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Effects of cosmological magnetic helicity on the cosmic microwave background
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Cosmological magnetic fields induce temperature and polarization fluctuations in the cosmic micro-
wave background (CMB) radiation. A cosmological magnetic field with current amplitude of order
10�9 G is detectable via observations of CMB anisotropies. This magnetic field (with or without helicity)
generates vector perturbations through vortical motions of the primordial plasma. This paper shows that
magnetic field helicity induces parity-odd cross correlations between CMB temperature and
B-polarization fluctuations and between E- and B-polarization fluctuations, correlations which are zero
for fields with no helicity (or for any parity-invariant source). Helical fields also contribute to parity-even
temperature and polarization anisotropies, canceling part of the contribution from the symmetric
component of the magnetic field. We give analytic approximations for all CMB temperature and
polarization anisotropy vector power spectra due to helical magnetic fields. These power spectra offer
a method for detecting cosmological helical magnetic fields, particularly when combined with Faraday
rotation measurements which are insensitive to helicity.
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I. INTRODUCTION

The linear theory for the evolution of small inhomoge-
neities in the standard spatially homogeneous and isotropic
cosmological model, developed by Lifshitz and others [1],
shows that vector perturbations1 decay as the Universe
expands.2 This is why vector perturbations are usually
neglected when computing cosmic microwave background
(CMB) fluctuations. On the other hand, the presence of a
cosmological magnetic field [3–8] alters this situation. In
this paper we focus on vector perturbations induced by a
cosmological magnetic field, existing since radiation-
matter equality or earlier (for a specific inflation model
see [9]). Both an homogeneous magnetic field, as well as
the more realistic stochastic one, induce transverse MHD
(Alfvén) waves [3]. Nondecaying cosmological Alfvén
waves result in CMB temperature and polarization anisot-
ropies [4–7,10,11].3

A cosmological magnetic field could have helicity [15].
Magnetic field helicity plays an important role in the MHD
dynamo, used in some models of galactic magnetic field
amplification [16]. Unlike gravitational waves which are
damped on scales below the Hubble radius at decoupling
address: tinatin@phys.ksu.edu
address: ratra@phys.ksu.edu
turbations are also known as transverse peculiar
rticity perturbations.
adiabatic initial conditions, which are consistent

ions. However, a nondecaying vector perturbation
is an initial large-scale photon-baryon fluid vor-

sated by a neutrino vorticity such that the total
rticity in relativistic components vanishes [2].

can be excited only after neutrino decoupling [2].
to the vector mode, a cosmological magnetic field

B fluctuations through the scalar and tensor modes
n Refs. [3,6,12–14].
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(the corresponding damping multipole number l� 100),
Alfvén waves survive down to smaller damping scales (l�
2000) [7], thus a cosmological magnetic field can affect
small-scale CMB fluctuations. From this point of view, the
vector mode is more relevant for constraining a cosmo-
logical magnetic field from CMB fluctuation measure-
ments.

In this paper we present analytic expressions for all
CMB fluctuation vector power spectra that arise from a
helical cosmological magnetic field. In particular, we also
compute how magnetic helicity affects parity-even CMB
fluctuation power spectra. We propose a scheme to con-
strain cosmological magnetic helicity from CMB tempera-
ture and polarization anisotropy observations. The
symmetric part of the magnetic field spectrum can be
reconstructed from measurements of the rotation of the
CMB polarization plane as a consequence of the Faraday
effect [17]; this is because magnetic helicity does not
contribute to the Faraday rotation effect [18–20]. On the
other hand, the helical part of the magnetic field spectrum
induces parity-odd cross correlations between temperature
and B-polarization anisotropies, and between E- and
B-polarization anisotropies [10,14]; such cross correlations
are not induced by the Faraday effect [20].4

For our computations we use the formalism of Ref. [6],
extending it to account for magnetic field helicity. To
compute CMB temperature and polarization anisotropy
power spectra we use the total angular momentum method
of Ref. [22]. Our results are obtained using analytic
approximations and are valid for l < 500. We present
results in terms of a ratio between CMB fluctuation con-
tributions from the symmetric and helical parts of the
magnetic field power spectrum.
4This is not true for an homogeneous magnetic field [21].
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The rest of the paper is organized as follows. In the next
section we model the helical magnetic field source term for
vorticity (Alfvén) waves. In Secs. III and IV we present
analytic approximations for the parity-even and parity-odd
CMB fluctuation power spectra contributions induced by
magnetic helicity. In Sec. V we discuss our results and
conclude. In Appendixes A and B we present some details
of the computation including analytic approximations used
for some of the integrations.
5We thank Lewis (private communication, 2004, and Ref. [7])
for pointing out a missing �2��3 factor in the expression for
h��

i �k��j�k0�i given in Ref. [6]. In what follows we use other
results from Ref. [6] corrected for a similar missing factor.
II. MAGNETIC-FIELD-INDUCED VECTOR
PERTURBATIONS

A. Magnetic field source term

We assume the existence of a cosmological magnetic
field generated during or prior to the radiation-dominated
epoch, with the energy density of the field a first-order
perturbation to the standard Friedmann-Lemaı̂tre-
Robertson-Walker homogeneous cosmological spacetime
model. Neglecting fluid backreaction onto the magnetic
field, the spatial and temporal dependence of the field
separates, B�t;x� � B�x�=a2; here a is the cosmological
scale factor. As a phenomenological normalization of the
magnetic field, we smooth the field on a comoving length 	
with a Gaussian smoothing kernel / exp��x2=	2� to ob-
tain the smoothed magnetic field with average value of
squared magnetic field B	

2 	 hB�x� �B�x�ij	 and mag-
netic helicity H	

2 	 	jhB�x� � �r� B�x��ij	. See
Ref. [20] for a more detailed discussion.

We also assume that the primordial plasma is a perfect
conductor on all scales larger than the Silk damping wave-
length 	S (the thickness of the last scattering surface) set
by photon and neutrino diffusion. We model magnetic field
damping by an ultraviolet cutoff wave number kD �
2�=	D [6,13],�

kD
Mpc�1

�
nB�5

� 2:9� 104
�

B	

10�9 G

�
�2
�

k	
Mpc�1

�
nB�3

h:

(1)

Here nB is the spectral index of the symmetric part of the
magnetic field power spectrum [see Eq. (4) below], h is the
Hubble constant in units of 100 km sec�1 Mpc�1, k	 �
2�=	 is the smoothing wave number, and 	D � 	S.
This assumes that magnetic field damping is due to the
damping of Alfvén waves from photon viscosity.

Assuming that the stochastic magnetic field is
Gaussianly distributed, and accounting for the possible
helicity of the field, the magnetic field spectrum in wave
number space is [10],

hB?
i �k�Bj�k0�i � �2��3��3��k� k0��Pij�k̂�PB�k�

� i�ijlk̂lPH�k��: (2)

Here Pij�k̂� 	 �ij � k̂ik̂j is the transverse plane projector
with unit wave number components k̂i � ki=k, �ijl is the
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antisymmetric tensor, and ��3��k� k0� is the Dirac delta
function. We use

Bj�k� �
Z
d3xeik�xBj�x�;

Bj�x� �
Z d3k

�2��3
e�ik�xBj�k�;

(3)

when Fourier transforming between real and wave number
spaces; we assume flat spatial hypersurfaces. PB�k� and
PH�k� are the symmetric and helical parts of the magnetic
field power spectrum, assumed to be simple power laws on
large scales,

PB�k� 	 PB0knB �
2�2	3B2

	

��nB=2� 3=2�
�	k�nB ;

PH�k� 	 PH0knH �
2�2	3H2

	

��nH=2� 2�
�	k�nH ; k < kD;

(4)

and vanishing on small scales when k > kD. Here � is the
Euler gamma function. These power spectra are generi-
cally constrained by PB�k� � jPH�k�j [16,23], which im-
plies nH > nB [14,23]. In addition, finiteness of the
magnetic field energy density requires nB >�3 (to prevent
an infrared divergence of magnetic field energy density).
Finiteness of the magnetic field average helicity requires
nH >�4; this is automatically satisfied as a consequence
of nH > nB >�3.

To obtain the magnetic field source term in the trans-
verse peculiar velocity perturbation equation of motion we
need to extract the transverse vector part of the magnetic
field stress-energy tensor �ij�k�. This is done through
�ij�k� � �Pib�k̂�k̂j � Pjb�k̂�k̂i�k̂a�ab�k�, and the �ij ten-
sor is related to the vector (divergenceless and transverse)
part of the Lorentz force L�V�

i �k� � kj�ij�k� �
Pib�k̂�ka�ab�k� [Eq. (2.16) of Ref. [6]]. For the normalized
Lorentz force vector �i 	 L�V�

i =k, the general spectrum in
wave number space is similar to Eq. (2); that is,5

h�?
i �k��j�k0�i � �2��3��3��k� k0��Pijf�k�

� i�ijqk̂qg�k��; (5)

where f�k� and g�k� represent the symmetric and helical
parts of the vector Lorentz force power spectrum. These
functions are related to the magnetic field stress-energy
tensor spectrum through
-2
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�2��3��3��k� k0�f�k� �
1

4
�Paj�k̂�k̂iPam�k̂

0�k̂0l

� Pai�k̂�k̂jPal�k̂
0�k̂0m�

� h�?ij�k��lm�k
0�i; (6)

�2��3��3��k� k0�g�k� � �
i
4
k̂q��jmqk̂ik̂

0
l � �ilqk̂jk̂

0
m�

� h�?ij�k��lm�k
0�i: (7)

The functions f�k� and g�k� are evaluated in Appendix A,

f�k� ’ F B�	kD�
2nB�3

�
1�

nB
nB � 3

�
k
kD

�
2nB�3

�

�FH�	kD�
2nH�3

�
1�

nH � 1

nH � 4

�
k
kD

�
2nH�3

�
; (8)

g�k�’G	k�	kD�
nB�nH�2

�
1�

nH�1

nB�3

�
k
kD

�
nB�nH�2

�
; (9)

for k < kD; f�k� and g�k� vanish for k > kD. Here F B, FH
and G are constants that depend on the magnetic field
power spectrum indices nB and nH, and the power spec-
trum normalization,

F B �
	3B4

	

16�2nB � 3��2�nB=2� 3=2�
;

FH �
	3H4

	

24�2nH � 3��2�nH=2� 2�
;

G �
	3B2

	H
2
	

24�nB � nH � 2���nB=2� 3=2���nH=2� 2�
:

(10)

The contribution of magnetic field helicity to the symmet-
ric source f�k� is negative (as in the case for tensor pertur-
bations [14]). The magnetic source terms in Eqs. (8) and
(9) vanish on scales smaller than the cutoff scale 	 < 	D
because of magnetic field damping. The singularities at
nB � �3=2, nH � �3=2 and nB � nH � �2 in Eqs. (10)
are removable [6,14]. For nB >�3=2 the terms propor-
tional to k2nB�3

D and k2nH�3
D dominate in the expression for

f�k� in Eq. (8), and the symmetric source term depends on
the cutoff wave number kD but not on k, and so is a white
noise spectrum [23].

B. Vorticity perturbations

A cosmological magnetic field contributes, via the line-
arized Einstein equations, to all three kinds of perturba-
tions, scalar, vector, and tensor modes (for a recent review
see [7]). Here we focus on the effects a stochastic magnetic
field with helicity has on vector perturbations.6 The vector
metric perturbation may be described in terms of two
gauge-invariant divergenceless three-dimensional vector
6See Ref. [10] for a study of helical vorticity fields. They did
not account for magnetic field helicity acting as a source in the
helical vorticity field perturbation equation of motion.
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fields, the vector potential V (which is a vector perturbation
of the extrinsic curvature), and a vector parametrizing the
transverse peculiar velocity of the plasma, the vorticity
� � v� V, where v is the spatial part of the four-velocity
perturbation of a stationary fluid element [4]. In the ab-
sence of a source a vector perturbation decays with time
and so can be ignored.

Since electromagnetism is conformally invariant it is
possible to rescale fields by appropriate powers of the scale
factor and simply obtain Maxwell’s equations in the ex-
panding Universe from the Minkowski spacetime Maxwell
equations. Since the fluid velocity is small the displace-
ment current in Ampère’s law may be neglected; this
implies the current J � r�B=�4��. The residual ioniza-
tion is large enough to ensure that magnetic field lines are
frozen into the plasma, so the induction law takes the form
�@=@t�B � r� �v� B�. As a result the baryon Euler
equation for v has a Lorentz force L�x� ’ �fB�x� � �r �
B�x��g=�4�� as a source term. The photons are neutral so
the photon Euler equation does not have a Lorentz force
source term. The Euler equations for photons and baryons
are [6,22]

_� % � _��v% � vb� � 0; (11)

_� b �
_a
a
�b �

_�
R
�v% � vb� �

L�V��k�
a4�'b � pb�

; (12)

where an overdot represents a derivative with respect to
conformal time ), and �% � v% � V and �b � vb � V
are the vorticities of the photon and baryon fluids. Here
_� � ne*Ta is the differential optical depth, with ne the free
electron density and *T the Thomson cross section, R 	

�'b � pb�=�'% � p%� ’ 3'b=4'% is the momentum den-

sity ratio between baryons and photons, and L�V�
i is the

transverse vector (divergenceless) part of the Lorentz
force.

The average Lorentz force hL�x�i � �hB� �r�

B�i=�4�� vanishes, while the rms Lorentz force hL�x� �
L�x�i1=2 is nonzero and acts as a source in the vector
perturbation equation. The magnetic helicity spectrum
PH�k� contributes to the symmetric part of the Lorentz
force spectrum, see the expression for f�k� in Eq. (8). As
a result magnetic helicity affects the symmetric vorticity
perturbation spectrum via the Euler equation, and so con-
tributes to parity-even CMB fluctuations. The helical part
of the Lorentz force spectrum is completely determined by
g�k�, Eq. (9), and acts as a source for the helical part of the
vorticity perturbation spectrum. Solving the Euler equa-
tions in the tight-coupling limit when v% ’ vb, we have
[5,6],7
We use the ‘‘helicity’’ basis of Sec. 1.1.3 of Ref. [24] and
decompose a vector A �

P1
,��1 e�,�A�,�, where e��1� and e�0�

are the unit basis vectors. The unit vector e�0� is chosen to be in
the direction of wave propagation e�0� � k̂ and e��1��k� �
�i�e1 � ie2�=

���
2

p
.
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���1��);k� ’
k���1��k�)

�1� R��'%0 � p%0�
: (13)

Here p%0 and '%0 are the photon pressure and energy
density today, and the ��0� component vanishes due to
the transversality condition. This result can also be ob-
tained from the Einstein equation [6].

The expression in Eq. (13) is valid on scales 	 larger
than the comoving Silk scale 	S. On smaller scales the
photon viscosity becomes comparable to the effects of the
magnetic field and so must be accounted for in the Euler
equation. On these smaller scales with k > kS [5],

���1��);k� ’
���1��k�

�kL%=5��'%0 � p%0�
; (14)

where L% is the photon mean free path length.
We define the CMB anisotropies in terms of the vorticity

perturbation power spectrum,8

h��
i �k��j�k0�i � �2��3��3��k� k0��Pijj�j2�k�

� ik̂q�ijq!�k��: (15)

Here j�j2�k� is the symmetric part of the vorticity power
spectrum, directly related to the symmetric magnetic field
source spectrum f�k� � j�j2�k�, while !�); k� is the hel-
ical part of the vorticity spectrum and is determined by the
helical magnetic field source term g�k�,

��); k� ’

( k)
�1�R��'%0�p%0�

��k�; k < kS;
1

�kL%=5��'%0�p%0�
��k�; k > kS;

!�); k� ’

(
� k)
�1�R��'%0�p%0�

�2g�k�; k < kS;

� 1
�kL%=5��'%0�p%0�

�2g�k�; k > kS:

(16)

Here the factor 1� R for k < kS reflects the suppression of
the vorticity field due to the tight coupling between bary-
ons and photons, because photons, being neutral, are not
influenced by the magnetic field Lorentz force source.
III. PARITY-EVEN CMB FLUCTUATIONS FROM
MAGNETIC HELICITY

Cosmological magnetic field vector and tensor mode
contributions to large angular scale (l < 100) CMB fluc-
tuations are of the same order of magnitude [6], while
small angular scale (l > 100) CMB fluctuations are domi-
nated by the vector mode contribution [14]. Stochastic
nonhelical magnetic field effects on the CMB temperature
8Both the vorticity � and the vector potential V appear in the
equations for the CMB temperature and polarization fluctua-
tions. The set of the equations governing the vector perturbation
dynamics is given in Eqs. (35)–(38) of Ref. [7]. These show that
the contribution from � to the CMB anisotropies dominates over
that from V, justifying neglect of the V contribution to CMB
temperature and polarization anisotropies [4–6].
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and polarization anisotropies are discussed in detail in
Refs. [5–7]. Here we compute the CMB vector mode
fluctuation arising from the helical part of the magnetic
field power spectrum (also see Ref. [10]).

To compute the CMB temperature and polarization an-
isotropy power spectra we use the total angular momentum
representation [22]. Given CMB temperature and polariza-
tion anisotropy integral solutions of the Boltzmann tem-
perature equation, the CMB fluctuation power spectra are
[22]

CXX0

l �
2

�

Z
dkk2

X
m

Xl�m��)0; k�

2l� 1

X0
l�m��)0; k�

2l� 1
; (17)

where )0 is the conformal time now and X is either �, E,
or B, which represent, respectively, the temperature,
E-polarization, and B-polarization anisotropies. For the
vector mode the sum includes only terms with m � �1.
In what follows we use results from Ref. [6] for the CMB
fluctuation power spectra CXX0

�S�l induced by the symmetric
(nonhelical) part of magnetic field power spectrum and
proportional to fB�k� �

R
d3pPB�p�PB�jk� pj�.

The complete parity-even CMB fluctuation power spec-
tra may be expressed as

CXX0

l � CXX0

�S�l � CXX0

�A�l ; (18)

where the CXX0

�A�l are the power spectra induced by magnetic
helicity, i.e., proportional to fH�k�. The minus sign reflects
the negative contribution of magnetic helicity to the total
parity-even CMB fluctuation power spectra.9 This result
also holds for the tensor mode case [14]. The fractional
difference 0XX0

l 	 1� CXX0

�A�l =C
XX0

�S�l , where 0< 0XX0

l <
1, can be used to characterize the reduction of the parity-
even CMB fluctuation power spectra amplitudes as a con-
sequence of nonzero magnetic helicity. The ratio
CXX0

�A�l =C
XX0

�S�l may be expressed in terms of g�k�=f�k�,
i.e., in terms of P0H=P0B and spectral indexes nH and nB.
We find that for any parity-even CMB fluctuation power
spectrum

0XX0

l � 1�
2�2nB � 3�

3�2nH � 3�

�
PH0k

nH�nB
D

PB0

�
2
RXX

a �nB; nH; l�:

(19)

Here RXX0

a �nB; nH; l� are dimensionless functions of l and
spectral indexes nB and nH, and the index a � 1 and a � 2
corresponds to nH >�3=2 and nH <�3=2, respectively.
In this section we present explicit forms for RXX0

a : Parity-
odd CMB fluctuation power spectra, such as C�B

l and CEB
l ,

receive a contribution only from the helical part of the
magnetic field source power spectrum, g�k�, i.e., from
9Reference [10] ignores the magnetic helicity contribution
to the symmetric vorticity power spectrum. That is, in
their computation they ignore all terms proportional toR
d3pPH�p�PH�jk� pj�.
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terms proportional to
R
d3pPB�p�PH�jk� pj� andR

d3pPH�p�PB�jk� pj�.

A. CMB temperature anisotropies

Vector perturbations induce CMB temperature anisotro-
pies via the Doppler and integrated Sachs-Wolfe effects.
Neglecting a possible dipole contribution from the velocity
perturbation v today, and using the Boltzmann temperature
transport equation solutions �l for vector perturbations
[see Eqs. (5.2), (5.5), and (5.6) of Ref. [6]], we get10

C��
�A�l � l�l� 1�

�2��2nH�8v4
H	

6�2nH � 3��2�nH=2� 3=2�

�kD)0�
2nH�3

�k	)0�
2nH�6

�

�
)2
dec

�1� Rdec�
2

Z kS

0
dkk�

25

L2
%dec

Z kD

kS

dk

k3

�

�

�
1�

nH � 1

nH � 4

�
k
kD

�
2nH�3

�
J2l�1=2�k)0�: (20)

Here Jl�1=2�x� is a Bessel function, and we have used the

analogy with Alfvén velocity, vA		B	=
������������������������������
4��'%0�p%0�

q
,

to introduce the helicity velocity vH	 	
10For C��
�S�l see Eq. (5.7) of Ref. [6].

11For nB � �2 there is a weak dependence on l,
R��

1 �nB; nH; l� � 1= ln�kS)0=l�.
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H	=
�������������������������������
4��'%0 � p%0�

q
. For nH >�3=2 the integral ex-

pressing the CMB temperature anisotropy in Eq. (20) is
dominated by the first term (1) in the curly brackets, while
for nH <�3=2 the second term / �nH � 1�=�nH � 4� in
the curly brackets dominates.

The integral in Eq. (20) is split into two parts. The
first integral is evaluated using the solution for vorticity
that does not account for the effects of viscosity, Eq. (13),
while the second integral makes use of the solution
in Eq. (14) which accounts for the effects of vis-
cosity. However, numerical integration shows that the first
integral

RkS
0 dominates, since the second integral with

vorticity damped by photon viscosity (when kS < k <
kD) contributes less than of order 1% for l � 500, for
all values of the spectral indexes nB and nH [6]. Thus
the contribution of the second integral may be safely
neglected. The first integral is evaluated using
Eqs. (5.9)–(5.11) and (5.15) of Ref. [6], and Appendix B
of this paper.

Retaining only the leading-order terms for l � 500, for
nH >�3=2 we find
R��
1 ’

8>><>>:
1; nB >�3=2;
2�nB�3��nB�2�

nB
�kDkS

�2nB�3; �2< nB <�3=2;
22nB�6�nB�3����2nB�4�

nB�2��nB�2�
�kS)0

l ��kD)0

l �2nB�3; �3< nB <�2:
(21)
Even for a magnetic field with maximal helicity [when
jPH�k�j � PB�k�], for nB ’ nH >�3=2 the ratio
C��
�A�l=C

��
�S�l � 2=3 (0��

l � 1=3) and the CMB temperature
anisotropy power spectrum C��

l > 0. For nB >�2 the
function R��

1 �nB; nH; l� is independent of l.11 For �3<
nB <�2, R��

1 �nB; nH; l� is a growing function of l, scal-
ing as l�2nB�4. The maximum growth rate of l2 occurs for
nB � �3.

For nH <�3=2 we distinguish two different regions,
�2< nH <�3=2 and �3< nH <�2. Using Eqs. (B1)–
(B8) [also see Eqs. (5.10)–(5.12) and (5.15) of Ref. [6]],
and kS)0 � l, we find
R��
2 ’

8>>>><>>>>:
�nH�1��nB�3��nB�2�
nB�nH�4��nH�2� �kDkS

�2�nB�nH�; �2< nB <�3=2;
22nB�6�nH�1��nB�3����2nB�4�
nB�nH�4��nH�2��2��nB�2�

�kDkS�
2�nB�nH��kS)0

l �2nB�4; nB <�2< nH <�3=2;
22nB�2nH�1�nH�1��nB�3����2nB�4��2��nH�2�

nB�nH�4����2nH�4��2��nB�2�
�kD)0

l �2�nB�nH�; nB � nH <�2:

(22)
The function R��
2 is independent of l for �2< nB �

nH <�3=2, while R��
2 grows as l�2nB�4 for �3< nB <

�2 � nH <�3=2, which coincides with the growth rate
of R��

1 �nB; nH; l� for �3< nB <�2 and nH >�3=2.
Thus if nB <�2, independent of whether nH >�3=2 or
�2< nH <�3=2, R��

a �nB; nH; l� / l�2nB�4. For �3<
nB � nH <�2 the function R��

2 �nB; nH; l� monotoni-
cally increases with l if nH > nB, while it is independent
of l for nH � nB.

The approximate expressions above are accurate to bet-
ter than 15% for nH >�2, to better than 30% for �2:5 �
nH & �2, and to better than a few percent for nH <�2:5
[6]. We do not reproduce the explicit forms of the power
spectra for the cases nH � �3=2 or nH � �2, and nB �
�3=2 or nB � �2, since the corresponding results can be
easily derived via a straightforward extension of the com-
putation presented in Ref. [6]; see Eq. (5.16) there.

B. CMB polarization anisotropies

Vector perturbations generate both E and B CMB polar-
ization anisotropies [25,26]. Since scalar perturbations do
not induce a magnetic (B) CMB polarization anisotropy,
the future detection of a B polarization signal will indicate
the presence of a vector and/or a tensor perturbation mode.
In this subsection we consider the CMB polarization an-
-5
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isotropies that result from vector perturbations induced by
a helical cosmological magnetic field.

1. E polarization

Using the integral solution for the CMB electric (E)
polarization El, see Eq. (6.6) of Ref. [6], the CMB
E-polarization power spectrum from magnetic helicity is12

CEE
�A�l � �l� 1��l� 2�

�2��2nH�8v4
H	

54�2nH � 3��2�nH=2� 2�

�
�kD)0�

2nH�3

�k	)0�
2nH�6

L2
%dec

�
)dec)0

1� Rdec

�
2

�
Z kS

0
dkk5

�
1�

nH � 1

nH � 4

�
k
kD

�
2nH�3

�

�

�
�l� 1�

Jl�1=2�k)0�

�k)0�
2 �

Jl�3=2�k)0�

k)0

�
2
: (23)

The contribution from the integral
RkD
kS

(i.e., the contribu-
tion from the region where vorticity is damped by photons)
is negligible. When evaluating the integral in Eq. (23) we
retain only the dominant term, and this differs depending
on whether nH >�3=2 or nH <�3=2. We also use
Eq. (B3) to approximate the cross term
Jl�1=2�k)0�Jl�3=2�k)0�. To evaluate REE

a �nB; nH; l� we
consider the following three regions: (i) nB >�3=2 and
nH >�3=2; (ii) �3< nB <�3=2 and nH >�3=2; and
(iii) �3< nB <�3=2 and nH <�3=2.

For nH >�3=2, using Eqs. (B2)–(B5) and (B8) and
retaining only the leading terms in the limit where kS)0 �
l, we find

R EE
1 ’

� 1; nB >�3=2;
2�nB�3�2

nB
�kDkS

�2nB�3; �3< nB <�3=2: (24)

The function REE
1 � R��

1 for nB >�3=2, and REE
1 �

�nB � 3�R��
1 for �2< nB <�3=2. The expression for

REE
1 is the same for all values of nB in the range �3<

nB <�3=2, while R��
1 differs depending on whether

�2< nB <�3=2 or �3< nB <�2, see Eq. (21).
For nH <�3=2 we need to consider the ranges �2<

nH <�3=2 and nH <�2 separately [6]. Using Eqs. (B2)–
(B5) and (B8), we find that for nH <�2 the expression for
CEE
�A�l is identical to the one in the region �2< nH <�3=2

to within 15% accuracy. This simplifies the computation,
and for �3< nB � nH <�3=2 we find

R EE
2 ’

�nH � 1��nB � 3�2

nB�nH � 4��nH � 3�

�
kS
kD

�
2�nH�nB�

; (25)

while for �2<nB�nH<�3=2 we have REE
2 �nB;nH;l��
12Just as for the temperature integral solution �l, El is also
expressed in terms of �. To compute CEE

l we use Eqs. (16) and
(17) along with Eq. (8). An expression for CEE

�S�l is given in
Eqs. (6.7) and (6.9)–(6.12) of Ref. [6].
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�nB�3��nH�2�=��nB�2��nH�3��R��
2 �nB;nH;l�,

where R��
2 is given in Eq. (22).

2. B polarization

To compute the contribution from cosmological mag-
netic helicity to the CMB B-polarization power spectrum
we use the integral solution for Bl, Eq. (6.16) of Ref. [6].
The CMB B-polarization power spectrum is

CBB
�A�l � �l� 1��l� 2�

�2��2nH�8v4
H	

54�2nH � 3��2�nH=2� 2�

�
�kD)0�

2nH�3

�k	)0�
2nH�6

L2
%dec

�
)dec)0

1� Rdec

�
2

�
Z kS

0
dkk5

�
1�

nH � 1

nH � 4

�
k
kD

�
2nH�3

� J2l�1=2�k)0�

�k)0�
2 :

(26)

Here again the contribution from the region where viscous
effects are important is negligibly small. An expression for
CBB
�S�l is given in Eqs. (6.18) and (6.19) of Ref. [6].
Using Eq. (B2) and retaining the leading terms we get

R BB
1 ’ REE

1 ; RBB
2 ’ REE

2 ; (27)

to better than 20% accuracy [6].
Both functions REE

a and RBB
a (i.e., the coefficients 0EE

l
and 0BB

l ) are independent of l. This means that cosmologi-
cal magnetic helicity reduces the CMB polarization power
spectrum amplitudes by the same scale factor for the E and
the B polarizations. The ratio between contributions to the
E- or B-polarization signal from the helical and the sym-
metric parts of the magnetic field are independent of l for
the entire range of spectral indices in the case of the vector
mode, while for the tensor mode case the ratios depend on l
for nH <�2 [14].

3. Temperature-E-polarization cross correlation

We may obtain the CMB temperature-E-polarization
cross-correlation power spectrum C�E

l from the integral
solutions for the temperature and E-polarization anisotro-
pies. Like C��

l this power spectrum is also parity even and
only the symmetric part of the magnetic field source fB�k�
[which also contains a contribution from the helical part of
the magnetic field power spectrum PH�k�] contributes to it.
As discussed in Ref. [22] (see Fig. 5 there), the vector
dipole temperature anisotropy radial function j�1V�l �

jl
���������������������
l�l� 1�=2

p
=x does not correlate well with its

E-polarization anisotropy radial function ��V�l � �jl=x2 �
j0l=x�

����������������������������
�l� 1��l� 2�

p
=2 [here j0l�x� is the partial derivative

with respect to x of the Bessel function of fractional order
jl], while the vector quadrupole temperature anisotropy
radial function j�2V�l �

������������������������
3l�l� 1�=2

p
�jl=x�0 does. To com-

pute the vector mode CMB temperature-E-polarization
cross-correlation power spectrum we therefore have to
-6
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retain the term proportional to j�2V�l in the vector temperature integral solution �l which was neglected previously13 in the
derivation of C��

l [see Eq. (20)]. With the j�2V�l term the CMB temperature anisotropy integral solution is [22]

��V�
l �)0; k�
2l� 1

’

����������������
l�l� 1�

2

s
��)dec; k�

�
jl�k)0�

k)0
�
kL%dec

3

�
�l� 1�

jl�k)0�

�k)0�
2 �

jl�1�k)0�

k)0

��
: (28)

C�E
�S�l is given in Eq. (7.3) of Ref. [6], and for C�E

�A�l we get

C�E
�A�l � �

��������������������������������������������
l�l� 1��l� 1��l� 2�

p �2��2nH�8v4
H	

18�2nH � 3��2�nH=2� 2�

�kD)0�
2nH�3

�k	)0�
2nH�6

�
)dec)0

1� Rdec

�
2
L%dec

�
Z kS

0
dkk4

�
1�

nH � 1

nH � 4

�
k
kD

�
2nH�3

��
�l� 1�

J2l�1=2�k)0�

�k)0�
3 �

Jl�1=2�k)0�Jl�3=2�k)0�

�k)0�
2 �

kL%dec

3

�

�
�l2 � 1�

J2l�1=2�k)0�

�k)0�
4 � 2l

Jl�1=2�k)0�Jl�3=2�k)0�

�k)0�
3 �

J2l�3=2�k)0�

�k)0�
2

��
: (29)
13Since it is suppressed relative to the term proportional to j�1V�l .
The first two terms in the second pair of square brackets in
this integral arise from the correlation of j�1V�l with ��V�l . A
numerical evaluation of the integral [6] shows that these
two terms roughly cancel each other as a consequence of
the low correlation between j�1V�l and ��V�l [22]. This may
also be seen by using Eqs. (B6) and (B7),

l� 1

x
J2l�1=2�x� � Jl�1=2�x�Jl�3=2�x�

’
1

2
�Jl�1=2�x�Jl�1=2�x� � Jl�1=2�x�Jl�3=2�x��

’ sin�2x� l�� � sin�2x� l�� �� ’ 0: (30)

In what follows we neglect these two terms. We use
Eqs. (B2)–(B5) to evaluate the three terms in the curly
brackets of Eq. (29). The terms from the correlation be-
tween j�2V�l and ��V�l are suppressed by an additional factor
of kL%dec, relative to the two terms from the correlation
between j�1V�l and ��V�l . In the limit l � 1, these terms and
the squared sum of the two Bessel function terms in the
expression for CEE

l in Eq. (23) (the last factor inside the
integral of this equation) are almost identical. Thus apart
from an overall minus sign, the C�E

l are approximately
equal to the corresponding CEE

l [6]. Here our approxima-
tion might not be as accurate because, accounting for the
suppression factor kL%dec, the neglected contribution from
the correlation between j�1V�l and ��V�l could be comparable
to the retained contribution from the correlation between
j�2V�l and ��V�l .

IV. PARITY-ODD CMB FLUCTUATIONS FROM
MAGNETIC HELICITY

Magnetic helicity induces parity-odd cross correlations
between the E- and B-polarization anisotropies, as well as
between temperature and B-polarization anisotropies
[10,14]. Such off-diagonal parity-odd cross correlations
also occur in the case of an homogeneous magnetic field
from the Faraday rotation effect [21], but not in the case of
103006
a stochastic magnetic field, even one with nonzero helicity
[20]. Faraday rotation measurements cannot be used to
detect magnetic helicity [18–20]. A possible way of de-
tecting magnetic helicity directly from CMB fluctuation
data is to detect the above parity-odd CMB correlations or
to detect the effects magnetic helicity has on parity-even
CMB fluctuations. In this section we study the parity-odd
CMB cross correlations generated from vorticity perturba-
tions. The corresponding tensor mode contributions are
derived in Sec. VI of Ref. [14].

A. Temperature-B-polarization cross correlation

To compute the cross correlation between the CMB
temperature and E-polarization anisotropies we use the
integral solutions for �l and Bl given in Eqs. (5.6) and
(6.16) of Ref. [6] and find
C�B
l ��

������������������������������������������
�l� 1�l�l� 1��l� 2�

p
�

�2��nB�nH�8v2
A	v

2
H	

18�nB�nH � 2���nB=2� 3=2���nH=2� 2�

�
�kD)0�

nB�nH�2

�k	)0�
nB�nH�6

�
)dec)0

1�Rdec

�
2L%dec

)0

�
Z kS

0
dkk3

�
1�

nH � 1

nB� 3

�
k
kD

�
nB�nH�2

�
J2l�1=2�k)0�:

(31)
To evaluate this integral it is helpful to consider separately
the index ranges (i) nB � nH >�2 and (ii) nH � nB <
�2.

When nB � nH >�2 the integral on the right-hand side
(r.h.s.) of Eq. (31) is dominated by the first term in the
-7
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square brackets. Using Eq. (B2) with p � 3 we find

C�B
l � �l2

�2��nB�nH�7v2
A	v

2
H	

27�nB � nH � 2���nB=2� 3=2���nH=2� 2�

�
�kD)0�

nB�nH�2

�k	)0�
nB�nH�6

�
)dec

�1� Rdec�)0

�
2 L%dec

)0
�kS)0�

3:

(32)
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When nH � nB <�2 the integral on the r.h.s. of
Eq. (31) is dominated by the second term ( / knB�nH�2)
in the square brackets. For nB � nH <�5 the integral in
Eq. (31) [

RkS
0 dkknB�nH�5J2l�1=2�k)0�] converges for large

kS which can then be extended to 1, and so the integral
may be evaluated using Eq. (B1). We find for �6< nB �
nH <�5,
C�B
l � �lnB�nH�7 �2��nB�nH�82nB�nH�4v2

A	v
2
H	

9�nB � nH � 2���nB=2� 3=2���nH=2� 2�

1

�k	)0�
nB�nH�6

�
)dec

�1� Rdec�)0

�
2 L%dec

)0

�
nH � 1

nB � 3

�

�
���nB � nH � 5�

�2��nB=2� nH=2� 2�
: (33)

For nB � nH >�5 (but still nB � nH <�2) the integral in Eq. (31) diverges at large kS and so the upper limit cannot be
replaced by 1, and the integral cannot be evaluated by using Eq. (B1). Instead we approximate it by using Eq. (B2). We
find for �5< nB � nH <�2,

C�B
l � �l2

�2��nB�nH�7v2
A	v

2
H	

9�nB � nH � 2��nB � nH � 5���nB=2� 3=2���nH=2� 2�

�kS)0�
nB�nH�5

�k	)0�
nB�nH�6

�
)dec

�1� Rdec�)0

�
2 L%dec

)0

�
nH � 1

nB � 3

�
:

(34)
When nB � nH � �5 the integration can be done by using
Eq. (B2) with p � 0.

At large angular scales (l < 100) where the contribution
from the tensor mode is significant, for nB � nH >�2 the
vector mode C�B�V�

l and the tensor mode C�B�T�
l [see

Eq. (98) of Ref. [14]] have the same l dependence / l2.
For all other values of spectral indexes nB and nH, the
growth rate (with l) of C�B�V�

l is faster than C�B�T�
l . In

particular, when the integral in Eq. (31) converges at
large kS (for �6< nB � nH <�5), C�B�V�

l =C�B�T�
l / l3.

When �5< nB � nH <�2, the integral for the tensor
mode temperature-B-polarization cross-correlation power
spectrum converges at large k [see Eq. (97) of Ref. [14]],
while it diverges for vorticity perturbations, Eq. (31), re-
sulting in C�B�V�

l =C�B�T�
l / l�nB�nH�2. The ratio between

temperature-B-polarization signals from vector and tensor
modes is independent of the amplitudes of the average
magnetic field (B	) and average magnetic helicity (H	).
For maximally helical magnetic fields with nH ’ nB,
due to the suppression factor L%;dec=)0 the
temperature-E-polarization cross-correlation power spec-
trum C�E

l is smaller the temperature-B-polarization cross-
correlation power spectrum C�B

l ,14 C�E
l � C�B

l , but both
are / l2, if nB � nH >�5. The same suppression factor
makes C�B

l smaller than C��
l . For an arbitrary helical field

C�B
l =C�E

l depends on the ratio �PH0=PB0�k
nH�nB
D and order

unity prefactors that depend on nB and nH. A dependence
on l appears only if nB � nH <�5 when the ratio
C�B
l =C�E

l decreases as / lnB�nH�5.

B. E- and B-polarization cross correlation

To compute cross correlations between E- and
B-polarization anisotropies we use the integral solutions
for El and Bl given in Eqs. (6.14) and (6.16) of Ref. [6]. We
find
CEB
l � ��l� 1��l� 2�

�2��nB�nH�8v2
H	v

2
A	)

5
0

54�nB � nH � 2���nB=2� 3=2���nH=2� 2�

�kD)0�
nB�nH�2

�k	)0�
nB�nH�6

�
)dec)0

1� Rdec

�
2
L2
%dec

�
Z kS

0
dkk5

�
1�

nH � 1

nB � 3

�
k
kD

�
nB�nH�2

��
�l� 1�

J2l�1=2�k)0�

�k)0�
3 �

Jl�1=2�k)0�Jl�3=2�k)0�

�k)0�
2

�
: (35)
14If nH ’ nB >�3=2, C�E
l =C�B

l ’ L%;dec=�2)0�.
The combination of Bessel functions in the second set of
square brackets in this integral is identical to the first two
terms in the second set of square brackets in Eq. (29),
which is negligibly small according to Eq. (30). Also the
E- and B-polarization anisotropy cross-correlation power
spectrum has an additional suppression factor of kL%;dec
relative to the expression in Eq. (29). This implies CEB
l �

C�B
l . Note that this is consistent with the result of Ref. [22]

that j�1V�l does not correlate well with ��V�l . The correspond-
ing CEB

l amplitudes in the tensor mode case (for l < 100)
-8
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are not suppressed and are of the same order of magnitude
as the tensor mode temperature-B-polarization anisotropy
cross-correlation power spectrum [14].

V. CONCLUSION

In this paper we consider how cosmological magnetic
helicity affects CMB fluctuations. Even for a cosmological
magnetic field with maximal helicity, such effects may be
detectable only if the current magnetic field amplitude is at
least 10�10 or 10�9 G on Mpc scales. Our analytical ex-
pressions for CMB fluctuation power spectra are valid (to
the accuracy of our approximations) for nB >�3.15

A cosmological magnetic field generates a
B-polarization signal via induced vector and/or tensor
modes, so a detection of such a signal may indicate the
presence of a cosmological magnetic field.16 However,
it has to be emphasized that a B-polarization anisotropy
signal can also arise in other ways, such as from primordial
tensor perturbations [25], gravitational lensing [29], or
Faraday rotation of the CMB anisotropy polarization plane
[17,19,20]. The B-polarization anisotropy power spectrum
l2CBB

l peak position may help identify the B-polarization
source. For example, cosmological-magnetic-field-
induced tensor perturbations only contribute on large an-
gular scales l < 100, while B-polarization anisotropy from
gravitational lensing has a peak amplitude l2CBB

l � 10�14

at l� 1000 [29]. The Faraday rotation B-polarization
anisotropy signal from a field with B	 � 10�9 G (at 	 �
1 Mpc) and spectral index nB � �2 peaks at a substan-
tially smaller scale l� 104 with a frequency-dependent
peak amplitude l2CBB

l � 10�12 (at 10 GHz) and l2CBB
l �

10�14 (at 30 GHz) [20]. A nonhelical cosmological mag-
netic field with B	 � 10�9 G at 	 � 1 Mpc induces
a B-polarization anisotropy signal via the vector perturba-
tion mode with a peak amplitude l2CBB

l � 10�13 at l�
1000 [7]. We have shown that a magnetic field with maxi-
mal helicity results in the reduction of the B-polarization
anisotropy signal on all scales by a factor of 1=3 for
15However, a cosmological magnetic field with spectral index
nB ’ 2 (as might be generated by an MHD cascade in the early
Universe [16]) has significant power on small (galaxy cluster)
scales and so measurements of Faraday rotation in clusters imply
an upper limit on the smoothed amplitude B	 < 10�12 G on Mpc
scales [16,27]. Such a ‘‘blue’’ cosmological magnetic field
cannot significantly affect CMB anisotropies. A strong con-
straint on magnetic field amplitude on Mpc scales for nB >
�2 arises from gravitational waves production via a magnetic
source, if the magnetic field is generated with a power law
spectrum PB�k� � �k=kmax�

nBPB�kmax� (where kmax � )�1
gen and

)gen is the moment of magnetic field generation) that can be
extrapolated, without damping, down to the Hubble radius when
the magnetic field is generated, e.g., � 10�4 Mpc if the mag-
netic field is generated at the electroweak phase transition (or
even smaller for a magnetic field generated during inflation)
[28].

16See Ref. [26] for CMB polarization anisotropy measure-
ments.
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�3=2< nB ’ nH, relative to the nonhelical magnetic field
case.

We have presented analytical expressions for all CMB
fluctuation power spectra affected by cosmological mag-
netic helicity. Our results show that cosmological magnetic
helicity can affect CMB anisotropies, in addition to the
effects it has on MHD dynamo amplification and processes
in the early Universe [15,16]. It would be useful to incor-
porate our analytical expressions for l2CXX0

l into a numeri-
cal code (e.g., that of Lewis [7]) to compute CMB
temperature and polarization anisotropies generated by a
general cosmological magnetic source.

To set an observational limit on cosmological mag-
netic helicity H	 [or PH�k�] one may proceed as
follows. The first step is to determine the average mag-
netic field B	 [or PB�k�] using measurements of the
Faraday rotation of the CMB polarization plane
[17,19,20]. Then one may use measurements of the
parity-odd temperature-B-polarization anisotropies cross-
correlation power spectrum C�B

l for l > 100 (to insure that
the tensor mode does not contribute).17 According to
Eq. (31), if B	 and nB are known, C�B

l is determined by
H	 and nH (i.e., the helical part of the magnetic field
spectrum). A future detection of �� B cross correlations
may be used to constrain H	. It should be emphasized that
on scales l > 100 magnetic-field-induced cross correla-
tions between E and B polarization are negligibly small,
CEB
l � C�B

l , which can be used as a cross-check of the
source of B-polarization anisotropy. To bound the range of
nH for a given nB, the l dependence of the ratio C��

�A�l=C
��
�S�l

can be used. In particular, if, for �3< nB <�2,
C��
�A�l=C

��
�S�l is an increasing function of l growing as

l�2nB�4, then nH >�2, while if it scales as l2�nH�nB� then
nB � nH <�2. If, for nB <�2, C��

�A�l=C
��
�S�l is l indepen-

dent, then nH ’ nB. If nB >�2, C��
�A�l=C

��
�S�l is l indepen-

dent for any allowed nH � nB >�2.
It is possible that there are other ways to detect magnetic

helicity. On the other hand, Ref. [18] argues that a detec-
tion of magnetic helicity, even for cluster magnetic fields,
is a very difficult task.
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APPENDIX A: DERIVATION OF MAGNETIC FIELD
SOURCE TERMS FOR VORTICITY

PERTURBATIONS

The derivation of the symmetric magnetic field source
term for the vorticity perturbation equation of motion is
given in [6]. To obtain the complete magnetic field source
term for the vector metric perturbation we use the Fourier
transformed magnetic field energy-momentum tensor,

�ij�k� �
1

2�2��4
Z
d3p

�
Bi�p�Bj�k� p�

�
1

2
Bl�p�Bl�k� p��ij

�
; (A1)

and its wave number space power spectrum h�?ij�k��lm�k
0�i

[6]. The symmetric part of the magnetic source power
spectrum f�k� and the helical part g�k� of the magnetic
source power spectrum can be obtained via Eqs. (6) and
(7), see Eqs. (A4)–(A7) of [6] and Eq. (A1) of Ref. [14].
The part of f�k� � fB�k� � fH�k� that depends on the
symmetric part of the magnetic field power spectrum,
fB�k� �

R
d3pPB�p�PB�jk� pj�, is [6]

fB�k� ’
	3B4

	

16�2nB � 3��2�nB � 3=2�

�

�
�	kD�

2nB�3 �
nB

nB � 3
�	k�2nB�3

�
: (A2)

The magnetic helicity contribution, fH�k� �R
d3pPH�p�PH�jk� pj�, to f�k� is

fH�k� �
1

8�2��5
Z
d3pPH�p�PH�jk� pj�

�
p�1� %2�����������������������������������

k2 � 2kp%� p2
p ; (A3)

where % � k̂ � p̂. The function fH�k� is positive but it
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contributes to f�k� with a minus sign, f�k� � fB�k� �
fH�k�, and so it decreases the overall symmetric magnetic
field source term. This result contradicts that of Ref. [10].
Reality requires PB�k� � jPH�k�j, and the total symmetric
source term is always positive, f�k�> 0. The mixed termsR
d3pPB�p�PH�jk� pj� and

R
d3pPH�p�PB�jk� pj� do

not contribute to f�k�, while the helical spectrum g�k� is
completely defined by these terms,

g�k� �
1

16�2��5
Z
d3pPB�p�PH�jk� pj�

�
�k� 2p%��1� %2�����������������������������������
k2 � 2kp%� p2

p : (A4)

The helical spectrum g�k� does not receive a contribution
from the diagonal terms

R
d3pPB�p�PB�jk� pj� andR

d3pPH�p�PH�jk� pj�.
To evaluate the expressions for fH�k� and g�k�, we first

integrate over % and then integrate over p. The integration
over % can be done analytically, see the appendix of
Ref. [6]. To integrate over p we approximate the result of
the % integration by using the binomial expansion �1�
x�n � 1� nx� n�n� 1�x2=2�O�x3�. For the vector
case the dominant terms for x � 1 are those of quadratic
order. Additionally, the integration is split into two parts,RkD
0 dp �

R
k
0 dp�

RkD
k dp, and the binomial expansion for

k > p used for
R
k
0 dp, while the second integral

RkD
k dp is

evaluated using the binomial expansion for k < p [6,14].
The result is the vector perturbation source power spectrum
symmetric [f�k�] and helical [g�k�] terms in Eqs. (8) and
(9) above.
APPENDIX B: BESSEL FUNCTIONS INTEGRALS

We need to evaluate integrals of the formRxS
0 dxJp�ax�Jq�ax�x�b, which contain products of Bessel

functions. For b > 0 when the integral converges and is
dominated by x � xS, the upper limit xS can be replaced
by 1 (with an accuracy of a few percent for b > 1, and
15%–30% for 0< b< 1, depending on the value of p�
q). We can then use Eq. (6.574.2) of Ref. [30],
Z 1

0
dxJp�ax�Jq�ax�x�b �

ab�1��b����p� q� b� 1�=2�

2b����p� q� b� 1�=2����p� q� b� 1�=2����p� q� b� 1�=2�
; (B1)
which is valid for Re�p� q� 1�> Reb > 0, and a > 0.
To evaluate the integral

RxS
0 dxxpJ2l�1=2�x� with p > 0

and xS � l, we use the asymptotic expansion of Jp�x� for

large arguments, Eq. (9.2.1) of Ref. [31], Jl�1=2�x� ’���������������
2=��x�

p
cos�x� �l� 1��=2� ’

���������������
2=��x�

p
cos�x� �l�

1��=2�. Replacing the oscillatory function cos2 by its rms
value of 1=2, we obtain [6,14],

�
Z xS

0
dxxpJ2l�1=2�x�’�

Z xS

l
dxxpJ2l�1=2�x�

’

�
xpS=p; p>0;
ln�xS=�l�1=2��; p�0:

(B2)
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For the integral
RxS
0 dxxpJl�1=2�x�Jl�3=2�x� we also use the large argument (x � l) approximation for the Bessel

functions, and find (see Ref. [14] for a numerical check)

�xJl�1=2�x�Jl�3=2�x� ’ 2 cos
�
x� �l� 1�

�
2

�
cos

�
x� �l� 2�

�
2

�
� 2 cos

�
x� �l� 1�

�
2

�
sin

�
x� �l� 1�

�
2

�
� sin�2x� �l� 1��� � ��1�l�1 sin�2x�: (B3)
So for p > 0,

�
Z xS

0
dxxpJl�1=2�x�Jl�3=2�x�

’ ��1�l�1
Z xS

l
dxxp�1 sin�2x�

’
��1�l

2
�xp�1

S sin�2xD� � �l� 1=2�p�1 sin�2l��: (B4)

This approximation tends to underestimate; it is good to a
few percent for p > 1 and is within 30% for 0< p � 1.
For p � 0 the integral

RxS
0 dxJl�1=2�x�Jl�3=2�x� may be

evaluated using Eq. (11.4.42) of Ref. [31],Z xS

0
dxJl�1=2�x�Jl�3=2�x� �

1

2
: (B5)

For the integral
RxS
0 dxxp��l� 1�Jl�1=2�x�=x�

Jl�3=2�x��
2 appearing in Eq. (23), for large enough l we

have the approximation,�
l� 1

x
Jl�1=2�x� � Jl�3=2�x�

�
2
� �J0l�1=2�x��

2

�
1

4
�Jl�1=2�x� � Jl�3=2�x��2:

(B6)
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We now approximate the cross term Jl�1=2�x�Jl�3=2�x� in
the limit x � l by using

�xJl�1=2�x�Jl�3=2�x� ’ 2 cos
�
x� l

�
2

�
cos

�
x� �l� 2�

�
2

�

� �2 cos2
�
x� l

�
2

�
: (B7)
As in the computation of Eq. (B2) we may replace the cos2

by 1=2, and so find for p � 0,

�
Z xS

0
dxxp

�
l� 1

x
Jl�1=2�x� � Jl�3=2�x�

�
2

’
�
4

Z xS

0
dxxp�J2l�1=2 � 2Jl�1=2Jl�3=2 � J2l�3=2�

’ �
Z xS

0
dxxpJ2l ’

�
xpS=p; p > 0;
ln�xS=�l� 1=2��; p � 0:

(B8)
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