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Energy injection into the early universe can induce turbulent motions of the primordial plasma, which
in turn act as a source for gravitational radiation. Earlier work computed the amplitude and characteristic
frequency of the relic gravitational wave background, as a function of the total energy injected and the
stirring scale of the turbulence. This paper computes the frequency spectrum of relic gravitational
radiation from a turbulent source of the stationary Kolmogoroff form which acts for a given duration,
making no other approximations. We also show that the limit of long source wavelengths, commonly
employed in aeroacoustic problems, is an excellent approximation. The gravitational waves from
cosmological turbulence around the electroweak energy scale will be detectable by future space-based
laser interferometers for a substantial range of turbulence parameters.
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I. INTRODUCTION

Direct detection of a relic gravitational wave back-
ground is a subject of considerable current interest (see
[1–5] for recent reviews), motivated by planned satellite
detection missions in the near future [6]. Gravitational
wave detection could probe directly the physical condi-
tions in the early universe at the epoch of radiation gen-
eration [7], since after been generated, gravitational
radiation freely propagates throughout the entire evolution
of the universe. Once generated, any gravitational wave
spectrum retains its shape, with all wavelengths simply
scaling with the expansion of the universe. Various possi-
bilities for early-universe physics leading to detectable
cosmological gravitational wave backgrounds include
quantum fluctuations during inflation [8] and subsequent
oscillating classical fields during reheating [9]; cosmologi-
cal defects [10]; bubble wall motions and collisions during
phase transitions [11–13]; plasma turbulence [13–16]; and
cosmological magnetic fields [16,17]. Depending on wave-
length, the resulting gravitational waves might be detected
either directly or through their imprint on the polarization
of the cosmic microwave background [18]. If detected,
gravitational radiation generated in the early universe
would provide a remarkable new window into physics
beyond the standard model of particle physics (e.g.,
[19,20]).

In this paper we revisit the generation of a cosmological
gravitational wave background from turbulent motion of
the primordial plasma. We employ methods similar to
those originally developed in aeroacoustics for calculating
sound generation by turbulent flows [21–24]. This allows

us to incorporate the influence of the temporal character-
istics of turbulent fluctuations on the gravitational wave
generation process, and thus to determine the spectrum of
the emitted gravitational waves at all frequencies. For
simplicity, we assume isotropic nonhelical turbulence,
ignoring all possibilities for generating polarized gravita-
tional waves [25]. (Polarized radiation might be generated
through anisotropic stress of the helical primordial mag-
netic field [26], or from other parity-violating sources in
the early universe such as Chern-Simons coupling [27–29]
or an axion field coupling with gravity [30]. Detection of
these polarized backgrounds is discussed in Ref. [31].)

As is well known, gravitational waves are sourced by the
transverse and traceless part of the stress-energy tensor
(see, e.g., [32]). In our case the stress-energy tensor results
from turbulent plasma motions:

 Tij�x� / wvi�x�vj�x�; (1)

where v�x� is the velocity vector field of the fluid and w �
p� � is the enthalpy density with p and � the pressure and
the energy density of plasma, which is assumed to be
constant throughout space [14]. To model a period of
cosmological turbulence, we assume that at time t� in the
early universe, a vacuum energy density �vac is converted
into (turbulent) kinetic energy of the cosmological plasma
via stirring on a characteristic source length scale LS, over
a time scale �stir [12]. The characteristic length scale LS of
the generated fluctuations is directly related to the Hubble
length H�1

� � H�1�t�� at the time of energy injection. We
consider only a forward cascade: after being generated on
the length scale LS, the turbulence kinetic energy cascades
from larger to smaller scales. The cascade stops at some
damping scale LD, when the energy of turbulence thermal-
izes due to some dissipation mechanism, such as viscosity
or plasma resistivity. In this paper we consider w, �vac, �stir,
H�, LS, and LD as phenomenological parameters which

*gogober@geo.net.ge
†tk44@nyu.edu
‡kosowsky@pitt.edu

PHYSICAL REVIEW D 76, 083002 (2007)

1550-7998=2007=76(8)=083002(10) 083002-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.083002


can approximately describe any period of cosmological
turbulence, and derive the dependence of the gravitational
wave spectrum on these parameters. As expected from the
universal nature of turbulence, the shape of the spectrum
scales with the characteristic amplitude and frequency of
the gravitational radiation.

We perform the computation of the gravitational wave
spectrum in real space, instead of using conventional
Fourier space techniques as in Ref. [14]. This makes the
physical interpretation of all quantities straightforward.
The spatial structure of the turbulence is taken to be iso-
tropic with a Kolmogoroff spectrum [33], and the time
dependence of the turbulence is described by the
Kraichnan time autocorrelation function [34]. While rela-
tivistic turbulence in the early universe might depart some-
what from these scalings, these assumptions are based on
observed properties of laboratory turbulence and will give
the correct qualitative features of the resulting radiation
spectrum. Generalization to alternative turbulence models
is straightforward. We use natural units @ � c � kB � 1
throughout.

II. GENERAL FORMALISM

We assume the duration of the turbulence, �T , is much
less than the Hubble time H�1

? [14,15], so the effects of the
expansion of the universe may be neglected in the genera-
tion of gravitational radiation. This adiabatic assumption
will be valid for any turbulence which is produced in a
realistic cosmological phase transition [35]. (Note that the
duration of the turbulence �T can be substantially longer
than the stirring time tstir; see the detailed discussion in
[14].) Then the radiation equation in real space can be
written as [32]

 r2hij�x; t� �
@2

@t2
hij�x; t� � �16�GSij�x; t�; (2)

where hij�x; t� is the tensor metric perturbation, the trace-
less part of the stress-energy tensor Tij�x; t� is [36]

 Sij�x; t� � Tij�x; t� � 1
3�ijT

k
k�x; t�; (3)

and t is physical time. During the period of turbulence, the
stress tensor takes the form of Eq. (1) [33].

The general solution of Eq. (2) is [32,36]

 hij�x; t� � 4G
Z

d3x0
Sij�x0; t� jx� x0j�

jx� x0j
: (4)

Because of the stochastic character of the turbulent stress
tensor Sij, the generated metric perturbations hij also are
stochastic. We aim to derive the energy density spectrum of
these perturbations at the end of the turbulent phase; after
that the amplitude and wavelength of the gravitational
radiation scales simply with the expansion of the universe.
The energy density of gravitational waves is defined as [1]

 �GW�x; t� �
1

32�G
h@thij�x; t�@thij�x; t�i

�
G
2�

Z
d3x0d3x00

h@tSij�x0; t0�@tSij�x00; t00�i
jx� x0jjx� x00j

;

(5)

where the brackets denote an ensemble average over real-
izations of the stochastic source, t0 � t� jx� x0j and
t00 � t� jx� x00j.

A. Localized source

We will first consider turbulence in a bounded region of
space centered around x � 0. In this case, the energy
density flux P�x; t� of the radiation propagating outward
in the direction n̂ is just

 P �x� � n̂��x; t�: (6)

At large distances from the turbulent source, the far-field
approximation is justified [32,36]. This assumption repla-
ces jx� x0j by jxj in Eq. (5), yielding for the gravitational
wave energy density flux

 P �x� �
Gn̂

2�jxj2
Z

d3x0d3x00h@tSij�x0; t0�@tSij�x00; t00�i:

(7)

The flux from a spatially bounded source drops as the
inverse square of the distance from the radiation source,
as expected.

The autocorrelation function of the tensor metric pertur-
bations is defined as

 L�x; �� �
1

32�G
h@thij�x; t�@thij�x; t� ��i; (8)

with � � t0 � t, such that �GW�x� � L�x; 0�. Defining the
usual Fourier transform of L�x; �� as

 I�x; !� �
1

2�

Z
d�ei!�L�x; ��; (9)

with ! as the angular frequency, it readily follows that

 �GW�x� �
Z

d!I�x; !�; (10)

and therefore I�x; !� represents the spectral energy density
of induced gravitational waves [1,32].

Substituting Eq. (4) into Eq. (8) gives

 L�x; �� �
G

2�jxj2
Z

d3x0d3x00h@tSij�x0; t0�@tSij�x00; t00�i:

(11)

For the case of stationary turbulence, it can be proven that
[23]

 h@tSij�x0; t0�@tSij�x00; t00�i � �@2
�hSij�x0; t0�Sij�x00; t00�i:

(12)
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Using Eq. (12) with the far-field approximation jx� x0j �
jxj � x � x0=jxj, and using the fact that the cross correla-
tion of a stationary random function is independent of time
translation, Eq. (11) reduces to

 L�x; �� �
�G

2�jxj2
@2
�

Z
d3x0d3x00hSij�x0; t�Sij�x00; �0�i;

(13)

where

 �0 � t� ��
x
jxj
� �x00 � x0�: (14)

Defining the two-point time-delayed forth order corre-
lation tensor by

 Rijkl�x0; �; �� �
1

w2 hSij�x
0; t�Skl�x00; t� ��i; (15)

where � � x00 � x0 and w � �� p is the enthalpy density
of the plasma, Eq. (13) yields

 L�x; �� �
�Gw2

2�jxj2
@2
�

Z
d3x0d3�Rijij

�
x0; �; ��

x
jxj
� �
�
:

(16)

Fourier transforming this equation gives

 I�x; !� �
4�2!2Gw2

jxj2
Z

d3x0Hijij

�
x0;

x
jxj

!;!
�

(17)

(summation on i and j assumed), where the four-
dimensional power spectral energy density tensor of sta-
tionary turbulence is defined as

 Hijkl�x0;k; !� �
1

�2��4
Z

d3�d�ei�!��k���Rijkl�x0; �; ��:

(18)

Equation (17) allows us to calculate the spectral energy
density of gravitational waves from a localized source, if
the real-space statistical properties of the turbulent source
are known.

B. Spatially homogeneous source of finite duration

For a cosmological source of stochastic gravitational
radiation, we assume that the source is statistically homo-
geneous, so that the averaged correlators of the stress
tensor have no spatial dependence, and isotropic, so that
the correlator between two spatial points depends only on
the distance between the points and not on the direction.
We can also simply account for the expansion of the
universe by a simple rescaling of the frequency of all
radiation after its production, so we compute the radiation
spectrum in a nonexpanding spacetime and include the
expansion effect at the end.

With these assumptions, Eq. (18) simplifies to

 Hijkl�x0;k; !� � Hijkl�k; !�

�
1

�2��4
Z
d3�d�ei!�e�ik��Rijkl��; ��

(19)

 �
1

4�3

Z
d�d��2ei!�j0�k��Rijkl��; ��;

(20)

so Hijij�x̂!;!� � Hijij�!;!� independent of the observa-
tion direction x̂, as expected on physical grounds. Now
consider a stochastic source lasting for a finite duration �T ,
the duration of the turbulent source. The total radiation
energy spectrum at some point and time is obtained by
integrating over all source regions with a lightlike separa-
tion from the observer, which comprises a spherical shell
around the observer with a thickness corresponding to the
duration of the phase transition, and a radius equal to the
proper distance along any lightlike path from the observer
to the source. Because of statistical isotropy and homoge-
neity, the integral is trivial, contributing only a volume
factor, giving for the total energy spectrum

 �GW�!� �
d�GW
d ln!

� 16�3!3Gw2�THijij�!;!�: (21)

This spectrum is of course independent of the position of
the observer, as it should be for a stochastic background. In
the absence of the expansion of the universe, a stochastic
source generates a spectrum of radiation which then re-
mains constant for all later times.

III. STATISTICS OF STATIONARY
KOLMOGOROFF TURBULENCE

For a particular model of turbulent motion, the correla-
tions needed for computing gravitational radiation can be
estimated. Here we consider the simplest turbulence
model, the original Kolmogoroff picture. The spectral
function Fij�k; �� for stationary, isotropic, and homoge-
nous turbulence is defined as a spatial Fourier transform of
the two-point velocity correlation function

 Rij�r; �� � hvi�x; t�vj�x� r; t� ��i: (22)

This function can be expressed in the form [22]

 Fij�k; �� �
Ek

4�k2

�
�ij �

kikj
k2

�
f��k; ��; (23)

where Ek is the one-dimensional turbulent spectrum of
energy density, �k is the autocorrelation function [34],
and the function f��k; �� characterizes temporal decorre-
lation of turbulent fluctuations, such that it becomes negli-
gibly small for �	 1=�k.

Here we consider Kolmogoroff turbulence for which the
energy density spectrum is given by the power law [33]
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 Ek � CK"2=3k�5=3; k0 < k< kd; (24)

defined over the range of wave numbers from k0, deter-
mined by the stirring length scale LS � 2�=k0 on which
the energy is injected into turbulent motions, to kd, deter-
mined by the dissipation length scale LD � 2�=kd on
which the plasma kinetic energy is thermalized. Here CK
is a constant of order unity; for simplicity we set CK � 1.
The parameter " is the energy dissipation rate per unit
enthalpy, " ’ �vac=��Tw�. The corresponding autocorrela-
tion function is [22]

 �k �
1�������
2�
p "1=3k2=3: (25)

We assume that the stirring and dissipation scales are well
separated, i.e., k0 
 kd, which corresponds to the turbu-
lence having high Reynolds number. This will be an ex-
cellent approximation in any early-universe phase
transition with the stirring scale related to the Hubble
length. For simplicity, we adopt Kraichnan’s square expo-
nential time dependence [34] to model the temporal decor-
relation,

 f��k; �� � exp
�
�
�
4
�2
k�

2

�
: (26)

While other forms of f��k; �� are also frequently used (see,
e.g., [37]), neither total power of generated waves nor the
spectrum are very sensitive to the specific form of the
temporal decorrelation [21].

To compute the fourth-order velocity correlation tensors
Eq. (15) needed in the gravitational wave formula Eq. (17),
we invoke the Millionshchikov quasinormal hypothesis

[22]:
 

hvai v
a
jv

b
kv

b
l i � hv

a
i v

a
j ihv

b
kv

b
l i � hv

a
i v

b
kihv

a
jv

b
l i

� hvai v
b
l ihv

a
jv

b
ki; (27)

where vai � vi�x; t� and vbi � vi�x� r; t� ��. Using
Eqs. (3), (15), and (27) we obtain

 Rijij�x0;x0 � r; �� � Rii�r; ��Rjj�r; ��

� 1
3Rij�r; ��Rij�r; ��: (28)

Then Eq. (19) can be evaluated using Eqs. (23)–(25) and
the convolution theorem to give

 Hijij�k; !� �
1

6

Z
dk1d!1g�k1; !1�g�k� k1; !�!1�

�

�
27�

k2

k2
1

�
k4

2k2
1u

2 �
k2

1

2u2 �
k2

u2 �
u2

2k2
1

�
;

(29)

where we have defined u � jk� k1j and

 g�k; !� �
Ek

4�2k2�k
exp

�
�
!2

��2
k

�
: (30)

Choose the vector k̂ as the axis for spherical coordinates
��1; 	1� of the k1 integral. The azimuthal angular integral
over 	1 is trivial. The dependence on the direction of k1 is
clearly only through k � k1, so Hijij�k; !� � Hijij�k;!�.
The other angular integral can be simplified by changing
variables from �1 to u, giving

 

Hijij�k;!� �
�
3

Z
dk1d!1g�k1; !1�

�
27k1

k
�
k
k1

�Z k1�k

jk1�kj
duug�u;!�!1� �

�
3

Z
dk1d!1g�k1; !1�

�
k3

2k1
�
k3

1

2k
� kk1

�

�
Z k1�k

jk1�kj
du

1

u
g�u;!�!1� �

�
6

Z
dk1d!1g�k1; !1�

1

kk1

Z k1�k

jk1�kj
duu3g�u;!�!1�: (31)

We need to integrate this expression numerically. The !1

integral can be done analytically in terms of the error
function; the entire expression is reduced to an integral
over two dimensionless quantities in Appendix A,
Eq. (A4). The result scales with the stirring scale k0, and
depends on the Mach number M � �"=k0�

1=3 of the turbu-
lence. Its dependence on the dissipation scale kd is through
the Reynolds number R � �kd=k0�

4=3; as expected from
physical considerations, the radiated power is almost com-
pletely independent of R. Numerical results are displayed
in the next section.

IV. RELIC GRAVITATIONAL WAVES

The previous section and the Appendix have given an
analytic expression for the gravitational wave energy spec-

trum resulting from a period of turbulence lasting a time
�T , stirred on a scale k0, with Reynolds number R and
Mach number M. The only significant approximation made
is that the turbulence is stationary and acts as a source of
gravitational waves for a finite time interval; the error
made through this idealization is discussed below. In order
to improve on this approximation, it would be necessary to
create a detailed numerical model of the turbulent source,
including incorporating an actual stirring mechanism, such
as colliding bubbles in a phase transition. We have also
assumed that the expansion of the universe can be ignored
during the turbulence; this should be a good approximation
for any realistic early-universe phase transition. The main
effect of expansion would be only to damp the total energy
in the turbulence by a modest fraction, assuming the tur-
bulence does not last much longer than a Hubble time.
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A. The spectrum at the present epoch

To obtain the present spectrum, the gravitational waves
generated by the turbulent source must be propagated
through the expanding universe until today. The wave-
lengths of the gravitational waves simply scale with the
scale factor a of the universe, while their total energy
density evolves like a�4 and their amplitude decays like
a�1. From �GW�!�, Eq. (21), we can form �G�!� �
�GW�!�=�c, with the critical density �c � 3H2

0=8�G.
Then, changing to linear frequency f � !=2�, a charac-
teristic strain amplitude is conventionally defined as

 hc�f� � 1:263� 10�18

�
1 Hz

f

�
�h2

0�G�f�
1=2; (32)

where h0 is the current Hubble parameter H0 in units of
100 km sec�1 Mpc�1. From the computed hc�f� at the
epoch of the turbulence, given by a scale factor a�, the
factor by which the amplitude is reduced and the frequency
is increased is

 

a�
a0
� 8:0� 10�16

�
100

g�

�
1=3
�
100 GeV

T�

�
; (33)

where T� is the temperature of the universe with scale
factor a�, and g� is the effective number of relativistic
degrees of freedom the universe has at this time. To give
expressions which are physically transparent, we write the
turbulence stirring scale and the turbulence duration as
fractions of the Hubble length during the turbulence:

 
H�1
� � 2�=k0; �H�1

� � �T ; (34)

in other words, 
 is the stirring scale’s fraction of the
Hubble length and � is the turbulence duration’s fraction
of the Hubble length. For any particular angular frequency
!� of the radiation at the time of the phase transition, we
can then convert !� and hc�!�� to the amplitude hc�f� and
frequency f of the relic gravitational wave background
today using the useful expressions for a radiation-
dominated universe,

 w �
4��

3
�

2�2

45
g�T

4
� ; H� � 1:66g1=2

�

T2
�

mPl
; (35)

to get

 f � 1:55� 10�3 Hz
�
!�
k0

��
g�

100

�
1=6
�



0:01

�
�1
�

T�
100 GeV

�
;

(36)

 

hc�f� � 1:62� 10�18

�
T�

100 GeV

��
g�

100

�
�5=6

�



0:01

�
3=2

�

�
�

0:01

�
1=2
�k3

0fHijij�2�f; 2�f�
1=2: (37)

The characteristic strain spectrum hc�f� is plotted in
Fig. 1. The solid lines show three different values for the
Mach number, M � 0:01, M � 0:1, and M � 1, from low-

est to highest amplitude. This dependence on M is in
addition to the explicit M3 scaling in Eq. (A4), which is
accounted for in the y-axis units. The peak frequency of the
spectrum scales inversely with the stirring scale and line-
arly with the characteristic fluid velocity, which is propor-
tional to the Mach number. The peak frequency is thus
proportional to the inverse of the circulation time on the
stirring scale of the turbulence. This is the usual result for
radiation generation: the characteristic frequency of radia-
tion is determined by the characteristic time scale of the
source.

The characteristic parameter values to which the num-
bers in the plot are scaled (T� � 100 GeV, g� � 100, 
 �
� � 0:01) are values consistent with turbulence arising
from a strongly first-order phase transition at the electro-
weak scale; see [13] for a detailed discussion of the appro-
priate parameters.

B. The aeroacoustic limit

Also plotted in Fig. 1 is an approximation common in
aeroacoustics [23], which replaces Hijij�k � !;!� with
Hijij�k � 0; !�. It is clear that this simplifying approxima-
tion is very good for M � 0:1, and overestimates the
maximum amplitude of hc�f� by around 30% for M � 1.
In this limit, the argument of the Bessel function in Eq. (20)

FIG. 1. The spectrum of gravitational radiation from turbu-
lence. The three solid lines are for different Mach numbers, with
M � 0:01, M � 0:1, and M � 1 from lowest to highest ampli-
tude. Note that these three cases have also been scaled by a factor
of M�3=2 for display, since this is how the low-frequency tail
scales with M. The dotted lines, which are virtually indistin-
guishable from the solid lines except for the M � 1 case, show
the k � 0 approximation to the gravitational wave source.
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becomes small. Substituting Eq. (20) into Eq. (21) gives

 �GW�!� � 4!3Gw2�T
Z
d�d��2ei!�j0�!��Rijij��; ��:

(38)

Thus if !� is small compared to unity, the aeroacoustic
limit k! 0 is guaranteed to be valid.

In the case of aeroacoustics, this approximation works
because the fluid velocity is always assumed to be small
compared to the velocity of the radiated acoustic waves
(low Mach number). In the cosmological regime, the in-
teresting case is for plasma with a relativistic amount of
kinetic energy (otherwise there is not substantial gravita-
tional radiation produced). This will occur only when the
plasma is at a high enough temperature that it is fully
relativistic: otherwise, the amount of energy injected into
plasma motions would have to be a substantial fraction of
the particle mass scale rather than the cosmological tem-
perature scale, and this is unlikely on general grounds. A
relativistic plasma has sound speed 1=

���
3
p

, and the Mach
number of the turbulent plasma can never be much larger
than 1; it will also not be too much smaller than 1. In this
case, the fluid velocities will be roughly the sound speed,
but this is close to the propagation speed of the emitted
radiation. Therefore, we do not automatically have �!

1 in Eq. (38), and the validity of the aeroacoustic approxi-
mation must be ascertained by explicit calculation. As we
see in Fig. 1, the approximation still gives the right order of
magnitude for the spectrum amplitude even for Mach
number M � 1, corresponding to a fluid velocity equal to
the sound speed.

C. Asymptotic limits

The validity of the aeroacoustic approximation k! 0
simplifies finding asymptotic forms for the spectrum.
Consider various frequency regimes of Eq. (31) with k �
0; this is facilitated by Eq. (A5). Note that in this limit, the
dependence on the Mach number M simply scales with the
frequency. We assume R	 1, or else fully developed
turbulence cannot exist; this is an excellent approximation
for early-universe plasma stirred on scales near the Hubble
length. In the low-frequency regime, simply take the limit
!! 0 to get

 Hijij�0; !� �
28M3

15k4
0�2��

5=2
; !! 0: (39)

Physically, these frequencies are lower than the lowest
characteristic frequency in the problem, corresponding to
the eddy turnover time on the stirring scale. This result of a
constantHijij is universal and does not depend on either the
spectrum or temporal characteristics of the turbulence (see,
e.g., Refs. [12–15] and also [38]). It translates to hc�f�
scaling as f1=2 at low f.

At high frequencies !	 k0MR1=2, the integral in
Eq. (A5) is dominated by the contribution from its lower
limit. After using the asymptotic form erfc�x� �
x�1��1=2 exp��x2�, x! 1, an integration by parts gives
the leading-order asymptotic behavior as
 

Hijij�0; !� �
7M3

27=2�3k4
0R7=4

k2
0M2

!2 exp��2!2=�k2
0M2R��;

!	 k0MR1=2: (40)

This exponential suppression is evident in Fig. 1; the
dependence on R is negligible as expected from physical
considerations. The functional form of the high-frequency
suppression is determined by the specific form of the time
autocorrelation function of the turbulence, Eq. (26), but for
any autocorrelation the amplitude of the emitted waves
should be very small in this regime. Physically, this limit
corresponds to radiation frequencies which are larger than
any frequencies in the turbulent motions; consequently, no
scale of turbulent fluctuations generates these radiation
frequencies directly, and the resulting small radiation am-
plitude is due to the sum of small contributions from many
lower-frequency source modes. Since the integral is domi-
nated by the lower integration limit, the highest-frequency
source fluctuations (which contain very little of the total
turbulent energy) contribute most to this high-frequency
radiation tail.

In the intermediate frequency regime, for frequencies
k0M<!< k0MR1=2, the integral in Eq. (A5) is domi-
nated by the contribution around k2

0M2=!2 due to the
exponential factor in the integrand, with a width of the
same order. Physically, this implies that radiation emission
at some frequency in this range is dominated by the turbu-
lent vortices of the same frequency. Consequently, we have
the rough estimate

 Hijij�0; !� ’
7M3

k4
0�2��

5=2

�
k0M

!

�
15=2

: (41)

This yields hc�f� / f
�13=4, compared to hc�f� /

f�1=2
stir f�11=4 in Ref. [14], where fstir is the turbulence

circulation frequency at the stirring scale. The slight dis-
crepancy from the spectrum shape in Ref. [14] comes about
because we have treated the time correlations of the turbu-
lence in a more realistic way. Here we distinguish two time
scales, the decorrelation time which describes how the fluid
velocities in a given size eddy are correlated with each
other after a given time interval, and the largest eddy
turnover time. In practice, the dropoff with frequency in
this regime is strong enough that the high-frequency be-
havior in Eq. (40) only holds when the spectrum is many
orders of magnitude below the peak amplitude.

The intermediate frequency regime scaling with fre-
quency depends on the specific model of the turbulence
power spectrum. The Kolmogoroff model is not the only
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possibility, especially in the presence of magnetic fields.
Any model of turbulence which includes the local transfer
of energy in the wave number space will satisfy E2

k=�k /
k�4 [39]. In the k � 0 limit, it is straightforward to derive
that, in general, Hijij�0; �q� scales as 1= �q5=n, where n is the
scaling exponent of the turbulence autocorrelation func-
tion. For Kolmogoroff turbulence, n � 2=3 [Eq. (25)]. But
for Iroshnikov-Kraichnan turbulence (for example), n � 1,
and consequently the frequency dependence is somewhat
softer, Hijij�0; �q� / 1= �q5. In practical terms, this modified
turbulence spectrum produces radiation with very similar
detectability properties to that from the Kolmogoroff tur-
bulence spectrum considered here.

V. DISCUSSION

We have calculated for the first time the spectrum of
relic gravitational radiation resulting from a period of sta-
tionary turbulence in the early universe, in terms of the
turbulence duration, stirring scale, Reynolds and Mach
numbers, and the temperature of the universe when the
turbulence occurs. This is probably the best that can be
done without a detailed simulation of actual turbulent
motions. The most likely source of energy injection lead-
ing to turbulence is an early-universe phase transition; the
connection between the phenomenological parameters de-
scribing a phase transition and the parameters describing
the turbulence are given explicitly in Ref. [14].

The calculation we present here is conceptually simple.
The only assumptions made are that the turbulence lasts for
a finite duration which is at least a turnover time on the
stirring scale, and that during this time the turbulence can
be characterized as stationary. The spatial power spectrum
is taken to be the Kolmogoroff form, Eq. (24), with tem-
poral correlations of the Kraichnan form, Eq. (26). These
scalings are appropriate for nonrelativistic turbulence with
large Reynolds number. While the cosmological case will
have large Reynolds numbers, the turbulence will be rela-
tivistic in the most interesting cases for gravitational ra-
diation generation. As argued in Ref. [14], a nonrelativistic
approximation to relativistic turbulence likely underesti-
mates the resulting radiation: relativistic turbulence con-
tains more kinetic energy for a given fluid velocity. We
expect the same general results to hold, except the expres-
sion for the Mach number M3 � �=k0 will clearly be
modified, giving smaller Mach numbers than this nonrela-
tivistic expression.

Cosmological turbulence will never be precisely sta-
tionary, since the universe is expanding. Turbulence from
a phase transition will also not be stationary because the
duration of the source is comparable to the eddy turnover
time on the stirring scale [14], so the turbulence will decay
with time. Even so, as long as the eddies on a given length
scale can be treated as uncorrelated sources of turbulence,
Ref. [14] argues that the resulting radiation spectrum will
be close to that from a stationary source, simply due to the

inevitable cascade of energy from the stirring scale down to
the diffusion scale. This point can be made somewhat more
formally, using an argument similar to that given by
Proudman [21,22]. In the case of stationary turbulence,
the time derivatives in Eq. (7) lead to factors of 1=�0

when computing the radiation spectrum. If the turbulence
is decaying, then additional terms proportional to time
derivatives of the correlation functions also will appear.
But the characteristic time scale of the turbulence decay �d
is at least several times greater than the turnover time on
the stirring scale, and consequently, these additional terms
which are proportional to 1=�d can be neglected compared
to the stationary term.

It has been claimed that turbulence in the early universe
is a source of such short duration that it cannot be treated as
stationary at all, and that the resulting radiation spectrum
should be imprinted with the characteristic wave number of
the turbulent source instead of its characteristic frequency
[38]. We fully agree that a gravitational wave source last-
ing for a sufficiently short duration will not be well de-
scribed by a short piece of a stationary source; clearly in
the limit that the turbulence duration � goes to zero, the
resulting radiation spectrum should peak at a frequency
corresponding to the characteristic wave number of the
source (the inverse stirring scale), and our formalism will
not be valid in that limit. However, it is straightforward to
see that a turbulent source in the early universe will ac-
tually last long enough so that our calculations are valid.
Reference [38] uses a simple toy model for a stochastic
cosmological gravity wave source to argue that the condi-
tion �T!s � 1 represents the dividing line between sources
that imprint their characteristic frequency on the radiation
and could be described using our formalism, and sources
that imprint their wave number; here we write the duration
of the source as �T and the characteristic source angular
frequency as !s. If we write the turbulence turnover time
on the stirring scale as tstir, the associated angular fre-
quency is !s � 2�=tstir; also write the duration of the
turbulent source as �T � Ntstir, so that it lasts N times
the stirring-scale turnover time. We can thus write !s�T �
2�N, and even for the unrealistically short durationN � 1,
!s�T is significantly larger than unity. For realistic turbu-
lence, we expect the dissipation time to be multiple turn-
over times. Inspecting the exact gravitational wave
solution for the toy model source in Ref. [38] confirms
that, even for N as small as 1, the radiation spectrum will
be peaked at !s.

We also assume that turbulence is nonmagnetic and
nonhelical. Either of these complications can modify the
power law in Eq. (24) or the form of the time correlation
Eq. (26) [25]. The main effect of any modification is to
change the rate at which the radiation spectrum falls off at
high frequencies, but since this dependence is quite steep,
even substantial changes to the asymptotic behavior of the
spectrum lead to little qualitative difference in the spec-
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trum. As mentioned above, the low-frequency behavior is
independent of any details of the turbulence, and the peak
frequency is determined by the eddy turnover time on the
stirring scale where the energy density peaks, which will
also be independent of any details of the turbulent cascade.

The proposed Laser Interferometer Space Antenna
(LISA) satellite mission has a 5� strain sensitivity to
stochastic backgrounds of below hc � 10�23 between fre-
quencies 10�3 and 10�2 Hz, and decreasing to around
hc � 10�20 at 10�4 Hz, for one year of integration (see,
e.g., [40]). Comparing with Fig. 1, turbulence with a Mach
number M � 1 would be a factor of 1000 larger than the
LISA detection threshold at the peak frequency around
10�3 Hz. For a Mach number M � 0:1, the peak amplitude
decreases by a factor of 100 due to the M�3=2 scaling and
the different signal spectrum. However, the peak frequency
also shifts to 10�4 Hz, at which point LISA’s sensitivity
has declined greatly; the steep high-frequency tail of the
gravitational wave spectrum makes detection with LISA
marginal in this case. Detectors consisting of two or more
correlated LISA detectors or enhanced versions of LISA
optimized for detecting stochastic backgrounds have been
discussed [41], such as the envisioned GREAT mission
[42]; future space-based interferometers could be config-
ured to give strain sensitivities comparable to LISA, but
with a frequency window between 10�4 and 10�6 Hz.
Such an experiment would easily detect turbulence at the
electroweak scale with a Mach number M � 0:1, and
would even flirt with a detection at M � 0:01.
Turbulence generated at somewhat higher energy scales
shifts to higher frequencies and easier detection with LISA.

As is widely appreciated, detecting cosmological back-
grounds of gravitational radiation is not only an issue of
detector sensitivity, but also of foreground discrimination.
The galactic population of short-period binaries of com-
pact objects, mostly white dwarfs, is known to produce a
confusion-limited stochastic background at frequencies
below 10�3 Hz [43]. At low frequencies, separating this
galactic source from a cosmological source is essential,
likely by exploiting the nonuniform directional distribution
of an galactic source [44– 46]. A uniform stochastic source
arising from the confusion limit of numerous extragalactic
binaries provides a further complication [47], which can
only be distinguished from a primordial background via
differing spectra. We also note that the source of the
turbulence itself may produce a gravitational wave spec-
trum, and that the characteristic peak frequency may scale
differently from the turbulent spectrum; see, e.g., the spec-
tra for first-order phase transitions in Ref. [13]. A distinc-
tive two-peaked shape to the gravitational wave spectrum
in certain regions of parameter space will also aid in its
detection.

We have no guarantees of violent events in the early
universe. However, turbulence is a completely generic
result of energy injection on a characteristic length scale,

and we have shown in this paper that the resulting relic
gravitational waves are within the realm of detectability,
even for turbulence with Mach numbers as low as 0.01,
corresponding to an energy input into the early universe of
10�4 of the total energy density. Many scenarios for the
electroweak phase transition [48] and other physics [20]
will result in releases of energy that are interestingly large.
The remarkable possibility of probing high-energy physics
via the detection of vanishingly small spacetime distortions
left from when the universe was a trillionth of a second old
impels us to look.
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APPENDIX A: NUMERICAL EVALUATION OF
Hijij�k;!�

We need to evaluate Eq. (31) explicitly, with g�k;!�
given by Eq. (30). The integral over !1 can be evaluated
analytically using the identity

 

Z 1
0
dy exp��Ay2� exp��B�x� y�2�

�

�
2

��A� B�

�
1=2

exp
�
�
ABx2

A� B

�
erfc

�
Bx�������������
A� B
p

�
:

(A1)

This expression is simple to derive by writing the integrand
as a single exponential and completing the square in the
argument of the exponential, followed by a linear change
of variables to give the error function. Then Eq. (31)
becomes
 

Hijij�k;!� �
"

24�5=2k

Z kd

k0

dk1k
�10=3
1

Z
duu�10=3

� �k�4=3
1 � u�4=3��1=2

�
27�

k2

k2
1

�
k2

u2

�
k4

2k2
1u

2 �
k2

1

2u2 �
u2

2k2
1

�
exp

�
�

2"�2=3!2

k4=3
1 � u4=3

�

� erfc
�

21=2"�1=3!

�k�4=3
1 � u�4=3�1=2

�
: (A2)

The lower limit on the u integral is max�jk1 � kj; k0
 and
the upper limit is min�k1 � k; kd
, provided the lower limit

GOGOBERIDZE, KAHNIASHVILI, AND KOSOWSKY PHYSICAL REVIEW D 76, 083002 (2007)

083002-8



is less than the upper limit; otherwise the integral over u is
zero. These conditions on the limits arise due to the limited
range of k over which the function Ek has support. Note
that Eq. (A2) is regular as k! 0, with the limit
 

Hijij�0; !� �
7"

3�2�2��1=2

Z kd

k0

dk1k
�6
1

� exp
�
�

!2

"2=3k4=3
1

�
erfc

�
!

"1=3k2=3
1

�
: (A3)

Now rescale all dimensionful quantities by powers of k0

to make them dimensionless; we abbreviate "=k0 � M3,
where M is the Mach number of the turbulence, kd=k0 �

R3=4, where R is the Reynolds number of the turbulence,
p � k=k0, and q � !=k0. The change of variables x �
�k1=k0�

�4=3, y � �u=k0�
�4=3 simplifies the remaining inte-

grals, giving
 

Hijij�p; q� �
3M3k�4

0

256�5=2p

Z 1

R�1
dxx3=4

Z
dyy3=4�x� y��1=2

� exp
�
�

2xy
x� y

q2

M2

�
erfc

�
21=2y

�x� y�1=2

q
M

�

�

�
54� 2p2x3=2 � 2p2y3=2 � p4x3=2y3=2

�
x3=2

y3=2
�
y3=2

x3=2

�
; (A4)

the lower limit of the y integral is max��x�3=4 �

p��4=3;R�1
 and the upper limit is min�jx�3=4 �

pj�4=3; 1
, provided the lower limit is less than the upper
limit. In the limit p! 0, both of these limits are x, so the
integral has a leading-order behavior proportional to p and
thus Hijij�p; q� is regular, with the limit

 Hijij�0; q� ’
7M3k�4

0

�2��5=2

Z 1

R�1
dxx11=4 exp�� �q2x� erfc� �qx1=2�;

(A5)

where we have abbreviated �q � q=M since in this limit the
integral depends only on �q and not on either q or M
separately, aside from the constant prefactor. Note that
R	 1 for a medium which supports turbulence; we expect
R> 2000 during the cosmological epochs of relevance.
The integrals converge as R! 1, and the lower limit of
the x-integrals in Eqs. (A4) and (A5) can be replaced by
zero. In Eq. (A4), the terms with factors of x�3=4 and y�3=4

in the integrand converge somewhat slowly but have small
prefactors compared to the first term, giving a negligible
dependence of the integral on the diffusion scale.
Numerically, it is convenient to take R as some large but
finite value; then the integrand in Eq. (A4) is smooth and
regular over the full range of integration, and can now be
easily performed for any values of p and q.
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