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We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic

turbulence in order to model magnetic field evolution during cosmological phase transitions in the early

Universe. Our approach assumes the existence of a magnetic field generated either by a process during

inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final

configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly

independent of initial conditions.
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I. INTRODUCTION

Astronomical observations show that galaxies have
magnetic fields with a component that is coherent over a
large fraction of the galaxy with field strengths of order
10�6 Gauss (G); see Refs. [1–4] and references therein.1

Modeling the origin of these fields is a challenging prob-
lem. Here we consider models in which the seed field is
generated in the early Universe, see, e.g. [1,3,6]. There are
a number of such models and different models result in
different magnetic field structures.

It is well known that quantum-mechanical fluctuations
during inflation can generate energy-density inhomogene-
ities that seed observed large-scale structure, see, e.g.,
Ref. [7]. Quantum-mechanical zero-point fluctuations can
also generate a seed magnetic field, provided the relevant
Abelian gauge field is such that the Lagrangian density is
not conformally invariant during inflation [8–10]. A seed
magnetic field generated during inflation has a correlation
length today that can be very much larger than the current
Hubble radius. A convenient phenomenological way of
breaking conformal invariance during inflation is to couple
the inflaton scalar field � to the vector Abelian gauge field

by e��F��F
��, where F�� is the vector field strength

tensor and � is a parameter [9]. Depending on the value
of �, this can result in a sufficiently large seed magnetic
field to explain the observed galactic magnetic fields. This
is a classically consistent model, with vector field back-
reaction during inflation being negligibly small [9,11].
While the Abelian gauge field becomes strongly coupled
at early times [9,11,12], this is not a problem for the
effective, phenomenological, classical model, [9,11,12]
and also see [6,13]. Of course, just as one does not reject
the effective, phenomenological, classical ‘‘standard’’
�CDM cosmological model, one does not reject
inflation-based seed magnetic field generation models for
being quantum-mechanically inconsistent. Rather, much as
the case for �CDM, it is of great interest to understand
how such a successful inflation-based seed magnetic field
generation model might arise from a more fundamental
underlying model or theory.
There are a number of other seed field generation mod-

els; see Ref. [14] for a discussion of seed field generation in
Hořava-Lifshitz gravity. Yet another interesting possibility
is primordial magnetic field generation during a cosmo-
logical phase transition [15]. If the phase transition takes
place at late times the magnetic field correlation length is
smaller than the Hubble radius.
If the magnetic field was generated during or shortly

after inflation (during a pre- or reheating phase transition),
and survived to the epoch of recombination (the last-
scattering surface), it should leave observable signatures
on the cosmic microwave background (CMB) radiation
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1See Ref. [5] and references therein for a technique that might

soon prove useful for measuring a larger-scale, cosmological,
magnetic field.
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fluctuations, see Ref. [16] for a review and Refs. [17,18] for
more recent discussions.2

The shape and magnitude of a primordial magnetic field
can be constrained observationally. Magnetic field energy-
density scales like radiation (i.e. relativistic) energy den-
sity.3 During nucleosynthesis, any new form of radiation-
like energy density is constrained observationally to be less
than about 10% of the usual radiation energy density.
Hence, agreement between the big bang nucleosythesis
(BBN) model light nuclei abundance predictions and the
observations yields a constraint on the primordial magnetic
field energy density:�Bh

2
0 � 2:4� 10�6 [21]. Here�B is

the current value of the magnetic field energy density
parameter and h0 is the current value of the Hubble pa-
rameter in units of 100 km s�1 Mpc�1. Naturally, this limit
holds only if the primordial magnetic field was generated
prior to or during nucleosynthesis.

Other constraints arise through the effects of a primor-
dial magnetic field on the propagation of CMB photons
(Faraday rotation of the CMB polarization [18], and mag-
netic field induced scalar, vector, and tensor modes of
CMB anisotropies [16,17]). Available data limit the current
value of a cosmological magnetic field to be less than about
10�8 G for a scale-invariant or homogeneous primordial
magnetic field.

Another interesting signature of a primordial magnetic
field is relic gravitational waves generated by the aniso-
tropic magnetic stress [22]. The amplitude of the gravita-
tional wave signal is determined by the efficiency of
gravitational wave generation and the strength of the pri-
mordial magnetic field. The efficiency of gravitational
wave production is small [23] due to the small value of
the Newton constant G in the coupling between the pri-
mordial magnetic field and the gravitational waves.
However, a magnetic field that satisfies the BBN limit
and that is generated during a strong-enough first-
order phase transition can lead to a detectable signal for
LISA. Therefore, the direct measurement of the gravita-
tional wave background can lead to an independent
limit on a magnetic field generated in the early Universe
[24].

On large scales, because of the high conductivity of
the plasma in the early Universe, the magnetic field is
treated as a frozen-in field with its evolution determined
by the simple dilution of magnetic field lines, Bðx; tÞ /
BðxÞ=a2ðtÞ, where t is the physical cosmic time and aðtÞ is

the scale factor. In general, however, the evolution of a
primordial magnetic field is a complex process influenced
by MHD as well as by cosmological dynamics [25]. In
particular, the presence of a magnetic field can dramati-
cally affect the behavior of primordial turbulence (for
example, turbulence associated with phase transition bub-
ble motions) [26–28]. Also, the presence of a magnetic
field might itself lead to the development of turbulent
motions, see Refs. [29–31] and Sec. III below.
In this paper we study the evolution of a primordial

magnetic field that is coupled, through the MHD equations,
with the fluid, during a cosmological phase transition. We
consider two different possibilities: (i) when the magnetic
field energy has been injected in the plasma with no initial
vorticity perturbations (no turbulent motions) at a given
typical scale; and, (ii) when vorticity perturbations are
present during the phase transition and couple to the mag-
netic field with a given spectrum. Both these assumptions
can be justified. The magnetic field might be generated
prior to the phase transition, with the generation mecha-
nism not requiring turbulent motion. On the other hand, the
presence of initial turbulent motions can also be justified
since bubble nucleation, expansion, and collisions can lead
to primordial kinetic turbulence [32]. Of course, in reality
both magnetic field and kinetic turbulence generation can
take place together, while in our approach we assume the a
priori presence of magnetic energy and/or kinetic energy
during the phase transition.
A causal, phenomenological description of MHD on

large scales during the cosmological phase transition mo-
tivates a white noise spectrum for the magnetic spectral
energy density, EMðkÞ / k2, where k is the wave number
[33]. A steeper Batchelor spectrum with EMðkÞ / k4 has
been claimed to follow from cosmological causality and
the divergenceless condition of the magnetic field [34]. To
understand the evolution of a cosmological magnetic field,
and to be able to make observable predictions in this
model, it is important to resolve this impasse. One would
like to know whether the final large-scale magnetic energy
spectrum evolves to something steeper than white noise, or
to a spectrum closer to the Batchelor one.
In fact, the MHD process itself might establish a differ-

ent spectrum: The possibility of generating a random mag-
netic field from isotropic turbulence was first proposed by
Batchelor [35]. He invoked the imperfect analogy between
vorticity and magnetic fields that should generally imply a
large-scale distribution of the magnetic energy similar to
the kinetic energy of turbulent motions EKðkÞ / k4 [36].
Later, Kazantsev [37] was able to rigorously establish the
possibility of small-scale dynamo action. He assumed that
the velocity field varied only on large scales and found that
weak magnetic fields are amplified mainly on the resistive
scale. Initially, this was thought to be applicable only to
turbulence at large magnetic Prandtl number [38], where
the viscous cutoff scale is much larger than the resistive

2A potential advantage of a primordial seed field that is
coherent over scales larger than the current Hubble radius, as
can be generated by inflation, is that it might be able to explain
some of the large-scale oddities of the observed CMB tempera-
ture anisotropy [19], including potential non-Gaussianity [20].

3The ratio of the magnetic field energy density �B and the
energy density of radiation �rad is constant during cosmological
evolution, if the primordial magnetic is not damped by MHD (or
other) processes and so stays frozen into the plasma.
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cutoff scale. Kazantsev found that the magnetic energy

spectrum increases with wave number like k3=2, which is
slightly shallower than the white noise spectrum k2.
The emergence of a Kazantsev spectrum turned out to be
much more ubiquitous and not only applicable at large
magnetic Prandtl number. Simulations at magnetic
Prandtl numbers of order unity also clearly showed the

Kazantsev k3=2 spectrum [27]. Such a spectrum could be of
interest for primordial magnetic field evolution, because it
implies somewhat larger power at large scales than white
noise.

The main goal of our paper is to determine, through
MHD modeling, the evolution of the magnetic energy
spectrum. To keep our study as general as possible we do
not make any assumption about the physical process lead-
ing to primordial magnetic field generation. Also, we do
not address the phase transition physics itself, keeping the
total magnetic field energy density �B as a free parameter
whose maximal value is fixed by the BBN bound.
Obviously, if the magnetic field is generated during a phase
transition, �B will depend sensitively on the amount of
latent heat that is transformed to magnetic energy, i.e. on
the efficiency of the magnetic field generation process. One
important issue addressed here is to determine the spectral
shape of the magnetic field at large scales, assuming that
magnetic energy and vorticity perturbations are closely
coupled during the phase transition. Another important
question is related to the duration of MHD turbulence
and how long it takes to reach equipartition between ki-
netic and magnetic energy densities in the primordial
plasma.

The structure of this paper is as follows. In Sec. II we
describe the model, defining the main model parameters
(Sec. II A), characterizing the magnetic field spectrum
(Sec. II B), and formulating initial conditions (Sec. II C).
In Sec. III we present results from direct 3D MHD simu-
lations performed using the PENCIL CODE [39]. We con-
clude in Sec. IV. We employ natural units with @ ¼ 1 ¼ c
and Gaussian units for electromagnetic quantities. To prop-
erly account for the expansion of the Universe we use
comoving quantities with conformal time t that is related

to physical time tphys as t / t1=2phys during the radiation

dominated epoch.

II. MODEL DESCRIPTION

We assume that magnetic energy is generated at the
electroweak or QCD phase transition, or during inflation.
In the first case magnetic energy is explicitly injected into
the fluid on small length scales, smaller than the Hubble
length at the moment of the phase transition. If the mag-
netic field originated at an earlier epoch of inflation the
length scale at which the magnetic field interacts with the
fluid is set by the characteristic length scale of the system,
and is again smaller than the Hubble radius. In the absence
of magnetic or kinetic helicity we do not expect an inverse

cascade (i.e., energy flow from smaller to larger length
scales).

A. Phase transition characteristics

To model magnetic field evolution one needs to know
the physical conditions during the phase transition. First,
generation of turbulence requires a first-order phase tran-
sition so that at the critical temperature of the phase
transition bubbles of the new vacuum nucleate within the
false vacuum. Bubble collisions then generate turbulent
motions. The standard electroweak model does not have
a first-order phase transition [40], and cannot account for
baryogenesis. However, modifications of the standard
model, such as the minimal supersymmetric standard
model (MSSM) [41], result in first-order electroweak
phase transitions and can account for baryogenesis [42].
Also, recent lattice QCD computations [43] have not yet
excluded that the QCD phase transition is a first-order one,
with bubble nucleation and collisions.
The main parameter characterizing turbulent motions is

the root mean square (r.m.s.) velocity v0 which determines
the kinetic energy density of the turbulence. Obviously, v0

depends sensitively on the phase transition physics, and, in
particular, on the phase transition bubble wall expansion
velocity vb, [44]. To model the development of turbulent
motions during the phase transition we adapt earlier ana-
lytical or semianalytical results [44,45]. The first question
that must be answered is whether the phase transition is
first order, and, if so, what fraction of total available
vacuum energy is transformed into kinetic energy of the
bubbles. The r.m.s. velocity of the turbulent motions can be
approximated as (see Ref. [45])

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3��

4þ 3��

s
: (1)

Here � ¼ �vac=�thermal is the ratio of the vacuum energy
density associated with the phase transition to the thermal
energy density of the Universe at the time (� characterizes
the strength of the phase transition), and the efficiency
factor � is the fraction of the available vacuum energy
that goes into the kinetic energy of the expanding bubble
walls (as opposed to thermal energy).
On the other hand, the primordial magnetic field is

characterized by the r.m.s. Alfvén velocity given by

vA ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�wrad

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
3�B

2�rad

s
’ 7:65� 102

ffiffiffiffiffiffiffi
�B

p
: (2)

Here wrad ¼ 4�rad=3 (with �rad ’ �thermal) is the radiation
enthalpy of the relativistic fluid and we have used
�radh

2
0 ¼ 2:56� 10�5 for a present-day CMB temperature

T0 ¼ 2:74 K. At temperature T? of the phase transition we
have �radðT?Þ ¼ �2g�ðT�Þ4=30, where g? is the number of
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relativistic degrees of freedom at temperature T?. The
r.m.s. Alfvén velocity does not depend on T?, but it is
weakly dependent on g?,

vA ’ 4� 10�4

�
B

10�9 G

��
g?
100

��1=6
: (3)

Assuming equipartition between kinetic and magnetic en-
ergy densities, one has vA ’ v0. While the equipartition
condition can be justified by MHD dimensional analysis
[29], we explicitly show that it holds by performing a 3D
direct numerical simulation of a primordial magnetic field
coupled to fluid motions; see Sec. III. Also, partial equi-
partition, v0 � 0:8vA, is reached in the case where the
magnetic field was generated first at the injection scale,
which then led to rapid growth of vorticity perturbations in
the initially no-turbulent plasma.

The bubble wall expansion sets the maximal size of the
bubble, which we associate with the size of the largest
turbulent eddy, l0 ¼ vb	

�1, where 	 is a parameter that
characterizes the duration of the phase transition. In par-
ticular, 	 can be obtained from the bubble nucleation rate
[32]. The Hubble time H�1

? at the phase transition is
another characteristic time, and it sets the ‘‘causality’’
horizon. At this point it is useful to define the parameter

½¼ l0H? ¼ vbð	=H?Þ�1� which determines how many
maximal-sized bubbles are within the Hubble radius,
N � 
3.

B. Magnetic field spectrum

If a primordial magnetic field is randomly oriented and
its mean value vanishes, i.e. hBðxÞi ¼ 0, it is conveniently
described statistically in terms of the n-point field correla-
tion functions. If the field is isotropic with a Gaussian
distribution, the magnetic field characteristics are com-
pletely determined by the two-point correlation function
hBðxþ r; tþ �ÞBðx; tÞi. To construct this main character-
istic function we need to know the spatial distribution (i.e.,
the correlation length) and the temporal evolution of the
magnetic field.

When considering a causally generated primordial mag-
netic field, its maximal comoving correlation length �max is
set by the comoving Hubble radius Hð¼ H�1

? a0=a?Þ at
the moment of generation (here a0 and a? are the scale
factors today and at magnetic field generation, respec-
tively). Causality implies that

�max � H ¼ 5:8� 10�10 Mpc

�
100GeV

T?

��
100

g?

�
1=6

; (4)

where the temperature T? corresponds to the energy scale
at field generation. For the electroweak phase transition, T?

is related to the Higgs mass MH through T? ’ ð1:2	
0:2ÞMH, so we parameterize the T? dependence by normal-

izing to a temperature of 100 GeV. Also, for the electro-
weak phase transition g? ’ 100, but the dependence on g?
is much weaker than the T? dependence.
Another way to determine the magnetic field cor-

relation length is to use the magnetic energy spectrum4

EMðk; tÞ, defining the correlation length by �MðtÞ ¼
½R1

0 dkk�1EMðk; tÞ�=
R1
0 dkEMðk; tÞ.

In most models of magnetic field generation during a
phase transition [15], the magnetic field correlation length
is determined by the phase transition’s bubble sizes. In this
case a characteristic magnetic field correlation length is
assumed to be determined by the largest bubble, 0 ’ 
H.
This simple dimensional description implies that the mag-
netic energy density �B is redistributed through MHD
processes and establishes a magnetic spectrum with spec-
tral energy density measured today that is given by [23]

EMðkÞ � 5:2ð�þ 1Þ
3�þ 5

�
100GeV

T?

��
100

g?

�
1=2



ð10�9 GÞ2

pc�1

�
(

�k� if �k < 1

�k�5=3 if �k > 1

)
: (7)

Here, �k ¼ k=k0 and �kD ¼ kD=k0 with k0 ¼ 2�=0, and
kD ¼ 2�=D is the damping wave number determined
through the viscosity-driven dissipation of the magnetic
field. In the case of stationary nonhelical Kolmogorov
turbulence the Reynolds number determines the damping

scale kD as Re ¼ ðkD=k0Þ4=3. Note that the Reynolds num-
ber is high enough in the early Universe to ensure the
presence of a wide inertial (turbulent) range,
k0 < k< kD.

5 The large-scale behavior of the magnetic
field is determined by the parameter �. The scale-invariant
spectrum corresponds to � ¼ �1 [9], the Kazantsev spec-
trum has � ¼ 3=2 [37], the white noise spectrum corre-
sponds to � ¼ 2 [33], and the steep Batchelor spectrum
has � ¼ 4 [35]. Equation (7) does not account for any
damping of magnetic energy and can be viewed as the

4In what follows we use [46]

hB�
i ðk; tÞBjðk0; tþ �Þi ¼ �ðk� k0ÞFM

ij ðk; tÞf½�ðkÞ; ��; (5)

where

8�k2FM
ij ðk; �Þ ¼ 2PijðkÞEMðk; tÞ þ i"ijlklHMðk; tÞ: (6)

Here PijðkÞ ¼ �ij � kikj=k
2 is the projection operator, �ij is the

Kronecker delta, k ¼ jkj, "ijl is the totally antisymmetric tensor,
and �ðkÞ is an autocorrelation function that determines the
characteristic function f½�ðkÞ; �� describing the temporal decor-
relation of turbulent fluctuations. The scalar function HMðk; tÞ is
the magnetic helicity spectrum. All configurations of the helical
magnetic field must satisfy the ‘‘realizability condition’’ [29,30],
jR1

0 dkHMðk; tÞj � 2�MðtÞEMðtÞ.
5References [28] have recently analytically estimated the

Reynolds number in the early Universe at the scale of energy
injection of the turbulence and magnetic field.
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BBN bound imposed at the moment of the establishment of
the magnetic spectrum; see Fig. 1.

C. MHD formalism and initial conditions

As discussed in Ref. [47], the usual relativistic MHD
equations are identical to the MHD equations in an ex-
panding Universe with zero spatial curvature when physi-
cal quantities are replaced by their comoving counterparts
and conformal time � is used in place of physical time.
Based on this fact, we perform direct numerical simula-
tions of MHD turbulence in the expanding Universe using
the usual MHD equations for an ultrarelativistic equation
of state, but nonrelativistic bulk motions.

The characteristic length-scale of the problem is set by
the phase transition bubble size 
H. The typical time-
scale is the eddy turnover time. Assuming that turbulent
eddies correspond to phase transition bubbles, the physical

turnover time is �0 � ðvb=v0Þð	=H?Þ�1, where v0 ¼
hV2i1=2.

Another characteristic of the initial stage is the amount
of magnetic and kinetic energies present during the phase
transition, i.e. the initial Alfvén and turbulent r.m.s. veloc-
ities. As discussed above, both quantities are sensitively
dependent on the available vacuum energy that is con-
verted to magnetic energy (if the magnetic field was gen-
erated during the phase transition) and/or the kinetic
energy of the turbulent motions. In our analysis below
we assume that about 10% of the vacuum energy is in
the form of initial magnetic energy, which corresponds to
vA;in ’ 0:3.

We perform the numerical simulations of magnetic field
evolution in two stages. During the first stage, we model
forced MHD turbulence with injection of energy at fixed
wave number. This type of driving force is supposed to
mimic the action of bubble-induced external forces in
MHD turbulence during the phase transition. The simula-
tion of forced MHD turbulence is carried out before
equipartition is reached, i.e., before v0 � vA. After equi-

partition is reached we switch off the driving force and
allow free decay of the turbulent state.
We use two different types of external forcing during the

first stage of the simulations. These are injecting magnetic
or kinetic energy at a given scale associated with the
turbulent eddy size. These cases differ in the initial mag-
netic field configuration. Injection of the magnetic energy
in the flow is achieved by using a delta function spectral
energy-density function for the magnetic field. Injection of
the kinetic energy is achieved by using a delta function
spectral energy-density function for the velocity field. In
the latter case the spectral energy distribution of the initial
magnetic field is of Batchelor’s type (EB / k4) and its
amplitude is close to that of the kinetic energy density
(the equipartition condition).
We also define the spectrum of the velocity field EKðk; tÞ

and the total energy density EKðtÞ ¼
R1
0 EKðk; tÞdk. One of

our main goals is to determine whether the presence of
magnetic fields in the early Universe (e.g. generated prior
to a phase transition) can lead to strong turbulence.

III. NUMERICAL SIMULATIONS

Numerical simulations of the magnetic field evolution
were performed using the PENCIL CODE [27,48–50]; see
[39] for the web site.
We perform all simulations using comoving quantities

and conformal time. For simplicity we work with dimen-
sionless quantities, and use k1 ¼ k0=30 as our wave num-
ber unit. The chosen box size covers a wave number range
from k0=30 up to 4:3� k0, and the maximal length scale
considered corresponds to 1 ¼ 30
H, which is still
within the electroweak phase transition Hubble scale
(
EW � 0:01). In the case of a QCD phase transition for
an extremely large QCD bubble velocity, vb ! 1, the scale
can exceed the QCD phase transition Hubble scale by a
factor of 2 (
QCD � 0:15). Of course, in the simulations we

have to use a relatively large value for the dissipation wave
number, which is kD ’ 2k0 at the end of the simulation.
This high value is a consequence of choosing a constant
viscosity that must be large enough so that it can also cope
with the initially much larger value of the energy dissipa-
tion rate. Such high values are obviously not realistic for
the early Universe where the Reynolds number is ex-
tremely high. However, we motivate this choice by the
fact that we are mainly interested in the evolution of the
magnetic field outside the inertial range for k < k0. The
time unit in our simulations is set by the computational box

size and sound speed, i.e., t1 ¼
ffiffiffi
3

p
=k1.

As is well known, free decay of MHD turbulence im-
plies an increase of the magnetic eddy size with decreasing
magnetic energy density. Figure 2 illustrates this fact in our
simulations. We display the y component of the magnetic
field on the periphery of the domain during stages of its
evolution after equipartition has been reached and driving

FIG. 1 (color online). The maximal allowed value EMðkÞ of the
magnetic field generated during the EW phase transition with
T? ¼ 100 Gev, g? ¼ 100, and 
 ¼ 0:01.
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was switched off, in the case when the magnetic energy
was injected at some typical scale.

The characteristic time scales for the qualitative changes
in the magnetic field distribution is approximately equal to
20t1 ’ 165
H—a value that exceeds slightly the Hubble
time-scale, H=c, for the electroweak phase transition.

A. Development toward equipartition

We first examine how long it takes for forced MHD
turbulence to establish equipartition between the magnetic
and kinetic energy densities, i.e. where vA ’ v0. Of course,
the evolution of the magnetic energy spectrum is strongly
scale dependent. We first address the case when the mag-
netic field is ‘‘created’’ at a typical scale k�1

0 , correspond-

ing to the largest bubble. The Alfvén velocity of this field is
close to the maximal value allowed by the BBN bound, i.e.
vA;in ’ 0:3. In this case 10% of the available vacuum

energy has been somehow transformed into magnetic en-
ergy before or during the phase transition. We perform our
simulations with zero initial velocity perturbations. Such
initial conditions may apply to the generation of turbulent
motions during a phase transition via MHD processes,
while the magnetic field was generated prior to that, for
example, through quantum fluctuations [9,10]. In this case
the evolution of magnetic and kinetic energy spectra during
the first stages of MHD coupling are shown in Fig. 3.
Taking into account that the largest bubble size must be a
typical length scale for turbulence, our initial conditions
imply that at k ¼ k0 equipartition is reached almost in-
stantaneously. Larger scales need substantially longer
times to establish equipartition. The initial evolution of
magnetic energy spectra is shown in Fig. 4.

In our phenomenological description it has been as-
sumed [45,51] that bubble collisions and nucleation lead
to the development of turbulent motions, and the kinetic
energy spectrum has been approximated as Kolmogorov-

like in the inertial range (EK / k�5=3) and by a white noise
spectrum (EK / k2) for k < k0. As noted above, our simu-
lations cannot adequately describe the inertial range and
thus we cannot expect to see a Kolmogorov-like spectrum.
On the other hand, the large-scale configuration of the
velocity field is well approximated by white noise; see

Figs. 4–6. This agrees with what is predicted in the phe-
nomenological approach.
We note that the kinetic energy spectrum grows faster

right after the driving is switched on. In particular, after t1,
the r.m.s. velocity increases from zero to 0.17 while ap-
proaching 0.21 after 20t1. At v0 � 0:8vA we assume that
equipartition is reached and, by switching off the driving,
we allow the turbulence to enter the second, free-decay
stage.

FIG. 2 (color online). Evolution of the turbulent magnetic field after turning off the forcing at time t ¼ 14t1. The By component is
shown on the periphery of the computational domain.

FIG. 3. Evolution of the magnetic energy spectral density
EMðk; tÞ (upper panel) and kinetic energy spectral density
EKðk; tÞ (lower panel) for different values of k=k0 ¼ 0:03,
0.06, 0.17, 0.33, and 1. The spectra are normalized such thatR
EMðk; tÞdk ¼ hu2i=2.
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B. Free decay of MHD turbulence

The free decay of turbulence is shown in Figs. 5 and 6
for two different initial configurations of the magnetic
field. In both cases we perform MHD simulations after
the driving force was switched off and free decay occurred.

The first case corresponds to the process described
above, so it was preceded by magnetic field injection into
the turbulent plasma at the scale of the largest bubbles or
turbulent eddies. The field was then allowed to decay,
leading to the development of near equipartition between
the magnetic and turbulent energies. The second case
corresponds to an initial configuration of a random mag-
netic field with a k4 spectrum. In contrast to the first case,
the process here can be roughly described as turbulent
kinetic energy injection into the magnetized plasma. In
this case we approximate the magnetic field spectrum at
large scales by the steep Batchelor spectrum (EM / k4). Of
course, the real situation during the phase transition is
somewhere in between. If the magnetic field was generated
during the phase transition through bubble collisions [15]
the same process of bubble collisions leads to the genera-
tion of turbulent motions (vorticity perturbations). Thus,
strictly speaking, we cannot split the turbulent motions and
magnetic field generation and evolution. If the magnetic
field was created before the phase transition, it affects the
bubble collisions (locally inserting a preferred direction).
As a result, the process of generation of turbulent motions
is affected and this backreacts onto the magnetic field
configuration itself.
The first case—injection of magnetic energy into the

turbulent plasma—provides a suitable setting for magnetic
field generation through the mechanism described in
Ref. [52], where the correlation length of the magnetic
field is naturally set by the size of the phase transition
bubbles. The second case with an established magnetic

FIG. 6. Same as Fig. 5, but for a case where the initial
magnetic field had a k4 spectrum close to equipartition with
the velocity field, and then the forcing was turned off. Results are
shown for 9 times at intervals of 6t1. � ¼ � ¼ 10�4 in units of
ðk21t1Þ�1. The straight lines have slopes 2 and 3. Thickest lines

(solid and dashed) indicate the last time, which is 48t1 since
turning off the forcing. The intermediate thickness solid line, the
highest solid line for 5< k=k1 < 10, is the initial magnetic
spectrum for this computation.

FIG. 4. The initial temporal evolution of magnetic energy
spectra EMðkÞ [solid lines at t=t1 ¼ 0:1, 0.2, 0.5, 1.5, 5, and
25, with (smoothed) EMðkÞ at k ¼ 10k1 increasing as t increases]
are shown before the field reaches equipartition with the kinetic
energy density. For comparison, kinetic energy spectra are
shown for the same times (dashed lines). Thick lines (solid
and dashed) indicate the last time, 25t1. Straight dash-dotted
lines have slopes 2 and 4. The box turnover time is 15t1 and is
reached only for the last time shown.

FIG. 5. Magnetic (solid line) and kinetic (dashed line) energy
spectra in 12 regular time intervals of 4t1 after having turned off
the forcing, with (smoothed) spectra at k ¼ 50k1 decreasing as t
increases. � ¼ � ¼ 10�4 in units of ðk21t1Þ�1. The straight lines

have slopes 3, 2, �2, and �1=2, with the first two near k ¼ k1
and the last two near k ¼ 10k1. Thickest lines (solid and dashed)
indicate the last time, which is 44t1 since turning off the forcing.
The intermediate thickness solid line, the highest or almost
highest line for k=k1 > 10, is the initial magnetic spectrum for
this computation.
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field spectrum is more appropriate for the causal mecha-
nisms discussed in Ref. [34].

Figures 5 and 6 show a distinctive difference between
the turbulent states developed after the injection of the
magnetic energy through a single-mode magnetic field,
and the injection of kinetic energy in the existing magnetic
field with smooth magnetic spectral energy-density distri-
bution. A major difference is revealed in the spectral
distribution of magnetic and velocity fields at large scales.
At large scales, the spectral slopes are approximately 2 for
kinetic energy and around 3 for magnetic energy.
Therewith, the spectral distribution of kinetic energy shows
less sensitivity to initial conditions and develops a shape
close to white noise with Ek / k2. The final configuration
of the large-scale magnetic field slightly differs as a con-
sequence of the initial conditions. In the case of magnetic
energy injection (Fig. 5) the spectral slope is shallower
than 3, and tends to establish a white noise spectrum, while
the case of kinetic energy injection (Fig. 6) most probably
results in the steep Batchelor spectrum.

In all cases, throughout the free-decay stage, the peak of
the magnetic field spectral energy density drifts to smaller

wave numbers as kpeakðtÞ / t�1=2. At the same time mag-

netic power decreases as EMðk; tÞ / t�1. Accounting for
these scalings and noting that we use conformal time, the
temporal scaling in the case of an expanding Universe is
somewhat slower than that in the case of laboratory grid
turbulence where EK / t�n

phys with exponents between n ¼
1:13 [53] and 1.25 [54].

Simulations show that equipartition between kinetic and
magnetic energies is sustained throughout the free decay
stage of the turbulence. Therewith, at any given point in
time, the kinetic energy spectrum peaks at the same wave
number as the magnetic energy spectrum. However, it
seems that properties of the turbulent states developed
through free decay depend on the method of their genera-
tion. The power spectrum of the turbulence developed after
injection of a single-mode magnetic field energy peaks at
kmax � 3k1, while injection of kinetic energy into an exist-
ing magnetic configuration leads to a turbulent state with
power spectrum peaking at kmax � 9k1. Hence, it seems
that, in general, the characteristic length scale of the tur-
bulence is sensitive to the initial driver: kinetic drivers
result in smaller-scale turbulence states as compared to
the case of magnetic field drivers.

IV. CONCLUSIONS

In this paper we have presented results from direct
numerical simulations of primordial magnetic field evolu-
tion during cosmological phase transitions. These simula-
tions account for the expansion of the Universe. Simu-
lations were performed to model two different stages of
primordial magnetic field evolution, the first stage when
phase transition processes drive turbulence, and the second
stage when free decay occurs.

We show that different types of initial conditions (driv-
ers) lead to rapid development of a turbulent state close to
equipartition. During the following stage we model the free
decay of these turbulence configurations. We study the
development during this free decay stage and analyze
characteristic parameters of the slowly varying power
spectrum of the turbulence. We assume that the properties
of the turbulence configurations modeled in our numerical
experiments are similar to those of cosmological primor-
dial turbulence.
Our simulations allow us to estimate the spectral indices

of the large-scale distribution of the kinetic and magnetic
field energies in developed turbulence. It seems that the
final configuration of primordial magnetic field depends on
the initial conditions that must be determined by the phase
transition physics. On the other hand, the kinetic energy
density of the developed state does not retain any informa-
tion about the initial conditions and hence is not sensitive
to the details of the phase transition. The spectral index of
the kinetic energy at large scales can be well approximated
as 2 (white noise spectrum), while the magnetic energy-
density spectral index ranges between 2 and 4 depending
on the initial conditions. Similar spectral indices for the
large-scale magnetic field are well established for labora-
tory turbulence, see Ref. [55]. Note that simulations in a
finite periodic domain may suffer from the fact that origi-
nally disconnected and causally independent regions come
into causal contact within one box turnover time, which,
based on the scale of the domain, is ðv0k1Þ�1. For the case
shown in Fig. 4, this time is about 15t1, but the effective
time can be even shorter owing to the effects of acoustic
and Alfvén waves.
Our numerical results allow us to estimate typical time-

scales for decaying free turbulence. It seems that cosmo-
logical turbulence decays slightly slower then classical
grid turbulence in laboratory experiments. Although we
took a rather small damping wave number, we cannot
expect the establishment of a Kolmogorov-like spectrum
at small scales. We see a fast decorrelation of turbulence at
small scales. We note that the phenomenological ap-
proaches developed in Refs. [23,28] imply a fast
Kraichnan-like decorrelation of turbulence. Con-
sequently, only the large-scale or peak-scale magnetic field
results may have cosmological significance and contribute
observable signatures, such as gravitational wave genera-
tion and/or CMB anisotropy production.
We have considered the case of nonhelical turbulence.

The presence of weak initial helicity can significantly
change the development of turbulence. This is because
magnetic helicity is a conserved quantity in the limit of
large magnetic Reynolds numbers and can inverse cascade
to larger scales [56,57], which could be cosmologically
significant. This process has been confirmed through nu-
merous simulations [25,26,31,47].
Summarizing, we find that the generation of a magnetic

field at phase transition scales will lead to the development
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of turbulent motions, and, in the case of the electroweak
phase transition, this turbulence has an observable signa-
ture in the form of a gravitational wave signal.
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