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Microwave background anisotropies from Alfvén waves
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We investigate microwave background anisotropies in the presence of primordial magnetic fields. We show
that a homogeneous field with fixed direction can amplify vector perturbations. We calculate the correlations of
dT/T explicitly and show that a large scale coherent field induces correlations betweenal 21,m andal 11,m . We
discuss constraints on the amplitude and spectrum of a primordial magnetic field imposed by observations of
CMB anisotropies.@S0556-2821~98!06224-9#

PACS number~s!: 98.70.Vc, 98.62.En
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I. INTRODUCTION

Since the detection of cosmic microwave backgrou
~CMB! anisotropies by the Cosmic Background Explo
~COBE! satellite@1#, it has become clear that anisotropies
the CMB provide a powerful tool for distinguishing mode
of cosmological structure formation. Furthermore, they m
help to determine cosmological parameters which influe
their spectrum in a well defined, non-trivial way@2#. It is
thus important to calculate the CMB anisotropies for a giv
model simply and reliably.

The origin of observed galactic magnetic fields of the
der of mG is still unknown. For some time it has been b
lieved that tiny seed fields can be amplified by a non-lin
galactic dynamo mechanism. The effectiveness of this p
cess has recently been strongly questioned, however@3#. If
magnetic fields are not substantially amplified by non-lin
effects, but have just contracted with the cosmic plasma d
ing galaxy formation, primordial fields of the order 1029 G
on megaparsec scales are required to induce the obse
galactic fields.

It is interesting to note that a field strength of 1028 G
provides an energy density ofVB5B2/(8prc);1025Vg ,
whereVg is the density parameter in photons. We naive
expect a field of this amplitude to induce perturbations in
CMB on the order of 1025, which is just the level of the
observed anisotropies. This leads us to investigate the ex
to which the isotropy of the CMB may constrain primordi
magnetic fields. It is clear from our order of magnitude es
mate that we shall never be able to constrain tiny seed fi
on the order of 10213 G with this approach, but primordia
fields of 1029 to 1028 G may well have left observabl
traces in the microwave background.

This is the question we investigate quantitatively in th
paper. Some work on the influence of primordial magne
fields on CMB anisotropies has already been published,
ticularly the cases of fast magneto-sonic waves and
gravitational effects of a constant magnetic field@6–8#. Here
we study Alfvén waves. We leave aside the problem of ge
0556-2821/98/58~12!/123004~9!/$15.00 58 1230
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eration of primordial magnetic fields. This issue is addres
e.g. in @4,5#.

The possible influence of magnetic fields on large sc
structure formation has been investigated in@9# and refer-
ences therein.

The paper is organized as follows. In Sec. II we discu
the effect of a homogeneous magnetic field background
the cosmic plasma. Both scalar~potential, or fast and slow
magneto-sonic waves! and vorticity ~Alfvén! waves can be
induced. We study the latter. In Sec. III we consider t
influence of Alfvén waves on CMB anisotropies. The influ
ence of the magneto-sonic waves can be interpreted
slight change in the speed of sound, and has been inv
gated in@6#. In Sec. IV we present our conclusions. Some
the more technical computations as well as a discussio
Silk damping of vector perturbations are left to two appe
dices.

Notation. For simplicity we concentrate on the caseV0
51. The choice ofV is of little importance for our pertur-
bation variables~which have to be calculated for at ear
times, when curvature effects are not significant!, but does
influence the resultingCl ’s due to projection effects
Throughout, we use conformal time which we denote byt.
The unperturbed metric is thus given byds25a2(t)(2dt2

1d i j dxidxj ). Greek indices run from 0 to 3, Latin ones fro
1 to 3. We denote spatial~3d! vectors with bold face sym-
bols.

II. COSMOLOGICAL VECTOR PERTURBATIONS
AND ALFVÉ N WAVES

Vector perturbations of the geometry are of the form

~hmn!5S 0 Bi

Bj Hi , j1H j ,i
D , ~1!

where B and H are divergence-free, 3d vector fields su
posed to vanish at infinity. Studying the behavior of the
variables under infinitesimal coordinate transformatio
©1998 The American Physical Society04-1
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~called gauge transformations in the context of lineariz
gravity!, one finds that the combination

s5Ḣ2B ~2!

is gauge invariant. Geometrically,s determines the vecto
contribution to the perturbation of the extrinsic curvatu
@10,11#.

To investigate perturbations of the energy-moment
tensor, we consider a baryon, radiation and cold dark ma
~CDM! universe for which anisotropic stresses are ne
gible. The only vector perturbation in the energy-moment
tensor is thus a perturbation of the energy flux,u, the time-
like eigenvector ofTm

n . We parametrize a vector perturbatio
of u with a divergence free vector fieldv, such that

u5
1

a
v. ~3!

Analyzing the gauge transformation properties ofv, one
finds two simple gauge-invariant combinations@10#,

V5v2Ḣ and V5v2B. ~4!

They are simply related by

V5V2s. ~5!

The perturbations of the Einstein equations, together w
energy-momentum conservation, yield@11#

2
1

2
Ds53S ȧ

aD 2

V, ~6!

ṡ12S ȧ

aDs50, ~7!

V̇1~123cs
2!

ȧ

a
V50. ~8!

The two Einstein equations~6!, ~7! and the momentum con
servation equation~8! are not independent. Equation~8! fol-
lows from Eqs.~6! and ~7!.

This system clearly does not describe waves. From
~7! it follows that s decays like 1/a2. Furthermore, Eq.~6!
implies V}(kt)2s. In the radiation dominated era, whe

a}t, this yieldsV5 1
6 (ktin)2sin , wheret in is some initial

time at which fluctuations were created, e.g. the end of
flation. The fact thatV stays constant during the radiatio
dominated era also follows from Eq.~8!. On cosmologically
interesting scales,k!1/t in , we have thereforeV!sin and
s!sin . In contrast, scalar and tensor perturbations rem
constant on super-horizon scales. For this reason, vector
turbations induced at a very early epoch~e.g. inflation!
which have evolved freely can be entirely neglected in co
parison to their scalar and tensor counterparts.

This situation is altered in the presence of a primord
magnetic field, which induces vorticity waves after the infl
tionary era. Let us consider a homogeneous magnetic
12300
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B0 before the time of decoupling of matter and radiatio
Such a field could have originated, for example, at the e
troweak phase transition@5#. When the photon-baryon fluid
is taken to be a perfectly conducting plasma, an exter
magnetic field induces two distinct modes of oscillatio
Magneto-sonic waves are scalar perturbations which pro
gate at speedsc6 slightly above or very much below th
ordinary speed of sound in the plasma. These induce den
oscillations just like ordinary acoustic waves. The slig
change in the speed of sound can alter the position and s
of the acoustic peaks in the CMB spectrum@6#. Here, how-
ever, we discuss the vectorialAlfvén waves.

We assume a plasma with infinite conductivity and u
the frozen-in condition

E1v3B50,

where v is the plasma velocity field. Our plasma is no
relativistic (v!1). The field lines of a homogeneous bac
ground magnetic field in a Friedmann universe are just c
formally diluted, such thatB0}1/a2. Until recombination,
the photon-baryon plasma is dominated by photons,r r.rg
}a24 (r r denotes the combined baryon and photon ene
density! and the ratioB0

2/(r r1pr) is time-independent. We
study purely vortical waves which induce a fluid vortici
field V(k) normal tok. We note that charged particles a
tightly coupled to the radiation fluid and obey the equation
statepr5r r /3.

It is convenient to rescale physical quantities like t
fields and the current density as follows:

E→Ea2, B→Ba2 and J→Ja3.

We now introduce first-order vector perturbations in t
magnetic field (B1) and in the fluid velocity~V!;

B5B01B1 , ¹•B150 and ~9!

v5V, ¹•V50. ~10!

To obtain the equations of motion forV and B1 , we first
consider Maxwell’s equations. Since the fluid velocity
small, we may neglect the displacement current in Ampe`re’s
law, which then yields

J5
1

4p
¹3B1. ~11!

We replaceE1 with B0 , using the frozen-in condition. The
induction law then gives

]

]t
B15“3~v3B0!. ~12!

Inserting relation~11! for the current, the equation of motio
(T;m

im5Fim j m) for vector perturbations in the plasma becom

]

]t
v52

1

4p~r r1pr !
B03~“3B1!. ~13!
4-2
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~We have neglected viscosity, which is a good approxim
tion on scales much larger than the Silk damping scale@12#.!
Taking the time derivative of this equation, we obtain w
the help of Eqs.~9!, ~10! and~12! for a fixed Fourier modek

V̈5
~B0•k!2

4p~r r1pr !
V and ~14!

V̇5
iB0•k

4p~r r1pr !
B1 . ~15!

These equations1 describe waves propagating at the veloc

vA(e• k̂), where

vA
25

B0
2

4p~r r1pr !
, vA;431024~B0/1029 G!

is the Alfvén velocity ande is the unit vector in the direction
of the magnetic field. Typically the Alfve´n velocity will be
very much smaller than the speed of acoustic oscillation
the radiation-dominated plasma (cs

251/3@vA
2).

Due to the observed isotropy of the CMB, we have
constrain the magnetic field contribution to the total ene
density. For example, in the radiation dominated era it m
be a fraction of less than about 1025 @7#, leading to vA
&1023. Equation~14! is homogeneous inV and so does no
determine the amplitude of the induced vorticity. The gene
solution contains two modes, cos(vAktm) and sin(vAktm)
~wherem5e• k̂). If the cosine mode is present, it dominat
on the relevant scalesk,1/(vAtdec). Then we can approxi-
mate cos(vAktdecm).1 and the sine is negligibly small. Bu
this mode then describes the usual vector perturbations w
out a magnetic field. We assume it to be absent. We wan
consider initial conditions, then, with

V~k,t50!50.

Only the sine mode is present and we have

V~k,t !5V0 sin~vAktm!.V0vAktm. ~16!

The initial amplitude ofV0 is connected with the amplitud
of B1 by means of Eq.~15!, yielding

uV0u5~vA /B0!uB1u. ~17!

This allows a vorticity amplitude of up to the order of th
Alvén velocity ~see also@8#!.

III. CMB ANISOTROPIES FROM ALFVE ´ N WAVES

Vector perturbations induce anisotropies in the CMB vi
Doppler effect and an integrated Sachs-Wolfe term@11#

1Our derivation is valid either in a gauge invariant framework
outlined in @13# or in a gauge with vanishing shift vector. In othe
gauges metric coefficients will enter and complicate the equati
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T D ~vec!

52V•nu tdec

t0 1E
tdec

t0
ṡ•ndl, ~18!

where the subscriptsdec and 0 denote the decoupling epoc
(zdec;1100) and today respectively. Since the geome
perturbations is decaying, the integrated term is dominat
by its lower boundary and just cancelss in V5V2s. Ne-
glecting a possible dipole contribution from vector perturb
tions today, we obtain

dT

T
~n,k!.n•V~k,tdec!5n•V0vAktdec~e• k̂!. ~19!

We assume that the vector perturbationsV0 are created by
some isotropic random process, and so have a power s
trum of the form

^V0i~k!V0 j~k!&5~d i j 2 k̂i k̂ j !A~ uku!. ~20!

For simplicity, we further assume that the spectrumA(k)
5(1/2)uV0u2(k) is a simple power law over the range o
scales relevant here,

A~k!5A0

kn

k0
~n13! , k,k0 , ~21!

for some dimensionless constantA0 and cutoff wave number
k0 . With this we can calculate the CMB anisotropy spe
trum.

The Cl ’s are defined by

K dT

T
~n!

dT

T
~n8!L U

~n•n85m!

5
1

4p (
l

~2l 11!Cl Pl~m!.

~22!

A homogeneous magnetic field induces a preferred direc
e and the correlation function~22! is no longer a function of
n•n85m alone but depends also on the angles between
andB0 as well asn8 andB0 . Statistical isotropy is broken
Setting

dT

T
~n!5(

l ,m
almYlm~n!, ~23!

in the isotropic situation, theCl ’s of Eq. ~22! are just

Cl5^almalm* &, ~24!

where^ & denotes a theoretical expectation value over an
semble of statistically identical universes. We find that t
presence of the preferred directionB0 not only leads to an
m-dependence of the correlators, but also induces corr
tions between the multipole amplitudesal 11,m and al 21,m .
Correlations in the temperature fluctuations at differe
points on the sky are no longer simply functions of th
relative angular separation, but also of their orientations w
respect to the external field. Detailed computations of
correlators for the Doppler contribution from Alfve´n waves
are presented in Appendix A. We obtain

s

s.
4-3
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Cl~m!5^almalm* &

5A0va
2S tdec

t0
D 2

~k0t0!2~n13!
2n11G~2n21!

G~2n/2!2

3S 2l 414l 32 l 223l 16m222lm222l 2m2

~2l 21!~2l 13! D G~ l 1n/213/2!

G~ l 2n/211/2!
~25!

Dl~m!5^al 21,mal 11,m* &5^al 11,mal 21,m* &

5A0vA
2 S tdec

t0
D 2

~k0t0!2~n13!
2n12G~2n21!

un11uG~2~n11!/2!2 ~ l 21!~ l 12!

3S ~ l 1m11!~ l 2m11!~ l 1m!~ l 2m!

~2l 21!~2l 11!2~2l 13! D 1/2G~ l 1n/213/2!

G~ l 2n/211/2!
. ~26!

This result is valid in the range27,n,21. For n<27 the quadrupole diverges at small k, and forn.21 the result is
dominated by the upper cutoffk0 ,

Cl.Dl.
vA

2A0

2p~n11!~k0t0!2 S tdec

t0
D 2

l 2, n.21. ~27!

For n525 we obtain a scale-invariant Harrison-Zeldovich spectrum,Cl; l 2.
To obtain some insight into the effect of the cross termsDl , we picture the correlation function

f ~n!5 K dT

T
~n0!

dT

T
~n!L 5 (

lml8m8
^almal 8m8

* &Ylm~n0!Yl 8m8
* ~n! ~28!
to

t
p
ti

u

ic

f a
rre-
for various orientations of the magnetic field with respect
the fixed directionn0. These are shown for the casen
525 and with n05 ẑ in Figs. 1–3. Notice, however, tha
these figures do not represent temperature maps but are
of the correlation function. For a given realization stochas
noise has to be added. The explicit expression forf (n) is
given in Appendix A.

With no a priori knowledge of the field direction, it could
be inferred by performing CMB measurements with vario
n0 and comparing the obtainedf (n) with the plots below. Of

FIG. 1. An Aitoff projection of the functionf (n) for a homo-
geneous magnetic field pointing in theu5p/4, f5p/2 direction
and the reference vectorn0 pointing in thez-direction (u50) ~see
Eq. ~28!!.
12300
lots
c

s

course this procedure suffers from problems with cosm
variance, as once we fix a directionn0 in the sky we have
only a single realization with which to determinef . The
expectation value in expression~28!, then, strictly refers to a
~hypothetical! average over an ensemble of universes.

A probably simpler observational test of the existence o
constant magnetic field is the presence of temperature co
lations for unequall . To simplify, we introduce the mean
values

C̄l5^almalm* &, ~29!

FIG. 2. The functionf (n) for B0 pointing in theu5p/2, f
50 direction.
4-4
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D̄ l5^al 21,mal 11,m* &, ~30!

where the bar denotes average over different values ofm,
and we find

C̄l.A0S tdec

t0
D 2

~k0t0!2~n13!

3vA
2 2n11G~2n21!

3G~2n/2!2 l n13, for n,21 ~31!

C̄l.A0S tdec

t0
D 2

~k0t0!22vA
2 1

n11
l 2, for n.21

~32!

D̄ l /C̄l.3/2. ~33!

The existence of significant correlations between theal 21,m
andal 11,m is a clear indication of the presence of a preferr
direction in the universe. Due to its spin-1 nature, a lon
range vector field induces transitionsl→ l 61 and thus leads
to the correlatorsDl .

There are no published limits on these cross correla
terms. Since the fullalm’s are needed to obtain such limit
full sky coverage and high resolution, as will be provided
the Microwave Anisotropy Probe~MAP! and PLANCK sat-
ellites, are most important. The galaxy cut in the 4-ye
COBE data leads to an influence ofCl by Cl 62 which is on
the order of 10% for 2< l<30 @14#. It is not clear how much
this galactic contribution will be reduced in future expe
ments. To be specific, let us assume that this is the limit
the off-diagonal correlationsDl . Then, first of all, the ob-
served CMB anisotropies are not due to Alfve´n waves, since
0.1.Dl /Cl is substantially smaller than the figure in E
~33!. To obtain a limit on the magnetic field amplitude an
the spectral index, we now require

l 2D̄ l<0.1l 2C̄l.10211 for 2, l &100. ~34!

We now argue as follows. From Eq.~17!, and the fact that
B1&B0 , we have

FIG. 3. The functionf (n) for B0 pointing in theu50 direction
~i.e., parallel ton0). The gray scale scheme has enhanced the va
tion in f .
12300
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uV0u2k3&vA
2 . ~35!

This inequality must hold on all scales inside the horizon
decoupling,k>1/tdec. With Eq. ~21! we therefore obtain

2A0~k/k0!n13&vA
2, 1/tdec<k<k0 , ~36!

which implies

2A0~k0tdec!
2~n13!&vA

2 for n<23, ~37!

2A0&vA
2 for n>23. ~38!

Here we have identifiedk0 with the maximal frequency~cut-
off! of the magnetic field, which has to be introduced in t
casen.23 for V not to diverge at small scales. A definit
upper limit on k0 is the scale beyond which the magne
field is damped away, due to the finite value of the cond
tivity. The physical damping scale is given by@15#

~kD /a!254ps/t, ~39!

wheret denotes the cosmic time~not comoving! ands is the
plasma conductivity. The conductivity of a non-relativist
electron-proton plasma is easily shown to bes;4T, and it
has been shown recently that this result still holds appro
mately in the very early universe@16#.

Using Tdec;0.3 eV;0.631024 cm21 and tdec;105 yr
;1023 cm, we obtain the comoving damping scale at dec
pling

k0~ tdec!;kD~ tdec!;~zdec!
21A16pTdec/tdec

;3310210 cm21, ~40!

and

~k0t0!~ tdec!5k0~ tdec!t0 /adec

;t0A16pTdec/tdec;0.431014. ~41!

Inserting the limiting values of Eqs.~37!, ~38! for the A0 in
Eq. ~31!, Eq. ~34! yields

3vA
4zdec

2~n15!/22n11G~2n21!

3G~2n/2!2 l n15,10211 for n,23,

~42!

3vA
4zdec

21 ~2.5310214!~n13!
2n11G~2n21!

3G~2n/2!2 l n15,10211

for 23<n,21, ~43!

3vA
4zdec

21 ~2.5310214!2
1

n11
l 4,10211 for 21,n.

~44!

Using vA;431024(B0/1029 G), this can be translated int
a limit for B0 which depends on the spectral indexn and the
harmonic l . In Fig. 4 we plot the best limit onB0 as a
unction of the spectral indexn. To optimize the limit we
choose l 52 for n,25 and l 5100 for n.25. For

a-
4-5
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n.23 the limit rapidly becomes irrelevant due to the hu
factor 1014(n13). This reflects the fact that forn.23, the
magnetic field fluctuations grow towards small scales, a
B1&B0 leads to a limit at the tiny scalek5k0 ; whereas the
CMB anisotropies are caused by the smaller fluctuation
large scales,k; l /t0 . At n<21 the inducedDl ’s start to
feel the upper cutoff and thus do not decrease any furth

The presence of a homogeneous magnetic field
induces anisotropic stresses in the metric. This gravitatio
effect has been estimated elsewhere@7#. Compared with
the COBE DMR experiment, it leads to a similar limit fo
B0 .

IV. CONCLUSIONS

We have studied Alfve´n waves in the primordial electron
proton plasma that are sourced by a homogeneous mag
field. In addition, we allow for an isotropic distribution o
random magnetic fields on smaller scales. The induced
ticity in the baryon fluid leads, via the Doppler effect,
vector-type CMB anisotropies on all angular scales lar
than the vectorial Silk damping scalel damp;500 ~see Ap-
pendix B!. The vector nature of the magnetic field induc
off-diagonal correlations,

Dl~m!5^al 21,mal 11,m* &;Cl~m!. ~45!

Assuming that observations constrain these terms to be
than about 10% of the observedCl ’s, we derive a limit for
the amplitude of the magnetic field as a function of its sp
tral index. Forn,27, the quadrupole anisotropy diverges
no lower cutoff is imposed on the spectrum, and so s
spectra are very strongly constrained. Forn.23, the con-

FIG. 4. The upper limit on the magnetic field amplitudeB0 due
to CMB anisotropies caused by Alfve´n waves, shown as a functio
of the magnetic field spectral indexn. We assumeDl<0.1Cl . Al-
lowed values of the field must lie in the dashed region.
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straint is proportional to (k0t0)(n13)/4, where t0 is the co-
moving scale today andk0 is the upper cutoff of the spec
trum. We have set 1/k0 equal to the magneto
hydrodynamical damping scale which is inverse
proportional to the conductivity and thus extremely sma
leading to (k0t0);1014. Therefore, the limits obtained fo
n.23 are extremely weak and actually uninteresting. T
is due to the fact that the quantityB2(k)k3 decreases on larg
scales forn.23. For spectral indices in the range27,n
,23 the limit onB0 is on the order of (227)31029 G.

An important remark is also that causally induced ma
netic fields lead to a spectral indexn52 and so are not
constrained at all.2 Examples here are magnetic fields gen
ated by the decay of aY field during the electroweak phas
transition.

At first sight it may seem somewhat artificial to have sp
the magnetic field into a homogeneous component and
isotropic spectrum of random magnetic fields. However, t
is the correct procedure for realistic observations. This
seen as follows. If we calculate theCl ’s for a given model,
we determine expectation values over an ensemble of
verses. If we make a measurement, however, we have
one observable universe at our disposition. This problem
generally referred to as ‘‘cosmic variance.’’ On scales mu
smaller than the horizon, cosmic variance is irrelevant if
make some kind of ergodicity hypothesis, assuming that s
tial and ensemble averaging are equivalent. In the case
cosmic variance is especially important, however. If we
clude the field which is coherent on the horizon scale in
random distribution, then in performing the ensemble av
age we integrate over the directions ofB0 and the off-
diagonal correlatorsDl vanish. The entire effect disappear
In one given universe, however, this field has one fixed
rection and our effect is observable. It is therefore of fund
mental importance here not to take an ensemble average
the large scale coherent field. Note however that the fluc
tions induced by magnetic fields are non-Gaussian and e
in the ensemble average the phenomenon discussed
would be visible but only in higher than second order co
elators; see@17#.

The cosmic variance problem is relevant whenever per
bations with non-vanishing power on horizon scales
present. An observational limit on the off-diagonal corre
tors Dl ’s from MAP or PLANCK would represent a mode
independent limit on the importance of large scale coher
vector fields~which enter quadratically in the energy mo
mentum tensor! for the anisotropies in the cosmic microwav
background. Its importance thus goes beyond the magn
field case discussed in the present work.

2If we assume magnetic fields to be generated by a causal pr
dure, i.e. not during an inflationary epoch, in a Friedmann unive
then the real space correlation function has to vanish at su
horizon distances~say uxu.2t). Its Fourier transform̂ BiBj&(k)
}kn(d i j 2kikj ) is therefore analytic ink, which requiresn to be an
integer withn>2.
4-6
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APPENDIX A: CALCULATION OF Cl

FROM VECTOR PERTURBATIONS

In the usual way we decompose the temperature fluc
tions of the microwave background into spherical harmon

dT

T
~n!5(

lm
almYlm~n!.

The two point function̂ almal 8m8
* & is then

^almal 8m8
* &5

1

~2p!3 E d3kE dVnE dVn8

3 K dT*

T
~n,k!

dT

T
~n8,k!L

3Ylm* ~n!Yl 8m8~n8!. ~A1!

We consider the contribution to the temperature anisotr
only from the vorticity in the baryon fluid. From Eq.~19!, we
obtain

dT

T
~n,k,Dt !5eik•nDtn•V~k,tdec!, ~A2!

whereDt5t02tdec.t0 , the time elapsed since last scatte
ing. Using the form~20! for the power spectrum of the vor
tical velocity fluctuations, we have
12300
-
.

a-
:

y

-

K dT*

T
~n,k!

dT

T
~n8,k!L

5eik•~n82n!t0~n•n82mm8!~vAkbtdec!
2A~k!

5A~k!~vAkb!2S eikt0~m82m!n•n8

2
]

]~kt0!
e2 ikt0m

]

]~kt0!
eikt0m8D5 f ~n,n8,k!,

~A3!

wherem5n• k̂, m85n8• k̂, b5e• k̂ ande is the unit vector
in the direction of the homogeneous magnetic fieldB0 . So

^almal 8m8
* &5

1

~2p!3 E d3kE dVnE dVn8

3 f ~n,n8,k!Ylm* ~n!Yl 8m8~n8!. ~A4!

To evaluate these integrals, we use the identities

eix k̂•n54p(
r 50

`

(
q52r

1r

i r j r~x!Yrq* ~ k̂!Yrq~n!, ~A5!

n•n85P1~n•n8!5
4p

3 (
p521

11

Y1p~n!Y1p* ~n8!, ~A6!

where j r is the spherical Bessel function of orderr . Using
the orthonormality of the spherical harmonics and the rec
sion relation

~2l 11! j l85 l j l 212~ l 11! j l 11 , ~A7!

we find that in evaluating Eq.~A4! only the terms with
( l ,m)5( l 8,m8) and (l ,m)5( l 862,m8) survive, where
^almalm* &5S 2l 414l 32 l 223l 16m222lm222l 2m2

~2l 21!~2l 11!2~2l 13! D 2

p E dkk2~vAktdec!
2A~k!~ j l 111 j l 21!2 ~A8!

and

^al 11mal 21,m* &5^al 21mal 11,m* &

52~ l 21!~ l 12!S ~ l 1m11!~ l 2m11!~ l 1m!~ l 2m!

~2l 21!3~2l 11!2~2l 13!3 D 1/2

3
2

p E dkk4~vAtdec!
2A~k!~ j l1 j l 22!~ j l1 j l 12!. ~A9!

The Bessel functions takekt0 as their arguments. WithA(k)5A0(k/k0)nk0
23, we obtain, for27,n,21,

^almalm* &[Cl~m!
2n11A0vA

2

~k0t0!n13 S tdec

t0
D 2 G~2n21!

G~2n/2!2

G~ l 1n/213/2!

G~ l 2n/211/2!

3
~2l 414l 32 l 223l 16m222lm222l 2m2!

~2l 21!~2l 13!
, ~A10!
4-7
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^al 11,mal 21,m* &5^al 21,mal 11,m* &

[Dl~m!
2n12A0vA

2

un11u~k0t0!n13 S tdec

t0
D 2 G~2n21!

G„2~n11!/2…2
G~ l 1n/213/2!

G~ l 2n/211/2!

3~ l 21!~ l 12!S ~ l 1m11!~ l 2m11!~ l 1m!~ l 2m!

~2l 21!~2l 11!2~2l 13! D 1/2

. ~A11!

For n.21 the integral is dominated by the upper cutoffk0 and we find

Cl~m!5
vA

2A0

2p~n11!~k0t0!2 S tdec

t0
D 2

~A12!

3
~2l 414l 32 l 223l 16m222lm222l 2m2!

~2l 21!~2l 13!
, ~A13!

Dl~m!5
vA

2A0

2p~n11!~k0t0!2 S tdec

t0
D 2

~A14!

3~ l 21!~ l 12!S ~ l 1m11!~ l 2m11!~ l 1m!~ l 2m!

~2l 21!~2l 11!2~2l 13! D 1/2

. ~A15!
tr

n

n
-
ng

the

the

o a
ion

e,
In

of

-

ts,
In this case, the result is nearly independent of the spec
index n and, due to the factor (k0t0)22, it is so small that it
fails to lead to relevant constraints forB0 .

The temperature correlation function is finally

f ~n!5 K dT

T
~n0!

dT

T
~n!L

5 (
lml8m8

^almal 8m8
* &Ylm~n0!Yl 8m8

* ~n!

5(
lm

Cl~m!Ylm~n0!Ylm* ~n!

1(
lm

Dl~m!„Yl 11,m~n0!Yl 21,m* ~n!

1Yl 21,m~n0!Yl 11,m* ~n!….

APPENDIX B: COLLISIONAL DAMPING
FOR VECTOR PERTURBATIONS

Denoting the fractional perturbation in the radiatio
brightness byM, M54(DT/T), the Boltzmann equation
for vector perturbations gives@11#

Ṁ1n•¹M524ninjs i , j1asTne

3@2M14n•V#. ~B1!

Here n is the photon direction,sT denotes the Thomso
cross section andV is the baryon vorticity. We have ne
glected the anisotropy of non-relativistic Compton scatteri
12300
al

.

To the baryon equation of motion~8! we have to add the
photon drag force,

V̇1
ȧ

a
V5

asTner r

3rb
F1

4
M2VG , ~B2!

with

M5
3

4p E nMdn.

We shall also use the fact that for vector perturbations,
perturbation of the photon brightness vanishes,

E Mdn50.

Due to the loss of free electrons during recombination,
mean ~conformal! collision time tc51/(asTne) increases
from a microscopically small scale before recombination t
super-horizon scale after recombination. After recombinat
the collision term can be neglected and we recover Eqs.~8!
and ~18!. We first consider the very tight coupling regim
tc!l, wherel denotes the typical scale of fluctuations.
this limit the term inside the square brackets of Eqs.~B1! and
~B2! can be set to zero and we obtainM54V ~ the baryon
and photon fluids are adiabatically coupled!.

Next, we derive a dispersion relation for the damping
fluctuations due to the finite size oftc . We proceed in the
same way as Peebles@18# for scalar perturbations. We con
sider scales with wavelengthk21!t and thus neglect the
time dependence of the coefficients in Eqs.~B1! and ~B2!.
To study the damping we also neglect gravitational effec
which act on much slower timescales. With the ansatz
4-8
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M5A~n!exp„i ~kx2vt !…, ~B3!

V5B~n!exp„i ~kx2vt !…, ~B•k!50
~B4!

we obtain

2 ivA1 i ~kn!A5
1

tc
@2A14n•B# ~B5!

2 ivB5
1

tcR
@M24B#, R[

3rb

4rg
.

~B6!

In the limit ktc ,vtc→0, we again obtain adiabatic couplin
The general relation betweenA andB is

A5
4n•B

11 i ~k•n2v!tc

and so

M53B
i

~ktc!
3 F2„~ktc!

21~12 ivtc!
2
…

3 lnS 12 i t c~v2k!

12 i t c~v1k! D12iktc~12 ivtc!G . ~B7!

Inserting this in Eq.~B6! leads again, in the limitktc ,vtc
→0, to the tight coupling result. In first orderktc @the square
bracket in Eq.~B7! has to be expanded up to order (ktc)

5#
we obtain the dispersion relation
ev
.

ein

12300
v52 ig, with g5
7k2tc

20~11R!
;

k2tc

3
. ~B8!

In contrast to the scalar case, vector perturbations show
oscillations @Re(v)50# but are just damped. The dampin
occurs at a slightly larger scale than for scalar perturbatio
wheregscalar.k2tc/6 @18#.

The ratioR53rb /(4rg) is smaller than;1/4 until the
end of recombination. We therefore obtain a damping fac
f for a given scalek

f ;expS 7k2

20 E
0

tend~k!

tcdtD , ~B9!

where tend(k) is the time at which our approximationktc
,1 breaks down, i.e.,ktc„tend(k)…51. The time over which
the damping is active is the order of the thickness of the
scattering surface,Dt;tdec(Dz/zdec);0.1tdec. The damp-
ing scale, the scale at which the exponent in Eq.~B9! be-
comes of order unity, is about

kdamptdec;10. ~B10!

The harmonicl corresponding tokdamp is l damp5kdampt0
;10t0 /tdec;500.

After the timetend(k), collisions become unimportant fo
fluctuations with wave numberk which then evolve freely,
suffering only directional dispersion which induces a pow
law damping}1/(kDt). Reference@8# discusses only this
second effect. Numerical experience with scalar pertur
tions, however, shows that they are typically both of simi
importance.
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