate.
|<500 and all cases ai. Note that (27)2"" %2, /{T?[(n
+3)/2]k2"* %1 A2, where A is the normalization of the
magnetic power spectrum in E¢.5). The first two terms
within the curly brackets arise from correlating'") with Using Eqs.(5.25, (6.24, and(7.1), we obtain the tensor
efv). Although the second term proportional to cross-correlation power spectrum expression
Ji+12(K7m0) ) 1 35(Kmg) cannot be approximated analytically,

a numerical evaluation however shows that these two terms

B. Tensor cross-correlation power spectra

2
always roughly cancel each other, which agrees with Ref. CPEM= 49 —(2m)2*123 [Gnozean( )
[59] thatj(*¥) does not correlate well wite{") . The remain- 20000
ing three terms arise from correlatifff") with €¥) . In the g4 Koy )23
limit I>1, these terms and the three Bessel terms within the X A (ko 7o)
vectorE-type polarization power spectrum expression of Eq. 2 E (2n+3)7 (Kn70)2""®
(6.7) are almost identical. To simplify the approximation, we 2 0

will neglect the two terms arising from the correlation be-

. ’ . k 2n+3

tweenj(*¥) ande(V) . Thus apart from an overall minus sign, f dkk-2l 14 _)
the resulting power spectra for all cases here are approxi- n+31kp
mately equal to the corresponding vecbtype polarization 5
power spectra, given in Eq&.9) and (6.11)—(6.13). % B |

Since we have neglected two terms in the vector cross- 2(k7,)?
correlation power spectrum expression of E3), accuracy
here is worse than that of the correspondiitype polariza- 5 Jy43(k70) i+ a(kng)
tion power spectra. Note that the terms arising from the cor- X7 3(kno) K776 . (7.4

relation betweerj(®) and ¢) are suppressed by an addi-
tional factor ofkL,, gec relatlve to the two terms arising from
the correlation betweejf'") and e{") . Because of this sup- Note that (27)2""1%B}/{I"Y[ (n+3)/2]k>"* ¢}« A%, whereA
pression factor, a numerical calculatlon shows that the reis the normalization of the magnetic power spectrum in Eq.
siduals of the first two neglected terms can easily be thé2.5). For n>—3/2, using Eq.(5.13 and keeping only the
same order as the remaining retained terms, reducing th@ghest-order terms ity we obtain
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|2C|®E(T): 277)2n+11

2 Zin 2
G 7pZedn -
eq

=N (kp79)2" 3

49
15000(

X )2n+6’

n+3
r?|—-@n+3) (ka0

n>—3/2. (7.5

For —3<n<—3/2, a similar calculation gives

Z 2
ZE):|
q

By (2n—1)
(2n+3)(n+3)

G ﬂgzeqln

49
|ZCI®E(T): 22n_6675(277)2n+12

I'-2n-1)
n+3
2

Ir?(—n)r?
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magnetic power spectrum. Any power-law magnetic field can
be specified completely by the normalizatidrand the spec-
tral indexn. Since we are interested in constraining the pri-
mordial magnetic field strength on galaxy scales, we choose
to fix B, andA and determiné\ for eachn using Eq.(2.7).
If however one is interested in the CMB power spectra with
A fixed, then eac will give a different value ofB, (n) via
Eq. (2.7). Either way will not affect the final constraints for
the magnetic comoving mean-field amplitude. Indeed, we
find it easier to constrain the amplitude by keepgfixed.
Figure 1 shows the separate vector and tensor contribu-
tions to the CMB power spectra for four different values of
n. Forn<—3/2, the CMB power spectra do not depend on
kp, and the size of the anisotropies increasesnagets
smaller; a scale-invariant magnetic field witk- —2.99 gen-
erates the largest anisotropies and hence it will yield the most
stringent limit on the primordial magnetic fiel[dee also Fig.
1 of [58]). For n>—-3/2, the CMB power spectra are

kp-dependent and scale h§‘+3; thus more and more strin-
gent magnetic field limits can be obtained msncreases
toward causal value'sFor the vector perturbations, thB
power spectrum is slightly larger than that of theE’s,
whereas theEE and ®E power spectra are approximately
] identical. As also pointed out in Reff59], the vector CMB
The CMB power spectra generated by a stochastic magso|arization is dominated by the-type modes. Naively, the
netic field are plotted foF=5 tol =500 in Figs. 1, 2, and 3. @E cross correlation would be expected to be larger than the
Since we are interested in the signatures of the various Miso|arization power spectra simply because the temperature
crowave background power spectra arising from primordiafy,ctuations are larger than the polarization fluctuations.
fields that are large enough to result in the observed galactlgowever, the temperature fluctuations are dominated by the
fields via adiabatic compression, for each plot, we choose thactor dipole term, which correlates poorly with the radial
magnetic comoving mean-field amplitude to bB\  fynction describingE-type polarization. Thus th® E spec-
=10 "G and fixA=1Mpc, i.e. galaxy and cluster scales. yym is dominated by a subdominant temperature contribu-
For simplicity, we consider a standard cold dark matterjon arising from the vector quadrupole term, which then
(SCDM) universe, i.e. a fIa} universe composed of only dustgincidentally renders the spectrum approximately identical
and radiation @o=600th"* Mpc) with 0,=0.05 andh {5 the E-type polarization itself. However in reality, tH@E
the scale factor evolution only relatively recently at redshiftgince our approximation is good to within a factor of 3 and
of a few and will result in a slightly largen,. The magnetic  tends to underestimate in genefste Sec. VII A. Note that
power spectrum cutoff wave numbers for vector and tensojyhjle n— —3 corresponds to a scale-invariant magnetic
perturbations are given by Eq.3) and(3.6) respectively. fie|d, the vector power spectrum is not flat for this value. The
Thus forn=—1 andn=2 for example, withB,=10"°G  reason is that the vorticity, E¢4.14, has an extra factor of
and \=1 Mpc, we have kp=27.9Mpc' and kp  k compared to the magnetic field itself. The vector cross
=14.7Mpc * respectively for vector perturbations; whereascorrelation is always negative; its absolute value is plotted.
for tensor perturbations, we obtalip=80.9 Mpc * andkp For the tensor perturbations, tiketype is slightly larger
=27.1Mpc * respectively. For the tensor perturbations, wethan the B-type polarization power spectrum. The polariza-
assumez;,/ze= 10’ as in Ref.[58]; the resulting fluctua- tion power spectra are actually comparable to the tempera-
tions, however, depend only logarithmically @p. In our  ture power spectrum fon>—3/2. This is due to the addi-
analysis, we do not decompose the magnetic field into a larggonal logarithmic dependence on the magnetic damping
homogeneous component and a small fluctuating piece. Theutoff wave number for the polarization power spedch
stochastic magnetic field then affects the stress-energy tenspgs. (6.26 and (6.33], and also because both the tempera-
and hence the metric perturbations quadratically. In computwure and polarization fluctuations are due to the intrinsic tem-

ing the source terms of vector and tensor perturbatiohs  perature quadrupole moments, which arise from the gravita-
Egs.(2.18 and(2.22) respectively, convolution of the mag-

netic field couples the large and small scale modes, resulting———

in the cutoff scale perturbations completely dominating the IFigure 1 of Ref[58] shows a weaker and weaker upper bound

large scale modes for>—3/2. Thus forn>—3/2, kp will for B, asn increases from-3/2. This is because the authors there

determine the overall amplitude of the fluctuations. have inappropriately adopted a smoothing scale smaller than the
Throughout the paper, we have been stating explicitly thenagnetic damping scale and have employed a different value for

terms that are proportional to the normalizatiénof the  the damping scalésee Sec. Ill B for detai)s

X
Ky 770

2n+6
) , —3<n<-3/2. (7.9

VIIl. RESULTS AND DISCUSSION
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tional wave solutionh of Eq. (4.21) instead of being Years, we can expect a cosmic-variance limited temperature
generated via free streaming the dipoles as in the case of tlROWer spectrum measurementlte 3000. Polarization fluc-
vector perturbations. Also fon>—3/2, the gravitational tuations will also be detected soon, and the progress in their
wave source term is approximately independeri ahd the =~ measurement will likely lag temperature fluctuations by
resulting power spectra then possess the well-known beha@Pout a decade. A rough but conservative estimate is that a
ior of a white noise sourcC,x13. Furthermore, since ten- magnetic-field signal which is at least 10% of the dominant
sor perturbations are damped on scales smaller than that 8ensity-perturbation signal will be detectable. The ultimate
the vector perturbations as discussed in Sec. Il B, their inSensitivity in measuring the temperature power spectrum at,
duced anisotropies will then be larger than that of the vecSay:| =500 will be significantly better than this, and the ex-
tor's for n>—3/2 wherekp, determines the overall amplitude te€nt to which magnetic fields can be constrained depends
of the microwave background power spectra. As expectednore on the degeneracy of the magnetic field signal with
the tensor power spectrum is flat fior> — 3 since we have a shifts in various cosmological parameters. Basic statistical
scale-invariant magnetic field for this value. The tensor crosé&chniques for pursuing such an analysis are well-known
correlation is always positive. (see, e.g.[62]) and will be considered elsewhere.

The difference between the sign of the vector and tensor USing this crude 10% criterion, we can anticipate con-
cross correlations can be understood from the geometrigiraints on stochastic magnetic fields from upcoming tem-
properties of the projection of their corresponding temperaPerature measurements.g., the MAP satellite, currently
ture and polarization sources as anisotropies on th¢s®y  taking data by simply comparing the predicted amplitude at

The sign of the vector and tensor cross correlations is detet=500 to the amplitude of current measurements, which is
mined by respectivelycf. Eq. (80) of Ref.[59]] on the order of?C,=10"°. We assume that the remainder of

the power spectrum is used for discrimination between the
signals from magnetic fields and other temperature power
(8. . . ) R
spectrum contributors. For the scale-invariant magnetic field
) , with n——3, a comoving mean-field amplitude d8,
sgriCPM=sgri PN (7PN —h)]. (82 =10"°G gives temperature anisotropies at the level of
~3% of current measurements. Since fox —3/2, 12C,
The sign of the vector cross correlation is therefore alwaysc B;‘, the constraint from temperature perturbations on a co-
opposite to that of the tensor cross correlation. moving 1 Mpc scale will be around 23410 ° G, which is
Each panel in Fig. 2 shows the total vector plus tensoapproximately at the same level as the previous constraints
contributions for the various power spectra for a particularfor a primordial homogeneous magnetic fi¢##t—44. The
value ofn. Each panel in Fig. 3 replots one of the four poweraddition of E-type polarization measurements here will im-
spectra for a range of spectral indice#s the spectral index prove the constraint, since the ratio of fRdype polarization
becomes greater than zero, the amplitudes become quite temperature power spectra is larger for stochastic mag-
large. Again, this is because fae>—3/2, the magnetic cut- netic fields than the dominant density perturbations. fror
off wave numbekp determines the overall amplitude of the > —3/2, the polarization power spectra are comparable to the
power spectra. For a scale-invariamt: —3 spectral index, a temperature power spectrum due to the dominant tensor per-
magnetic comoving mean-field amplitude Bf=10"°G, turbations; thu€-type polarization measurements will yield
and a comoving smoothing scale »=1 Mpc, at|=500 more stringent constraints than temperature measurements
for example, the temperature and polarization power spectralone. Here we will be conservative and project stochastic
are smaller than the amplitudes as expected from scalenagnetic field constraints using temperature measurements
invariant density perturbations normalized to COBEe.,  only. For n>—3/2, we havel2C,«B}*"*%) where 14/@
CMB fluctuations in “standard” cosmological modglsBut +5)=4+[—2/(n+5)](2n+3), since |ZC|O<A2|<%“+3, A
for n=0, the temperature power spectrum is essentially a B2 [cf. Eq. (2.7], andkpxB; ?"*%) [cf. Egs. (3.3 and
factor of 50 whereas the E-type polarization power spectrums g)]. As nincreases towards causal values, the amplitude of

is a factor of 10 larger than that expected from the scalarine temperature fluctuations increase&?s ® and hence the
SCDM model at =500. Therefore, observational limits will constraints become stronger. A0, 12C, at|=500 is ap-

?eldmuch stronger for causal fields than for Scale'i”Varia”broximately 5% 10~8, which will yield a constraint ofB, of
ields.

To estimate the potential observational limits on stochas-
tic magnetic fields, the induced microwave background
anisotropies must be large enough to be disentangled from
the anisotropies arising from density perturbations. Current
temperature maps give power spectrum measurements wittor the causal fielth=2, the constraint o8, will be as
error bars on the order of 10% out te=400 for bins of small as 4<10 **G. Such constraints will be stronger than
width Al=50 [12,14]. The Microwave Anisotropy Probe any current limits on Mpc-scale primordial stochastic mag-
(MAP) satellite, which is already in orbit, will make tem- netic fields at decoupling.
perature measurements out to arolirdB00 and will reach Ultimately, B-type polarization has the greatest potential
the cosmic variance limitAC,=(l+1/2)"Y2C,, out to | for constraining primordial magnetic fields. This is a cleaner
=400([76]. By the end of the decade, and perhaps within fivesignature, because primordial scaldensity perturbations

sgri C"="]=—sgr P (7P()],

5x 1078

—5/14
W) X107 °G=101°G.
X
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FIG. 1. The microwave background power spectra for ve@gft panel$ and tensorright panel$ perturbations from a power-law
stochastic magnetic field with spectral indexSolid line represent® ®, dash-dot line representsE, dotted line represent8B, and
dash-dot-dot-dot line represer@E. The magnetic comoving mean-field amplitude is chosen B,be10™° G, with a smoothing Gaussian
sphere comoving radius af=1 Mpc. The magnetic damping cutoff wave numbers for vector and tensor perturbations are given by Egs.
(3.3 and (3.6) respectively. The absolute values of the vector cross correlations are plotted. For the tensor perturbations, we assume

Zin/Zeq= 10°.

produce none[60,74. Aside from polarized foreground intermediate scales and should be clearly distinguishable. If
emission, the only other expected sources are from primorforeground emission can be separated from its frequency de-
dial tensor perturbations and from gravitational lendi&g]. pendence, limits o8, from B-type polarization should be
Tensor perturbations with a spectrum near scale-invariardetermined purely by measurement error barzCBﬁ. Note

will give significant anisotropies only at large angular scaleshat a primordial magnetic field also generates an additional
(1<100), while lensing contributes mainly at small angularB-type polarization signal via Faraday rotation of the CMB
scales [>500). Stochastic magnetic fields will contribute on polarization[47]. This signal will be negligible compared to
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FIG. 2. Same as in Fig. 1, except that the microwave background power spectra are for vector plus tensor perturbations.

the directB-type polarization signal for any frequency of in the relevant expressions. Rough analytic estimates show
practical interest. that including the scalar results will only modestly improve

All of the results in this paper have been obtained viathe magnetic field constraints given in this paper, since ra-
analytic approximations to the exact solutions. Apart fromdiation pressure prevents the induced density fluctuations
the vector cross-correlation power spectrum, the accuracy gfom growing effectively before recombination and the com-
the results is as good as the quality of the analytic approXipressional modes are erased up to the Silk scalpt1,42.
mations to various expressions, except that the vector teMrperefore scalar perturbations will generally give a subdomi-
perature case has neglected an additional few percent teman; contribution to the microwave background anisotropy.
perature contribution arising from the angular dependence of '~ ¢ rasults suggest that while it may be plausible for pri-
polarizat.ion and the vector p.otential. These apprOXimat.ior.]ﬁwordial stochastic fields with=0 to result in the observed
are all discussed in the text, in sum, they are googl to W'th'ggalactic fields via adiabatic compression alone, it will be
20% over the range of parameters considered, with the e Very difficult for causal fields without invoking some form of
ception of the vector temperature case in the regines . L

dynamo mechanism. In a recent papér], a similar calcu-

=n< -2, which is good to within 30%. Meanwhile, accu- t ing th | thesis bound itational
racy of the vector cross-correlation power spectrum is onl))a lon using the nucleosynthesis bound on gravitational ra-

good to within a factor of 3, since we have neglected the twdiation induced by the anisotropic stress of a primordial sto-
terms in Eq.(7.3) arising from the correlation between the chastic magnetic field yields extremely stringent I2|r7n|ts on
temperature dipole and tHe-type polarization radial func- the galactic-scale magnetic field amplitudd, 10" “'G)
tions. It is important to realize that errors in these analyticfor fields generated at the electroweak phase transition or
approximations will have negligible effects on the estimationearlier, thus ruling out most of the magnetogenesis processes
of the magnetic field limits fon<2 since the amplitude of for primordial fields seeding the observed large-scale coher-
each power spectrum scalesBfsfor n< —3/2 andB}#*>  ent galactic fields.
for n>—3/2.

In this paper, we have focused on the magnetic field-
induced microwave background anisotropies fex500, ACKNOWLEDGMENTS
where the analysis is relatively simple and free from the
detailed microphysics of recombination. We have only con- We are extremely grateful to R. Durrer for numerous ex-
sidered vector and tensor metric perturbations; for smalleplanations and invaluable comments and suggestions. W. Hu,
angular scales 5601 <2000, the magnetic-induced CMB K. Jedamzik, and M. White contributed other helpful discus-
anisotropies are dominated by vector perturbat{@%. Sto-  sions. This work has been supported by the COBASE pro-
chastic magnetic fields will also produce scalar perturbagram of the U.S. National Research Council and by the
tions. This case is significantly more complex due to physicaNASA Astrophysics Theory Program through grant NAG5-
compensation effects and the large number of terms involved015. A.K. is a Cotrell Scholar of the Research Corporation.
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FIG. 3. Each panel shows a single power spectrum for various valuesSlid line representa= —2.99, dashed line represents
= —2.0, dash-dot line represents= 0.0, dash-dot-dot-dot line represents 1.0, and dotted line represents-2.0.
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<T(B)(k)T(B)*(k )> (T(Bl)(k)T(Bl)*(kr»
+(r (k) 7E2* (k")
+<T(Bz)(k)7_(5 D ( (k"))
(M) 7E (K)).

APPENDIX: DERIVATION OF THE VECTOR ISOTROPIC
SPECTRUM

T . . . A3
Our objective is to derive the vector isotropic spectrum (A3)

[TIM(K)|? defined in Eq.(2.17, which will be useful for
calculating vector CMB power spectra. Using E2.14), the
two-point correlation function oﬂi(v) is given by

Only (781 BD*) above has a nonvanishing contribution

toward the two-point correlation function di’) in Eq.
(A1), since each of the remaining correlation functions in Eq.
(A3) contains eitheb,;,, d.4, or both, and will vanish when
they are acted upon by;pk,P/4k. . We can now rewrite Eq.
(Al) as

MM AOTI* (k') = PipkaPigk( T80 (k) 780 (k).
(A1)

whereP{;= k kd We simplify our calculation by split-
ting the electromagnetlc stress-energy tensor into two piece
7P(k) = 7{>D(k) + 7{*2(k) where

(TGO (K)) = PipkaPlak(( 755V (k) 0" (K1)
(A4)

We can evaluate the two-point correlation function

7P D(k)= s B(p)Bj(k—p), (A2a) (7&P7&Y*) as follows. Beginning with the definition of
(2m)> &m Eq. (A2a) we assume the random magnetic field is Gaussian
and apply Wick’s theorem
B,2 —
= S B o[ COBMIBKP. (BB, (k)B (k0 Bo(ke)
(A2b)
=(B;(k;)B;(kj)){Bi(k))Bm(km)) +(Bi(ki)Bi(k))

The two-point correlation function of the electromagnetic s . "
stress-energy tensor in EGA1) will now be described by a X (Bj(K;)Bm(Km)) +(Bi(ki) Bm(km))(B;(k;)Bi (ki)
sum of four two-point correlation functions: (A5)
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and the reality conditiorB;' (k)=B;(—k), and finally use  Using the expression fd?(k) in Sec. Il and choosing to be

Eqg. (2.1) for the form of the stochastic magnetic field two- the polar axis, the vector isotropic spectrum becomes
point correlation function to arrive dsee alsd58])

<Tg%’l)(k)7£%’l)*(k,)> |H(V)(k)|2: (271_)2n+9 Bi
1 32 2 n+3 K2n+6
= a3 k — BN
(4w)2f p P(p)P([k—p|) 2
~oa - a ko 2t 2. 2 n/2
X{(‘Sac_ papc)[ébd_('z:p)b(E:p)d]"_(‘sad_papd) XJO dp pn J_ldy(k +p _2kp7) .
X[ 8pe— (K=p)p(K=p)c]} S(k—K'). (AB) (A9)

Substitute Eq(A6) into Eq. (A4) and definey=k-p, B=k
-(k=p), and u=p- (k—p) to obtain the two-point correla-
tion function of the vectoil{":

The integral overy is

1
| aviespr-2kpp
-1

MM OIIV* (k")) = f d®p P(p)P(]k—pl)

(4m)?

= ———-[(k+p)""?—[k—p|"*?], (A10)
X[(1=2)(1+B?) kp(n+2)
+yB(u—yB)16(k=K"). (A7)  and the expression within the square brackets above can be

The integral above is similar to the mode-coupling integralapprOX'mated as

12(k) in Eq. (11) of Ref. [56]. Although it cannot be evalu- .

ated analytically, terms within the square bracket are prod- Kt 012 [k pl "+ 2 2(n+2)k"*p, p<k;
ucts of cosine factors; hence the square bracket itself can be (k+p) [k=p[™"*= 2(n+2)kp"™t  otherwise.
approximated by unity, which has essentially been done in (A11)

Ref.[58]. Comparing with Eq(2.17) gives
Substituting Eqs(A10) and (Al11) into Eq. (A9) and evalu-

TV (k) |2= f d3p P(p)P(lk—p|). (A8)  ating, we finally arrive at the expression for the vector iso-
8(2m)? tropic spectrum, Eq(2.18).
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