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Gravitational radiation from cosmological turbulence

Arthur Kosowsky*
Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-801

and School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540

Andrew Mack†

Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-801

Tinatin Kahniashvili‡

Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-801
and Center for Plasma Astrophysics, Abastumani Astrophysical Observatory, A. Kazbegi Ave. 2a, 380060 Tbilisi, Georgia

~Received 6 April 2002; published 24 July 2002!

An injection of energy into the early Universe on a given characteristic length scale will result in turbulent
motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising
from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced
in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields
arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation back-
ground has a maximum amplitude comparable to the radiation background from the collision of bubbles in a
first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is
always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.
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I. INTRODUCTION

Gravitational radiation is likely the only direct source
information about the Universe at very early times. Elect
magnetic radiation has propagated freely only since the
och of recombination at a redshiftz.1000; any radiation
produced at earlier times was quickly thermalized by Com
ton scattering from free electrons in the primordial plasm
Neutrinos probe to somewhat earlier epochs since they w
in thermal equilibrium only until the Universe was aroun
one second old, but detection prospects for the cosmic n
trino background are nil. In contrast, gravitational radiati
was in thermal equilibrium only at temperatures approach
the Planck energy when the Universe had an age of aro
the Planck time. Furthermore, gravitational radiation, unl
electromagnetic radiation, propagates virtually unimped
throughout the entire history of the Universe. These prop
ties make gravitational radiation a powerful probe of the v
early Universe, in principle. The difficulty is of course th
extremely small amplitude of the propagating metric pert
bations.

The most cosmologically interesting gravitational rad
tion sources are stochastic backgrounds produced by s
event in the early evolution of the Universe. One wide
discussed example is the background of tensor metric pe
bations produced by quantum fluctuations during inflat
@1#. However, the amplitude of temperature fluctuations
the cosmic microwave background likely limits the amp
tude of an inflationary gravitational wave background to
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undetectably small on scales amenable to direct detec
~i.e. laboratory to solar system scales!. Another possibility is
a significant background from the evolution of topologic
defects such as cosmic strings@2#. Current measurements o
the microwave background and the large-scale distribution
galaxies rule out defects as the sole structure forma
mechanism, although it is conceivable that some small fr
tion of the microwave background fluctuations arise fro
defects. In this case as well, direct detection of the grav
tional radiation from defects appears improbable.

The most promising source of a detectable cosmolog
background of stochastic gravitational waves is a phase t
sition in the early Universe@3,4#. A first-order phase transi
tion proceeds via the random nucleation of bubbles of
new phase, which subsequently expand and merge, con
ing the old phase to the new phase. The coherent motio
the bubble walls, which contain a significant fraction of t
free energy associated with the phase transition, can prod
copious gravitational radiation@5–7#. The radiation spectrum
generically peaks at a comoving wavelength correspond
to the Hubble length at the time of the phase transition tim
the bubble wall velocity in units of the speed of light. R
markably, the horizon scale at the electroweak phase tra
tion falls into the frequency band of the proposed Laser
terferometer Space Antenna~LISA! space-based lase
interferometric gravitational radiation detector@8#, and a rea-
sonably strong electroweak phase transition~although much
stronger than in the standard model! would be detectable
with currently planned gravitational wave experiments@9#.

Besides the bubble wall motions in a phase transition
related source of gravitational radiation is the subsequent
bulent motion of the plasma following the phase transitio
Dimensional analysis suggests that turbulence might con
ute a gravitational radiation background comparable to
©2002 The American Physical Society30-1
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larger than that from bubble wall motions@9,10#. In the ab-
sence of bubble shape instabilities, the bubbles of the l
temperature phase will expand spherically until encounte
other expanding bubbles. After the bubbles collide, a reg
of complex, turbulent plasma motions will result since lar
amounts of energy are being injected on a particular cha
teristic length scale. As the phase transition completes,
bubble wall motions sourcing the turbulence cease to be
fective, and the turbulence damps away with a character
damping time scale depending on the plasma viscosity. If
bubbles are unstable to distortions of their shapes, then
expansion of the non-spherical bubbles can also create a
tional turbulence. If the turbulence is strong, with velociti
some non-negligible fraction of the speed of light, significa
gravitational radiation can be generated during the inte
between the initial bubble collisions and the damping of
turbulence after the completion of the phase transition.

In this paper, we quantify these claims by computing
gravitational radiation resulting from an idealized turbule
source. We assume that a source of turbulence exists
some specified length of time, injecting energy on a parti
lar length scale at a particular redshift. We model the res
ing turbulence as having a Kolmogoroff energy spectru
Details of the turbulence model and discussion of the valid
of various assumptions are presented in Sec. II. We t
compute the generated gravitational waves using the tu
lent plasma motions as a source to the wave equation~Sec.
III !; the results are then converted to present-day amplitu
and energy densities as functions of frequency. Section
derives the additional gravitational radiation generated
turbulence-induced magnetic fields, showing that the p
amplitude from this source will be far smaller than the pe
amplitude from the turbulence itself, though at a higher f
quency. In Sec. V, we apply the results to a generic mode
first-order phase transitions, including a brief review of h
drodynamic bubble evolution. Section VI discusses the
tectability of the resulting backgrounds with planned and
visioned experiments. Throughout the paper we emp
natural units withc5\5kB51.

A substantial literature on cosmological turbulence a
peared three decades ago, when turbulent vorticity was
sidered as a mechanism for initiating galaxy formation@11#.
While this particular idea soon fell out of favor due to inco
sistency with the microwave background isotropy@12# and
nucleosynthesis@13#, some formal aspects of these trea
ments are relevant for this work; see, e.g.,@14–16#, which
develop phenomenological descriptions of cosmological
bulence similar in spirit to that presented in this paper. T
hydrodynamic equations in an expanding Universe were
rived through a transformation of the nonexpanding case
@17#, a special case of a more general theorem@18#.

We emphasize that our results are independent of the
ture of the turbulence source. While first-order phase tra
tions are the only obvious source of strong turbulence in
early Universe, the calculations presented here are equ
applicable to any other potential source of turbulence~see,
e.g.,@19#!.
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II. MODEL ISOTROPIC TURBULENCE

The theory of turbulence was originally formulated ov
sixty years ago@20,21#. But the complexity of turbulent mo-
tion makes any analysis beyond basic scaling considerat
and dimensional analysis intractable. Model isotropic turb
lence is experimentally tested via wind tunnel measureme
on scales small compared to the size of the tunnel, and
concepts of a cascade of kinetic energy from large to sm
scales and the role of viscosity are well established. But c
sical turbulence analysis is done for non-relativistic fluid v
locities and incompressible fluids. Here we need to mo
turbulence in a radiation-dominated plasma, potentially w
moderately relativistic fluid velocities and complications lik
shock formation. While the theory of turbulence in high
relativistic plasmas is not well understood, we will simp
extend the nonrelativistic results in the naive manner w
the understanding that some corrections might apply.

Consider an event in the early Universe, presumabl
first-order phase transition, which converts an energy den
krvac into kinetic energy of the primordial plasma in som
characteristic time scaletstir on some characteristic sourc
length scaleLS . Here rvac is the total free energy densit
liberated andk is an efficiency factor which accounts for th
fraction of the available energy which goes directly into k
netic, as opposed to thermal, energy. The length scaleLS

must be connected to the Hubble lengthH
*
21.mPl /T*

2 ,
which is the only cosmological length scale at early tim
we writeLS[gH

*
21 . HereT* is the temperature of the Uni

verse when the event takes place andmPl is the Planck mass
Under suitable conditions discussed below, a turbulent c
cade will develop in which energy will be transferred fro
larger to smaller scales as eddies of progressively sma
sizes are formed from larger ones. The cascade stops
damping scaleLD when the fluid kinematic viscosityn dif-
fuses the turbulent velocities at the same rate as they
replenished from larger scales. We assume that for scalL
in the rangeLD,L,LS ~the inertial range!, the turbulence is
homogeneous and isotropic. We also must know the enth
density w5r1p of the ~nonturbulent! plasma, which ap-
pears in the stress-energy tensor. In our simplified mo
any turbulent source in the early Universe is determin
completely by the physical quantitiesrvac, k, tstir , LS , T* ,
w, andn. These quantities in turn determineLD , the damp-
ing scale, andt, the total duration of the turbulence. No
that a given cosmological model determinesw and n from
the temperatureT* . We also define the wave numberskS
52p/LS and kD52p/LD corresponding to the largest an
smallest turbulence scales.

The turbulent energy in the cascade is characterized
the stationary Kolmogoroff spectrum

E~k![
1

w

dr turb

dk
5Ck«̄

2/3k25/3, ~1!

wherer turb is the kinetic energy density of the turbulent m
tions. The Kolmogoroff constantCk is of order unity and«̄ is
the energy dissipation rate per unit enthalpy given by@22#
0-2
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«̄52nE
kS

kD
dkk2E~k! ~2!

wheren is the kinematic viscosity of the plasma. This spe
trum holds for a constant rate of energy flow from larger
smaller scales; the amplitude is fixed by the rate of ene
dissipation. For a non-relativistic plasma, the enthalpy d
sity w is just the mass density of the plasma, while for te
peratures large compared to the masses of particles in
plasma or for any radiation-dominated plasma,w is 4/3 times
the thermal energy density of the plasma. Combining
above two equations and solving for the energy dissipa
rate gives

«̄.
27

8
kD

4 n3 ~3!

assumingCk51 andkS!kD . However,E(k) is not yet de-
termined since we do not know the wave numberkD corre-
sponding to the smallest-scale turbulent motions.

Before completing the specification ofE(k) in terms of
the physical variables defining the phase transition, cons
the time scales involved in the turbulence. Assume that
only peculiar velocities present are~relativistic! turbulent ve-
locities with spatial distributionu(x); we employ the Fourier
convention

u~k!5
1

VE dxeik•xu~x!. ~4!

We retain the fiducial volume factorV to insure consisten
dimensions for all quantities; all physical results will be i
dependent ofV. A statistically isotropic and homogeneou
velocity field of an incompressible fluid has the two-po
correlation function

^ui~k!uj* ~k8!&5
~2p!3

V
Pi j ~ k̂!P~k!d~k2k8!, ~5!

where

Pi j ~ k̂![d i j 2 k̂i k̂ j ~6!

is a projector onto the transverse plane:

Pi j Pjk5Pik , Pi j k̂ j50. ~7!

The angular brackets in Eq.~5! mean a statistical averag
when the velocities are considered as random variables~see
Ref. @22#, Volume 1, for a detailed discussion!. If the fluid is
compressible, a second arbitrary function appears in the
relation function, proportional tok̂i k̂ j , describing longitudi-
nal motions. A specific model for isotropic turbulence co
sists of specifying the functionP(k); we assume the powe
spectrum is a power law,P(k)5Akn, where the normaliza-
tion A and the spectral indexn can be deduced from th
Kolmogoroff spectrum. The mean square velocity of the flu
at any point in space is given by
02403
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^u2~x!&5
V

~2p!3E dk2P~k!5
V

p2E
kS

kD
dkk2P~k!. ~8!

But this quantity is just the kinetic energy density per u
enthalpy density of the fluid; thus we derive the connecti

E~k!5
V

p2 k2P~k!. ~9!

For the case of a Kolmogoroff spectrum, Eq.~1! implies that

P~k!.
1

V
p2«̄2/3k211/3. ~10!

We are interested in the characteristic eddy velocity o
given scaleL. From the slope of the Kolmogoroff spectrum
and Eq.~8!, it follows that the total turbulent velocity at a
given point is dominated by the eddy velocity on the larg
scale. We can thus estimate the characteristic eddy velo
on the scaleL by cutting off the integral in Eq.~8! at a wave
numberkL52p/L corresponding to that scale:

uL.F E
kL

kD
dkE~k!G1/2

5S 3

2D 1/2

~2p!21/3~ «̄L !1/3. ~11!

We can also estimate an eddy turnover time scale~known as
the circulation time! on a length scaleL as the ratio ofL to
the physical velocityvL5uL /(11uL

2)1/2. We argue below
that the physical velocity will be approximately bounded
the sound speed of the fluid; for a radiation-domina
plasma, this condition isvL<1/A3. Making the simple ap-
proximation thatvL5uL until the sound speed is reache
after which timevL is the sound speed, the circulation time

tL.L/vL.H 3
2 «̄21/3L2/3, L<33/2~8«̄ !21;

LA3, otherwise.
~12!

Now the remaining undetermined quantity in the turb
lence spectrum,kD , can be fixed via energy consideration
Two different cases must be considered separately, dep
ing on whether the duration of the turbulent sourcetstir is
long or short compared to the eddy turnover time scaletS on
the characteristic length scale of the sourceLS . First con-
sider the simpler case wheretstir@tS . Fully developed tur-
bulence is established in a time on the order oftS , so this
case gives approximately a stationary source lasting fo
time t5tstir . To keep the turbulence stationary, the ener
dissipation rate must equal the mean input power of
source:

«̄5
krvac

wtstir
. ~13!
0-3
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This expression immediately determines the amplitude of
Kolmogoroff spectrum, Eq.~1!, and comparing with Eq.~3!
gives

kD.S 8krvac

27n3tstirw
D 1/4

. ~14!

Thus the turbulent gravitational wave source is complet
determined for this case. The circulation time scale on
scale of the source is approximated by combining Eqs.~12!
and ~13! to give

tS.
3

2S LS
2tstirw

krvac
D 1/3

, ~15!

so the condition for this case to be valid becomes

tstir@LSS w

krvac
D 1/2

. ~16!

Finally, the Reynolds number for this turbulence is given

Re5S kD

kS
D 4/3

.
2

3 S 1

2p D 4/3S krvacLS
4

n3tstirw
D 1/3

. ~17!

The critical Reynolds number for the onset of stationary t
bulence is around 2000. Early Universe phase transitions
generally have Reynolds numbers exceeding this value.

The alternate case, fortstir!tS , is more subtle. Here, an
impulsive force is imparted to the plasma, resulting in a to
kinetic energy density equal to the total free energy den
of the phase transition times the efficiency factork, coherent
on the length scaleLS . The efficiency factor depends on th
mechanical details of the stirring process and will be a fu
tion of mean input powerrvac/tstir . A cascade of kinetic
energy to smaller scales will occur, but stationary, isotro
turbulence will never develop because the plasma is not c
tinually being stirred by the source. We can estimate the t
for which significant kinetic energy on a given scale las
On the largest scaleLS , the kinetic energy will last for a time
set by the dissipation time scale, approximately equal to
eddy turnover timetS . As in fully developed turbulence, thi
kinetic energy will cascade to smaller scales. The eddies
the largest scale will act as a source for eddies on a slig
smaller scaleL for a time tS . On the smaller scale, we as
sume the plasma has no kinetic energy at the moment o
impulsive force but rather acquires kinetic energy only fro
the cascade. The smaller-scale eddies are spun up in a
corresponding to the circulation time on the smaller sc
tL ; these eddies will last until the large-scale source
comes ineffectual and then will dissipate also on the circu
tion time scaletL . So by this argument, the eddies on
smaller scaleL will exist for the same total amount of tim
as the eddies on the largest scaleLS , although their estab
lishment and dissipation will be displaced to a slightly la
time compared with the largest-scale eddies. The same
soning can then be applied to eddies at successively sm
scales, with the following conclusion: on any given sca
betweenLS and LD , eddies will exist for a total timetS .
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The only assumption required for this conclusion is that
time scale for establishing eddies on a given scale via
cascade from larger scales is the same as the time scal
dissipating the same eddies via the cascade to smaller sc

The time displacements of the time intervals for the ex
tence of eddies on different scales are essentially irrelev
for the generation of gravitational radiation, leading only
some relative phase shift between the gravitational radia
at two different frequencies. Therefore, for the purposes
modeling a gravitational wave source, we assume the pla
motion consists of kinetic energy simultaneously on
scales within the inertial range, lasting for a total timet
5tS , the circulation time on the scale of the turbulen
source, with a kinetic energy density spectrum given by
Kolmogoroff spectrum, Eq.~1!. To normalize the spectrum
we simply treat the total free energy density as being injec
continually over the timetS rather than as an impulse. Now
this case looks just like the previous one, except thattstir
must be replaced bytS in Eqs.~14! and ~15!:

kD.S 8krvac

27n3tSw
D 1/4

, tS5LSS 3

2D 3/2S w

krvac
D 1/2

. ~18!

Combining the two cases gives the simple expressions

kD.S 8krvac

27n3tw
D 1/4

, tS.
3

2S LS
2tw

krvac
D 1/3

, ~19!

valid for either case, where

t5max~tS ,tstir!. ~20!

The eventual expression for the gravitational wave amplitu
is only very weakly dependent upont, so the distinction
between the two cases is largely unimportant for our resu

When computing the gravitational wave signal, we w
encounter unequal time velocity correlators of the form

^ui~k,t !uj* ~k8,t8!&[
~2p!3

V
Pi j ~ k̂!F~k,t2t8!d~k2k8!

~21!

@cf. Eq.~5!#. The dependence of the functionF only upon the
time differencet2t8 follows from the assumption that th
turbulence can be treated as stationary, withF(k,0)5P(k).
No general form is known forF. However, general physica
considerations imply thatF must be a decreasing function o
t2t8, and we assume that the decay ofF should have a
characteristic time scale on the order of the circulation ti
on the scaleL52p/k. We actually will only need to guaran
tee thatF goes to zero no faster than the light-crossing tim
of L, which is guaranteed by causality.

We have sidestepped the issue of relativistic versus n
relativistic turbulence. The Kolmogoroff model of turbulenc
phenomenology has only been formulated and tested for
bulence with nonrelativistic velocities in plasmas with no
relativistic equations of state. No general model exists for
opposite situation of a relativistic plasma with relativist
velocities. The plasma in our case will also be compressi
0-4
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contrary to the basic assumption above. For a large eno
input of energy, plasma velocities may be driven past
sound speed, leading to shock formation. We conservati
assume that the sound velocity represents an upper lim
the turbulent plasma velocity, because shocks will resul
significant thermal dissipation. Note that to the extent t
shock fronts retain kinetic energy, our ultimate gravitation
wave background will be increased relative to the estima
made here, in the case of highly relativistic fluid velocitie

To summarize, this model for cosmological turbulence
quires ~i! krvac, the energy density converted to turbule
motion wherervac is a characteristic energy density andk is
an efficiency factor;~ii ! LS , the characteristic length scale o
the source producing the turbulence~the ‘‘stirring scale’’!;
~iii ! tstir , the duration of the source producing the turb
lence;~iv! T* , the temperature of the Universe at the on
of the turbulence, which in turn determinesw, the enthalpy
density, andn, the kinematic viscosity of the plasma. Th
assumption of stationary homogeneous and isotropic K
mogoroff turbulence then specifies in terms of these qua
ties ~i! the normalization of the turbulence power spectru
~ii ! the length scaleLD at which the turbulence is dissipate
by viscosity, and~iii ! the circulation time for any particula
turbulent length scale betweenLS andLD .

We have neglected the expansion of the Universe in
description of turbulence. If the duration of the turbulencet
is longer than the Hubble timeH21, then the expansion wil
produce additional damping of the turbulence as the ene
density is redshifted. Furthermore, if the circulation time
the stirring scaletS is comparable to or longer than th
Hubble time, the expansion damping may inhibit the est
lishment of a turbulent cascade. Particular cases shoul
checked individually, but in general, if a phase transition
strong enough to drive turbulence producing an interestin
large gravitational radiation amplitude, it will last for a tim
short compared to the Hubble time and expansion damp
will be negligible. This claim can be quantified using th
expressions derived in Sec. V below.

III. GRAVITATIONAL RADIATION FROM TURBULENT
PLASMA

A. General considerations

The source of gravitational radiation is the transverse
traceless piece of the stress-energy tensor of a given sys
For turbulent plasma, the relevant stress-energy tenso
given by

Ti j ~x!5wui~x!uj~x!. ~22!

The above expression drops the diagonal~trace! component
of the stress-energy because it cannot source any gra
tional radiation. To simplify the problem, we assume~con-
servatively! that the enthalpy densityw remains constan
throughout space, while the variation of the velocity vec
describes the turbulent motions of the plasma. If this
sumption does not hold, the resulting gravitational wave a
plitude will increase. In Fourier space, the stress-energ
then given by the convolution
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Ti j ~k,t !.
V

~2p!3 wE dqui~q,t !uj~k2q,t !. ~23!

Gravitational radiation is produced by the transverse a
traceless piece of the stress-energy tensor. Given an arbi
stress-energy tensor in Fourier space,Ti j (k,t), the portion
sourcing gravitational radiation can be obtained by apply
a projection tensor~see, e.g.,@23#!:

P i j 5S Pil Pjm2
1

2
Pi j PlmDTlm . ~24!

Once the source is specified, the gravitational wave me
perturbationshi j obey the wave equation

d2hi j

dh2
1

2

a

da

dh

dhi j

dh
1 k̃2hi j 58pGa2P i j ~25!

whereh is conformal time,k̃ is the comoving wave number
anda is the scale factor of the Universe. Note that we ha
defined the tensor metric perturbationdqi j 52hi j . For rel-
evant phase transitions, the duration of the source will
short compared to the Hubble time, which means the exp
sion of the Universe can be neglected during the genera
of the waves. We can thus drop the expansion drag term
Eq. ~25! and change variables to physical time and physi
wave number, obtaining the simple oscillator equation

ḧi j ~k,t !1k2hi j ~k,t !58pGP i j ~k,t !, ~26!

where dots denote derivatives with respect tot. From this
point on, all wave numbers will refer to physical, not como
ing, quantities.

The source considered here turns on at a specific timet*
and we assume no gravitational radiation exists prior to
time. The initial conditions for Eq.~26! are simply
hi j (k,t* )5ḣi j (k,t* )50. In the Euclidean space approxim
tion we have made, the radiation generated cannot depen
the particular value oft* , so for convenience we sett* 50
in this section. Of course, once the results are translated b
into expanding spacetime, the timet* of the phase transition
fixes the energy and length scale associated with the p
transition. The Green function for the homogeneous equa
is simply

G~ t,t8!5H 0, 0,t,t8,

1

k
sin@k~ t2t8!#, 0,t8,t,

~27!

with G5Ġ50 at t50. The general solution for the wav
amplitude is then

hi j ~k,t !5
8pG

k E
0

t

Q~ t2t8!sin@k~ t2t8!#P i j ~k,t8!dt8

~28!

whereQ is a step function.
0-5
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B. Time averaging technique

Since turbulence is a stochastic process, we cannot compute the exact gravitational waveforms. Our goal is to com
average power spectrum or characteristic amplitude of the waves. We are concerned here only with the power spe
consider the quantity

^hi j ~k,t !hi j* ~k8,t !&5
~8pG!2

V
d~k2k8!K 1

k2E
0

t

dt1E
0

t

dt2Q~ t2t1!Q~ t2t2!sin@k~ t2t1!#

3sin@k~ t2t2!#P i j ~k,t1!P i j* ~k,t2!L . ~29!

The delta-function factor is guaranteed by statistical isotropy of the gravitational waves; we have written this depend
explicitly and then changed all factors ofk8 to k within the angular brackets. To make further progress, we need a pra
way to deal with the averaging process. We are assuming a stationary, homogeneous and isotropic source, so we
simple assumption that the statistical average can be estimated by either a time or space average. To evaluate Eq.~29! we use
a time average, since all of the time dependence is in the Green functions and not in the source terms. Then we ha

^hi j ~k,t !hi j* ~k8,t !&5d~k2k8!
~8pG!2

Vk2 E
0

t

dt1E
0

t

dt2P i j ~k,t1!P i j* ~k,t2!

3
1

TEs

s1T

dtQ~ t2t1!Q~ t2t2!sin@k~ t2t1!#sin@k~ t2t2!#, ~30!

wheres is some arbitrary time when the source is active, andT is an interval of time long enough for the average to
approximated by the time average. In practice, this will be some time on the order of a few circulation times on a give
As t1 or t2 approachest, it will not be possible to chooseT large enough for a rigorously valid average, but this will n
appreciably affect our estimates since we are considering only statistical averages for the source terms: the time inte
a convenient device for approximating the effect of this averaging, and the averaging itself becomes only a rough
mation for durations shorter than the circulation time on a given scale. Since we are assuming a stationary source,~30!
must be independent of the chosen value ofs. We choose ans which eliminates the step functions from the integral, keep
in mind the above discussion.

The integral overt is now elementary:

1

TEs

s1T

dtsin@k~ t2t1!#sin@k~ t2t2!#5
1

2
cos@k~ t22t1!#2

1

2Tk
sin~Tk!cos@k~2s1T2t12t2!#. ~31!

We neglect the second term with respect to the first sinceTk@1: k21 will be on the order of the light crossing time for a give
scale, whileT will be at least as long as the circulation time on the given scalek21, so the comparison will be valid on a
scales except for possibly the largest, where at least the simple inequalityTk.1 will hold. Since the terms are both oscillator
the comparison really only applies to the size of the prefactors, but this is sufficient for our purpose. Now substituting E~31!
into Eq. ~30! and making the substitutiony5t22t1 gives

^hi j ~k,t!hi j* ~k8,t!&.d~k2k8!
~8pG!2

2Vk2 E
2t1

t2t1
dy cos~ky!E

0

t

dt1P i j ~k,t1!P i j* ~k,t11y!. ~32!

We now use thet1 integral as an estimator for the statistical average of the sources, giving

^hi j ~k,t!hi j* ~k8,t!&.
~8pG!2t

2kk8
E

0

t

dy cos~ky!^P i j ~k,t1!P i j* ~k8,t11y!&, ~33!

where the delta-function has been reabsorbed into the statistical average. Note that the average on the right side is in
of t1 since the source is assumed to be stationary.

We now have an expression involving the average source correlation at different times, integrated against an o
function. Note that the total value is proportional tot, the duration of the source, as it should be for an incoherent source
make further progress, we require a more explicit form for the source average.
024030-6
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C. Evaluation of the source average

We have expressions for averages of the fluid velocities in the turbulent source; we need to connect these with the
average required in Eq.~33!. Writing out the projectors in Eq.~24! gives

^P i j ~k,t !P i j* ~k8,t1y!&5@Pia~ k̂!Pjb~ k̂!2 1
2 Pi j ~ k̂!Pab~ k̂!#@Pic~ k̂8!Pjd~ k̂8!2 1

2 Pi j ~ k̂8!Pcd~ k̂8!#^Tab~k,t !Tcd* ~k8,t1y!&.
~34!

We need to evaluate the expectation value of the stress tensor product. Equation~23! shows that this product will involve the
expectation value of four velocity vectors evaluated at two different times. No general solution is known for such expe
values for turbulent flow. The simplest~and most conservative! assumption is that the correlation function factors into produ
of pairs of velocities, as for a Gaussian field. Then Wick’s theorem applies and we have

^Tab~k,t !Tcd* ~k8,t1y!&5
V2

~2p!6 w2E dq ds@^ua~q,t !ub* ~q2k,t !&^uc~2s,t1y!ud* ~k82s,t1y!&1^ua~q,t !uc* ~s,t1y!&

3^ub~k2q,t !ud* ~k82s,t1y!&1^ua~q,t !ud* ~k82s,t1y!&^ub~k2q,t !uc* ~s,t1y!&#. ~35!

This expression can be simplified using the correlation functions in Eqs.~5! and ~21!, giving

^Tab~k,t !Tcd* ~k8,t1y!&5w2d~k2k8!E dq@Pac~ q̂!Pbd~k2q̂!1Pad~ q̂!Pbc~k2q̂!#F~q,y!F~ uk2qu,y!. ~36!

The first of the three terms in Eq.~35! does not contribute, since it is nonzero only for the constant offset mode withk5k8
50. After substituting the explicit form for the projectors, Eq.~6!, settingk5k8 from the delta function, and simplifying the
contractions, we obtain

^P i j ~k,t !P i j* ~k8,t1y!&5w2d~k2k8!E dq F~q,y!F~ uk2qu,y!~11g2!~11b2!, ~37!

where we have defined the auxiliary quantitiesg5 k̂•q̂ andb5 k̂•k2q̂.
Substituting this simple form for the unequal time source correlation into Eq.~33! gives

^hi j ~k,t!hi j* ~k8,t!&5
~8pG!2tw2

2k2 d~k2k8!E dq ~11g2!~11b2!E
0

t

dy cos~ky!F~q,y!F~ uk2qu,y!. ~38!
a

c
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the
Now F(k,0)5P(k) so we make the further assumption th
F can be separated as

F~k,y!5P~k!D~yk2/3!; ~39!

that is, we have assumed a universal form for the time de
for all k values, with the time argument ofF scaling with the
circulation time on the length scale 2p/k, and D is some
monotonically decreasing function of its argument. This
likely a reasonable assumption for fully developed turb
lence. On the other hand, we are only concerned with
time dependence to the extent that it is integrated agains
oscillatory function cos(kt) in Eq. ~38!. SinceF or D is ev-
erywhere positive, the integral itself is oscillatory. If o
crude turbulent model were exact, the induced power sp
trum of gravitational waves would exhibit oscillations. B
this is an artifact of the assumption that the turbulence be
and ends at precisely defined times. For the present tas
estimating characteristic amplitudes for a realistic turbule
source, we instead approximate the time integral by its ro
mean-square value. The cos(ky) term will always oscillate on
a time scale shorter than the characteristic time forD(yk2/3),
as seen from a simple comparison of the circulation time
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the light crossing time for a given scaleL. Thus regardless o
the particular time dependence ofD, we approximate

E
0

t

dy cos~ky!F~q,y!F~ uk2qu,y!

.E
0

t

dy cos~ky!P~q!P~ uk2qu!

.
A2

2k
P~q!P~ uk2qu!. ~40!

This approximation replaces the time-dependent functionD
by the constantD(0). Actually D will decrease with time.
This will increasethe mean value of the integral unless t
characteristic time scale for the decrease ofD is less than
k21, which we have argued will never be obtained, so
approximation in Eq.~40! is actually a conservative one.

Substituting this result into Eq.~38! and replacingg2 and
b2 by their average values of 1/2 over the integral gives
simple approximate form
0-7
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KOSOWSKY, MACK, AND KAHNIASHVILI PHYSICAL REVIEW D 66, 024030 ~2002!
^hi j ~k,t!hi j* ~k8,t!&.
9A2~8pG!2tw2

16k3
d~k2k8!

3E dq P~q!P~ uk2qu!. ~41!

We now have an expression which can be evaluated for
particular turbulent power spectrum to give the final expr
sion for the power in gravitational radiation in terms of t
turbulence parameters.

D. The power spectrum

For a power law power spectrum, the remaining integ
in Eq. ~41! is elementary. Using the general formP(k)
5Akn,

E dq P~q!P~ uk2qu!

52pA2E
kS

kD
dq qn12E

21

1

dg~k21q222kqg!n/2

54pA2F k2n13n

~n13!~2n13!
1

kD
2n13

2n13
2

knkS
n13

n13 G .
~42!

For the specific case of Kolmogoroff turbulence, the pow
law is n5211/3; then the last term in Eq.~42! is dominant.
Keeping only this term and inserting Eq.~10! for the power
spectrum gives

^hi j ~k,t!hi j* ~k8,t!&

.
216p7A2G2

V2 tw2«̄4/3k220/3kS
22/3d~k2k8!. ~43!

To make contact with measurable quantities, we evalu
the real-space correlation function

^hi j ~x,t!hi j ~x,t!&

5
V2

~2p!6E dk dk8ei (k82k)•x^hi j ~k,t!hi j* ~k8,t!&

.
27A2p2

2
G2tw2«̄4/3kS

22/3E
kS

kD
dk k214/3. ~44!

Now we need to convert this expression to one involving
gravitational wave frequencyf. The frequency is determine
by the scale of time variation corresponding to the spa
Fourier modek, the circulation timetL given in Eq. ~12!.
Writing f 5tL

21 and changing variables in thek integral
gives

^hi j ~x,t!hi j ~x,t!&.
22/3

35/2p7/3
«̄7/2G2tw2f S

21E
f S

f D
d f f213/2;

~45!
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the numerical prefactor is about 0.007. We define the ch
acteristic gravitational wave amplitudehc( f ) per unit loga-
rithmic frequency interval~following Maggiore@24#! via

^hi j ~x,t!hi j ~x,t!&[
1

2E0

`d f

f
hc

2~ f !. ~46!

Note that Eq.~46! is smaller than the corresponding expre
sion in @24# by a factor of 4 since the tensor metric pertu
bation in @24# is defined asdgi j [hi j whereas ours isdgi j
[2hi j @see comments after Eq.~25!# Comparing with Eq.
~45! gives

hc~ f !50.12G«̄7/4wt1/2f S
21/2f 211/4 ~47!

for frequencies betweenf S and f D , with the frequency at the
stirring scale

f S.
2

3
«̄1/3LS

22/3. ~48!

E. Relic gravitational radiation

The above expressions apply to the waves generate
the time of the phase transition. We then stretch the wa
with the expansion of the Universe: the frequency and a
plitude are both inversely proportional to the scale fact
The latter follows from the fact that the total energy dens
in gravitational radiation scales likea24 with the expansion,
and the energy density is proportional to^ḣḣ&. For turbu-
lence generated at a time when the temperature of the
verse wasT* , the ratio of the scale factor then to the sca
factor now is

a*
a0

58.0310216S 100

g*
D 1/3S 100 GeV

T*
D ~49!

whereg* is the number of relativistic degrees of freedom
the temperatureT* . The Hubble parameter at this time is

H
*
2 5

8pG

3
r rad5

8p3g* T
*
4

90mPl
2

~50!

with mPl the Planck mass. This gives the relation

f̃ 51.6531025 HzS f *
H*

D S T*
100 GeVD S g*

100D
1/6

~51!

where f * is a radiation frequency at the cosmic temperat
T* and f̃ is the corresponding frequency of the radiati
today. Scaling Eqs.~47! and ~48! by the expansion of the
Universe and substitutingw54r rad/3 and «̄5krvac/(wt)
gives
0-8
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hc~ f̃ !55.6310217S krvac

w D 2/3S t

H
*
21D 21/6S LS

H
*
21D 13/6

3S 100 GeV

T*
D S 100

g*
D 1/3S f̃

f̃ S
D 211/4

, ~52!

for the characteristic amplitude, which holds forf̃ . f̃ S , and

f̃ S51.131025 HzS krvac

w D 1/3S t

H
*
21D 21/3S LS

H
*
21D 22/3

3S T*
100 GeVD S g*

100D
1/6

. ~53!

Equations~52! and ~53! are our fundamental results. Con
verting to the characteristic energy density in gravitatio
radiation via the relation

hc~ f̃ !51.3310218S Hz

f̃
DAVGW~ f̃ !h2, ~54!

whereh is the current Hubble parameter in units of 100 km
Mpc21 and VGW( f̃ ) is the energy density in gravitationa
waves per logarithmic frequency interval in units of the c
rent critical density, gives

VGW~ f̃ !h252.231027S krvac

w D 2S t

H
*
21D 21S LS

H
*
21D 3

3S g*
100D

21/3S f̃

f̃ S
D 27/2

. ~55!

IV. GRAVITATIONAL RADIATION FROM INDUCED
MAGNETIC FIELDS

In addition to the turbulent motions, gravitational radi
tion also may be generated by magnetic fields arising fro
turbulent dynamo mechanism: generically, the turbule
will exponentially amplify any seed magnetic fields until th
field strength saturates at equipartition with the turbulent
netic energy. The characteristice-folding time scale on a
given length scaleL will be simply the circulation timetL .
The mechanism of seed field generation is not clear, but s
fields might naturally arise during a phase transition due
bubble wall instabilities combined with surface charge d
sities on the bubble walls and magnetohydrodynamic am
fication @25#. Once a magnetic field is generated, the h
conductivity of the primordial plasma will keep the field fro
zen in.

It is reasonable to suspect that such a field may giv
significant background of gravitational radiation: since t
magnetic field has a nonzero stress, it will provide a cohe
source term in Eq.~25!. Such a magnetic field will act as
gravitational radiation source from the time of the pha
transition until the field is damped~or until matter-radiation
equality, if the field lasts that long!, rather than just during
the brief period of turbulence. The following calculatio
however, shows that induced magnetic fields produc
02403
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maximum characteristic amplitude of gravitational radiati
which is always much smaller than the maximum amplitu
from the turbulence which generated them. The magn
field gravitational radiation peaks at a much higher f
quency, though, and can have a larger amplitude than
turbulence-induced gravitational radiation at that frequen
As in the previous section, quantities below are physic
except for comoving quantities denoted with a tilde.

A. General magnetic field considerations

First, we assume the turbulence-induced magnetic fie
are generated almost instantaneously during the time of
phase transition. To a good approximation, the turbulen
induced magnetic fields are generated within a tiny fract
of the Hubble timeH

*
21 , thus we can normalize the mag

netic field power spectrum at the time of the phase transit
Second, we assume the turbulence-induced magnetic fi
are saturated at an equipartition value up to a physical s
LB at the time of the phase transition. We will leave the ra
between the magnetic field physical saturation scale to
turbulence stirring scale, i.e.LB /LS , as a free parameter in
our final expressions. This will make the comparison w
the previous turbulence results easier. Generally, we ex
LB /LS to be on the order of 0.003: the turbulence circulati
time scales likeL2/3, so (LB /LS)2/3 gives the ratio of
e-foldings of the magnetic field on the scalesLS and LB .
Conservatively estimating that the turbulence lasts fo
single circulation time on the largest scale, a range ofLB /LS
between 0.003 and 0.0017 gives a range of magnetic fi
amplification factors between 1020 and 1030. The exponential
amplification makes this estimate robust: making the s
fields smaller by a factor of 1010 only reducesLB by a mod-
est fraction. Third, we assume the turbulence-induced m
netic fields are just frozen into the plasma and retain the fo
of the spectrum until they are damped away by neutr
viscosity. Damping of magneto-hydrodynamic~MHD!
modes by neutrino viscosity is most efficient before a
around nucleosynthesis (T;0.1 MeV). At the time of neu-
trino decoupling (T;1 MeV), the neutrino physical mea
free path (l n dec'1011 cm) and the Hubble length (Hn dec

21

'531010 cm) are comparable, hence all the subhoriz
magnetic perturbations generated during the electrow
phase transition will be damped away by the time of nucl
synthesis~see, e.g.,@18,26#!. We do not consider any kind o
inverse-cascade mechanism that will transfer small-sc
magnetic fields to larger scales. Invoking an inverse casc
will spread the magnetic energy to scales larger thanLB and
reduce the overall gravity wave amplitude. This will als
push the gravitational radiation frequencies to smaller val
than those obtained below.

A statistically homogeneous and isotropic stochastic m
netic field has a two-point correlation function given by E
~5! with a power spectrum we denotePB(k). We assume tha
the turbulence-induced magnetic field exists on scales
tween the saturation scaleLB and the turbulence dampin
scaleLD . The mean-square value of the magnetic field
@see, e.g., Eq.~2.7! of Ref. @27##
0-9
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B25
V

pEkB

kD
dk k2PB~k!. ~56!

We now normalizePB(k) using the fact that the turbulence
induced magnetic field energy density is half of the turbul
kinetic energy density

1

2
wuB

25
B2

8p
. ~57!

Using Eqs.~8! and ~56!, we obtain

PB~k!54pwP~k!5
4p3w«̄2/3k211/3

V
~58!

using Eq.~10!.
In Fourier space, the turbulence-induced magnetic str

energy tensor is given by the convolution of the magne
field @see Eq.~2.9! of Ref. @27##:

Ti j
(B)~k,t* !5

V

~2p!3

1

4pE dq FBi~q,t* !Bj~kÀq,t* !

2
1

2
d i j Bl~q,t* !Bl~k2q,t* !G , ~59!

where the explicitt* dependence is to remind ourselves
the assumption that the turbulence-induced magnetic fi
are generated almost instantaneously during the time of
phase transition. In addition, we have neglected the indu
electric field due to the fact that the early Universe is hig
conductive. The source for gravitational radiation is given
the transverse-traceless projection of this stress tensor,
~24!.

In the absence of any inverse-cascade mechanism, m
netic fields are just frozen into the plasma and evolve
simply redshifting with the Universe’s expansion until th
are damped away by neutrino viscosity. Therefore, magn
fields act on a longer time scale than the turbulent fluid
locities. To facilitate the computation, we introduce a como
ing quantityP i j

(B)( k̃) corresponding toP i j
(B)(k,t* ) via

P i j
(B)~ k̃![P i j

(B)~k,t* !a
*
4 , ~60!

where k̃ is the comoving wave vector corresponding to t
physical wave vectork at the time of the phase transition.

B. Gravitational radiation power spectrum

During the radiation-dominated epoch,a}h and the ho-
mogeneous solutions to Eq.~25! are the zero-order spherica
Bessel functions, i.e.j 0( k̃h) and y0( k̃h). Defining x[ k̃h
andx* [ k̃h* , whereh* is the conformal time correspond
ing to the turbulent source generating the magnetic field,
usual Green function technique yields the following inhom
geneous solution for the radiation-dominated epoch:
02403
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hi j
(B)~ k̃,h!5

8pGP i j
(B)~ k̃!

k̃2

3E
x
*

x

dx8
j 0~x8!y0~x!2y0~x8! j 0~x!

a2W~x8!
,

~61!

whereW is the Wronskian of the homogeneous solutions

W~x!5 j 0~x!
d

dx
y0~x!2y0~x!

d

dx
j 0~x!5

1

x2
. ~62!

Note that in the turbulence case, the time dependence o
turbulent source is known only statistically. The magne
field, however, is acoherentsource, and it evolves by froze
flux until being damped away by neutrino viscosity. Ther
fore in writing down the gravitional wave equation inhom
geneous solution in Eq.~61!, the explicit time dependence o
the magnetic source is known and we can immediately p
form the time integral, unlike the turbulence case. Substi
ing Eq. ~62! into Eq. ~61!, using the explicit expressions fo
the zero-order spherical Bessel functions, i.e.j 0(x)5sinx/x
andy052cosx/x, and the approximation for the scale fact
in the radiation-dominated epocha(h).H0hAV rad, we ob-
tain

hi j
(B)~ k̃,h!.

8pGP i j
(B)~ k̃!

k̃hH0
2V rad

j~ k̃,h* ,h!, h<h k̃ , ~63!

where h k̃ corresponds to the conformal time at which t
magnetic perturbation comoving wave numberk̃ is damped
away by neutrino viscosity. Here we have abbreviated

j~ k̃,h* ,h!5j~ k̃h* ,k̃h![E
h
*

h
dh8

sin@ k̃~h2h8!#

h8
.

~64!

It is simple to see thatj is an oscillating function with a
monotonically decreasing amplitude of oscillation; the a
plitude decays more slowly than theh21 dependence of free
gravitational waves, since the wave is continually sourced
the magnetic field.

As in the turbulence case, we are interested in the ave
power spectrum of the waves, so we consider the quant

^hi j
(B)~ k̃,h!hi j

(B)* ~ k̃8,h!&.F 8pG

k̃hH0
2V rad

j~ k̃,h* ,h!G 2

3^P i j
(B)~ k̃!P i j

(B)* ~ k̃8!&. ~65!

From Eq.~60!, we have

^P i j
(B)~ k̃!P lm

(B)* ~ k̃8!&5a
*
8 ^P i j

(B)~k,t* !P lm
(B)* ~k8,t* !&.

~66!
0-10
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As in Eq.~2.20! of Ref. @27#, the two-point correlation func-
tion ^P i j

(B)(k,t* )P lm
(B)* (k8,t* )& at the time of the phase tran

sition can be written as

^P i j
(B)~k,t* !P lm

(B)* ~k8,t* !&

[
Mi j lm~ k̂!

V
uP (B)~k,t* !u2d~k2k8!, ~67!

where the tensor structureMi j lm is @Eq. ~2.21! of Ref. @27##

Mi j lm~ k̂![Pil ~ k̂!Pjm~ k̂!1Pim~ k̂!Pjl ~ k̂!2Pi j ~ k̂!Plm~ k̂!

5d i l d jm1d imd j l 2d i j d lm1 k̂i k̂ j k̂l k̂m1d i j k̂l k̂m

1d lmk̂i k̂ j2d i l k̂ j k̂m2d jmk̂i k̂l

2d imk̂j k̂l2d j l k̂i k̂m ~68!

and satisfiesMi j i j 54 and Mi i lm5Mi j l l 50. Then using
Eqs.~59!, ~24!, and~6!, a similar calculation as in the prev
ous section~see also the Appendix of Ref.@27#! gives

^P i j
(B)~k,t* !P i j

(B)* ~k8,t* !&

5
1

~4p!2
d~k2k8!E dqPB~q!PB~ uk2qu!

3~11g2!~11b2!, ~69!

where as in Eq.~37! we have definedg5 k̂•q̂ and b

5 k̂•k2q̂. In deriving Eq. ~69!, we have assumed th
turbulence-induced magnetic field to be Gaussian, as in
case of the turbulent fluid velocities, and hence we can ap
Wick’s theorem. Comparing with Eq.~67!, replacingg2 and
b2 by their average values over the integral of 1/2, and us
Eq. ~58! gives

uP (B)~k,t* !u2.
9V

16
w2E dq P~q!P~ uk2qu!. ~70!

This integral has already been done in Eq.~42!, except that
now the lower limit for the physical wave number iskB
instead ofkS ; hence

uP (B)~k,t* !u2.
27p5

8V
w2«̄4/3k211/3kB

22/3. ~71!

Equations~65!, ~66!, ~67!, and~71! together then give

^hi j
(B)~ k̃,h!hi j

(B)* ~ k̃8,h!&

.
864p7G2

Ṽ2

w2«̄4/3k̃217/3k̃B
22/3a

*
28/3

a2H0
2V rad

3j2~ k̃,h* ,h!d~ k̃2 k̃8!, ~72!

where we have approximateda.H0hAV rad while the Uni-
verse is radiation dominated, and we have converted to
comoving quantitiesṼ5V/a3 , k̃5ka* , d( k̃2 k̃8)5d(k
*
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2k8)/a
*
3 . As in the previous section, we evaluate the re

space correlation function to make contact with measura
quantities:

^hi j
(B)~ x̃,h!hi j

(B)~ x̃,h!&

5
Ṽ2

~2p!6E dk̃dk̃8ei ( k̃82 k̃)• x̃^hi j
(B)~ k̃,h!hi j

(B)* ~ k̃8,h!&

.
54p2G2w2«̄4/3k̃B

22/3a
*
28/3

a2H0
2V rad

E
k̃B

k̃D
dk̃k̃211/3j2~ k̃,h* ,h!.

~73!

C. Relic gravitational radiation

As in Eq. ~46!, we define the characteristic gravitation
wave amplitudehc

(B)( f̃ ) per unit logarithmic comoving fre-
quency interval via

^hi j
(B)~ x̃,h!hi j

(B)~ x̃,h!&[
1

2E0

`d f̃

f̃
hc

(B)2~ f̃ ,h!, ~74!

and the statistical average on the left side implies that
time dependence on the right side is not the exact time
pendence of the gravitational wave but only the time dep
dence of its amplitude~i.e., the oscillations are average
over!. Since Eq.~63! gives the exact time dependence of t
gravitational radiation~as opposed to the turbulence cas
when we only know the statistically averaged time dep
dence!, the standard wave dispersion relation holds:k̃

52p f̃ . ~In contrast, for the turbulence source, we only kno
the statistically averaged time dependence, so we use
the approximate dispersion relationf 5tL

21 .! Then compar-
ing with Eq. ~73! gives

hc
(B)~ f̃ ,h0!.S 33/2

22/3p2/3D Gw«̄2/3f̃ B
21/3a

*
14/3

H0AV rad

3 f̃ 24/3j̄~ f̃ h* , f̃ hend!, ~75!

which depends on the functionj̄ which we define as the
amplitude of the oscillations inj(h), times the numerical
factorA2/2 to convert to a root-mean-square value, in acc
dance with the definition of the characteristic amplitude E
~74!. In deriving Eq.~75!, we have used the fact that after th
conformal timehend when the magnetic fields are dampe
away via viscosity and cease to be an efficient source
gravitational radiation, the characteristic amplitu
hc

(B)( f̃ ,h) will simply scale inversely witha. Note that

hc
(B)( f̃ ,h0) is only weakly dependent onhend, which occurs

through the upper limit of the integral inj( f̃ ,h* ,hend). The
time hend technically depends on the scale considered,
for simplicity we simply use the saturation scaleLB at which
the gravitational radiation peaks.

The functionj̄( k̃h* ,k̃h) cannot be expressed in terms
elementary functions, but it is simple to obtain an upp
0-11
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bound. Since the amplitude of the oscillations inj is mono-
tonically decreasing, the amplitude at the initial time give

j̄~ f̃ h* , f̃ h!,
A2

4p f̃ h*
, ~76!

which is useful for constraining the gravitational wave a
plitude.

In an analogous calculation to the previous section, w
ing f̃ B5 f Ba* and f B5LB

21 and approximating H*
.H0AV rada*

22 , we obtain

hc
(B)~ f̃ ,h0!.9.7310217S krvac

w D 2/3S t

H
*
21D 22/3S LB

H
*
21D 5/3

3S 100 GeV

T*
D S 100

g*
D 1/3S f̃

f̃ B
D 24/3

j̄~ f̃ ,h* ,hend!.

~77!

This characteristic amplitude is valid forf̃ . f̃ B , where@us-
ing Eq. ~51!#

f̃ B51.6531025 HzS LB

H
*
21D 21S T*

100 GeVD S g*
100D

1/6

.

~78!

The corresponding energy density in gravitational waves
logarithmic frequency interval in units of current critic
density is

VGW
(B) ~ f̃ !h256.031026S krvac

w D 4/3S t

H
*
21D 24/3S LB

H
*
21D 4/3

3S g*
100D

21/3S f̃

f̃ B
D 22/3

j̄2~ f̃ ,h* ,hend!. ~79!

V. FIRST-ORDER COSMOLOGICAL PHASE
TRANSITIONS

The most likely mechanism for creating turbulence with
large energy density is a first-order phase transition. Suc
transition is controlled by an effective potential for som
quantity which functions as the order parameter of the ph
transition. Initially, the Universe sits in a minimum of th
effective potential. As the Universe expands and cools,
effective potential develops a local minimum at a differe
value of the order parameter; this new local minimum ev
tually evolves to be the true minimum energy state. Then
order parameter wants to evolve to the new minimum. I
potential energy barrier exists between the old local m
mum and the new true minimum, the phase transition m
occur via quantum tunnelling through the barrier or therm
fluctuations over the barrier. As a result, bubbles of the lo
temperature phase are nucleated at random places in
high-temperature phase. The energy difference between
two phases creates an effective outward force on the bub
causing it to expand. Once this outward force from the
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ergy difference balances the inward hydrodynamic fo
from pushing plasma outwards, the bubble reaches an e
librium and expands at a constant velocity. We will consid
only the case of quantum tunnelling, applicable to a stro
first-order phase transition with a high barrier between
two phases. In this case the nucleated bubbles are sphe
and negligibly small compared to the horizon scale@28#. The
more complex case of thermally activated bubbles has b
considered in@29#.

A. Turbulence

In general, the rate for nucleating a bubble will be t
exponential of some tunnelling action,G}exp„S(t)…. As a
simple model of a phase transition, we expand the actioS
into a power series in time and keep only the constant
linear terms. This gives a characteristic bubble nucleat
rate per unit volume@30#

G5G0ebt ~80!

so the quantityb21 sets the characteristic time scale for t
phase transition. Numerical calculations show that the larg
bubbles reach a size of orderb21vb by the end of the phase
transition @31#, wherevb is the bubble expansion velocity
assuming the bubbles remain spherical as they expand
general, b is expected to be of the order 4 ln(mPl /T)H
.100H for a Hubble rateH @30#.

A first-order phase transition is generically described
several parameters:~i! a[rvac/r thermal54rvac/3w, the ratio
of the vacuum energy associated with the phase transitio
the thermal density of the Universe at the time~which char-
acterizes the strength of the phase transition!; ~ii ! k, an effi-
ciency factor which gives the fraction of the availab
vacuum energy which goes into the kinetic energy of
expanding bubble walls, as opposed to thermal energy;~iii !
b, which sets the characteristic time scale for the phase t
sition; ~iv! vb , the velocity of the expanding bubble wall
which set the characteristic length scale of the phase tra
tion; ~v! T* , the temperature at which the phase transit
occurs.

Once the bubbles expand and percolate, much of t
kinetic energy will be converted to turbulent bulk motions
the primordial plasma~for an illustration, see the numerica
evolution of two scalar field bubbles in Ref.@6#!. The energy
density contained in a bubble wall of radiusr scales withr 3,
the bubble volume. As the phase transition ends, far m
small bubbles have been nucleated than large ones, bu
energy density in the large ones dominates the total ene
density@30#. We therefore make the approximation that tu
bulent energy is injected on a stirring scaleLS.vbb21 cor-
responding to the size of the largest bubbles. The stirring
last for roughlytstir5b21, the duration of the phase trans
tion. The durationt of the turbulence then follows from Eqs
~20! and ~18! as

t5b21maxF1,
3A2

2

vb

~ka!1/2G . ~81!
0-12
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The fundamental symmetry breaking mechanism wh
drives the phase transition determines some effective po
tial for bubble nucleation. The difference in energy dens
between the two phases and the bubble nucleation rate
both determined by this mechanism. Thus the parame
T* , b, anda are all determined directly by the underlyin
physics, and are precisely calculable to some given orde
the various particle interaction strengths. On the other ha
the bubble velocityvb and the fraction of kinetic energy int
the bubblesk depend on the detailed microphysics involv
in the bubble propagation through the relativistic plasma
are not determined from general properties of the effec
potential. Generally, the larger the vacuum energy den
driving phase transition, the higher bubble wall velocitiesvb
will be obtained.

The hydrodynamic boundary between a lower-ene
phase and a higher-energy one can propagate via two mo
detonation and deflagration. Details of these modes in
case of spherical geometry are known@32#. For a detonation
front, the velocity of the phase boundary exceeds the so
speed in the fluid, so that a shock forms at the burning fro
In the opposite case, a deflagration propagates slower
the sound speed and piles up an overdensity of fluid in fr
of it, like a snowplow. The boundary conditions for a det
nation are more restrictive, so that once the energy dens
and pressures are specified in each phase, the complete
tion for the propagating detonation is determined. In t
case, we have@32#

vb~a!5
1/A31~a212a/3!1/2

11a
~82!

and the approximate form@9#

k~a!5
1

11AaFAa1
4

27S 3a

2 D 1/2G ~83!

with A50.72. If the bubbles propagate as a deflagrat
front, no such general relations apply. However, it has b
argued that for relativistic plasmas, instabilities in the bub
shape will accelerate the bubble walls and the hydrodyna
expansion mode is unstable to becoming a detonation.
this reason, in the following analysis, we will assume E
~82! and ~83! hold. We also assume thata!1 to simplify
further Eqs.~82! and ~83!, which will generally hold for
realistic phase transition models; for unusual cases with v
strong detonations anda*1, the following formulas must be
corrected. The duration of the turbulence is then given by
second term in Eq.~81!, becoming

t5S 3

2D 9/4

b21a23/4. ~84!

B. Relic radiation from the phase transition

The characteristic gravitational wave amplitude from t
bulence becomes
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hc~ f̃ !.3.8310218a9/8S H*
b D 2S 100 GeV

T*
D

3S 100

g*
D 1/3S f̃

f̃ S
D 211/4

, ~85!

with the characteristic frequency

f̃ S.5.731026 Hza3/4S b

H*
D S T*

100 GeVD S g*
100D

1/6

.

~86!

The corresponding energy density per logarithmic freque
interval is

VGWh2.2.7310210a15/4S H*
b D 2S g*

100D
21/3S f̃

f̃ s
D 27/2

.

~87!

In a first-order phase transition, the expanding, collidi
bubbles are themselves a potent source of gravitationa
diation @9#. For our idealized model phase transition wi
spherical expanding bubbles, the ratio of the maximum a
plitude of gravitational radiation due to turbulence to t
maximum amplitude due to bubble collisions is appro
mately

hturb~ f̃ S!

hbub~ f̃ max!
.0.18a23/8, ~88!

so only fora,0.01 will the amplitude of the turbulent signa
be larger~although in this case, turbulent damping due to t
expansion of the Universe is significant and our estimate
the turbulence gravitational wave amplitude may be sign
cantly too large!. For realistic models with interesting grav
tational wave production, the turbulence amplitude will
subdominant to the bubble amplitude, but non-negligib
This is in contrast to the naive dimensional estimate of
turbulence gravitational radiation in Ref.@9# which gave a
somewhat larger value. The frequencies at which these m
mum amplitudes occur scale differently with the paramete

f̃ S

f̃ max

51.1a3/4. ~89!

The different scaling arises because the duration of the ph
transitiontstir sets the characteristic frequency for the rad
tion from expanding bubbles, while the circulation time o
the stirring scaletS sets the characteristic frequency for th
radiation from turbulence.

Note that the gravitational radiation in the bubble case
a long tail in the amplitude,hc( f )} f 21/3, while turbulence
driven at a single scale drops off very quickly likehc( f )
} f 211/4. The tail for bubble collisions arises in the case
bubble collisions because at any given moment, the cha
teristic frequency of radiation from the collision of tw
bubbles isvb /d, whered is the size of the colliding region
Sinced ranges from zero to the maximum size of the sma
bubble as the bubbles expand, the gravitational radiatio
0-13
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produced over a wide range of frequencies. This tail of
frequency spectrum is somewhat model-dependent, and
be modified if the bubbles are not spherical. Departures fr
sphericity could arise from thermal activation over the p
tential barrier, resulting in non-spherical nucleation, or fro
shape instabilities as the bubble expands. The results fo
panding bubbles also depend on the thin-wall approximat
namely that the width of the bubble wall is small compar
to the radius of the bubble. While this approximation will b
very good for relativistic detonations, it will not be as goo
for deflagrations.

The gravitational wave signal from turbulence from
single stirring scaleLS is somewhat more generic, althoug
if the phase transition does not proceed via detonation
specific expressions fork andvb in Eqs.~83! and ~82! will
not hold. However, the single-scale assumption obviou
will never be exactly correct; any realistic source like a ph
transition will deposit bulk kinetic energy over a range
scales. The energy density in bubble walls of a given s
will generically peak at a scale comparable tovbb21 that we
have taken forLS , because the kinetic energy in the wall
a bubble of radiusr scales liker 3 so the energy distribution
is heavily weighted towards the largest bubbles. Analytic
pressions for the size distribution of bubbles, the fraction
space taken up by bubbles, and related quantities are giv
Ref. @30#. On the other hand, the stirring scale appropriate
the collision of two bubbles of unequal radius is not entire
clear: some turbulence will clearly be created on the scal
the smaller bubble, but since the larger bubble has gre
energy density in the wall, a significant part of the ene
will remain in coherent motion determined by the larg
bubble.

In realistic cases, the gravitational wave amplitude sp
trum in Eq.~85! must be convolved over a range of stirrin
scales. A specific model of the distribution of stirring sca
in a first-order phase transition is beyond the scope of
paper. However, we can make a rough estimate of its eff
Assume that the actual turbulence source stirs the pla
over a range of frequenciesD f S . The actual bubble size
distribution has a significant tail towards larger bubbles@30#.
If the same total energy goes into gravitational radiation a
the single stirring scale case, then the characteristic am
tudehc( f S) will be reduced by a factor of order (f S /D f S)1/2.
This very crude estimate neglects the strong dependenc
the amplitude on the stirring scale and employs only a b
shaped energy density spectrum, but the general scalin
correct. Generically, the distribution of bubble sizes in
model phase transition points toD f S / f S on the order of a
few ~see @30#!, but a more precise estimate requires a
tailed model of stirring in a phase transition. As a rule
thumb, when estimating the gravitational radiation ba
ground from turbulence arising from a phase transition w
a single stirring-scale model of the turbulence, the result
amplitude may be overestimated by a modest factor.

C. Relic radiation from the induced magnetic fields

For the magnetic fields from the turbulent dynamo mec
nism, the characteristic gravitational wave amplitude
comes
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hc
(B)~ f̃ ,h0!.1.0310217a3/2S H*

b D S LB

LS
D 5/3S 100 GeV

T*
D

3S 100

g*
D 1/3S f̃

f̃ B
D 24/3

j̄~ f̃ h* , f̃ hend!, ~90!

with the characteristic frequency

f̃ B.2.931025 HzS LS

LB
D S b

H*
D S T*

100 GeVD S g*
100D

1/6

.

~91!

The corresponding energy density per logarithmic freque
interval is

VGW
(B) ~ f̃ !h2.4.831028a3S LB

LS
D 4/3S g*

100D
21/3

3S f̃

f̃ B
D 22/3

j̄2~ f̃ h* , f̃ hend!. ~92!

The ratio of the maximum amplitude of gravitational r
diation due to turbulence-induced magnetic fields to
maximum amplitude due to the turbulent fluid today is a
proximately

hc
(B)~ f̃ B!

hc
~ turb!~ f̃ S!

.2.7a3/8S b

H*
D S LB

LS
D 5/3

j̄~ f̃ Bh* , f̃ Bhend!. ~93!

The ratio of the frequencies at which these maximum am
tudes occur is

f̃ B

f̃ S

.5.1a23/4S LS

LB
D . ~94!

The scaling witha arises because the circulation time on t
stirring scaletS sets the characteristic frequency for the r
diation from turbulence, whereas for magnetic fields,f B

5LB
21 .

The value ofhend corresponding to the scaleLB can be
determined via consideration of the neutrino viscosity~see
@33#! but j̄( k̃h* ,k̃hend) is only weakly dependent onhendso
we do not compute it here. Instead, we derive an up
bound on the amplitude. The approximate relationa* H*
.1/h* , valid during radiation domination, givesf̃ Bh*
.H

*
21/LB . Then Eq.~76! combined with the frequency de

pendence in Eq.~85! gives

hc
(B)~ f̃ B!

hc
~ turb!~ f̃ B!

,27a227/16vbS LS

LB
D 1/12

. ~95!

As discussed above,LS /LB.300 generically, so the pea
characteristic amplitude from the magnetic field at frequen
f̃ B will always be negligible compared to the peak charact
istic amplitude from the turbulence at frequencyf̃ S . The
turbulence gravitational waves drop so quickly with fr
0-14
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quency, however, that the magnetic field gravitational wa
will give a larger characteristic amplitude atf̃ B .

VI. POTENTIAL DETECTABILITY

The detectability of a given stochastic background
pends on both its characteristic frequency and its amplitu
The Laser Interferometer Gravitational-Wave Observat
~LIGO! @34# is nearing the commencement of scientific o
servations; it is comprised of two facilities in the Unite
States, each essentially a Michelson interferometer with
arm length of 4 kilometers. LIGO has sensitivity to gravit
tional radiation in the frequency range from 10 to 1000 H
Seismic noise prevents useful gravitational wave detec
from the surface of the Earth at frequencies lower than ab
10 Hz. Cross-correlation of the two LIGO detectors, alo
with several smaller laser interferometers and bar detecto
other sites around the world, allow a clean detection of s
chastic signals, since widely separated detectors have no
related sources of noise. Detailed estimates show that in
frequency range, LIGO will be able to detect stochas
gravitational wave backgrounds with a characteristic am
tude of aroundhc( f̃ ).3310223 at f̃ .100 Hz after inte-
grating for four months@35–38#. These levels will hopefully
be obtained within three years. Planned technical impro
ments are projected to reduce this threshold amplitude
another factor of 10 on the time scale of a decade.

The other major gravitational wave observation progra
the Laser Interferometer Space Antenna~LISA! @8#, is a cor-
nerstone mission of the European Space Agency in part
ship with NASA. Current design studies envision thr
spacecraft arrayed in an equilateral triangle with an a
length of around 53106 kilometers with laser interferometr
between each of the three pairs of arms; the spacecraft
figuration will trail the Earth’s orbit by about 20°. LISA wil
likely be sensitive to a frequency range from around 0.00
Hz to 0.1 Hz. The detection of stochastic backgrounds w
LISA is more complicated than with LIGO, because any p
of interferometers formed by LISA’s arms share one arm
common, so it is not possible to cross-correlate two indep
dent interferometers with uncorrelated noise. It was or
nally believed that this limited detection of a stochastic ba
ground to the level of the instrument noise power beca
there would be no way to distinguish between instrumen
noise and a background signal. This noise level correspo
to a stochastic background amplitude of aroundhc( f̃ )
510221 at 0.01 Hz. It has now been realized that if t
complete time series data for positions of 6 independent
masses are recorded, so-called Sagnac observables c
synthesized which are highly insensitive to various kinds
noise in the system@39#, including one which is largely in-
dependent of low-frequency stochastic gravitational wa
backgrounds, allowing a direct measurement of the sys
noise @40#. This results in a significant improvement in th
ability of the system to measure stochastic backgrounds@41#.
For one year of observation, this kind of analysis could
principle give sensitivities comparable to two independ
Michelson interferometers, reducing the thresholdhc( f̃ ) by a
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factor of (f̃ t)1/4 for observation over a timet, or hc( f̃ )
.4310223 at 0.01 Hz over one year of observing. Such
sensitivity level depends on a precise understanding of
system noise properties and elimination of other correla
noise sources between the various arms of the dete
which is only partially practicable. Flying and cros
correlating two independent LISA-like detectors@42,43# is
still clearly preferable for detecting stochastic backgroun

For stochastic background detection at LISA frequenc
raw sensitivity is not the only issue. White dwarf binaries
our galaxy will produce an approximately stochastic gravi
tional wave background which probably becomes com
rable to the LISA sensitivity limits for frequencies belo
about 1023 Hz @44#. Detection of such a signal will be inter
esting in its own right, but will effectively provide a lowe
limit of around 1024 Hz to the stochastic background signa
which are detectable, until gravitational wave detectors
prove to the point of having enough directional sensitivity
distinguish sources in the galactic plane from sources dist
uted isotropically.

The characteristic gravitational wave frequency for turb
lence from known phase transitions is not promising for d
tection in the near future. For the electroweak phase tra
tion atT* .100 GeV, Eq.~86! shows thata, the ratio of the
vacuum energy density to the thermal density at the time
the phase transition, must be of order 0.1 for the freque
maximum to be as high asf̃ S51024 Hz, if b/H* takes its
characteristic value of 100. This frequency is the lower lim
to what LISA might be able to detect. The amplitude at th
frequency fora50.1 would behc( f̃ S).2.8310223, more
than two orders of magnitude smaller than a LISA Sagn
configuration could detect at this frequency. Any push
wards higher frequencies via a shorter phase transition
ther reduces the characteristic amplitude, sincehc( f̃ )
}(H* /b)2. For an extreme case witha51 and b
51000H* , the characteristic frequency is near LISA’s max
mum sensitivity, f̃ S.5.731023 Hz, with a characteristic
amplitudehc( f̃ S).3.8310224. This amplitude is an order o
magnitude smaller than the LISA Sagnac sensitivity at t
frequency. An analysis of the electroweak effective poten
in a large class of supersymmetric models@45,46# shows that
for models with large values ofa, generallyb,100H* , and
a is never as large as unity@47#. Other well-motivated ex-
tensions of the standard model may result in a very str
electroweak phase transition~e.g.,@48#!.

Satellite missions to probe stochastic backgrounds
lower frequencies have been discussed@49#, which would
involve multiple spacecraft arrayed at separations on the
der of 1 a.u. Such configurations would be a more natu
match for the frequency scale of electroweak turbulence,
though dealing with the binary foreground signal would s
be a major hurdle.

Phase transitions at lower temperatures, like the Q
phase transitions, have larger characteristic length scales
thus even lower frequencies for gravitational radiatio
Speculative phase transitions could occur at energy sc
higher than the electroweak scale, resulting in higher cha
0-15
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teristic frequencies. However, a higher energy scale a
translates into a smaller characteristic amplitude, and it is
possible to give a set of parameters witha&1 for which
cosmological turbulence would be detectable in LIGO. LIS
could detect the turbulence from a range of imagined ph
transitions at energy scales above the weak scale, bu
present no compelling theoretical motivation for such ph
transitions is at hand.

In contrast to turbulent sources, the expanding bubble
a first-order phase transition, which drive the turbulence,
themselves a strong source of gravitational radiation@9# and
are a much more promising source of detectable signals f
the electroweak phase transition. The difference between
detectability of the two sources is essentially the factor
a3/4 in Eq. ~89!, arising from the different time scales of th
sources. The characteristic frequency for the expand
bubbles is set by the phase transition time scaleb21 because
the bubbles expand and percolate in this time. For tur
lence, the time scale is instead the circulation time on
stirring scale. The turbulent fluid velocities are significan
smaller than the bubble expansion velocities unless the
bulent flows are near the sound speed, giving lower cha
teristic frequencies.~Extremely strong turbulence with rela
tivistic fluid velocities would likely produce gravitationa
radiation in a more detectable range of frequencies and
plitudes, but the amount of energy in turbulent motions
limited by shock formation and heating, and turbulence
not understood in this regime.!
tt
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Our results in this work supercede the dimensional e
mates in Ref.@9#, which predicted that the turbulence sign
could be significantly larger than the bubble signal at sim
frequencies. Resulting optimistic calculations of turbule
signals from the electroweak phase transition, e.g. Ref.@47#,
unfortunately do not hold up to more detailed analysis.
emphasize, however, that the results presented here app
a generic way to any turbulence in the early Universe, a
the search for stochastic gravitational radiation backgrou
in the frequency range from 1024 Hz to 1000 Hz is in part a
search for unanticipated, dramatic physics at energies ab
the electroweak scale. Perhaps we will be lucky.
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