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Microwave background anisotropies from Alfven waves
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We investigate microwave background anisotropies in the presence of primordial magnetic fields. We show
that a homogeneous field with fixed direction can amplify vector perturbations. We calculate the correlations of
STIT explicitly and show that a large scale coherent field induces correlations beyvegnanda, ;. We
discuss constraints on the amplitude and spectrum of a primordial magnetic field imposed by observations of
CMB anisotropies[S0556-282(98)06224-9

PACS numbes): 98.70.Vc, 98.62.En

I. INTRODUCTION eration of primordial magnetic fields. This issue is addressed
e.g. in[4,5].

Since the detection of cosmic microwave background The possible influence of magnetic fields on large scale
(CMB) anisotropies by the Cosmic Background Explorerstructure formation has been investigated & and refer-
(COBE) satellite[1], it has become clear that anisotropies in €nces therein.
the CMB provide a powerful tool for distinguishing models ~ The paper is organized as follows. In Sec. Il we discuss
of cosmological structure formation. Furthermore, they maythe effect of a homogeneous magnetic field background on
help to determine cosmological parameters which influencéhe cosmic plasma. Both scalgrotential, or fast and slow
their spectrum in a well defined, non-trivial wdg]. It is  Magneto-sonic wavesand vorticity (Alfvén) waves can be
thus important to calculate the CMB anisotropies for a giverinduced. We study the latter. In Sec. Ill we consider the
model simply and reliably. influence of Alfven waves on CMB anisotropies. The influ-

The origin of observed galactic magnetic fields of the or-ence of the magneto-sonic waves can be interpreted as a
der of uG is still unknown. For some time it has been be-slight change in the speed of sound, and has been investi-
lieved that tiny seed fields can be amplified by a non-lineagated in[6]. In Sec. IV we present our conclusions. Some of
galactic dynamo mechanism. The effectiveness of this prothe more technical computations as well as a discussion of
cess has recently been strongly questioned, howigleif ~ Silk damping of vector perturbations are left to two appen-
magnetic fields are not substantially amplified by non-lineardices.
effects, but have just contracted with the cosmic plasma dur- Notation. For simplicity we concentrate on the caSg

ing galaxy formation, primordial fields of the order 170G~ =1. The choice of} is of little importance for our pertur-
on megaparsec scales are required to induce the observeation variablesiwhich have to be calculated for at early
galactic fields. times, when curvature effects are not signifigabut does
It is interesting to note that a field strength of oG  influence the resultingCy’s due to projection effects.
provides an energy density &lg=B?/(8mp;)~10"°Q, Throughout, we use conformal time which we denotet by

where Q. is the density parameter in photons. We nawelyThe unperturbed metric is thus given big’=a’(t)(—dt>
expect a field of this amplitude to induce perturbations in thet 8;dx'dx!). Greek indices run from 0 to 3, Latin ones from
CMB on the order of 10° which is just the level of the 1 to 3. We denote spati&Bd) vectors with bold face sym-
observed anisotropies. This leads us to investigate the exteR@Is.

to which the isotropy of the CMB may constrain primordial

magnetic fields. It is clear from our order of magnitude esti- Il. COSMOLOGICAL VECTOR PERTURBATIONS

mate that we shall never be able to constrain tiny seed fields AND ALFVE N WAVES

on the order of 10% G with this approach, but primordial
fields of 10° to 10 8 G may well have left observable
traces in the microwave background.

This is the question we investigate quantitatively in this (h ):(
paper. Some work on the influence of primordial magnetic e
fields on CMB anisotropies has already been published, par-
ticularly the cases of fast magneto-sonic waves and thevhere B and H are divergence-free, 3d vector fields sup-
gravitational effects of a constant magnetic figdd-8]. Here  posed to vanish at infinity. Studying the behavior of these
we study Alfven waves. We leave aside the problem of gen-variables under infinitesimal coordinate transformations

Vector perturbations of the geometry are of the form

0 B,

()
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(called gauge transformations in the context of linearizeds, before the time of decoupling of matter and radiation.

gravity), one finds that the combination Such a field could have originated, for example, at the elec-
. troweak phase transitiofs]. When the photon-baryon fluid
o=H-B (2)  is taken to be a perfectly conducting plasma, an external

. . ) ) i magnetic field induces two distinct modes of oscillation.
is gauge invariant. Geometricallyr determines the vector \15gneto-sonic waves are scalar perturbations which propa-
contribution to the perturbation of the extrinsic curvaturegate at speeds.. slightly above or very much below the

[10'1]1. . . ordinary speed of sound in the plasma. These induce density
To investigate perturbations of the energy-momentuMygijations just like ordinary acoustic waves. The slight

tensor, we consider a baryon, radiation and cold dark mattetfhange in the speed of sound can alter the position and shape

(CDM) universe for which anisotropic stresses are negli—of the acoustic peaks in the CMB spectr{iij. Here, how-

gible. The only vector perturbation in the energy-momentum,,ar we discuss the vectorialfven waves

tensor is thus a perturbation of the energy fluxthe time- We assume a plasma with infinite conductivity and use
like eigenvector off ; . We parametrize a vector perturbation the frozen-in condition

of u with a divergence free vector fiel such that
E+vXB=0,
u=—v. (3 . N :
a where v is the plasma velocity field. Our plasma is non-
relativistic (v <<1). The field lines of a homogeneous back-
Analyzing the gauge transformation properties \ofone  ground magnetic field in a Friedmann universe are just con-

finds two simple gauge-invariant combinatidig)], formally diluted, such thaBy<1/a®. Until recombination,
) the photon-baryon plasma is dominated by photens;p,,
V=v—H and Q=v-B. (4)  xa * (p, denotes the combined baryon and photon energy

density and the ratioBS/(ppL p;) is time-independent. We
study purely vortical waves which induce a fluid vorticity
field (k) normal tok. We note that charged particles are
tightly coupled to the radiation fluid and obey the equation of

The perturbations of the Einstein equations, together witf?tatepfzpf/& . le phvsical ities like th
energy-momentum conservation, yigttl] It is convenient to rescale physical quantities like the
fields and the current density as follows:

They are simply related by
V=Q-o. (5)

2

1 a 2 2 3
—EAo-::% a Q, (6) E—Ea°, B—Ba~ andJ—Ja’.
) We now introduce first-order vector perturbations in the
o +2( E) 0 (77 magnetic field B;) and in the fluid velocity€);
B:Bo+ Bl! VB]_ZO and (9)
. a
Q+(1-3c%) ZQ=0. ®) v=0, V.Q=0. (10
The two Einstein equatior(§), (7) and the momentum con- TO obtain the equations of motion fd2 andB,, we first -
servation equatiof8) are not independent. Equati¢s) fol- consider Maxwell’s equations. Since the fluid velocity is
lows from Egs.(6) and (7). small, we may neglect the displacement current in Arajse

This system clearly does not describe waves. From Edaw, wWhich then yields
(7) it follows that o decays like 1. Furthermore, Eq(6)
implies Qo (kt)2o. In the radiation dominated era, where J=4i V X B,. (11)
axt, this yieldsQ= g (kti,)?a;,, wWheret;, is some initial T
time at which fluctuations were created, e.g. the end of in; . . . .
flation. The fact that() stays constant during the radiation yr:/deu::?ip())lr??:svl t\rgvelztrT E?\Ol,esusmg the frozen-in condition. The
dominated era also follows from E¢B). On cosmologically 9
interesting scalek<1#;,, we have thereforé2<o;, and P
o<gj,. In contrast, scalar and tensor perturbations remain —B;=VX(vXBy). (12
constant on super-horizon scales. For this reason, vector per- at

turbations induced at a very early epoéh.g. inflation . . . :
which have evolved freely can be entirely neglected in Com_Insertmg relation11) for the current, the equation of motion

parison to their scalar and tensor counterparts. (T';;j: F'#j,) for vector perturbations in the plasma becomes

This situation is altered in the presence of a primordial
magnetic field, which induces vorticity waves after the infla- =
tionary era. Let us consider a homogeneous magnetic field ot Am(py+pr)

i BoX (VXB,). (13
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to
=—V-n|Ig +f o-nd\, (18
ec t

dec

tion on scales much larger than the Silk damping sib?g) T
Taking the time derivative of this equation, we obtain with
the help of Eqs(9), (10) and(12) for a fixed Fourier modé

(We have neglected viscosity, which is a good approxima- (AT><”e°)

where the subscripdecand 0 denote the decoupling epoch
(zgec—1100) and today respectively. Since the geometric

2
= M Q and (14)  Pperturbatione is decaying, the integrated term is dominated
Am(pr+p;) by its lower boundary and just cancaisin V=Q— o. Ne-
glecting a possible dipole contribution from vector perturba-
iBo-k tions today, we obtain

KR o

oT ,\
These equationglescribe waves propagating at the velocity T (k) =n- (K, tged =N- Qov aklged k). (19)

e-k), where .
va(e-k) We assume that the vector perturbatiddg are created by

BS some isotropic random process, and so have a power spec-

2 vaA~4X1074(By/10°° G) trum of the form

AT Am(p tpr)’

is the Alfven velocity andeis the unit vector in the direction (Q0i(k)€20; (k) = (3~ kik) ACIK]). 20

of the magnetic field. Typically the Alfvevelocity will be 4, simplicity, we further assume that the spectrigk)
very much smaller than the speed of acoustic oscillations i”s(l/2)|ﬂo|2(k) is a simple power law over the range of

the radiation-dominated plasma2=1/3>v3). scales relevant here,
Due to the observed isotropy of the CMB, we have to
constrain the magnetic field contribution to the total energy k"
density. For example, in the radiation dominated era it must A(k):AoW, k<Ko, (21

be a fraction of less than about 10[7], leading touv,

=10"°. Equation(14) is homogeneous i and so does not  for some dimensionless constaiy and cutoff wave number
determine the amplitude of the induced vorticity. The generako_ With this we can calculate the CMB anisotropy spec-
solution contains two modes, cogktu) and sinfaktw)  trum.

(Wherep=e-Kk). If the cosine mode is present, it dominates The C,’'s are defined by

on the relevant scalds<1/(vatyed. Then we can approxi-

mate cosfak =1 and the sine is negligibly small. But 6T  oT 1

this modz(?htg;dé)(ascribes the usual vectc?r gert{nbations with- <T(”) ?(”')> = I Z (21+1)CPy(u).

out a magnetic field. We assume it to be absent. We want to (n-n"=p) 22)
consider initial conditions, then, with

A homogeneous magnetic field induces a preferred direction

Q(k,t=0)=0. e and the correlation functiof2) is no longer a function of
) ) n-n’=y alone but depends also on the angles between
Only the sine mode is present and we have andB, as well asn’ andB,. Statistical isotropy is broken.
_ Setting
Q(k,t)=Qq sin(v pktu)=Qqv skt . (16)
oT
The initial amplitude ofQ, is connected with the amplitude 7(n)=;n amYim(N), (23

of B, by means of Eq(15), yielding
in the isotropic situation, th€,’s of Eq. (22) are just

| Q| =(va/Bo)|B. (17)
. - . Ci=(amaim), (29)
This allows a vorticity amplitude of up to the order of the
Alvén velocity (see alsd8]). where() denotes a theoretical expectation value over an en-
semble of statistically identical universes. We find that the
IIl. CMB ANISOTROPIES FROM ALEVE N WAVES presence of the preferred directi®y not only leads to an

) ) ) o . m-dependence of the correlators, but also induces correla-
5 VGICtOV ?fertfrbeétmns_lr:ducet adm;Otfﬁp_l\eAfls Ilrf] tqgn%]MB Via &jons between the multipole amplitudes, 1, and a1 -
oppler elrect and an Integrated sachs-vvolte Correlations in the temperature fluctuations at different
points on the sky are no longer simply functions of their
relative angular separation, but also of their orientations with
our derivation is valid either in a gauge invariant framework asrespect to the external field. Detailed computations of the
outlined in[13] or in a gauge with vanishing shift vector. In other correlators for the Doppler contribution from Affaevaves
gauges metric coefficients will enter and complicate the equationsare presented in Appendix A. We obtain
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Ci(m)= <almal*m>

tgec) 2" (—n—-1)
— 2| _dec —-(n+3)
Aovg t0> (Koto) T(—n/2)2
2144+ 413— 12— 31+ 6m?—2Im?—21?m?\ T'(1+n/2+3/2) -
(21—-1)(21+3) T(I-n/2+1/2 (25)
Dl(m):<al—1,ma|*+l,m>:<al+l,mal*—l,m>
tyec| 2 2" (—n—1)
— A 2| _dec —(n+3) _
AOUA tO (kOtO) |n+1|r(_(n+1)/2)2(| 1)(|+2)
(I+m+1)(I—m+1)(I +m)(I —m)\ Y2 (I +n/2+3/2) -
(2I—1)(2I+1)2(2I+3) I'(l—n/2+1/2)° (26

This result is valid in the range 7<n<—1. Forn=—7 the quadrupole diverges at small k, and fior —1 the result is
dominated by the upper cutok,

2
vaA t
C|=D|= A0 ( de

2
Za(n+ 1) (Koto)? K) % n>-1 @)

Forn=—5 we obtain a scale-invariant Harrison-Zeldovich spectrGm; 2.
To obtain some insight into the effect of the cross tefps we picture the correlation function

oT oT . «
f(n):<?(no)?(n)>: > (@malm Y im(M0) Y} (1) (28)

Iml’m’

for various orientations of the magnetic field with respect tocourse this procedure suffers from problems with cosmic

the fixed directionny. These are shown for the case variance, as once we fix a directiog in the sky we have

=—5 and withng=2 in Figs. 1-3. Notice, however, that only a single realization with which to determirfe The

these figures do not represent temperature maps but are pl&spectation value in expressi¢o®8), then, strictly refers to a

of the correlation function. For a given realization stochastic(hypothetical average over an ensemble of universes.

noise has to be added. The explicit expressionffar) is A probably simpler observational test of the existence of a

given in Appendix A. constant magnetic field is the presence of temperature corre-
With no a priori knowledge of the field direction, it could lations for unequal. To simplify, we introduce the mean

be inferred by performing CMB measurements with variousvalues

ng and comparing the obtaindgn) with the plots below. Of

Ci=(amafy), (29)

FIG. 1. An Aitoff projection of the functiorf(n) for a homo-
geneous magnetic field pointing in the= 7/4, ¢= /2 direction
and the reference vectog pointing in thez-direction (¢=0) (see FIG. 2. The functionf(n) for B, pointing in the 6=m/2, ¢
Eqg. (29)). =0 direction.
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E.S— 3 [ONESSe (35)

This inequality must hold on all scales inside the horizon at
decoupling k= 1/t4... With Eq. (21) we therefore obtain

2A0(klkg)""3<va,  lhgec<k=Kko, (36)
which implies
— : R 2A0(Kotged """ ¥=v2  for n<-3, (37)

2Ao<va for n=-3. (39)

Here we have identifiell, with the maximal frequencicut-
FIG. 3. The functiorf (n) for B, pointing in theg=0 direction off) of the magnetic field, yvhich has to be introduced in _the
(i.e., parallel tong). The gray scale scheme has enhanced the varia®@S€n> — 3 for € not to diverge at small scales. A definite
tion in f. upper limit onk, is the scale beyond which the magnetic
field is damped away, due to the finite value of the conduc-

- tivity. The physical damping scale is given
DI:<aI—1,maI*+1,m>1 (30) y Py ping g bys]

(kpla)’=4mol T, (39

where the bar denotes average over different values,of
and we find wherer denotes the cosmic tim@ot comoving ando is the
plasma conductivity. The conductivity of a non-relativistic
electron-proton plasma is easily shown tode 4T, and it
has been shown recently that this result still holds approxi-
mately in the very early univerdd 6].

Using Tgec~0.3 €V~0.6xX10 % cm ™! and 7o~ 10° yr
~10?% cm, we obtain the comoving damping scale at decou-

— tgec) 2
Cleo(s_Oec) (Koto) "%

, 2" (=n—1)

n+3 _
Xva 3T (—n2)2 "3 for n<—1 (31

pling
~ tdec) ” 22 1 5 -1 AaT 1o
Ci=Ao K (Koto) UAn+1 1< for n>-1 Ko(tged ~Kp(tged ~(Zged 167 T gec! Tgec
(32 ~3%x10 %cm™Y, (40)
D,/C,=3/2. (33 and
The existence of significant correlations betweenahe, (Koto) (taed =Ko(tged 7o/ Adec
anda, , , is a clear indication of the presence of a preferred ~ 7o\ 167 Taod] Taee~ 0.4 101, (41)

direction in the universe. Due to its spin-1 nature, a long-

to the correlator®, . Eq. (32), Eq. (34) yields

There are no published limits on these cross correlation
terms. Since the fulf,’'s are needed to obtain such limits, 4 7(n+5)/22”+11“(—n—1) s 1
full sky coverage and high resolution, as will be provided by 3VaZdec T3 (=22 1""><10 for n<-3,
the Microwave Anisotropy Prob@1AP) and PLANCK sat- (42)
ellites, are most important. The galaxy cut in the 4-year
COBE data leads to an influence ©f by C,.., which is on 2" (—n-1)

the order of 10% for &1<30[14]. It is not clear how much  3VUaZged2.5% 10_14)(n+3)w I""e<107
this galactic contribution will be reduced in future experi-
ments. To be specific, let us assume that this is the limit on for —3sn< -1, (43
the off-diagonal correlation®,. Then, first of all, the ob-
served CMB anisotropies are not due to Aliweaves, since 41 e Lo
0.1=D, /C, is substantially smaller than the figure in Eq.  SVAZded 2.5X107 )7 == 17<10""" for —1<n.
(33). To obtain a limit on the magnetic field amplitude and (44)
the spectral index, we now require
Usingva~4xX 10 4(By/10 ° G), this can be translated into
|25|so,jj 26210— 11 tor 2<1=<100. (34) a limit for By which depends on the spectral indexand the
harmonicl. In Fig. 4 we plot the best limit orB, as a
We now argue as follows. From E(L7), and the fact that unction of the spectral inder. To optimize the limit we
B,=<B,, we have choose |=2 for n<—5 and =100 for n>-5. For
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straint is proportional to Kyto)(""34 wheret, is the co-
moving scale today anl, is the upper cutoff of the spec-
trum. We have set kj equal to the magneto-
hydrodynamical damping scale which is inversely
proportional to the conductivity and thus extremely small,
leading to Koto) ~10*. Therefore, the limits obtained for
n>—3 are extremely weak and actually uninteresting. This
is due to the fact that the quantiBf(k)k® decreases on large
scales fom> — 3. For spectral indices in the range7<n

< —3 the limit onBy, is on the order of (27)x10° G.

An important remark is also that causally induced mag-
netic fields lead to a spectral index=2 and so are not
constrained at afl.Examples here are magnetic fields gener-
ated by the decay of ¥ field during the electroweak phase
transition.

At first sight it may seem somewhat artificial to have split
the magnetic field into a homogeneous component and an
isotropic spectrum of random magnetic fields. However, this
is the correct procedure for realistic observations. This is
seen as follows. If we calculate tig’s for a given model,

o o _ we determine expectation values over an ensemble of uni-

FIG. 4. _The upper limit on the magnetic field amplmﬂgdue_ verses. If we make a measurement, however, we have just
to CMB anisotropies caused b.y Alfwevaves, shown as a function one observable universe at our disposition. This problem is
of the magnetic field spectral index We assumé®;<0.1C,. Al- “ . . "
lowed values of the field must lie in the dashed region. generally referred to_ as cosm|<_: Va”‘?‘”ce- _O_n scales much

smaller than the horizon, cosmic variance is irrelevant if we

n>—3 the limit rapidly becomes irrelevant due to the huge™ake some kind of ergodicity hypothesis, assuming that spa-
factor 1340+3). This reflects the fact that fan>—3. the tal and ensemble averaging are equivalent. In the case here

magnetic field fluctuations grow towards small scales, an§0Smic variance is especially important, however. If we in-
B,=<B, leads to a limit at the tiny scalke=Kk,; whereas the clude the field which is coherent on the horizon scale in our
CMB anisotropies are caused by the smaller fluctuations d@hdom distribution, then in performing the ensemble aver-
large scalesk~I/ty. At n<-—1 the inducedD,’s start to age we integrate over the directions Bf and the off-
feel the upper cutoff and thus do not decrease any further.diagonal correlator®, vanish. The entire effect disappears.
The presence of a homogeneous magnetic field alsth one given universe, however, this field has one fixed di-
induces anisotropic stresses in the metric. This gravitationaiection and our effect is observable. It is therefore of funda-
effect has been estimated elsewh¢vé. Compared with mental importance here not to take an ensemble average over
the COBE DMR experiment, it leads to a similar limit for the large scale coherent field. Note however that the fluctua-
Bo. tions induced by magnetic fields are non-Gaussian and even
in the ensemble average the phenomenon discussed here
IV. CONCLUSIONS would be visible but only in higher than second order corr-

. . . . . elators; se¢l7].
We have studied Alfwe waves in the primordial electron- ¢17]

. The cosmic variance problem is relevant whenever pertur-
proton plasma that are sourced by a homogeneous magnegcétions with non-vanishing power on horizon scales are
field. In addition, we allow for an isotropic distribution of 9p

random magnetic fields on smaller scales. The induced voresent. An observational limit on the off-diagonal correla-
ticity in the baryon fluid leads, via the Doppler effect, to ('S Di'S from MAP or PLANCK would represent a model-
vector-type CMB anisotropies on all angular scales largef?deépendent limit on the importance of large scale coherent
than the vectorial Silk damping scalgam,~500 (see Ap- vector fields(which enter quadratically in the energy mo-

pendix B. The vector nature of the magnetic field inducesmentum tensorfor the anisotropies in the cosmic microwave
off-diagonal correlations background. Its importance thus goes beyond the magnetic

field case discussed in the present work.

(B/10-%Gauss)

Dy(m)=(a_1maf" 1 m)~ Ci(M). (45)

Assuming that observations constrain thes_e term_s t_o be et we assume magnetic fields to be generated by a causal proce-
than about 10% of the observ&'s, we derive a limit for  qgyre, i.e. not during an inflationary epoch, in a Friedmann universe,
the amplitude of the magnetic field as a function of its speCthen the real space correlation function has to vanish at super-
tral index. Fom< -7, the quadrupole anisotropy diverges if horizon distancegsay |x|>2t). Its Fourier transform(B;B;)(k)

no lower cutoff is imposed on the spectrum, and so sucheck"(s; —k;k;) is therefore analytic ik, which requiresh to be an
spectra are very strongly constrained. ror — 3, the con-  integer withn=2,
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APPENDIX A: CALCULATION OF C, 9
FROM VECTOR PERTURBATIONS

— e*iktoll« J eikIO;L' :f(n n’ k)
a(kto) a(kto) i

In the usual way we decompose the temperature fluctua- (A3)
tions of the microwave background into spherical harmonics:

ST wherep=n-k, u’'=n’-k, B=e-k ande is the unit vector
?(n)zz aymYim(Nn). in the direction of the homogeneous magnetic fiBjd So
Im

1
The two point function(ama’; ..} is then (amay, m) = 27 f d3kj dan dQ
1 ! * L, ! .
<almar'm'>: (277) stkf dQnJ dQn’ Xf(nrn !k)YIm(n)YI m (n ) (A4)
To evaluate these integrals, we use the identities
oT* ST
><< T (n,k)?(n’,k)> - P i
ek N=4m> 2 i (YR Yig(n), (A5)

r=0q=-r

><Yl*m(n)YI’m’(n,)- (Al)
+1

We consider the contribution to the temperature anisotropy p_ "N Am / A6
n-n'=Py(n-n )—?p;l Yip(mYi,(n'),  (AB)

only from the vorticity in the baryon fluid. From E¢L9), we

obtain wherej, is the spherical Bessel function of order Using
ST the orthonormality of the spherical harmonics and the recur-
?(n’k,At):eik-nAtn_Q(k’tdec), (A2)  Sion relation
+Dj=1j-1= 1+ Djisq, (AT)

whereAt=ty—tye.=tg, the time elapsed since last scatter-
ing. Using the form(20) for the power spectrum of the vor- we find that in evaluating Eq(A4) only the terms with
tical velocity fluctuations, we have (I,m)=(l",m") and (,m)=(l"=2,m") survive, where

o [21*+41°—12=3] +6m?—2Im?—2I?m?) 2 2 ) _ R
<almalm>_ (2|_1)(2|+1)2(2|+3) ) ; f dk (UAktdec) A(k)(]|+1+JI71) (A8)

and

<al + lmal*f 1,m> = <al - lmaikJr 1,m>

(I+m+21)(I—=m+1)(1+m)(I—m)\ 2
= (=D G D22+ 3
2 L
X;fdkk‘l(UAtdec) AK(Ji+Ti-2) it ii+2)- (A9)

The Bessel functions taket, as their arguments. WiﬂA(k)on(k/kO)”k53, we obtain, for—7<n<-1,

(amain) =Ci(m) G073 | 7| F(oni2)? T —ni2+ 12

(214+413—12= 3] + 6m?— 2Im?—21°m?)
(21—1)(21+3) ’

2" 1A w2 (tdec)z ['(—n—1) T(I1+n/2+3/2)

(A10)
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<al + 1,ma|*— 1,m> = <al — 1,ma|*+ 1,m>
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s 2nt2p 2 tgec|2 T'(—n—1) T(+n/2+3/2)
= '(m)|n+l|(kot0)n+ K L'(—(n+1)/2)? T(I—-n/2+1/2)

(I+m+1)(I—=m+2)(I +m)(l —m)\ 2
x(1=1)(+2) 2I—D 2+ DA20+3) (ALD)
Forn>—1 the integral is dominated by the upper cutiffand we find
2 2
UAAO tdec
CilM) = 2T 1) (koto)? (?) (A2
(21%+413—12— 3l +6m?— 2Im?—21?m?)
(21-1)(21+3) ’ (AL3)
2 2
_ UAAO tdec
oA g i | (A4
(I+m+1)(1—=m+21)(I+m)(I—m)\| 2
=D+ 2 G air D22+ 3) ) : (ALS)

In this case, the result is nearly independent of the spectral To the baryon equation of motioi8) we have to add the

indexn and, due to the factokgty) ~2, it is so small that it
fails to lead to relevant constraints fBg.
The temperature correlation function is finally

oT
7(”)

= 2 {(@md ) Yim(No) Y} (M)

Iml’m’

oT
f(n)=<7(no>

=% Ci(M)Ym(Ng) Yin(n)
+% Di(M) (Y1 1m(No) Y 1 ()
Y- 1m(No) Yis 1 ().

APPENDIX B: COLLISIONAL DAMPING
FOR VECTOR PERTURBATIONS

photon drag force,

. a - aochep |1
Q-i-aﬂ—s—pb[zl\ﬂ Q}, (B2)
with
PN
= E n n.

We shall also use the fact that for vector perturbations, the
perturbation of the photon brightness vanishes,

f Mdn=0.

Due to the loss of free electrons during recombination, the
mean (conforma) collision time t.=1/(aotn,) increases
from a microscopically small scale before recombination to a
super-horizon scale after recombination. After recombination
the collision term can be neglected and we recover Ejs.
and (18). We first consider the very tight coupling regime,

Denoting the fractional perturbation in the radiationt <\, where\ denotes the typical scale of fluctuations. In

brightness byM, M=4(AT/T), the Boltzmann equation
for vector perturbations givgd 1]
M+n-VM=—4n'nlg; j+aom,

X[—M+4n-Q]. (B1)

Here n is the photon directiong; denotes the Thomson
cross section andl is the baryon vorticity. We have ne-

this limit the term inside the square brackets of Eg4) and
(B2) can be set to zero and we obtait=4£ ( the baryon
and photon fluids are adiabatically coupled

Next, we derive a dispersion relation for the damping of
fluctuations due to the finite size of. We proceed in the
same way as Peeblg$8] for scalar perturbations. We con-
sider scales with wavelengtk <t and thus neglect the
time dependence of the coefficients in E¢B1) and (B2).
To study the damping we also neglect gravitational effects,

glected the anisotropy of non-relativistic Compton scatteringwhich act on much slower timescales. With the ansatz
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M= A(n)exp(i (kx— wt)), (B3) , , 7K, Kt
w=—ivy, with y=—rF—F=~—". (B8)
. 20(1+R) 3
Q=B(n)expi(kx—wt)), (B-k)=0
(B4) In contrast to the scalar case, vector perturbations show no
oscillations[ Re()=0] but are just damped. The damping
occurs at a slightly larger scale than for scalar perturbations,
1 where ygcqjar=k?t./6 [18].
—iwA+i(kn) A= —[—A+4n-B] (B5) The ratioR=3p,/(4p,) is smaller than~1/4 until the
te end of recombination. We therefore obtain a damping factor

we obtain

f for a given scal&k

: 1 3pp
—iwB= m[M_4B], REE 7k2 tend k)
C Y ~ _
(B6) f exp( 20 fo tcdt), (B9)
In the limit ktc ,wt?—>0, we again Obta]n adiabatic COUpling. Wheretend(k) is the time at which our approximatidﬂtc
The general relation betwee#t and 5 is <1 breaks down, i.ekt.(tend(k))=1. The time over which
an.- B the damping is active is the order of the thickness of the last
e — scattering surfaceAt~tgedAz/24ed ~0.14e.. The damp-
1+i(k-n—o)t, ing scale, the scale at which the exponent in ERP) be-
comes of order unity, is about
and so
I kdam;;decw 10. (BlO)
M=3B K)? {_((ktc)zﬂl—iwtc)z) The harmonicl corresponding tKyamp iS |gamp=Kaamgdo
Nl(lo/tdec"“ 500
| 1-it(w—k) i ) After the timet.,(k), collisions become unimportant for
n 1—ity(w+k) +2ikt(1-iwty) | (BY7) fluctuations with wave numbét which then evolve freely,

suffering only directional dispersion which induces a power
Inserting this in Eq.B6) leads again, in the limikt,,wt,  law damping><1/(kAt). Referencd8] discusses only this
—0, to the tight coupling result. In first ord&t, [the square second effect. Numerical experience with scalar perturba-
bracket in Eq.(B7) has to be expanded up to orddit{)®]  tions, however, shows that they are typically both of similar

we obtain the dispersion relation importance.
[1] G. Smootet al, Astrophys. J. Lett396, L1 (1992. [8] K. Subramanian and J. Barrow, Phys. Rev. L&t, 3575
[2] W. Hu, N. Sugiyama, and J. Silk, Natuteondon 386, 37 (1998. _
(1999; W. Hu and M. White, Astrophys. 3171, 30 (1996. [9] E. Kim, A. Olinto, and R. Rosner, Astrophys. 468 28
[3] C. M. Ko and E. N. Parker, Astrophys. 341, 828(1989; S. (1996.

I. Vainshtein and R. Rosneibid. 376 199 (1991; F. Catta-  [10] H- Kodama and M. Sasaki, Prog. Theor. Phys. Supfj.1
o _ : ’ o (1984
neo, ibid. 434, 200 (1994; A. V. Gruzinov and P. H. Dia [11] R. Durrer, Fundam. Cosm. Phyk5, 209 (1994

mond, Phys. Rev. Letz2, 1651(1994. , [12] J. Silk, Astrophys. J151, 459 (1968.
[4] M. Gasperini, M. Giovannini, and G. Veneziano, Phys. Rev.[13] R. Durrer and N. Straumann, Helv. Phys. A4, 1027

Lett. 75, 3796 (1999; D. Lemoine and M. Lemoine, Phys. (1988.
Rev. D52, 1955(1995. [14] E. L. Wright et al, Astrophys. J. Lett464, L21 (1996.

[5] M. Giovannini and M. Shaposhnikov, Phys. Rev. L&, 22 [15] See, for exampleClassical Electrodynamic2nd ed., edited
(1998. by J. D. JacksoriWiley, New York, 1972.

[6] J. Adams, U. H. Danielsson, D. Grasso, and H. Rubinstein[16] J. Ahonen and K. Enqvist, Phys. Lett. 382, 40 (1996.
Phys. Lett. B388 253(1996. [17] P. Ferreira and J. Maguejo, Phys. Rev5 4578(1997).

[7]1J. Barrow, P. Ferreira, and J. Silk, Phys. Rev. L@§.3610 [18] P. J. E. PeeblesThe Large-Scale Structure of the Universe
(1997. (Princeton University Press, Princeton, NJ, 1980

123004-9



