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I. INTRODUCTION

Improving cosmic microwave background (CMB) an-
isotropy measurements are starting to make it possible to
reconstruct physical conditions in the early Universe, and
thus to constrain modifications of the standard cosmologi-
cal and particle physics models [1]. In particular, analyses
of the Wilkinson Microwave Anisotropy Probe data sug-
gest tentative indications of broken large-scale (statistical)
spatial isotropy. See Ref. [2] for early indications and
Ref. [3] for more recent studies. Statistical large-scale
spatial isotropy is a major assumption of the standard
cosmological model and has been well tested on length
scales smaller than are probed by the large-scale CMB
anisotropy data (see Sec. 3 of Ref. [4]). It is therefore
important to understand if the larger-scale CMB anisotropy
data really indicate that large-scale statistical spatial iso-
tropy is broken [5]. This is part of the general program of
testing for CMB anisotropy non-Gaussianity.! In the last
few years there has been much discussion of the “low”
measured CMB temperature anisotropy quadrupole mo-
ment, the asymmetry between the CMB temperature an-
isotropy measured in the north and the south, the
possibility of residual systematics and foreground emission
in the data, etc. In addition to Refs. [1-3,5], for early
discussions of some of these issues see Ref. [8]; for more
recent discussions see Ref. [9]. The low measured quadru-
pole moment was also seen in the Cosmic Background
Explorer-Differential Microwave Radiometer (COBE-
DMR) data [10], while on smaller scales the CMB anisot-
ropy is consistent with Gaussianity [11].
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'See Ref. [6] for reviews of non-Gaussian models. In the
simplest inflation models, quantum-mechanical zero-point fluc-
tuations in a weakly coupled scalar field during inflation provide
the initial conditions [7] for a Gaussian CMB anisotropy, but
non-Gaussian initial conditions are possible in other inflation
models.
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There have been several theoretical attempts to explain
the CMB temperature anisotropy large-scale anomalies as
manifestations of departure from the standard cosmologi-
cal scenario, e.g., via modifications of the inflation frame-
work, in slightly anisotropic cosmological models, by a
preferred direction in the Universe, etc. See Ref. [12] for
recent studies and Ref. [13] for earlier works. Recently
Ref. [14] proposed a cosmological magnetic field as a
possible mechanism to explain these anomalies (the
CMB temperature anisotropy non-Gaussianity that results
from the magnetic field presence has been used to limit the
amplitude of such a field [15]).

In this paper we present a formalism useful for describ-
ing CMB temperature anisotropies in a cosmological
model with a preferred direction at the perturbation level,
while the background model preserves spatial isotropy.
More specifically, we consider a cosmological model
with a uniform magnetic field pointing in a fixed direction,’
with the magnetic field energy density treated as a first-
order perturbation, and study the CMB temperature anisot-
ropy two-point correlation function which reflects the
magnetic-field-induced broken spatial isotropy. A simpli-
fied version of this problem has been studied in Ref. [17];
here we consider an arbitrarily oriented magnetic field. In
general, a cosmological magnetic field contributes, via the
linearized Einstein equations, to all three kinds of pertur-
bations, scalar, vector, and tensor, and if the amplitude of
the magnetic field is large enough (10™° G, or larger), there
are observable imprints on the CMB temperature anisotro-
pies (for recent reviews see Ref. [18]; for specific recent
computations see Ref. [19]). As noted below, in our com-
putation we only need to consider vector perturbations.

In the model we consider here, the CMB temperature
two-point correlation function reflects the presence of non-

“Such a magnetic field can be viewed as an approximation of a
stochastic magnetic field with correlation length larger than the
Hubble radius. A 10™° Gauss cosmological magnetic field with
correlation length larger than the Hubble radius can be generated
by quantum-mechanical fluctuations during inflation [16].
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zero off-diagonal correlations between the usual a;,, multi-
pole coefficients with multipole index [ differing by 2 and/
or multipole index m differing by 1 or 2. More precisely,
there are nonzero off-diagonal correlations only for Al =
+2 and Am = 0 and for Am = £1 and %2 for both Al =
0 and Al = *2. Some of these correlations have been
discussed in Ref. [17] for the case of a homogeneous
magnetic field oriented perpendicular to the galactic plane.
Here we study the general case of an arbitrarily oriented
magnetic field, and develop a new technique to compute
the CMB temperature anisotropy in real space. The arbi-
trarily oriented magnetic field induces additional effects,
not only breaking rotational invariance breaking (resulting
in nonzero correlations between multipoles of different /)
but also breaking spin (parity) symmetry (resulting in non-
zero off-diagonal correlations between multipoles of dif-
ferent m). As a result, in multipole space the (a}, ;)
power spectrum is antisymmetric under exchange of m and
m'. A similar effect occurs for Faraday rotation of the CMB
polarization plane induced by a homogeneous magnetic
field [20], for the cross correlations between E-polarization
anisotropy and temperature or B-polarization anisotropy,
which vanish in the standard cosmological model in the
absence of a primordial magnetic field.

The outline of our paper is as follows. In Sec. II we
present the general description of the problem, which
includes a derivation of the equations governing vorticity
perturbations in the Universe (Sec. I A) and an expression
for the CMB temperature anisotropy induced by Alfvén
waves (Sec. IIB). In Sec. IIl we derive the multipole
coefficient power spectrum, which includes various Al =
0,Al==*2, Am =0, Am = =1, and Am = *2 correla-
tions. In Sec. IV we derive the real-space two-point tem-
perature anisotropy correlation function (the details of the
computation are summarized in Appendix B). We conclude
in Sec. V. In Appendix A we list useful mathematical
formulas that we used in the computations.

II. GENERAL DESCRIPTION
A. Vorticity perturbations

In this subsection we study the dynamics of linear
magnetic vector perturbations about a spatially flat®
Friedmann-Lemaitre-Robertson-Walker homogeneous
cosmological spacetime background with vector metric
fluctuations. The metric tensor can be decomposed into a
spatially homogeneous background part and a perturbation
part, ,, = &gu» T 68,,, where u, v €(0,1,2,3) are
spacetime indices. For a spatially flat model, and working
with conformal time 7, the background Friedmann-
Lemaitre-Robertson-Walker metric tensor g,, = a’n v
where 7,, = diag(—1, 1,1, 1) is the Minkowski metric

*Current observational data are consistent with flat spatial
hypersurfaces. See Ref. [21] for a recent review.
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tensor and a(n) the scale factor. Vector perturbations are
gauge dependent because the mapping of coordinates be-
tween the perturbed physical manifold and the background
is not unique. Vector perturbations to the geometry can be
described by two three-dimensional divergence-free vector
fields A and H [22], where

8go; = 68y = a*A;, 8g;;=a*H;; + H;;). (1)

Here a comma denotes the usual spatial derivative, i, j €
(1,2, 3) are spatial indices, and A and H vanish at spatial
infinity. Studying the behavior of these variables under
infinitesimal general coordinate transformations (gauge
transformations in the context of linearized gravity) one
finds that V= A — H is gauge invariant (the overdot
represents a derivative with respect to conformal time). V
is a vector perturbation of the extrinsic curvature [23].
Exploiting the gauge freedom we choose H to be constant
in time. Then the vector metric perturbation may be de-
scribed in terms of two divergenceless three-dimensional
gauge-invariant vector fields, the vector potential V and a
vector representing the transverse peculiar velocity of the
plasma, the vorticity 2 = v — V, where v is the spatial
part of the four-velocity perturbation of a stationary fluid
element [24].4 In the absence of a source the vector per-
turbation V decays with time [this follows from V +
2(a/a)V = 0] and so can be ignored.

Since the fluid velocity is small, the displacement cur-
rent in Ampere’s law may be neglected; this implies the
current J is determined by the magnetic field via J = V X
B/(4). The residual ionization of the primordial plasma
is large enough to ensure that magnetic field lines are
frozen into the plasma so the induction law takes the
form B = V X (v X B). As a result the baryon Euler equa-
tion for v has the Lorentz force L(x) = —B(x) X [V X
B(x)]/(47) as a source term. The photons are neutral so
the photon Euler equation does not have a Lorentz force
source term. The Euler equations for photons and baryons
are [24,26,27]

) y + (v, —v,) =0, 2)

L(V)(X)
a*(py + pp)’
where the subscripts vy and b refer to the photon and baryon
fluids, and p and p are energy density and pressure. Here
T = n,ora is the differential optical depth, n, is the free
electron density, o7 is the Thomson cross section, R =
(py + P»)/(p, + py) =3p,/4p, is the momentum den-

. a T
Qb—}_aﬂb_ﬁ(vy_vh): 3)

sity ratio between baryons and photons, and LEV) is the
transverse vector (divergenceless) part of the Lorentz

“Given the general coordinate transformation properties of the
velocity field v, two gauge-invariant quantities can be con-
structed, the shear s = v — H and the vorticity & =v— A
[23]. In the gauge H = 0 (i.e., V= A) we get & = v — V [25].
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force. In the tight-coupling limit v, =~ v;,, so we intro-

duce the photon-baryon fluid divergenceless vorticity {3
(= Q, = Q,) that satisfies

L(V)(X)

) 4
oty Y

( -I—R)Q+RZQ=

As usual we consider an expansion about a spatially
homogeneous background magnetic field strength B,
writing the total magnetic field B = B, + B, where B,
is a small (|B;| < |By|) first-order inhomogeneous mag-
netic field strength perturbation that is divergenceless
(V- B, =0). To leading order in B; the induction law
then gives

B, =V XvXB,. (5)

The current in this case is determined by the magnetic field
perturbation, J =V X B,/(47). Consequently the
Lorentz force is L(x) = —By X [V X B,]/(4m).

Neglecting viscosity, which is a good approximation on
scales much larger than the Silk damping length scale,
taking the time derivative of Eq. (4), for a fixed Fourier’
mode Kk, we get for the transverse vorticity

_B() . k2

e 6
4m(pyo + Pyo) ©

in the radiation dominated epoch when R < 1. Here p,,
and p,, denote the present value of the photon energy
density and pressure and we have used R/R = d/a. In
general, the factor 1 + R appearing in Eq. (4) leads to
the suppression of the vorticity amplitude due to the tight
coupling between photons and baryons, because photons
being neutral are not affected by the Lorentz force. This
suppression happens only for scales larger than the Silk
damping length scale, leaving the amplitude of vorticity
perturbations unchanged for k > kg (kg is the wave number
corresponding to the Silk damping length scale) [28].
Equation (6) describes Alfvén wave propagation in the
expanding Universe. These Alfvén waves propagate with
phase velocity v b - k=v 4 M, Where the Alfvén velocity

vy = 30/1,477(/)70 + pyo), b = By/By is the unit vector

in the direction of the magnetic field, and K is the unit wave
vector in the propagation direction. Equation (6) has two
independent solutions, conventionally picked to be cos and
sin functions. The cos solution describes vector perturba-
tions in the absence of the magnetic field and thus is not of
interest here. The sin solution [ « sin(v,kun + ¢), where

SFor a vector field F we use

3
Fj(k) — [d3xeik'ij(X), FJ(X) = _/(ZdWI;3 e*ik'ij(k),

when Fourier transforming between real and wave number
spaces; we assume flat spatial hypersurfaces.
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¢ is a constant of integration] describes transverse Alfvén
waves. For a finite vorticity energy density, vorticity must
vanish on super-Hubble-radius scales (kn — 0), Q(kn —
0) — 0, which implies ¢ = 0, so the solution of Eq. (6) is
[17]

Q (k’ 77) = QO Sin(UAlelu’)! (7)

where ) is the initial amplitude of the vorticity perturba-

tion in the fluid. Self-consistency® requires [Qo =

IB|vs/IByl = |B1|/‘/47T(p),0 + py,), allowing an initial

vorticity amplitude a factor |B;|/|By| ( < 1) smaller than
the Alfvén velocity. Thus, Alfvén wave excitations in the
Universe require (i) initial vector (vorticity) perturbations
and (ii) a cosmological background magnetic field. Since
v, is treated as a 1/2-order perturbation, and the inhomo-
geneous magnetic field is a first-order perturbation
(IB;| < |Bg|), the amplitude of the vorticity perturbation
is a 3/2-order perturbation.

We assume that the initial vorticity perturbation spec-
trum in wave number space is that of a stochastic
Gaussianly distributed vector field with helicity [27],

(QF (k) Qg ;(K)) = 27)* 8V (k — k)
X [Pyj(k)Po, (k) + i€;jki P, ()] (8)

Here Pij(lE) =6, — 12,-121» is the transverse plane projector
with unit wave number components k; = k;/k, a star de-
notes complex conjugation, €;;; is the antisymmetric ten-

sor, and 8 (k — k') is the Dirac delta function. The power
spectra P (k) and Py (k) determine the initial kinetic
energy density and average helicity of vortical motions.
We approximate both spectra by simple power laws with
indices ng and ny.

B. CMB temperature anisotropies from Alfvén waves

Our aim is to study CMB temperature anisotropies
AT/T(n, Xy, n9) in the presence of a homogeneous
cosmological magnetic field B. As wusual, AT =
T(n, xg, 7y) — T, where T is the mean temperature, n is
the unit vector in the photon arrival direction, x; is the
position of the observer, and 7 is current conformal time
(since the big bang).

Vector perturbations induce CMB temperature anisotro-
pies via the Doppler and integrated Sachs-Wolfe effects
[17],

®In terms of the magnetic field perturbation we have

i(By - k
= MBI = v pk—-
47T(py0 + pyO)
It is easy to see that € is directed along B;, and using

Q = Qqexplivakpun +id), we obtain  i|Qylvskp =
ivf\ﬂ«k|Bl|/|Bo|~

063012-3



KAHNIASHVILI, LAVRELASHVILI, AND RATRA

AT

n R
T(no, n)=-v-nl® + ["dgV-n, (9

Mdec

where 7)4., is the conformal time at decoupling. The decay-
ing nature of the vector potential V implies that most of its
contribution toward the integrated Sachs-Wolfe term
comes from near 74... Neglecting a possible dipole con-
tribution due to v today, we obtain [17]

AT
T(nor n) = V(ndcc) n— V(ndec) = QO ‘n (10

[where g = Q(74..)], leading to [17]
AT K-
— (K 10) = vakTgec p(Qo(K) )k, (1)

where wave vector k = kk labels the resulting Fourier
mode after transforming from the coordinate representa-
tion X, to the momentum representation by using e’**o, and
An = mg — Mgec = My is the conformal time from decou-
pling until today.

To compute (AT/T(m)AT/T(n’)) we can follow
Ref. [17], but the computation is simpler if we introduce
vector spherical harmonics [29]. Using the decomposition
into vector spherical harmonics,

Qo (k)e 2 = 3 AN (k)Y (), (12)
LAm

where Ygfn)(n) (with A = —1,0, 1) are vector spherical
(A)

harmonics [see Eq. (A8) below for definitions], and A}/
|
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are decomposition coefficients, and taking into account the
relations Y ,m - Ygr)‘n)(n) =n- Yg;l)(n) =Y,,(n) [see
Eq. (72), p. 220, [29], where Y;,,(n) are the usual spherical
harmonics], we obtain

—(n Kk, n0) = UAkndcuU’ZA( VY0 (m). (13)

Comparing to the conventional spherical harmonic decom-

position, AT/T(n, Kk, n9) = ¥ ;a1 (K, 19)Y},,(n), makes

it possible to relate the usual a;,, multipole coefficients to
(=1

A

alm(k) = vAkT]dec/J‘Agy;l)(k)‘ (14)

Information about the £,(k) spectrum is encoded in the
AE;” coefficients, which [using Eq. (135), p. 229, [29]]
can be expressed as

WVITF D

1 Li—1(kmo) + ji1(kmo)]
X Q(k) - Y, (k). (15)

AL V() = daril~

Here j;(x) are spherical Bessel functions and we have
omitted a term « Qy(k) - Y ( 1)*(k) because the vorticity
vector field is transverse, k - Q,(k) = 0, and so Q(k) -
Y, (k) =0

We are now in a position to compute the {(a;;, a;,,) power
spectrum,

(@) = G f kK2 a (K)apy (k)
2.1/7 2 3 ) . }
ey dkkzpﬂo(k)vﬁ("““) jitknoipthkng) 3 Py [ g uPIYG GNP RV,
T Mo ij=1
(16)

where d(); represents the solid angle volume element, u = b - k, and we have used Eq. (8). It can be shown that initial
helicity does not contribute to the integral in Eq. (16) (see Sec. 3 of Ref. [30]). Performing the sum over i and j [we use

Eq. (74), p. 220, [29], and vector spherical harmonics properties listed in Appendix A 2 below] results in

*
<a1mal’m’

x [ OV V() - Y (k) —

An advantage of this computational method over that of
Ref. [17] is that in Eq. (16) we did not need to integrate
over d(), and d{),. This is similar to what happens in the
total angular momentum method [25].

As a consequence of the orthonormality relation,

deRY(A)(k) Y}” P (R) = 8,088 (18)

(b- YU V()b - YU (k)

il’—l
)= ZW Wi+ n +1) f dkaPQO(k)ug<’7de")2jl(kn0) jr(kmo)

Im — - YOW)b - YR K a7

|

the first term in the d(); integral in Eq. (17) results in the
usual diagonal correlations. The second term in Eq. (17)
includes nonzero correlations for / = " and [ = I’ = 2, as
well as m=m/, m=m' =1, and m =m’ =2 (if bl|z
there are nonzero correlations only for m = m' [17]), while
the third term includes nonzero correlations for / = I’ and
m=m', m=m' =1, and m =m’ =2 (again, if b||z
there are nonzero correlations only for m = m' [17]).
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To simplify the computation, we rewrite the last two
terms in the d() integral in Eq. (17) in terms of Wigner D
functions. Wigner D functions relate helicity basis vectors
e, = Fleg = ze¢)/\/_ and e, = e, to spherical basis
vectors €., = F(e, * zey)/\/_ and ey=e, [see
Eq. (53), p. 11, [29] ] through

e, = ZD (¢, ©,0)e,, v,u=—101 (19)

In both the spherical basis and the helicity basis the follow-
ing relations hold: e, e* = §,,, e* = (—1)*e_,, e* =
e;.e, Xe, = —i€,, \e,.

Vector spherical harmonics may be expressed in terms of

Wigner D functions in the helicity basis where the angles
|

v

Im

f ALYV ) YD (R) -

(b - Y5V - YU * (k) —

PHYSICAL REVIEW D 78, 063012 (2008)

0 and ¢ are defined in terms of the unit wave vector k. See
Eq. (A18). Using these relations the last two terms in the
d(); integral in Eq. (17) become

BT DRI (b - ¢,,(8, $))(b - €., (O, $)*

X D", _,.(0,08,¢)D"™ _ (0,0, )

+(b-e (0, ¢))(b-e (0, ¢)"Dj_,00,¢)

X D> (0,0, ¢)] (20)
The unit vector field b may be written in terms of spherical

harmonics [see Eq. (13), p. 13, [29] ], and using Egs. (19),
(20), and (A19), we obtain for the d() integral in Eq. (17)

(b - Y2 (k)(b - Y% (k)}

©)d., _,(©)d"

—1,—m'

(0). 1)

-1

= 81Ot — 27”{1 + (—)FWeI+ DRl + 1) f " 40 sin®
0
l /
XY (D" 8w YT, (0)Y (b)dL,  (©)d!
vv'=—1

Here the d’
relations d

(= ©) = (-1 d!

—mm

,(B) functions are defined in Sec. 4.3 of Ref. [29], and we have used the reality of these functions as well as the
(@) — ( 1)l+mdl

m, —m/

() [Eq. (1), p. 79, [29]]. The expression in Eq. (21)

indicates that there are in general nonzero correlations for [ = I' = a, where a is even. In addition there are the following
possibilities: (i) when v = v/ there are nonzero correlations for m = m'; (ii) when |v — v/| = 1 there are nonzero
correlations for m = m’ = 1; and (iii) when |v — /| = 2 there are nonzero correlations for m = m' * 2.

It is convenient to introduce the notation

y 2 2. ;
Ifil’l) = p fdkkzpno(k)vi<n;ec) Jitkmo)jr (kno). (22)
0

Then Eq. (21), for the multipole coefficients power spectrum, may be rewritten as

(a¥ ap,yy = i I+ 1)1+ 1)15}”[5,,,5,,,,,,, —2a{l + (= 1)*!}
X JRIT DT + [ 40 $in©S,,/(0, Oy, $p)d |, (O)d" . (@)], 23)

where we have defined

1 1
mm (® ®Br ¢B g Z

V+V Y* (b)Yl,V’(b)‘Sm,m’—v+ V’dl

(©)d",, ,(©). (24)

-7l

For [ + I odd the 1 + (—1)"*! factor in Eq. (23) is zero and so is the off-diagonal piece. For [ + I’ even we must sum
over v and 7/ in Eq. (24). Using expressions for d! ,1(0) [Eq. (16), p. 78, [29]] and Y, ,,(b) [Eq. (2), p. 155, [29]], the
double summation results in five different terms (correspondlng to nonzero correlations for m = m/, m = m’ * 1, and

m=m *2),
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S (0, Op, dp) = ﬁ{[(l + c0s?@p) — (3c0s’@y — 1)cos’O]8,,,,

— 25in®5 cosOp sin® cosOe %55, .| + €58, ,,11]

1 . .
) sin?@psin?O[e 2956, 1, + €¥¢s 5m,m'+2]}~ (25)

When b||z, sin@g = ¢ = 0 and only one term survives,

1
! @,0,0 = =
Smm( ) 3

v,v'=—1

This reproduces the result of Ref. [17].

III. MULTIPOLE COEFFICIENT POWER
SPECTRUM

For an arbitrary B, the multipole coefficient power
spectrum is a function of two spherical angles, correspond-
ing to the angular separation between b and directional
vectors n and n’. The amplitude of the power spectrum
depends on vy, Pq,, and the photon travel distances from
decoupling until today. In this section we study diagonal
(in terms of I) [ = [’ and off-diagonal [ = I’ = 2 correla-
tions separately. We note that the terms with [ = [ and
m = m' we compute here are purely due to the presence of
the magnetic field and must be added to the usual CMB

|

C"" N (@, ) = (al, )

1
S VB ()8, yed!, (O)d, () = Si(l ~ c020)8, 26)
’ ’ ’ a

|

temperature anisotropy terms induced by other sources (for
example, scalar and/or tensor perturbations generated by
quantum fluctuations during inflation). Since the magnetic
field amplitude is small, we ignore correlations between
magnetic field and scalar (or other) perturbations.

A.l =1l correlations

For [ = I, the integral expression of Eq. (22) takes the
form

2 Naec)?
110 =2 [auepo @ou(2EY fna. @

The corresponding multipole coefficients power spectrum,
Eq. (23), becomes

= {(3C052®B - 1)10,05mm/ + 2Sil’l®3 COS@B[Giiquam,m/,]IO,,l + ei¢35m,ml+110’+]]

1. iy )
+ 551112@3[6 2ld’b’ém,m’—ZIO,—2 + ezuﬁB 6m,m’+210,+2]}1511’1)’ (28)

and for b||z, sin®; = 0 and it is easy to recover the result of Ref. [17], C;(m) = (3cos’@, — 1)10,015‘1). In Eq. (28) the

coefficient /1 is

B (+1) I+ 1)+ (P +1—-3)cos’@p T 3
Ioo(l;m, ©5) = 20— 1)21 + 3){ 3c0s2@p — 1 " [1 (1 + 1)]}’ 29
and
P+1-3 1
2 —
Iy +o(l,m) = — r+i-3 JiEm(IEm—=—DIFm+ DIFm+2). (31)

21 - 121 +3)

For an arbitrarily oriented magnetic field, even when [/ = ', nonzero I+, and [+, indicate that there are nonzero
nonequal m, m’ correlations. The coefficients /; +,(m) have the following symmetries,

I(),iu(m) = (_])aIO,Iu(_m) = IO,Ia(m + a) = I(),ia(_(m * Cl)), (32)

where a = |m — m’| and thus takes values 0, 1, and 2.

(m,m’)
1

Taking the complex conjugate of C

it is straightforward to see that
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Cl™" (O, ¢p) = C" " (O, p) = C{"" (O, — ), 59

so exchanging m and m’ corresponds to replacing ¢ by — 5, and effectively corresponds to complex conjugation.

The imaginary part of Cgm‘ml) is

AL (O, bp)

J m,m’ m,m’
=5 {em = ™) = Im((af a)

= —sin®g sing {2 c0sOp[ 8, - 1 10,1 (M) = 8110, +1(M)] + sin®g cosd g[8, 210, 2 (m)

- 5m,m’+210,+2(m)]}131'

(34)

So a measured imaginary part of {a;,,a, ) Will indicate the direction of the magnetic field in space. For a magnetic field
along z the imaginary part vanishes. The imaginary part also vanishes when ¢p = 0. These imply that Aﬁn:f'; (Bp, dp)

b X z].

B. ! =1’ = 2 correlations

Making use of the symmetries, we need to determine

<a7—1,mal+1,m/> = Dgrflml-)%—l(@B’ (»bB))

Proceeding in a similar way as for the [ = [’ case we find

(@ @iy = DI (O, dp). (35)

D%'l’,nl,)rl(®3: ) = {(3C052®B = )8 ln0 + 28in@p cos@Ople 985, 11y 1 + €58, 041125 41]

1. iy ; IF1,1x1
"‘551112@3[@ 2058, 2len o + € ¢86m,m’+21i2,+2]}l((1 D, (36)

Defining the coefficient
) (1+2)1-1)
201+ DJRI= DRI+ 3)

we list and discuss separately the m = m' (I.5), m =
m' = 1(lsp+1),andm = m' = 2 (I, +,) term coefficients
of Eq. (36) in what follows.

For the m = m’ term we find

(37)

Loyolbm)= = +m)(I—m(I—m+1)([+m+1)],

(38)
which results in
Dgrflz,ﬁ)l =@ @re1m) = Q5 Q1) = DETI:,;@I
= (3cos’®y, — 1)I+2,01(dl71'l+]), (39)

|
where Iff’l/) is defined in Eq. (22). From Eq. (39), when
Op =0, the part of (a},ay, ) proportional to 8, is
21 +2’OI((1171,1+1) , which coincides with the result of
Ref. [17].

The part of the right-hand side of Eq. (36) proportional
to sin® cos®p contains terms proportional to d;+ ;+ and
Omm'—1 O 8, v+1. The coefficients in these terms are

Los(m=vlzmI=m(I=m+1)(1xm+2)]I

_\/ (IFm)! (*£m+2)
NiFm-D1Em—1)

I, (40)

and

[ oo(tm)=—=lxm+D)IFm+1D)((FmlFm—1)I=

These have the following symmetries,
IiZ,tl(m) = _IiZ,Il(_m) = 112,:1(’71 1)
= Iz« (—(m=+1)); 42)
i.e., the cross correlations between [ — 1 and / + 1 multi-

_UE=m+ DA Fm+1)!

T=m) I @D

(IFm-=2)""

|
pole coefficients are the negative of those between / + 1

and / — 1 multipole coefficients provided m is replaced by
—(m = 1).

The coefficients of the last set of terms in Eq. (36) with
m=m' * 2 are
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Lirosm) = T =m)(I =m+ DU Em +2)0 £m +3)] = —J%L 43)

and

Ioom=—JTTm+ DUzmism—DIzm—2)I= —J%I. (44)

These have the following symmetries,
Irz,tz(m) = Ii2,i2(_m) = 112,12(”1 *2)

= 112,12(_(7” *2)); (45)

i.e., the correlations between [ — 1 and / + 1 multipole
coefficients are the negative of those between [ + 1 and
[ — 1 multipole coefficients provided m is replaced by
—(m = 2).

Equations (38), (42), and (45) can be combined into one
set of equations that reflect the symmetry of the /., +,
(a =0, 1, 2) coefficients, similar to Eq. (32), resulting in
one set of equations for both the /=1 and [ =1 *2
cases,

Lipo(m) = (=) z,(—m) = Iz, z,(m + a)

(46)
|

= Iib,ia(_(m + Cl)),

i (mm") (m,m")*
B E{Dlzut] - DlIl,lil

= Im({ajs ), dr=1,m)

|

where b = 0 or 2. On the other hand, the magnitudes of the
cross-correlation coefficients for [ =1 and [ = I’ = 2 are
different; while all terms for the [ = I’ * 2 case are pro-
portional to I, this is not true for the [ = [’ coefficients.

The nonzero off-diagonal correlations power spectrum
terms D;’g"ﬁ'ltl((ﬂg, ¢p) are given by Eq. (36). Taking the

complex conjugate we see

DY (Op, dg) = DI (O, )
= D™ (@p —dp),  (47)

so as for the Cgm’"’/) function in Eq. (33), complex con-
jugation is equivalent to exchanging ¢p and —d¢p.
Consequently, the D%’{’j)ﬂ(@lg, ¢p) are complex func-
tions, with imaginary part

= —sinOgsing {2 COS@B[Sm,m’flliZ,fl(m) - 5m,m’+11i2,7l(_m)]

+ Sirl('DB COSd)B[(Sm,m/*ZIiZ,fZ(m) - ‘sm,m’+21i2,72(_’/’1)]}1;11 b 1)- (48)

So nonzero correlations between nonequal m multipole
numbers result in an imaginary (antisymmetric) part of
(@)% p@i=1,m) Which effectively breaks the symmetry be-
tween the north and south hemispheres.

IV. TEMPERATURE CORRELATIONS

In this section we derive the CMB temperature fluctua-
tion two-point correlation function (AT/T(n)AT/T(n’))
that is induced purely from the homogeneous magnetic

field. This must be added to the usual CMB temperature
|

two-point correlation function. Since the Alfvén velocity is
small, this magnetic-field-induced CMB anisotropy is a
small correction to the “primary”” CMB temperature fluc-
tuations. On the other hand, the effects that we discuss here
vanish in the standard cosmological model so a nonzero
correlation between [/ and [/ * 2 multipole coefficients
might indicate the presence of a homogeneous cosmologi-
cal magnetic field.

The two-point temperature correlation function can be
written as

(S5 00) = 33 3 Kt )Y, 007 0) + G Vi) )

! !
LI m,m

= JAT , AT .\ |I=/'*2
G OO 9)

where we introduce complex conjugation to symmetrize over n and n’. From Egs. (28) and (36) we see that both terms in
the correlation function (the contributions that are diagonal in / as well as those that are between / and / = 2 multipole
coefficients) contain three kinds of terms, those proportional to (1) 3cos’@z — 1; (2) sin®gcos®ze™i?s; and
(3) sin?@ze=2%s. We derive the contributions from these terms in Appendix B.
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Using the results of Sec. III for the multipole coefficients, and the addition theorem of Eq. (A24), we find, from

Appendix B, the diagonal [ = [’ correlation contribution,

AT AT, ,\\|=! 1 (I+nRi+1)

—(n)— =—» —————{Q2P +21-3)P; +2(P +1—=3)[(b-n)(b-n))[2P), + (2l - 1)P}
G| = LS e e )1+ 2 (b - m)(b - (2L, + (2 = DP]

—[(b-n)%+ (b-n)2JP/ + Pi_, — 2P, (50)

and for the off-diagonal [ = I’ = 2 correlation contribution, where we use the addition theorem of Eq. (A23), we find, from
Appendix B,

AT AT\ |='=2 1 20+ 2)(1—1)
G| - LR

X {2(b m)(b - )P}~ 3[(b ) + (b mRI3PI() + 2n - m)PY] + PQ}I;’_I’HI), 51)

where the argument of the Legendre polynomials and
derivatives in Egs. (50) and (51) are n - n’. If b is perpen-
dicular to m or n’, or if n = n’, the above expressions
simplify considerably.

To obtain the CMB temperature anisotropy two-point
correlation function, Egs. (50) and (51), in terms of the
initial vorticity spectrum Pg = Pok"e/ k"“+3 the inte-

grals Ifll D and Ig ”H), Eq. (22), must be evaluated.
These can be evaluated using an analytical approximation;
for details see Appendix A 3 and the appendix of Ref. [27].
The result depends sensitively on the initial vorticity per-
turbation spectral index (ng), Eq. (8).

Accounting for the solution of Eq. (7), the symmetric
part P of the resulting vorticity perturbation spectrum is
characterized by the spectral index ng + 2, ie., Pg «
k™2 while the perturbed magnetic field B, inherits the
initial vorticity spectral index ng,. To avoid a divergence of
the energy density spectrum E(, of the resulting vorticity
perturbations on super-Hubble-radius scales, we require
ng = —7 [Eq(k) < k™*% and the three-dimensional
wave number integration gives an additional factor of
k*]. Requiring a nondivergent temperature two-point cor-
relation function at large wave numbers leads to ng = —1
[17]. Another important value of ng follows from the
requirement that the initial vorticity field energy density
not diverge at small wave numbers, which results in ng =
—5. Requiring that the inequality |Q|?k* = v? (resulting
from B; = By) [17] hold on any scale inside the Hubble
radius at decoupling, i.e., for k = 1/14.., we need [17]

k \no+3
2P0( ) =2, (52)
ks

which implies (accounting for k < kg) 2P, < v3 for ng =
—3. As shown in Ref. [17] this inequality leads to an
unconstrained magnetic field for ng = —3. Since the
more interesting results are in the range ng € (—7, —3),
we adopt here —3 as the upper value for ng. In this range
of the spectral index ng the integral can be accurately

[
computed analytically. When ng = —1 the integral can
be computed reasonably accurately in the analytic approxi-
mation [27].

Using Eq. (A25), for ng € (=7, —1), we find
I(I'l) _ Povf‘nﬁecf‘(—nﬂ/Z - 1/2) F(l + 3/2 + nQ/2)
2/m(ksmo)" 2 gl (—ng/2) T+ 1/2 = nq/2)’
(33)
JU-LI+) Povinge.(ng + 2)T'(—nq/2 — 1/2)
27 (ksmo)" e 3 mgnal'(—ng /2)
Iri+3/2+ 2
(1+3/2+ nq/ )' (54)
F(l + 1/2 - I’IQ/Z)
When ng = —7 the quadrupole (I = 2) moment does not

diverge, see the last term on the right-hand sides o I'(I +
3/2 + ng/2). For large enough [s this last term is o ["2*1
and makes both integrals decay (for ng = —1) with [ as
["*! for increasing /.

V. CONCLUSIONS

We derive the CMB temperature anisotropy two-point
correlation function sourced by vorticity perturbations in-
duced by a homogeneous magnetic field. We extend the
analysis of Ref. [17] by considering a magnetic field that is
arbitrarily oriented with respect to the galactic plane. We
consider a weak magnetic field, and since it is uniform and
points in a fixed direction, it breaks spatial isotropy. In this
case the only nonzero correlations between multipole co-
efficients are between those that have Al =0 and Al =
*+2,and Am =0, Am = =1, and Am = *=2, and we have
accounted for all nonzero correlations. Even though we
have computed only the two-point correlation function,
such off-diagonal correlations indicate that in this model
the CMB temperature anisotropy is non-Gaussian [31].
Such a homogeneous magnetic field might explain the
tentative large-scale non-Gaussianity of the CMB tempera-
ture anisotropy (also see Refs. [14,15,32]). Our results,
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when used in analyses of the Wilkinson Microwave
Anisotropy Probe data, as well as anticipated PLANCK
satellite data, could be used to search for or limit a homo-
geneous cosmological magnetic field. The off-diagonal
correlations we have found might be a unique signature
of such a field.

While our results were obtained assuming a homoge-
neous magnetic field, they can be extended to an almost
homogeneous cosmological magnetic field with correla-
tion length larger than the Hubble radius today. Such a
field, with a large enough amplitude, can be generated by
quantum-mechanical zero-point fluctuations during infla-
tion. In this case the spectral index of the magnetic field is
around ngy = —3. See Ref. [16] and the more recent studies
in Ref. [33]. Limits on a cosmological magnetic field that
can be obtained through the formalism we have developed
here will complement those obtained through the CMB
polarization Faraday rotation effect [30,34-36] and the
nonzero cross correlations between CMB temperature
and B-polarization anisotropies [20,37].
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APPENDIX A: USEFUL MATHEMATICAL
FORMULAS

In this appendix we list various mathematical results we
use in the computations.

1. Spherical harmonics and Legendre polynomials

The orthonormality relation for spherical harmonics is

[ 40, Y7, (R)Y (k) = 5 (A1)

The recurrence relations for spherical harmonics are
[38]

c0s0Y,, (0, §) = '\, Yii1.(0, §)

E(l)l,mYl—l,m(a’ ¢)» (A2)
sinfe='?Y,,(6, ¢) = aﬁ)l me1 Yir1,m+1(0, @)
+ Bl 1m+1Yl—1,mi1(6y d), (A3)

PHYSICAL REVIEW D 78, 063012 (2008)

where
a(O) _ (l - m)(l + m)
Lm _ ’
I—- DRI+ 1) (Ad)
a(+) _ (l *m— 1) *m)
bLm QI-1DR2I+1) "
© :J(l—m+1)(l+m+1)
Lm 20+ )21+ 3)
(21 + 1)(21 + 3) (A5)

(i)_+ (lIm+2)(lIm+1)
bm (21 + 1)(21 + 3)

Legendre polynomials of order / are defined by the sum

dar !

> Y5, )Y, o)

Pilnm) =575
m=—1

(A6)

Equations (A1) and (A6) imply

. . dar
[quPi(n “§)P;(n'-q) = T+1 8;;P;(m-n’). (A7)

2. Vector spherical harmonics
a. Vector spherical harmonics components
The Ygz‘q) (n)(A = —1,0, +1) vector spherical harmonics
are [Egs. (6) and (7), p. 210, [29] ]

¥ ) =

m N
(0)( ) _ —1
VIG+1)

Y Y(n) =ny,,n),

VQ Ylm (n)’

[n X Vqo1¥,,(n), (A8)

where V denotes the angular part of the V operator. The
YEI};) (n) vector spherical harmonics are related to the

YJ ,(n) vector spherical harmonics through [Eq. (9),
p. 210, [29] ]

(+1) r*l +
(n) = VZ +1 (n) =

Y\ (n) =

Yr+1(n)

(A9)

The Y{m(n) vector spherical harmonics are related to the
usual Y, (n) spherical harmonics through [Egs. (9), (11),
(12), and (13), pp. 210-211, [29] ]

\/2z+ Y, '@ )—\/2l+ Y '(m), (A10)

nYlm
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Y], @)= Y Y, e, = > (—1)1Y],0m)_e,

s=—1 s=—1

(A11)

|Ylm(n)|s = (_l)le{m(nH* - Cﬁﬂrln s, 1,5 j,m*s(n)’
(A12)

where Y/ (n)]* and | Y], (n)|, are contravariant and cova-
riant components, e,(s = =1, 0) are unit covariant vectors,
and C' are Clebsch-Gordan coefficients related to

Jjom—=s,l,s
the aj,) and B} coefficients of Eqs. (A4) and (A5).

The contravariant components of the Y{m(n) vector
spherical harmonics are related to the usual spherical har-

monics through (pp. 211-212, [29])

. r¥g+Drxqg+2)
|Y;;l(n)|(_]) = \/ 1 1 Yr+1,q11(n)r

2(r + D(2r + 3)

g+ 1)ir+qg+1)
(r+1D@2r+3)

r+1,q(n):

o = =7

N e rEP Y
Y7, (n)|*=D) = +\/ r ;]r(:_l_ f) Y, ,51(m),

Y7, ()| @ = Y, ,m),
r(r
Y7, (n)| =V = v i262(2rri—ql)_ I)Y"l"f“(n)’
Y7, ()| = % r—1,4(M). (A13)

b. Vector plane wave expansion

A vector plane wave field can be expanded in vector
spherical harmonics [Eq. (132), p. 228, [29] ] as

v(k)ekn = ZA(A)Y(/\)(H)

LAm

(Al14)

where A = —1, 0, 1, and the expansion coefficients for a
transverse field v(k) [v(K) - k = 0] are

ARV = 4w\ + 1)1_1217%( YUURR), (A1S)
AR = amiljy(knvk) - YOX (K),  (A16)

j,(kt N
Af = —amit (50 i o) - Vi )

(A17)
YU U*(KR) in the A

The terms o v(k) - Y coefficients van-

PHYSICAL REVIEW D 78, 063012 (2008)

ish because v(k) - YE;D*(IA() = 0 as a consequence of K -
v(k) = 0.

¢. Decomposition of vector spherical harmonics

In the helicity basis where the angles ® and ¢ are
defined by the unit wave vector k, vector spherical har-
monics are given by [Eq. (35), p. 215, [29] ]

i, (k) = 2” —DL, (0,0, p)el., (k)
+ D’l,,m(o, 0, p)e’ k)],
YO = -0l 0.0, 0,k alg)
n Dg,_mm, ) qs)e'_l(fo],
Yo%) = 22 D 0.0, g)eyk).

dar

Here the helicity basis vectors e), are defined above

[Eq. (19)] and the Wigner D functions are defined
[Eq. (1), p. 76, [29] ] by

D! (a B y)=emd (B ™, (A19)

where d! ,(B) is a real function defined in Sec. 4.3 of

m,m

Ref. [29].

d. Addition theorems for and sums of vector spherical
harmonics

We have need for the following sums of vector spherical

harmonics Y3 (n) [Eq. (80), p. 221, [29] :

4772

q=—r

* )Yy, () = 2r + Dn,
(A20)

4 Z YZ,()YS) (n) = 47 Z Y7,m)YY (n) = 0.

q=-r q=—r

Some addition theorems for qu are (p. 223, [29]),

4m Z YFr(ny) - Y (np) = Spp(2r + 1)Pg(ny - my),

q=—r

(A21)

and

4 D Y my) X Y5 (ny) = 0.
q=-r

(A22)

The most general form of the addition theorems for vector
spherical harmonics is given in Sec. 7.3.11 of Ref. [29].
Here we list two for arbitrary real vectors a; and a,.
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4 i (ay - i () (ay - Yi5'(ny)) = ﬁ{[(iﬁ “ny)(ay - my) + (ag - mp)(ay - ny)JPY — (ay - my)(ay - ny) P,
q=—r

— (a; - my)(ay - my)P, + (a; - ay)P)}, (A23)

dm S (o YiE0)a; - Y, () = %{—(al ‘np)(ay - np)[PY, + (r— DPY] = (ay - ny)ag - n)[PL, + rP]

q=—r
+[(ay - ny)(ay - my) + (a; - mp)(ay - )P + (ay - ap)[F*P, — P! ]}.
(A24)

In these expressions P, and P! are derivatives of Legendre polynomials and we have omitted the arguments of Legendre
polynomials and their derivatives, abbreviating P,(n; - n}) as P,, etc.

3. Integrals of spherical Bessel functions

Here we present an analytical approximate formula to compute the integral Ig’ D of Eq. (22). The integrals that we need
to evaluate are of the form ’65 dxJ p(ax)Jq(ax)x_b, which contain products of Bessel functions. For » > 0 when the

integral converges and is dominated by x << xg, the upper limit x5 can be replaced by oo (with an accuracy of a few percent
for b > 1, and 15%-30% for 0 < b < 1, depending on the value of p — g). We can then use Eq. (6.574.2) of Ref. [39],

_ a” ') ((p+q—b+1)/2)
C2T((—p+q+b+1D)/2T(p+qg+b+1)/2T(p—qg+b+1)/2)

/ " dxJ (ax)J (ax)x (A25)
0

which is valid for Re(p + g + 1) > Reb >0 and a > 0.

APPENDIX B: COMPUTATION OF TEMPERATURE CORRELATION FUNCTIONS

The diagonal and off-diagonal correlation parts of the temperature anisotropy two-point correlation function of Eq. (49)
are

AT AT = )
(S| = 53 S @ - o mr, m) B1)

and
AT AT =r=2 | o o
(G @) | = DS S D YY) + DIV )Y
l !
+ DAY @)Y, ) + DT Y, Y ) (B2)

In this appendix we summarize the results of a computation of these terms.

We first compute the diagonal [ = I correlations of Eq. (B1). From Eq. (28) we see that there are three different types of
terms, which we now list. The first type of term is the / = I’ and m = m’ correlation proportional to 3cos’@z — 1 on the
right-hand side of Eq. (28), which results in

ol

1= I(1+1)
et Z(21 —1)(21 + 3)

{(21 DM+ 1) + (2 4+ 1= 3)B°50]P,(n - n')
—8m(2 +1—-3)) (b°° + b+b‘)|Y§m(n)|0*IYfm(n’)IO}Iff’l). (B3)

The second type of term is the I = I’ and m = m’ * 1 correlation proportional to sin® z cos® ze s on the right-hand side
of Eq. (28), which results in
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AT, AT \|=' G2+ 1D)(*+1—3) N " N _ N0
GrmTr )| =S5 ey O IV @I, @O+ ¥, a1, 00
+ 6% (1Y, (1™}, @)[* + 1Y, ()] 1Y, @) Ty, (B4)

where we have used Eq. (A13). The third type of term is the [ =1 and m = m’ = 2 correlation proportional to
sin2@ ze™2%s on the right-side of Eq. (28), which results in’

(G|

I(“)

=l Z2l(l + )P +1-

TR Db 5 ¥, ¥, 01 + b7 G )~ Y5 )
m'=m=*2

Im

(BS)
in all three of these equations is defined in Eq. (27). Combining the expressions in Eqgs. (B3)—(B5), we obtain

(1+1)

=
47T<_(n)_(n)> _Z(zz D@l + 3)

{(zz + 1) + 21 — 3)Py(n - n)
— 4 (P + 1= 3)S[(b - Y}, )*(b - YL, @) + (b Y}, ()b - Yfm(n’))*]}lg’l). (B6)

There are three types of off-diagonal terms in Eq. (B2) [See Eq. (36)], similar to the diagonal case classified just above.
The first type of term is the [ = I’ =2 and m = m’ correlation proportional to 3cos’®, — 1 on the right-hand side of
Eq. (36), which results in

(GrmSrm)

Here we have wused the relations b-b*=p* +p*p** + b b* = (B2 —-2b"b" =1, (YL)*=
(— 1)L+l+”’+1Y1 e and [(Y],)*|# = |(Y];,)],,. The second type of term is the /= 1"+ 2 and m = m' = 1 correlation
proportional to sin® g cos® Be—“f’B on the rlght -hand side of Eq. (36), which results in

GoTm) - _g(l+2)((12;3@13‘1"“>{b°b+[|Y )l Y )]
Y5 I Y, )1 = Y, )1V )] = Y3 )1V, )]

+ 00 [1Y5, )Y )+ 1Y L)%Y, )Y, )0 Y () —*
= Y, m)[°1Y], ()]} (B8)

(B0 + b b IV, 1Y )10 + 1Y} @) Y, )

1=r=2 Z (I+2)(1 - DJIT+ D)

m=m 221+ 1)

Lm

+ lY[,;l(“”OlY[“(n’)lo* + |YH](n)|0|Y (n’)|0*}1(l ll+1) B7)

Im Im

Im Im

Here we used Eq. (A13). The third type of term is the / = [ + 2 and m = m’ *+ 2 correlation proportional to sin?® ge=%¢s
on the right-hand side of Eq. (36), which results in (see footnote 6)

I=1'+2 I+ = DJIT+T) oy e) - B
= - I ’ +pH[Yi! +x|yl+1(g/
p— ,Z 200+ 1) a BTG, )Y ()]

I ) H Y, 1+ 1, @) VG 0l =+ 1Y @)l 1Y, )l ]
+ o [IYL Y)Y ) 4+ YL )Y T m!)[ T + 1YL ()|~ Y5 ()| T
+ 1Y ) 71Y), @) T (B9)

In these expressions Ig‘l/) is given in Eq. (22). Combing the expressions in Egs. (B7)-(B9) and taking into account that
(AT/T()AT/T(n’)) = (AT/T(n)AT/T(n’))* we obtain

"For symmetry reasons we have used correlations evaluated for m & 1 = m’ + 1, and not for m = m’ + 2. Thus in the expressions in
Eq. (32) we replace m by m = 1. Of course, this does not affect the final results; it just makes the computations easier and more
symmetric.
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(1]

(2]

(5]

AT, AT\ |=I=2 o (1+2)(1— DI+ 1)
<T )7t )> | N % 200+ 1)

PHYSICAL REVIEW D 78, 063012 (2008)

157 (b - Y, m)* (b - Y ()

+ (b - Y}, (m)*(b - Y, ') + (b- Y], ' (m)(b - Y, (n)*

Im

+ (b Y, m)(b - Y, ()}

Im

Im Im

(B10)
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