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We consider different renormalizable models of Lorentz invariance violation. We show that the limits

on birefringence of the propagation of cosmic microwave background photons from the five year data of

the Wilkinson Microwave Anisotropy Probe (WMAP) can be translated into a limit of Lorentz symmetry

violation. The obtained limits on Lorentz invariance violation are stronger than other published limits. We

also cast them in terms of limits on a birefringent effective photo mass and on a polarization dependence

of the speed of light.
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I. INTRODUCTION

The principal spacetime symmetry of particle interac-
tions in the standard model is Lorentz invariance.
Experiments confirm Lorentz symmetry at all currently
accessible energy scales of up to 2 TeV. This scale will
be extended shortly to 14 TeV with the Large Hadron
Collider (LHC) at CERN. Although present experiments
confirm Lorentz invariance to a good precision, it can be
broken in the very early Universe when energies approach
the Planck scale. There are a number of extensions of the
standard model of particle physics and cosmology that
violate Lorentz invariance (for reviews see Refs. [1–5]).

As can be expected, Lorentz invariance violation (LV)
affects photon propagation (the dispersion relation) and
generically results in a rotation of linear polarization (bi-
refringence). Other effects include new particle interac-
tions such as a photon decay and vacuum Cherenkov
radiation [4]. All these effects can be used to probe
Lorentz invariance. The dispersion measure test is based
on a phenomenological energy dependence of the photon
velocity [6] (see also Ref. [7] for reviews and Refs. [8–10]
for recent studies of this effect; early discussions include
Ref. [11]; Refs. [6,9,10] consider Lorentz symmetry vio-
lating models which preserve rotational and translational
invariance but break boost invariance).

Several models of LV predict frequency dependent ef-
fects. Such high energy Lorentz invariance breakings are
discussed in Refs. [12–14]. References [15] study general-
izations of electromagnetism, motivated by this kind of
Lorentz invariance violation. On the other hand, LV asso-
ciated with a Chern-Simons interaction [16,17] affects the
entire spectrum of electromagnetic radiation, not just the
high frequency part, and induces a frequency-independent

rotation of polarization (see Sec. 4 of Ref. [2] and Sec. III
of this work).
To determine the effects induced by Lorentz symmetry

violation, it is useful to consider the analogy with the
propagation of electromagnetic waves in a magnetized
plasma as outlined in Refs. [8,12,16,18,19]. Using the
well-known formalism for the propagation of light in a
magnetized plasma, it is easy to see that for Lorentz
symmetry violating models which depend also on polar-
ization and not only on frequency, the rotation measure
constrains the symmetry breaking scale more tightly than
the dispersion measure, see Refs. [14,15,19].
The propagation of ultrahigh energy photons represents

a promising possibility to probe Lorentz symmetry [20].
Gamma ray bursts (GRB) are astrophysical objects located
at cosmological distances which emit very energetic pho-
tons [6]; reviews describing cosmological tests involving
GRBs are e.g. Refs. [3,21], for recent studies see [22].
After the observation of highly linearly polarized � rays
from GRB021206 has been reported [23], Refs. [24,25]
have proposed to test Lorentz symmetry violation with the
rotation measure by the analysis of GRB polarization.
Even though this measurement has been strongly contested
[26], there is evidence that the �-ray flux fromGRB930131
and GRB960924 is consistent with more than 35% and
50% polarization, respectively [27]. However, the issue of
polarization of GRB � rays is still under debate and addi-
tional x-ray studies are needed to either confirm or dis-
prove polarization of � rays from GRB’s [28].
In this paper we mainly consider renormalizable models

of LV as described in Ref. [2]. We use the very well
understood and measured temperature anisotropy and po-
larization of the cosmic microwave background (CMB) to
constrain Lorentz symmetry violation. These data have
been proposed as a probe of Lorentz invariance in the
Universe in Refs. [29–32]. In our study we use the
WMAP five year limits on birefringence [33] and obtain
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limits which are significantly more stringent than those
obtained from radio galaxy polarimetry [16].

As we shall see below, generically Lorentz symmetry
violation leads to birefringence, i.e. a photon dispersion
relation which depends on polarization. This leads to a
rotation of the CMB polarization which induces parity-odd
cross correlations, such as temperature-B-polarization and
E-B-polarization [29]. These correlators vanish in models
which preserve parity. Generally speaking, the effect is
similar to that induced by a homogeneous magnetic field
[34,35]. In this paper we use the WMAP five year limit on
the rotation measure [33] to constrain Lorentz invariance
violating theories.

II. LORENTZ INVARIANCE VIOLATION:
GENERAL DESCRIPTION

For methodological purpose let us first briefly summa-
rize the usual Faraday rotation effect. We consider an
electromagnetic wave with frequency ! and spatial wave
vector k, k � jkj propagating in a magnetized plasma. A
linearly polarized wave can be expressed as superposition
of left (� ) and right (þ ) circularly polarized waves. In a
magnetized plasma, a homogeneous magnetic field induces
a difference in the phase velocity of left and right-handed
waves. This causes a rotation of the polarization, called
Faraday rotation [36]. The group velocity of the wave also
differs from c. These two effects can be expressed in terms
of the refractive indices defined by k� ¼ n�! where k�
denotes the wave number for right and left-handed waves.
The indices n� are [36]

n2� ¼ 1� !2
p

!ð!�!cÞ ’ 1�!2
p

!2
�!2

p!c

!3
: (1)

Here !p ¼ 4�e2ne=me is the plasma frequency and !c ¼
eB=me is the electron cyclotron frequency for the magnetic
field B (see Sec. 4.9 of Ref. [36]).

The magnitude of both the dispersion measure, due to
the different group velocities, and the rotation measure,
i.e., the rotation of polarization, are proportional to the
photon travel distance �l,

�t� ¼ �l

�
1� @k�

@!

�
; (2)

�� ¼ 1
2ðkþ � k�Þ�l: (3)

Here, �t� is the difference between the travel time of a
right-handed (left-handed) photon and that of a photon
traveling at the speed of light, and �� is the rotation of
the angle of polarization.

Faraday rotation is widely used in astrophysics to mea-
sure magnetic fields in galaxies and clusters (see Ref. [37]
for a review and references therein). In cosmology, Faraday
rotation of CMB photons [34,38] has been used to con-
strain the amplitude of a homogeneous as well as a sto-

chastic cosmological magnetic field [39] (for review on
cosmological magnetic fields, see Ref. [40]).
In the following, we show that Lorentz symmetry vio-

lation leads to a modification of Maxwell’s equations
[14,15] analogous to the modifications described above.
Following Ref. [2], the most general renormalizable

form of Lorentz symmetry violation can be expressed by
two additional terms in the action (we set @ ¼ c ¼ 1)

�LV ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
K����F

��F�� � 1

4
L�A� ~F��

�
; (4)

where Greek indices ð�; �; �; �Þ denote time-space coor-
dinates, F�� is the electromagnetic field strength tensor,
~F��¼���

��F�� is its dual, ����� is the totally antisym-

metric tensor normalized such that �0123¼ ffiffiffiffiffiffiffi�g
p

, and A� is

the vector potential. The four-vector ðL�Þ¼ ðL0;LÞ has the
dimension of mass and describes a super-renormalizable
(dimension 3) coupling and K���� is a renormalizable,

dimensionless coupling giving rise to a dimension 4 op-
erator. We want to break Lorentz symmetry but keep
conformal invariance of electrodynamics in this work.
For this we have to ask that the components of K��

��

and L� be independent of conformal transformations of

the metric. In the cosmological setup with g��¼a2ðtÞ	��,

the above action is then independent of the scale factor
aðtÞ. I.e. in a conformally flat spacetime the action is like in
flat space. To see this note that the forms A� and F�� are

independent of the metric hence K����F
��F�� and

L�A� ~F�� scale like a�4 which is canceled by
ffiffiffiffiffiffiffi�g

p ¼a4.

The tensor K���� has the same symmetries as the

Riemann tensor and we only consider its trace-free part
which is analog to the Weyl tensor (the trace part also leads
to dispersion measure but not to birefringence, we there-
fore do not consider it here). Even though we apply the
formalism used for the Weyl tensor below, we do not
consider K���� to be the Weyl tensor which of course

vanishes in a (unperturbed) Friedmann universe. The
most plausible origin for the Lorentz violating terms in
(4) is that K���� or the vector L� stem from the non-

vanishing vacuum expectation value of some dynamical
field and the action (4) therefore represents a spontaneous
rather than explicit breaking of Lorentz symmetry.
However, for the following discussion the origin of the
Lorentz violating terms is not relevant.
Both terms in Eq. (4) lead to birefringence but the

frequency dependence is different. The first term in the
action �LV can be computed within the Newman-Penrose
formalism, which is usually applied for the Weyl tensor
[2]. We consider a plane wave with conformal wave vector
ðk�Þ ¼ ð!;kÞ. We normalize the scale factor to unity to-

day, a0 ¼ aðt0Þ ¼ 1, so that conformal frequencies or
length scales correspond to physical scales today. In terms
of the conformal wave vector, the dispersion relation is like
in flat space where it has been derived in Ref. [2],
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!2 ¼ k2 � 8!2j�0j: (5)

Here �0 is the analog of the Newman-Penrose scalar (for
more details see [2]),

�0 ¼ �a�4½K0i0j � K0iljn
l � Kkiljn

knl�mimj;

where m and �m represent the left and right circular polar-
ization basis vectors and n ¼ k=k is the photon propaga-
tion direction. We normalize n and m with the flat metric,
ninj
ij ¼ mi �mj
ij ¼ 1, and multiply the expression with

the correct power of the scale factor, a�4, so that, given the
scaling of the tensor K, one sees explicitly that �0 is
independent of the scale factor. (Latin indices indicate
spatial components of a vector or tensor.)

The second term in the action �LV leads to the dispersion
relation [2,16]

ðk�k�Þ2 þ ðk�k�ÞðL�L
�Þ � ðL�k

�Þ2 ¼ 0: (6)

To first order in the small parameters L0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ijLiLj

q
� L

one has

!2 ¼ k2 �!ðL0 � L cos�Þ; (7)

where � is an angle between the photon propagation
direction and the vector L, cos� ¼ ðL � nÞ=L. Note the
similarity of the expressions (5) and (7) with the corre-
sponding ones following from Eq. (1).

To be as general as possible, we rewrite the dispersion
relation for both types of Lorentz symmetry violation in the
form (see also [19]),

k2 ¼ !2

�
1�

�
M

MPL

��
!

MPL

�
N�4

�
; (8)

where MPL is the Planck mass, MPL ’ 1:2� 1019 GeV, N
is the dimension of the Lorentz symmetry violating opera-
tor, and M is a mass scale of the model. For N ¼ 4, the
birefringent part is independent of the photon energy and
we have 8�0 ¼ M=MPL. For N ¼ 3 the Planck mass
cancels out and the birefringent term is inversely propor-
tional to the photon energy. The mass scale is M ¼ L0 �
L cos�. Generally speaking, the smallerM, the weaker the
LV. For N ¼ 4, the LV is frequency independent and the
amplitude of the effect is of order M=MPl, while for the
super-renormalizable case, N ¼ 3, the LV is strongest at
low frequencies, !<M. Our aim is to limit the function

�ð!Þ �
�
M

MPL

��
!

MPL

�
N�4

from CMB birefringence. This ansatz can also be applied
to nonrenormalizable models with higher dimension op-
erators. For N � 5, M � 0 indicates that there is LV at

frequencies ! * MPlðMPl=MÞ1=ðN�4Þ.

III. RESULTS

To compute the CMB polarization rotation angle in-
duced by Lorentz symmetry violation, we follow the anal-
ogy with photon propagation in a magnetized medium
which yields n� ¼ 1� �ð!Þ=2. Using Eq. (3), we obtain

��ðLVÞ ¼ 1
2!�ð!Þ�l: (9)

In the case N ¼ 4, � is frequency independent, hence

��ðLVÞ grows linearly with frequency. In this case, and
for all models with higher dimension operators, the best
limits can in principle be obtained from high frequency
photons (for example GRB � rays [24,25]), while CMB
photons are less affected. However, the fact that the theory
of CMB anisotropies and polarization yields that both
temperature–B-polarization cross correlations (TB) and
E- and B-polarization cross correlations (EB) have to
vanish in standard cosmology, while the polarization of
GRB’s is still under debate, at present, a test using CMB
data is to be preferred. Another advantage is that for the
CMB the distance �l ’ H�1

0 is maximal.

In the dimension 3 model, ��ðLVÞ ¼ � 1
2 ðL0�

L cos�Þ�l is frequency independent. In Ref. [16] the
above result is applied to polarization data from distant
radio galaxies, ��< 6	 at 95% C.L. at redshift z
 0:4.
The constraint obtained if Ref. [16] is jL0 � L cos�j �
1:7� 10�42h0 GeV, where h0 ’ 0:7 is the present Hubble
parameter in units of 100 km s�1 Mpc�1.
We use the recent WMAP five year constraints on the

rotation angle of the CMB polarization plane (combined
constraints from the low and high multipole number, l, data
assuming a constant�� across the entire multipole range),
�5:9	 < ��< 2:4	 at 95% C.L., and �� ¼ �1:7	 �
2:1	 at 68% C.L. [33] (Sec. 4.3). Assuming Gaussian
errors, it is straightforward to convert this to the following
limits on the absolute value of rotation angle,

j��jobs � 4:90	 at 95% C:L:; (10)

j��jobs � 2:52	 at 68% C:L: (11)

We adopt�l ’ 9:8� 109h�1
0 years. We express our results

in terms of �100 ¼ �=100 GHz to keep them as indepen-
dent of the CMB band frequency as possible.
Using Eq. (9), we find the following limit on the function

�ð�Þ with ! ¼ 2��:

�ð�Þ � 8:6� 10�31��1
100h0 at 95% C:L:; (12)

�ð�Þ � 4:4� 10�31��1
100h0 at 68% C:L: (13)

We can also express the limit on � in terms of a limit for the
mass scale M or the dimensionless parameter M=MPl
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M

MPl

& 8:6� 10�31ð3� 1031ÞðN�4Þ�3�N
100 h0 at 95% C:L:

(14)

For N > 4, these limits are not very interesting, while for
N ¼ 4 or N ¼ 3 ‘‘naturally expected’’ values of the pa-
rameters are ruled out. More precisely, for the models
considered we constrain the dimensionless scalar �0 for
the N ¼ 4 case,

j�0j � 1:1� 10�31h0�
�1
100 at 95% C:L:;

while we find for N ¼ 3

jL0 � L cos�j � 3:6� 10�43h0 GeV at 95% C:L:

This is almost an order of magnitude better than the limit
obtained in Ref. [16].

We can also introduce an effective photon mass by
writing the modified dispersion relation in the form !2 ¼
k2 �m2

� with

m2
� ¼ !2�ð!Þ ¼ M!

�
!

MPL

�
N�3 ¼ 2

��

�l
!:

ForN > 2 this is not a mass in the usual sense of the energy
of the particle at rest, but rather a measure for the modifi-
cation of the dispersion relation which tends to zero with
frequency. For the renormalizable dimension 4 and 3 op-

erators considered in this work we have mð4DÞ
� ð!Þ ¼

2!j2�0j1=2 and mð3DÞ
� ¼ ½!ðjL0 � L cos�jÞ�1=2, respec-

tively. As in Ref. [24] we can interpret our result also in
terms of a polarization dependent group velocity,

v� ¼ 1�N� 2

2

M

MPl

�
!

MPl

�
N�4 ¼ 1�N� 2

2
�ð!Þ: (15)

Reference [24] only studied the cases N � 5. From Eq.
(12) we derive the constraint on the effective birefringent
mass,

m� � 3:8� 10�19ðh0�100Þ1=2 eV at 95% C:L: (16)

Note that left and right-handed photons have effective
square masses of opposite sign. For the velocity difference
this implies

jvþ�v�j�
(
8:6�10�31h0v

�1
100 at 95%C:L:; forN¼3

1:7�10�30h0v
�1
100 at 95%C:L:; forN¼4:

(17)

The limits on m� are model independent because m� only

depends on the directly measured rotation angle�� and on
the frequency.

If L � L0, we can safely neglect the angular depen-

dence and assume that mð3DÞ
� ¼ ffiffiffiffiffiffiffiffiffiffi

!L0

p
. However, if L 


L0, the modification of the photon dispersion becomes
direction dependent and must be averaged over all sky
for the CMB photons. Then, the rotation angle can be
estimated by the two-point correlation function, i.e.,

��eff ¼ hj��j2i1=2. A rough estimate leads to a prefactor


1=
ffiffiffi
2

p
. In a more detailed analysis the presence of L

breaks rotational symmetry and leads to off-diagonal cor-
relations in the temperature anisotropy and polarization
spectra analog to the effects on the CMB by a constant
magnetic field [35,38]. To take this fully into account
requires to estimate the CMB temperature-B polarization,
E- and B-polarization cross correlations, as well as B-
polarization spectra due to the Lorentz symmetry violating
vector field L, and to compare theoretical estimates with
the corresponding CMB anisotropy and polarization data.
Also the scalar j�0j of the 4D model breaks rotational
symmetry and taking the direction dependence of �� into
account is relatively complicated. This breakdown of sta-
tistical isotropy can also be tested using the bipolar power
spectrum introduced in Ref. [41].
We shall address this issue in future work, but even

though the limits may improve somewhat, we do not ex-
pect them to change significantly.

IV. CONCLUSIONS

The obtained bound on a birefringent effective photon
mass is below the limit for a standard photon mass given by
the particle data group [42],m� � 3� 10�19 < 10�18 eV,

but is less stringent than the limit from galactic magnetic
fields which are, however, model dependent [43]. Of
course, our photon mass would be measured only when
measuring the dispersion relation of a polarized photon
beam and would disappear when averaging over polariza-
tions. It is not an ordinary mass.
Another useful bound is the departure of the refraction

index in vacuum from unity, i.e., j�nj ¼ j1� k=!j ¼
j�ð!Þj=2. In the 4D model, j�nð4DÞj ’ 4j�0j, in the 3D

model, j�nð3DÞj ’ L0=2! (when L � L0). Generically
Eq. (12) implies j�nj � 4:3� 10�31h0�

�1
100. The differ-

ence of the refractive index from 1 can be viewed as a
difference of the photon speed from 1, �c at the level of
10�30, which is much more stringent than the (more gen-
eral) limit obtained in Ref. [44], which is �c < 10�23. The
formalism given here is applicable also for higher dimen-
sion operators, but due to the frequency dependence

j�ðLVÞj / !N�3, the CMB based limits on the amplitudes
for higher dimension operators become much weaker than
those given from high energy photons (� or x rays). Even
the bounds obtained from the nearby Crab Nebulae are
more promising [45] if N � 5.
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