PHYSICAL REVIEW D, VOLUME 61, 043001

Tensor microwave anisotropies from a stochastic magnetic field
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We derive an expression for the angular power spectrum of cosmic microwave background anisotropies due
to gravity waves generated by a stochastic magnetic field and compare the result with current observations; we
take into account the non-linear nature of the stress energy tensor of the magnetic field. For almost scale
invariant spectra, the amplitude of the magnetic field at galactic scales is constrained to be of 0fd&.10
If we assume that the magnetic field is damped below the All@mping scale, we find that its amplitude at
0.1h~! Mpc, B, , is constrained to b8, <7.9x 10" %" G, for n< —3/2, andB, <9.5x 108%™ G, for
n>—23/2, wheren is the spectral index of the magnetic field adg=10th km s ' Mpc ! is the Hubble
constant today.

PACS numbefs): 98.62.En, 98.70.Vc, 98.80.Cq

[. INTRODUCTION fields. Our order of magnitude estimate makes clear that we
shall never be able to constrain tiny seed fields on the order
The past few years have seen a tremendous surge of inf 10712 G or less in this way, but primordial fields of
terest in the origin and evolution of galactic magnetic fields10"° G may have left their traces in the CMB.
[1]. A number of mechanisms have been proposed for the A number of methods have been proposed in the past few
origin of the seed fields, ranging from inflationary mecha-years for measuring a cosmological magnetic field using the
nisms[2], cosmological phase transitiof] to astrophysical CMB: the effect on the acoustic peal&|, Faraday rotation
processeg4]. Much progress has been made in trying toon small[10] and largg 11] scales and vorticity12,13 can
disentangle the various non-linear processes which may bell lead to observable anisotropies in the CMB if the primor-
responsible for the growth of such a seed field in the verydial magnetic field strength is of the order of TOto
early universe, in particular the interplay between the magi0 8 G. The most stringent bound from the CMB presented
netic field and the primordial plasn{®,6] and the impor- thus far was for the case of a homogeneous magnetic field
tance of turbulencg7]. [14]; the authors use the Cosmic Background Explorer
Given a small seed field at late times, two different(COBE) data to find the constraint B;<6.8
mechanisms can cause its amplification to magnetic fields ok 107°(Q,h?)*?> G where the Hubble constant isl,
order 10° G observed in galaxies: adiabatic compression=100h km s ! Mpc™ ! and Q, is the energy density in
of magnetic flux lines can amplify a seed field of order units of the critical value. Although there is no fundamental
10 ° G to the present, observable values; the far more effireason to discard the possibility of a homogeneous magnetic
cient(and controversialgalactic dynamo mechanism may be field, all physical mechanisms proposed to date lead to the
able to amplify seed fields as small as 20 G [4] or even  presence of stochastic magnetic fields with no homogeneous
107%° G in universe with low mass densif$]. Clearly, to  term; in this paper we consider such fields. For these types of
make some progress in identifying which one of theseconfiguration one is allowed to have fluctuations on a wide
mechanisms is responsible for galactic magnetic fields, onmnge of scales and the magnetic field will serve as a non-
would like to find a constraint for the seed field before it haslinear driving force to the metric fluctuations; in the parlance
been processed by local, galactic dynamics. of cosmological perturbation theory, the magnetic field
The obvious observable for such a constraint is the cosevolves as atiff source without being affected by the fluid
mic microwave backgrounCMB). It is interesting to note perturbationgback reaction[15] which may be induced.
that a field strength of I G provides an energy density of ~ Stochastic magnetic fields have also been considered in
QB=BZ/(877pC)~1O*5Qy, where() , is the density param- [12], where the CMB anisotropies due to the induced fluid
eter in photons. We naively expect a magnetic field of thisvorticity have been analyzed. Here we determine gravita-
amplitude to induce perturbations in the CMB on the ordertional effects of the magnetic field. For simplicity, and to
of 10" °, which are just on the level of the observed CMB allow for a purely analytical analysis, we constrain ourselves
anisotropies. It is thus justified to wonder to what extent theo tensor perturbations. Similar contributions are also ex-
isotropy of the CMB may constrain primordial magnetic pected from vector and scalar perturbations which then
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would add to the final result. In this sense the anisotropies Let us investigate the consequence of causality for the
computed here are a strict lower boufuhderestimating the spectrumB?(k). If B is generated by some causal mecha-

true effect probably by about a factor of thyee nism, it is uncorrelated on super horizon scales:
The main result of this work is that one can obtain rea- ) )
sonably tight constrains for scale invariant magnetic fields; (Bi(x,7)Bj(x",7))=0  for x=x'|>27n. (2

ere it is important that the universe is in a stage of standard

riedmann expansion, so that the causal horizon size is about

For simplicity we concentrate on the cagey=1. 7. During an inflationay phase the causal horizon d_lverges
and our subsequent argument does not apply. In this some-

Througout, we use conformal time which we denote y what misleading sense, one calls inflationary perturbations
Greek indices run from 0 to 3, Latin ones from 1 to 3. We“a—causal . 9 ’ yp

denote spatia3D) vectors with bold face symbols. The According to Eq.(2), (Bi(x, ﬂ)Bj(X',ﬁ)> is a function

value of the scale factor today & 7o) =1. with compact support and hence its Fourier transform is ana-
Iytic. The function

for causally generated magnetic fields the constraints ar
weaker and are strongly dependent on the evolution of thg
magnetic field in the radiation era on small scales.

Il. THE STRESS TENSOR OF THE MAGNETIC FIELD

During the evolution of the universe, the conductivity of (Bi(k)BF (k)= (8 —kik;)B2(k) )
the inter galactic medium is effectively infinite. In this re-

. . . . . 2
gime we can decouple the time evolution from the spatiafS @nalytic ink. If we in addition assume th@*(k) can be
structure: B scales likeB(7,x)=By(X)/a2 on sufficiently approximated by a simple power law, we must conclude that

2 n . . - .
large scales. On smaller scales the interaction of the mag® (K)<K'", vzherenzz is an even integerA white noise
netic field with the cosmic plasma becomes important leadSPeCtrumn=0 does not work because of the transversality

ing mainly to two effects: on intermediate scales, it oscillatecondition which has led to the non-analytic pre-facty

like cos@kz), wherev,=B?/[4m(p+p)]¥2is the Alfven  —kik;.) By causality, there can be no deviations of this law
velocity and on small scales, the field is exponentiallyon scales larger than the horizon size at formatigg.
damped due to shear viscosf. We assume that the probability distribution functiorBgf

We will model By(x) as a statistically homogeneous andis Gaussian; although this is not the most general random
isotropic random field. The transversal natureBofeads us ~ field, it greatly simplifies calculations and gives us a good
to idea of what to expect in a more general case.

The anisotropic stresses induced are given by the convo-
(Bi(K)B} ()= 8%(k—0) (& — kik;) B?(k), (1)  lution of the magnetic field,

where we use the Fourier transform conventions 1 1
P00 = 5= [ a8 (@B} (k-a)- 3B(@8BF (k-0)3,.

Bj(k)zf d3x exp(ix- k) Bg;(x), (4)

With the use of the projection operatd?;; = &; —kik; we
BOJ(X):(2717)3J %k exp( —ix- K)B;(K). can extract the tensor component of E4),
, TP =[PFPP— (112)P;; P*] o, 5
The Alfven oscillations modulate the initial power spectrum
by a factor tracelessness, orthogonality, and symmetry force the correla-
tion function to be of the form
B2(k)—B2(k)cog(v k7).
. | . . (P (K OITR* (K1) = [Tg(k, 1) |2 Mijim S(k—K')
This can be approximated by a reduction of a factor 2 in the
power spectrum on scales withh\kz=1. But as we shall (M (k,HITE* (k' 1)) =4|g(k,t)|28(k— k'),
see, our most stringent constraints will come either from ! ! ©6)
very small scales where the spectrum is exponentially
damped or from much larger scales where oscillations can b&here we make use of the tensor bagi¢, The correlator of
ignored. We will incorporate the exponential damping by aan isotropic tensor component has always the following ten-

cutoff in the power spectrum at the damping scale. sorial structure:

Mijlm = 5” 5jm+ 5im5jl - 5” 5|m+ k72(5ij k|km+ 5Imkikj - 5“ kj km_ 5imk|kj - 5J| kikm_ 5jmk|ki) + k74ki k] k|km . (7)
We now determine the functiodlg(k,t)|? in terms of the magnetic field. Using Wick’s theorem we have

<Bi(k)BT(Q)Bn(S)Bfn(p»:(Bi(k)B;*(Q)><Bn(S)B§1(p)>+<Bi(k)B?§(S)><BJ(Q)B§1(D)>+<Bi(k)Bfn(p)><Bn(S)BT(Q)>-( )
8
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The problem reduces itself to calculating self convolutions of the magnetic field. The power spectrum4figq.
1
(T (k) i (K 7)) = Wf dSqJ d®p(B;(q)B;((k—))B|(p)Bm((p—k')))
=5<k—k'>f d®qB*(q)B?(|k—aD) X {(8— aa)[ 8jm— (k—);(k— )]

+(Sim— Cm)[ 81— (K—);(K— )]} 9

Using Egs.(8), (5) and (6), this leads tdIlg|?=f(k)%/a®,  Only the amplitude which is proportional tak.)>" depends
where on the spectral index. This is due to the fact that the integral
L (10) is dominated by the contributions at very small scales,
5 3 o2 2 2 2.2 k.>k. The inducedC, spectrum from gravity wave will
(k) _(BW)ZJ d BBk —aD(1+2y"+ 47, therefore be independent of for n>—23/2, and obey the
(100  well known behaviolC x| of a white noise source.
L o To simplify, we just consider the dominant term and, in
with y=k-q and8=k-k—q. order not to artificially produce a singularity at — 3/2, we
It remains to definB(k) from Eq.(1). We shall param- drop the factor 1/(8+ 3). Given the intent of this papéto
etrize it in terms of an amplitude and a scale dependenceonstrain the amplitude of the magnetic fielde will in-
through clude a factor of 10 in our final result, guaranteeing that
we are not overestimating CMB anisotropies. The singularity
(2m)° A3 B2k for k<k atn=—23 is real. It is the usual logarithmic singularity of the
B2k)={ 4 T[(n+3)/2]* ° (11  scale invariant spectrum.

0 otherwise.
I1l. THE CMB ANISOTROPIES

. . . i i B2
The normalization is such thgB(x)By(x))|,=B; where Armed with the structure and evolution of the stochastic

the quantity in brackets represents the averaged magnelifagnetic field we can now proceed to calculate its effects on
field smoothed over a comoving length scaleNote that we  iansor CMB anisotropies. The metric element of the per-
have assumed that the cutoff scale today is smaller han 1, -hed Friedman universe is given by

We requiren=3 so as not to over-produce long range
coherent fields; we shall see that for= —3 we obtain a ds?=a?(y)[ —d7®+ (8 +2h;)dxdx],
scale invariant spectrum of CMB anisotropies. ' o
We have included a short wavelength cutoff to take intowhereh;=0 andh!k'=0 for tensor perturbationl6]. The
account the exponential damping due to shear viscosity imagnetic field will source the evolution equation fby
the cosmic plasmg6]. The mean energy density due to suchthrough
a magnetic field, which is an appropriately weighted integral
of Eq. (11), will be strongly dependent on the cutoff when . a.
n>—3. hij+2_hy; + k?hy = 8w GII (. (13)
Using Egs.(11) and(10) we can calculaté. The integral
cannot be computed analytically, but the following result is asuch a gravity wave induces temperature fluctuations in the
good approximation for all wave numbeks CMB due to the fact that the photons move along the per-
turbed geodesicgl5]

I Co M
= AT 70. o
16 ['?2[(n+3)/2](2n+3) — (70,1 = “hyx(m), pninidy.  (14)
M
2n+3 n 2n+3
X | k"4 _n+3k NS, (12 Here 7, denotes théconforma) time of decoupling of mat-

ter and radiation due to recombination. We want to compute
This result seems to have a singularitynat —3/2 which is  the angular power spectrum afT/T, the C, defined by
however removable. The first term dominatesnif — 3/2
and the second term dominates if the opposite inequality is A_T(n)A_T(n,)
satisfied. Fom> —3/2, the gravity wave source is therefore T T
white noise and its amplitude is determined by the upper
cutoff, k.. Note that ifn> —3/2, the spectrum of the energy The C;s are solely determined by the power spectrum of
momentum tensor becomes white noise, independemt of metric fluctuations. Defining

1
=0 ZI (21+1)CP ().

nn'=u
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(D (k" ) h(* (k, ) =[H(K, 7)|2Mijim S(k—k')

one can derive a closed form expression @r(see[17]):
clzﬁf dki[I(1LKAI=1)(1+1)(1+2), (15
" Mwm—mu
| = dyH(7n,K)| — ],
L*"(”)&Mm—mf

wherej, denotes the spherical Bessel function of ordéve
solve Eq.(13) using the Wronskian method; in terms of the
dimensionless variablg=kz. The homogeneous solutions
are the spherical Bessel functiopg, Yy, in the radiation
dominated era, ang, /X, y;/x in the matter dominated era,

(16)

respectively. We assume that the magnetic fields were cre- FIG. 1. The u

ated in the radiation dominated epoch, at redshjft We
then match the general inhomogeneous solutions of 5.
at the time of equal matter and radiatiof,. Because of

the rapid falloff of the source term in the matter dominated

era, the perturbations created aftgg, are sub-dominant, and
we find, for the dominant contribution at> 7,

jo(kn)
k7

17

. 2 Zin
H(k,t)=4m7G 75Zeqn| —— | kf(K)

Zeq
Inserting this result in Eq.16), we obtain

12(X) ji(Xo—X)

X (Xo_x)2 '

)
| =47G 1§ZedN(Zin /1 Zeg) T (K) L* dx=
(18

where x=Kk#, x,=kn, andXy=kny. For wave numbers
which are super-horizon at decoupling, <, the lower
boundary in Eq(18) can be set to 0. The remaining integral
cannot be expressed in closed form, but is well approximate
by [20]

Xo

fdx
0

209 j1(%=%) _
X (Xo—x)2

ZJXOdXJslz(X) J 412X —X)
2 0 X3/2 (XO—X)5/2

X0
f dx
0

0.7 J52(X) Ji1124X0—X)

2 X (Xo_X)3
7 |
= 2_5\/;30~]|+3(X0)- (19
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-n I'[1-2n]
(n+3) 1[1-nj2(t-2n

70

2n+6
) |6+2n (21)

|2C|:A(
for —3<n<—3/2, where

ENER
T7(n+3)/2]

Zip

A=5X 104(277)9z§q|n2(—)
Zoq

31078 2>
1

4
oG G) IN?(Zin / Ze)

I (n+3)/2]
(22

IV. RESULTS

Equations(20) and (21) are our main result. They allow
s to limit a possible primordial magnetic field by requiring

It not to over produce fluctuations in the CMB. Since the
fluctuations induced grow withfor all values of the spectral
index —3<n, we obtain the best limits for large valueslof
We shall be conservative and assume an upper bound of
12C)|,-50<8.5x 10" ° [18]. Given that we are interested in
galactic and cluster scales we fix=0.1n"* Mpc for the
remainder of this paper. In Fig. 1 we show the limit on a
stochastic magnetic field as a function of the spectral index
n, using the damping scale given below as cutoff.

We now focus on a few particular cases of interest and in
doing so we will derive an analytic expression which ap-
proximates the upper bound Bf over the whole range of.

The third integral above can be expressed in closed form Scale invariant magnetic fieldrrom Eq.(21) we see that

([21], number 6.581.2 and is reasonably well approximated

the result is independent of the cutoff. In the limit where

by the last expression, we have checked the approximation> —3 we find that

numerically forl <200 and varyingo.
We can now do the integrations in E45) analytically to
obtain

2n+6
|ZC|ZA(%) %(kc7]o)2n+3|3 (20)

for n>—23/2, and

04300

B,<10° G, (23
i.e., of the same level as other constrairéis 14].

Causal magnetic fieldFor this scenario we have, as ex-
plained aboven=2; we shall consider the casemf 2. For
instructive purposes let us first considekawhich is inde-
pendent of the magnetic field. The constraint is then

1-4
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1l Zin s Combining Egs(20), (21), and(27) and assuming a for-
By=In" (z_) (kemo) ™™ G. (24 mation redshift ofz;,= 10 (although the final result is very
eq weakly dependert;,,) we find that an approximation to the

The cutoffk, will depend on the plasma properties and evo-bound is
lution; even though the conductivity of the cosmic plasma

is very large, it is nevertheless finite. One actually fiptig]

that o=aT, where the parameter <la<<7 is slowly
temperature dependent. By Ohm’s law, magnetic fields on

small enough scales are exponentially ~suppressedhe upper bounds corresponding to E2g) represent a rea-

Bxexp(-ak’y/4mo), leading to a damping scalé&y(7)  sonable fit to Fig. 1. As one can see, the constraint on a

= (4moaln)'?=(9x2x10"° cm)"*2 This scale is causal magnetic field is well above 10 G.

smaller than the comoving horizon scale for all temperatures  Throughout this derivation we have assumed that we can

below the Planck scale. On scales smaller thaq(¥eq),  estimate the damping scale of the magnetic field by looking

the induced gravity waves have damped away even beforgolely at the Alfven modes. A linear analysis of the remain-

matter and radiation equality. Since the sourcing of gravitying degrees of freedom also indicates that the magnetic field

waves after equality is negligible, the damping scale relevanjjill be damped at the same scale as in &4). It is possible

in our problem iskc=Kg(77e), that nonlinear effects may prevent the tangled magnetic field
_ from damping at this scale but an accurate quantitative

ke=2x10"h* Mpc™". @9 analysis is still lacking.

If we insert this damping scale in E24), we obtainB, Inflationary magnetic fieldBroken conformal invariance
=102 G, ' allied with the inflationary period will create large scale

A more realistic scenario is to assume that the magnetif?@gnetic fields. Bertolami and Mofd] estimate the spectral
field will be damped by electron viscosity. To proceed with Index in such a r_nechanlsr_n to lie in the range 5.“0.“”0' 0. We
the analysis we shall split the stochastic magnetic field into &€ then clearly in the regime where the cutoff is important.
high-frequency component and a low-frequency component’Sing the Alfven damping scale %equahty and assuming
the scale which separates the two is the Alfven scale dg?%g—e;lclggl)d Gg]:aneratlon_ atf G%VS, tw(e): 5f|2d _BA_
equality, A\ p=V whereV, is the Alfven velocity,Va = - ornvarying from—%.5 10 t.5. A simi-
:q<BZ>/y(47¢(p+/;7);§fq From EqA. (4) of [12] we see th);t fie lar result can be obtained for the model of Gaspeeinal.
inhomogeneous magnetic field will obey a damped harmonigz]'
oscillator equation, with a time dependent damping coeffi-
cient, D=0.2?l (1+z) (I, is the physical photon mean V. DISCUSSION

free path and frequencyw?(z)=Vik?—(D/2)—(D/2)2. Our calculation differs from most of the recent work on
Within this setting we can estimate the damping scale of thehe impact of primordial magnetic fields on structure forma-
magnetic field in the oscillatory regime of this system; thetion: In estimating the CMB anisotropies we do not split the
amplitude of the effective homogeneous magnetic fiBld, = magnetic field into a “large” homogenous mode and a
which is responsible for the Alfirewaves is related t8,  “small” fluctuation. The magnetic field then affects metric
through perturbations quadratically. This has two effects. First it al-
lows us to consider the magnetic field as a stiff source, and
discard[within the magneto hydrodynami¢siHD) approxi-
mation] the back reaction of the perturbations in the cosmo-
logical fluid. Indeed if wewere to consider back reaction
which leads to then we would knowa priori that we would be generating
unacceptable perturbations in the cosmological fluid. An-
other way of phrasing this is that the magnetic field itself is
(130~ H(nr+91079 G 1/2 order perturbation theory, while its energy momentum
(26) tensor and consequently the induced metric perturbations are
first order perturbations. The MHD back reactions Bn
We shall define the damping scale to be the scale at whicwould be 3/2 order and may thus be neglected in linear per-
one e-fold of damping has occured by equality. Fromturbation theory. We point out, however that, to obtain an

B,<7.9x10 %?%9" G, forn<—3/2,

B,<9.5x10 %%3" G, forn>-—3/2. (28)

n+3

A107° G

B2=B%| ———
AN 3.8X 107 %Bazeq

2/(n+5)

A
B =
A (10—9 G

[7e(D/2)dn=1 one finds estimate of the damping scale due to the viscosity in the
0 MHD we had to consider a split between long wave length
k.=4.5 Mpc . (27 and short wavelength fluctuations

Second, the stress energy tensor being quadratic in the
For this estimate to be valid, the system must be in thenagnetic field, leads to a “sweeping” of modes: large wave-
damped oscillatory regiméas opposed to overdamping re- length modes i, will in general be affected by all scales
gime), i.e., w?( 7eg)>0; this condition is satisfied iBy  of the spectrum oB [12]. As we have seen in the causal
>5.51"2x10 ° G. We find that indeed this is the case in case, the small wavelength behavior of the magnetic field
the range of interest. totally dominates the large wavelength pertubations[5h
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the magnetic field is modeled BB+ BW(x) whereBisa Much larger than the Alfwe damping scale. Another possi-

homogeneous term: the stress energy tensor is then given ity has been put forward ifi7], where the onset of turbu-
terms of the formB.BY  which are linear in the stochastic Iénce induces an amplification of power on large scales but a
component IS supression of power on small scales. This would further in-

. . creasek, but the results are still too qualitative to be properl
A few comments are in order with regards to our result. < 9 properly

o i included in an analysis such as ours.
Note that we are considering a specific class of models, Y

where the magnetic field seed is created at some well defined

moment in the _early universe and_th_en eyolvgs according to ACKNOWLEDGMENTS
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