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Neutrino mass limit from galaxy cluster number density evolution
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Measurements of the evolution with redshift of the number density of massive galaxy clusters are used
to constrain the energy density of massive neutrinos and so the sum of neutrino masses > m,,. We consider
a spatially flat cosmological model with cosmological constant, cold dark matter, baryonic matter, and
massive neutrinos. Accounting for the uncertainties in the measurements of the relevant cosmological
parameters we obtain a limit of > m, <2.4 eV (95% C.L.).

DOI: 10.1103/PhysRevD.71.125009

Constraints on neutrino masses are of great interest for
particle physics as well as for cosmology, and thus attract a
lot of scientific attention (for recent reviews see Refs. [1—
4]). Current upper limits on the sum of neutrino masses,
> m,, from cosmological structure formation data [5,6],
cosmic microwave background (CMB) fluctuation data
[7,8], or combined CMB + large-scale structure data [9—
13], are of order an eV [14] (for various limits see Table 1
of Ref. [4]). The number of neutrino species can be con-
strained from big bang nucleosynthesis or by using CMB
and large-scale structure data [11,15].

High energy physics experiments also constrain neutrino
masses, and have measured the number of light neutrino
species with high precision [3]. Direct searches for neu-
trino mass effects in beta decays yield limits in the region
of several eV, but the sum over all neutrino masses is
almost unconstrained by beta decay and other experiments,
mainly due to the weak limit on the tau-neutrino mass. The
measurement of neutrino oscillations, on the other hand,
constrains the differences between the squared masses of
the neutrino mass eigenstates Am”. With the justified
assumption that neutrino masses are non-negative and for
mass splittings Am2 =~ 7 X 107 eV? and Am2,, > 1.3 X
1073 eV? [3], we obtain 3" m, > 0.04 eV if the solar mass
splitting is between the highest and second highest mass
eigenstates (> m, > 0.07 eV if the atmospheric mass
splitting is between the two highest states). Results from
LSND Collaboration yield a larger lower limit on > m,,
and must be considered if confirmed by the MiniBooNE
experiment [16], which is currently taking data.

In this paper we use the dependence of galaxy cluster
number density evolution on the massive neutrino energy
density parameter (), to set a limit on Y m,. We consider
the standard spatially flat ACDM Friedmann-Lemaitre-
Robertson-Walker cosmological spacetime model with
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baryons, cold dark matter (CDM), massive neutrinos, and
anonzero cosmological constant A (for a recent review see
Ref. [17]). To compute the cluster number density as a
function of redshift z we use the Press-Schechter approach
[18,19] as modified by Sheth and Tormen (ST) [20].! This
approach makes use of the mass function N(M > M,) of
clusters (cluster number density as a function of cluster
mass M greater than a fiducial mass M), which depends
on cosmological model parameters [21-24]. In particular,
it is very sensitive to the matter density parameter
Qy (=Q, + Qg + Q,, where Q,, and Qy, are the
density parameters of baryons and CDM, respectively) and
the value of og [the root mean square (r.m.s.) amplitude of
density fluctuations smoothed over a sphere of 82! Mpc
radius, where h is the Hubble constant in units of
100 km s~ 'Mpc™!'] [25]. The observationally viable
ranges of these two parameters are related (for recent re-
views see Refs. [12,26,27]), and a current version of the
relation between (), and oy is given in Table 5 of
Ref. [26]. The parameter og is determined by the matter
fluctuation power spectrum which is sensitive to (), [2,6].
This is because the neutrinos are light particles and have a
much larger free-streaming path length® than the CDM
particles. Gravitational instability is therefore unable to
confine the neutrinos on small and intermediate length
scales, resulting in a suppression of small- and
intermediate-scale power. See Fig. 6 of Ref. [4] for o as
a function of (), for models normalized to the Wilkinson
Microwave Anisotropy Probe (WMAP) data.

Neutrinos are weakly interacting and this characterizes
how they affect cosmology. When m, > 1073 eV neutri-
nos are nonrelativistic today [11] and thus behave like a
hot component of dark matter. The presence of even a

"In the following we use PS to refer to the unmodified Press-
Schechter approach.

For ultrarelativistic particles the free-streaming path length is
equal to the Hubble radius. After they become nonrelativistic,
particle velocities are redshifted away adiabatically and so the
free-streaming path length grows only slowly or decreases [11].
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small fraction of massive neutrinos (hot dark matter)
f,=Q,/Q,,, of order 10%—-20%, requires a smaller
value for the cosmological constant in comparison to a
pure ACDM model, while other cosmological parameters
are largely unaffected [6]. This is because a smaller ),
results in a larger {),, and hence a faster fluctuation growth
rate, which compensates for the reduction of small-
and intermediate-scale power caused by the neutrinos.
Neutrino free-streaming suppression of the linear® growth
of density perturbations on small and intermediate scales
results in only a fraction of matter of order 1 — f, being
involved in gravitational clustering [29]. Being an integral
over the power spectrum, oz depends sensitively on ().
This makes the cluster number density evolution with
redshift very sensitive to the value of €, [30,31], and so
to the value of ¥ m,, (since 3 m, = 94Q,h* eV [3]).

As with other cosmological tests, the cluster number
density evolution test for neutrino masses requires fixing
the range of some cosmological parameters. This may be
viewed as a choice of priors; see Ref. [6] for a detailed
discussion of priors in the context of deriving neutrino
mass limits from cosmological data. The parameter ranges
we consider in this computation are picked as follows.
Based on Hubble Space Telescope (HST) measurements
of the Hubble constant [32], we use &~ = 0.71 = 0.07 (1
standard deviation limit).* We assume adiabatic density
perturbations with a primordial power spectral index close
to scale-invariant n = 0.98 = 0.02 (1-o range) [12,26].
Concerning the value of the matter density parameter
Q,,, there is evidence for ),, € (0.2, 0.35) from different
data such as Type Ia supernovae [34], WMAP [35], Sloan
Digital Sky Survey (SDSS) and 2 degree Field Galaxy
Redshift Survey (2dFGRS) galaxy clustering [26,27], and
galaxy cluster gas mass fraction evolution [36]. For a
summary see Ref. [37], who find 0.2 < Q,, < 0.35 at 2
standard deviations; in our computation we use this as a 1
standard deviation range. We choose oy € (0.77, 1.11) as
the 2 standard deviation range; for a discussion see Sec. 3.1
of Ref. [38]. For the baryon density parameter we use from
big bang nucleosynthesis studies Q0,42 € (0.018, 0.022).”
We work in a spatially flat model which requires 1 —
Qr=Qp + Qi + Q,, = Qyy. The prior on £ is less
important than the priors on og, y, i, or n [6].

3The effect of massive neutrino infall into CDM halos is
studied in Ref. [28]. They found that having three degenerate-
mass neutrinos with > m, ~ 2.7 eV alters the nonlinear matter
power spectrum by about 1%.

“An analysis of all available measurements of the Hubble
constant results in the more restrictive, but HST consistent,
estimate 7 = 0.68 = 0.07 (2 standard deviation range) [33].

SThis is more consistent with estimates from WMAP data and
from big bang nucleosynthesis using the mean of the primordial
deuterium abundance measurements, but it is significantly larger
than an estimate based on helium and lithium abundance mea-
surements; see, e.g., Ref. [17].
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The paucity of galaxy cluster evolution data makes it
inappropriate to use data analysis techniques based on y?
fits. Reviewing such data-poor situations in the literature
one finds either modified y? fits assuming gaussian errors
on the logarithm of the observed cluster number density or
likelihood approaches with Poisson errors based on the
number of observed clusters. In our analysis we use a
likelihood approach and we define our likelihood function
by L = ]_[ie_”fﬂf’/ki!. Here k; is the number of observed
clusters with mass greater than M, in the ith redshift bin
(centered at redshift z; and of width Az) and u,(M >
Mo, 2, Az) = [3F82 Nyog(M > Mo, 2)dz/(Azay;) is  the
predicted cluster number in this bin. Nyq(M > M, z) is
the predicted cluster number density. The normalization
factor «;, which has dimensions of inverse volume, is the
detection efficiency defined by Ny (M > M,, z;) = ak;
where N (M > M,, z;) is the observed cluster number
density in the ith redshift bin.

The predicted cluster number density Ny.q(M > M, z)
depends on the cosmological model considered. An im-
portant characteristic of a cosmological model is the linear
energy density perturbation power spectrum P(k, z). This is
sensitive to the values of the cosmological parameters #,
Qyy, and Q,, as well as to the density parameter of each
dark matter component, i.e., 4, and €1, (although the
requirement of flat spatial hyperspaces can be used to
eliminate the dependence on )4,), and to additional
parameters discussed below. This wavenumber-space
two-point correlation function of density perturbations,
P(k, z), at given redshift z, is determined by the power
spectrum of initial perturbations P(k), the energy density
perturbation transfer function T'(k, z), and the perturbation
growth rate D(z). The functions T'(k, z) and D(z) depend on
model parameters and describe the evolution of density
inhomogeneities [39]. To compute P(k, z) we assume a
close to scale-invariant (Harrison-Peebles-Yu-Zeldovich)
post-inflation energy density perturbation power spectrum
Py(k) o< k", with n ~ 1, and we use a semianalytical ap-
proximation for the transfer function 7'(k, z) in the ACDM
model with three species of equal-mass neutrinos [40].°
For the growth rate D(z) we use Egs. (2)—(4) of Ref. [31],
which are based on results from Refs. [41]. In summary, in
our model the free parameters are n, h, {1y, > m,, (or {},),
and og (which fixes the normalization of the power spec-
trum, as discussed below).

The cluster mass function at redshift z is N(M >
My, 7) = f;;o dMn(M, z), where n(M, z)dM is the comov-
ing number density of collapsed objects with mass lying in
the interval (M, M + dM). In the PS approach the cluster

5The effects of neutrino mass differences are irrelevant for our
considerations, since if 3" m, > 0.4 eV the mass eigenvalues are
essentially degenerate [4], while if > m, <0.4 eV the mass
differences do not much affect cluster number density evolution

[11].
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mass function is determined by o (R, z), the r.m.s. ampli-
tude of density fluctuations smoothed over a sphere of
radius R = (3M /4mp,,)'/3, where p,, is the mean matter
density [18]. The function n(M, z) is a universal function of
the peak height ./ (R), where 8. = 1.686. For gaussian
fluctuations,

oc
(R, 2)

do(R, z)
aM

n(M, z) o

% 1 g
GXP[ ZUZ(R,Z)} ()

see, e.g., Eq. (1) of Ref. [19]. The evolution of the cluster
mass function is determined by the z dependence of
o(R, 7). Now (R, z) is related to the power spectrum
P(k, z) through

o%(R, 2) =# ﬁ ” P(k, 2)|W(kR)|*k*dk, ()

where W(kR) is the Fourier transform of the top-hat win-
dow function, W(x) = 3(sinx — x cosx)/x>. Numerical
computation results for n(M, z) are not accurately fit by
the PS expression of Eq. (1); see Refs. [20,42,43]. Several
more accurate modifications of n(M, z) have been pro-
posed; see Refs. [20,42,44]. Here we use the ST modifica-
tion [20], as defined in Eq. (5) of Ref. [24],

. S¢ do(R, 7) adZ \-r
M) SR | am [”(U%R,z)) }
adz \~1/2 _abg
<02<R,z>> e"p[ 202(R,z)} ©)

where the parameters @ = 0.303 and p = 0.707 are fixed
by fitting to the numerical results (for the PS case a = 1
and p = 0) [20,24]. With this choice of parameter values
the mass of collapsed objects in Eq. (3) must be defined
using a fixed over-density contrast with respect to the
background density p,, [23-25,42], and this requires ac-
counting for the mass conversion between M gy, and Mg,
[23,24].” Such a conversion depends on cosmological pa-
rameters (see Fig. 1 of Ref. [23]); we use an analytical
extrapolation of this figure to do the conversion for {},, €
(0.2,0.35).

Our analysis is based on data from a compilation of
massive clusters (with M > M, = 8 X 10'*h~ M, where

"The mass of a collapsed object is defined with respect to the
Einstein-de Sitter critical density p., = 3H?/(87G), as the mass
within a radius R, ., inside of which the mean interior density is
A times the critical density p... Assuming a p(R) density profile,

g“ p(R)R*dR = Ap_,R3 /3. May,, which corresponds to an
over-density A = 200 with respect to the critical density, is a
common definition of the virial mass of the cluster [21,24], while
M g0, corresponds to the mass within a sphere of radius Rg,
inside which the mean density is 180 times the background
density py (Rigop = Rss. for Q, = 0.3) [24]. For details of
mass conversion assuming a Navarro-Frenk-White density pro-
file [21] see [24].
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FIG. 1. The curves show the number density evolution of

massive clusters (M > 8 X 10"*h~'M) for models in which
the sum of neutrino masses > m, = 0, 2, 3.2 eV (from bottom
to top). The other five parameters ,,, ), o3, n, and h are set at
the center of the scan interval. The crosses show the observa-
tional data of Eq. (4) in four redshifts bins with 1-o Poisson
error bars.
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FIG. 2. Variation of cluster number density evolution N(M >
8 X 10K~ Mg, 7) as a function of g with parameters kept at
the same values as in Fig. 1 except for og which is varied and
S m, which is kept at zero. The observational data are the same
as those shown in Fig. 1.
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FIG. 3. The marginalized (integrated) likelihood L/ L, .. as a
function of Y m,,, accounting for the observational uncertainties
in Oy, Q,, og, n, and h. The shaded region is excluded at 95%
confidence level. The likelihood function has been scaled for
display purposes to a value of one at Y m, = 0.

M, here corresponds to the mass within a comoving radius
of 1.5h7! Mpc and M, is the solar mass) observed at
redshifts up to z = 0.8, [19,25],

N(M > 8 X 10%4h~'M)h~3 Mpc?

1L1* X 1077, at z=0.0-0.1,
_JL7EX0 A z=03-05

1470 x 1078, at z=0.5-0.65,

14714 %1078, at z=0.65—09.

Here the errors in N are from counting uncertainty and are
automatically included in our Poisson likelihood analysis.
The bin width in z is chosen to reflect the uncertainty in the
redshift measurement.

We compute the likelihood from the data using Poisson
errors and the predicted number of clusters in each bin, and
perform a maximum likelihood fit over a discretized pa-
rameter space. We compare the observed cluster number
density evolution of massive clusters with M > 8 X
10'*h~'M to model predictions for different values of
> m, (see Fig. 1 for some examples) and for each value of
> m, we marginalize the likelihood by integrating over the
parameter space (Qy, ;, h, n, og) with Gaussian weight-
ing. Figure 2 shows the dependence of cluster number
density evolution on og. Here > m, = 0 and the other
four parameters ({2, 1, h, n) are set at the center of the
scan interval.
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FIG. 4. The curves show the two-dimensional likelihood in
(og, > m,). The continuous line is the 2-o contour and the
dashed line is the 1-o contour. Lower values of og favor a
higher neutrino mass; for example, at o5 = 0.77 the most likely
neutrino mass value is Y m, = 1.3 eV (also see Ref. [45,46])
whereas at high og values only upper limits on > m,, apply.

The likelihood as a function of )" m,, is shown in Fig. 3.
Low values of > m,, are favored but we find no preference
for a nonzero value. We obtain an upper limit of > m, <
2.37 eV (95% C.L.), accounting for the uncertainties in all
five cosmological parameters )y, n, h, og, and ). The
cluster number density evolution depends significantly on
og (see Fig. 2). The two-dimensional likelihood in
(0g, > m,) is shown in Fig. 4. Lower values of og favor
a higher neutrino mass.

Our result of Y m, <2.4 eV, which is based on the
cluster number density evolution, is in good agreement
with bounds on neutrino masses from CMB (and other)
measurements [4,8] and corroborates that evidence. Our
limit indicates that effects from the neutrinos on the evo-
lution of galaxy clusters cannot be excluded and also
indicates that these effects should be taken into account
in the determination of cosmological parameters. Based on
our result and on the particle physics limit of > m, >
0.04 eV, we find (1, is in the range of 0.1% to 5%.
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