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Tensor microwave anisotropies from a stochastic magnetic field
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We derive an expression for the angular power spectrum of cosmic microwave background anisotropies due
to gravity waves generated by a stochastic magnetic field and compare the result with current observations; we
take into account the non-linear nature of the stress energy tensor of the magnetic field. For almost scale
invariant spectra, the amplitude of the magnetic field at galactic scales is constrained to be of order 1029 G.
If we assume that the magnetic field is damped below the Alfve´n damping scale, we find that its amplitude at
0.1h21 Mpc, Bl , is constrained to beBl,7.931026e3n G, for n,23/2, andBl,9.531028e0.37n G, for
n.23/2, wheren is the spectral index of the magnetic field andH05100h km s21 Mpc21 is the Hubble
constant today.

PACS number~s!: 98.62.En, 98.70.Vc, 98.80.Cq
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I. INTRODUCTION

The past few years have seen a tremendous surge o
terest in the origin and evolution of galactic magnetic fie
@1#. A number of mechanisms have been proposed for
origin of the seed fields, ranging from inflationary mech
nisms@2#, cosmological phase transitions@3# to astrophysical
processes@4#. Much progress has been made in trying
disentangle the various non-linear processes which ma
responsible for the growth of such a seed field in the v
early universe, in particular the interplay between the m
netic field and the primordial plasma@5,6# and the impor-
tance of turbulence@7#.

Given a small seed field at late times, two differe
mechanisms can cause its amplification to magnetic field
order 1026 G observed in galaxies: adiabatic compress
of magnetic flux lines can amplify a seed field of ord
1029 G to the present, observable values; the far more e
cient~and controversial! galactic dynamo mechanism may b
able to amplify seed fields as small as 10220 G @4# or even
10230 G in universe with low mass density@8#. Clearly, to
make some progress in identifying which one of the
mechanisms is responsible for galactic magnetic fields,
would like to find a constraint for the seed field before it h
been processed by local, galactic dynamics.

The obvious observable for such a constraint is the c
mic microwave background~CMB!. It is interesting to note
that a field strength of 1028 G provides an energy density o
VB5B2/(8prc);1025Vg , whereVg is the density param
eter in photons. We naively expect a magnetic field of t
amplitude to induce perturbations in the CMB on the ord
of 1025, which are just on the level of the observed CM
anisotropies. It is thus justified to wonder to what extent
isotropy of the CMB may constrain primordial magne
0556-2821/2000/61~4!/043001~6!/$15.00 61 0430
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fields. Our order of magnitude estimate makes clear that
shall never be able to constrain tiny seed fields on the o
of 10213 G or less in this way, but primordial fields o
1029 G may have left their traces in the CMB.

A number of methods have been proposed in the past
years for measuring a cosmological magnetic field using
CMB: the effect on the acoustic peaks@9#, Faraday rotation
on small@10# and large@11# scales and vorticity@12,13# can
all lead to observable anisotropies in the CMB if the primo
dial magnetic field strength is of the order of 1029 to
1028 G. The most stringent bound from the CMB present
thus far was for the case of a homogeneous magnetic
@14#; the authors use the Cosmic Background Explo
~COBE! data to find the constraint B0,6.8
31029(V0h2)1/2 G where the Hubble constant isH0
5100h km s21 Mpc21 and V0 is the energy density in
units of the critical value. Although there is no fundamen
reason to discard the possibility of a homogeneous magn
field, all physical mechanisms proposed to date lead to
presence of stochastic magnetic fields with no homogene
term; in this paper we consider such fields. For these type
configuration one is allowed to have fluctuations on a w
range of scales and the magnetic field will serve as a n
linear driving force to the metric fluctuations; in the parlan
of cosmological perturbation theory, the magnetic fie
evolves as astiff source, without being affected by the fluid
perturbations~back reaction! @15# which may be induced.

Stochastic magnetic fields have also been considere
@12#, where the CMB anisotropies due to the induced flu
vorticity have been analyzed. Here we determine grav
tional effects of the magnetic field. For simplicity, and
allow for a purely analytical analysis, we constrain ourselv
to tensor perturbations. Similar contributions are also
pected from vector and scalar perturbations which th
©2000 The American Physical Society01-1
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would add to the final result. In this sense the anisotrop
computed here are a strict lower bound~underestimating the
true effect probably by about a factor of three!.

The main result of this work is that one can obtain re
sonably tight constrains for scale invariant magnetic fiel
for causally generated magnetic fields the constraints
weaker and are strongly dependent on the evolution of
magnetic field in the radiation era on small scales.

For simplicity we concentrate on the caseV051.
Througout, we use conformal time which we denote byh.
Greek indices run from 0 to 3, Latin ones from 1 to 3. W
denote spatial~3D! vectors with bold face symbols. Th
value of the scale factor today isa(h0)51.

II. THE STRESS TENSOR OF THE MAGNETIC FIELD

During the evolution of the universe, the conductivity
the inter galactic medium is effectively infinite. In this re
gime we can decouple the time evolution from the spa
structure:B scales likeB(h,x)5B0(x)/a2 on sufficiently
large scales. On smaller scales the interaction of the m
netic field with the cosmic plasma becomes important le
ing mainly to two effects: on intermediate scales, it oscilla
like cos(vAkh), wherevA5B2/@4p(r1p)#1/2 is the Alfvén
velocity and on small scales, the field is exponentia
damped due to shear viscosity@6#.

We will model B0(x) as a statistically homogeneous a
isotropic random field. The transversal nature ofB leads us
to

^Bi~k!Bj* ~q!&5d3~kÀq!~d i j 2 k̂i k̂ j !B
2~k!, ~1!

where we use the Fourier transform conventions

Bj~k!5E d3x exp~ ix•k!B0 j~x!,

B0 j~x!5
1

~2p!3E d3k exp~2 ix•k!Bj~k!.

The Alfvén oscillations modulate the initial power spectru
by a factor

B2~k!→B2~k!cos2~vAkh!.

This can be approximated by a reduction of a factor 2 in
power spectrum on scales withvAkh*1. But as we shall
see, our most stringent constraints will come either fr
very small scales where the spectrum is exponenti
damped or from much larger scales where oscillations ca
ignored. We will incorporate the exponential damping by
cutoff in the power spectrum at the damping scale.
04300
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Let us investigate the consequence of causality for
spectrumB2(k). If B is generated by some causal mech
nism, it is uncorrelated on super horizon scales:

^Bi~x,h!Bj~x8,h!&50 for ux2x8u.2h. ~2!

Here it is important that the universe is in a stage of stand
Friedmann expansion, so that the causal horizon size is a
h. During an inflationay phase the causal horizon diverg
and our subsequent argument does not apply. In this so
what misleading sense, one calls inflationary perturbati
‘‘a-causal.’’

According to Eq.~2!, ^Bi(x,h)Bj (x8,h)& is a function
with compact support and hence its Fourier transform is a
lytic. The function

^Bi~k!Bj* ~k!&[~d i j 2 k̂i k̂ j !B
2~k! ~3!

is analytic ink. If we in addition assume thatB2(k) can be
approximated by a simple power law, we must conclude t
B2(k)}kn, wheren>2 is an even integer.~A white noise
spectrum,n50 does not work because of the transversa
condition which has led to the non-analytic pre-factord i j

2 k̂i k̂ j .) By causality, there can be no deviations of this la
on scales larger than the horizon size at formation,h in .

We assume that the probability distribution function ofB0
is Gaussian; although this is not the most general rand
field, it greatly simplifies calculations and gives us a go
idea of what to expect in a more general case.

The anisotropic stresses induced are given by the con
lution of the magnetic field,

t i j
(B)~k!5

1

4pE d3qBi~q!Bj* ~k2q!2
1

2
Bl~q!Bl* ~k2q!d i j .

~4!

With the use of the projection operator,Pi j 5d i j 2 k̂i k̂ j we
can extract the tensor component of Eq.~4!,

P i j
(B)5@Pi

aPj
b2~1/2!Pi j P

ab#tab , ~5!

tracelessness, orthogonality, and symmetry force the corr
tion function to be of the form

^P i j
(B)~k,t !P lm

(B)* ~k8,t !&5uPB~k,t !u2Mi j lmd~k2k8!

^P i j
(B)~k,t !P i j

(B)* ~k8,t !&54uPB~k,t !u2d~k2k8!,
~6!

where we make use of the tensor basis,M: The correlator of
an isotropic tensor component has always the following t
sorial structure:
Mi j lm5d i l d jm1d imd j l 2d i j d lm1k22~d i j klkm1d lmkikj2d i l kjkm2d imklkj2d j l kikm2d jmklki !1k24kikjklkm . ~7!

We now determine the functionuPB(k,t)u2 in terms of the magnetic field. Using Wick’s theorem we have

^Bi~k!Bj* ~q!Bn~s!Bm* ~p!&5^Bi~k!Bj* ~q!&^Bn~s!Bm* ~p!&1^Bi~k!Bn* ~s!&^Bj~q!Bm* ~p!&1^Bi~k!Bm* ~p!&^Bn~s!Bj* ~q!&.
~8!
1-2
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The problem reduces itself to calculating self convolutions of the magnetic field. The power spectrum of Eq.~4! is

^t i j
B~k,h!t lm

B* ~k8,h!&5
1

~8p!2E d3qE d3p^Bi~q!Bj„~k2q!…Bl~p!Bm„~p2k8!…&

5d~k2k8!E d3qB2~q!B2~ uk2qu!3$~d i l 2q̂i q̂l !@d jm2~k2q̂! j~k2q̂!m#

1~d im2q̂i q̂m!@d j l 2~k2q̂! j~k2q̂! l #%. ~9!
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Using Eqs.~8!, ~5! and ~6!, this leads touPBu25 f (k)2/a8,
where

f ~k!25
1

~8p!2E d3qB2~q!B2~ uk2qu!~112g21g2b2!,

~10!

with g5 k̂•q̂ andb5 k̂•kÀq̂.
It remains to defineB(k) from Eq. ~1!. We shall param-

etrize it in terms of an amplitude and a scale depende
through

B2~k!5H ~2p!5

4

ln13

G@~n13!/2#
Bl

2kn for k,kc ,

0 otherwise.

~11!

The normalization is such that^B0
i (x)B0

i (x)&ul5Bl
2 where

the quantity in brackets represents the averaged mag
field smoothed over a comoving length scalel. Note that we
have assumed that the cutoff scale today is smaller thanl.

We requiren>3 so as not to over-produce long ran
coherent fields; we shall see that forn523 we obtain a
scale invariant spectrum of CMB anisotropies.

We have included a short wavelength cutoff to take in
account the exponential damping due to shear viscosit
the cosmic plasma@6#. The mean energy density due to su
a magnetic field, which is an appropriately weighted integ
of Eq. ~11!, will be strongly dependent on the cutoff whe
n.23.

Using Eqs.~11! and~10! we can calculatef. The integral
cannot be computed analytically, but the following result i
good approximation for all wave numbersk:

f 2~k!.
~2p!9

16

l2n16Bl
4

G2@~n13!/2#~2n13!

3S kc
2n131

n

n13
k2n13D . ~12!

This result seems to have a singularity atn523/2 which is
however removable. The first term dominates ifn.23/2
and the second term dominates if the opposite inequalit
satisfied. Forn.23/2, the gravity wave source is therefo
white noise and its amplitude is determined by the up
cutoff, kc . Note that ifn.23/2, the spectrum of the energ
momentum tensor becomes white noise, independent on.
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Only the amplitude which is proportional to (lkc)
2n depends

on the spectral index. This is due to the fact that the integ
~10! is dominated by the contributions at very small scal
kc@k. The inducedCl spectrum from gravity wave will
therefore be independent ofn for n.23/2, and obey the
well known behaviorCl} l of a white noise source.

To simplify, we just consider the dominant term and,
order not to artificially produce a singularity atn523/2, we
drop the factor 1/(2n13). Given the intent of this paper~to
constrain the amplitude of the magnetic field! we will in-
clude a factor of 1021 in our final result, guaranteeing tha
we are not overestimating CMB anisotropies. The singula
at n523 is real. It is the usual logarithmic singularity of th
scale invariant spectrum.

III. THE CMB ANISOTROPIES

Armed with the structure and evolution of the stochas
magnetic field we can now proceed to calculate its effects
tensor CMB anisotropies. The metric element of the p
turbed Friedman universe is given by

ds25a2~h!@2dh21~d i j 12hi j !dxidxj #,

wherehi
i50 andhi

jki50 for tensor perturbations@16#. The
magnetic field will source the evolution equation forhi j
through

ḧi j 12
ȧ

a
ḣi j 1k2hi j 58pGP i j

(B) . ~13!

Such a gravity wave induces temperature fluctuations in
CMB due to the fact that the photons move along the p
turbed geodesics@15#

DT

T
~h0 ,x,n!5E

h
*

h0
ḣi j „x~h!,h…ninjdh. ~14!

Hereh* denotes the~conformal! time of decoupling of mat-
ter and radiation due to recombination. We want to comp
the angular power spectrum ofDT/T, theCl , defined by

K DT

T
~n!

DT

T
~n8!L

n•n85m

5
1

4p (
l

~2l 11!Cl Pl~m!.

The Cls are solely determined by the power spectrum
metric fluctuations. Defining
1-3



e
s

,
cr

ed

al
te

or
d
ti

g
he
l

d of
n

a
dex

in
p-

x-

R. DURRER, P. G. FERREIRA, AND T. KAHNIASHVILI PHYSICAL REVIEW D61 043001
^ḣi j
(T)~k8,h!ḣlm

(T)* ~k,h!&5uḢ~k,h!u2Mi j lmd~k2k8!

one can derive a closed form expression forCl ~see@17#!:

Cl5
1

4p4E dkk2uI ~ l ,k!u2l ~ l 21!~ l 11!~ l 12!, ~15!

I 5E
h
*

h0
dhḢ~h,k!S j l„k~h02h!…

„k~h02h!…2
D , ~16!

wherej l denotes the spherical Bessel function of orderl. We
solve Eq.~13! using the Wronskian method; in terms of th
dimensionless variablex5kh. The homogeneous solution
are the spherical Bessel functionsj 0 , y0 in the radiation
dominated era, andj 1 /x, y1 /x in the matter dominated era
respectively. We assume that the magnetic fields were
ated in the radiation dominated epoch, at redshiftzin . We
then match the general inhomogeneous solutions of Eq.~13!
at the time of equal matter and radiation,heq . Because of
the rapid falloff of the source term in the matter dominat
era, the perturbations created afterheq are sub-dominant, and
we find, for the dominant contribution ath.heq ,

Ḣ~k,t !.4pGh0
2zeqlnS zin

zeq
D k f~k!

j 2~kh!

kh
. ~17!

Inserting this result in Eq.~16!, we obtain

I 54pGh0
2zeqln~zin /zeq! f ~k!E

x
*

x0
dx

j 2~x!

x

j l~x02x!

~x02x!2
,

~18!

where x5kh, x* 5kh* and x05kh0. For wave numbers
which are super-horizon at decoupling,x* ,p, the lower
boundary in Eq.~18! can be set to 0. The remaining integr
cannot be expressed in closed form, but is well approxima
by @20#

E
0

x0
dx

j 2~x!

x

j l~x02x!

~x02x!2
5

p

2E0

x0
dx

J5/2~x!

x3/2

Jl 11/2~x02x!

~x02x!5/2

.
0.7p

2 E
0

x0
dx

J5/2~x!

x

Jl 11/2~x02x!

~x02x!3

5
7p

25
A l

x0
3Jl 13~x0!. ~19!

The third integral above can be expressed in closed f
~@21#, number 6.581.2!, and is reasonably well approximate
by the last expression, we have checked the approxima
numerically forl<200 and varyingx0.

We can now do the integrations in Eq.~15! analytically to
obtain

l 2Cl.AS l

h0
D 2n16 2

3p
~kch0!2n13l 3 ~20!

for n.23/2, and
04300
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l 2Cl.AS l

h0
D 2n16 2n

~n13!

G@122n#

G2@12n#2(122n)
l 612n ~21!

for 23,n,23/2, where

A5531024~2p!9zeq
2 ln2S zin

zeq
D Bl

4G2h0
4

G2@~n13!/2#

531028S Bl

1029 G
D 4

ln2~zin /zeq!
1

G2@~n13!/2#
.

~22!

IV. RESULTS

Equations~20! and ~21! are our main result. They allow
us to limit a possible primordial magnetic field by requirin
it not to over produce fluctuations in the CMB. Since t
fluctuations induced grow withl for all values of the spectra
index23,n, we obtain the best limits for large values ofl.
We shall be conservative and assume an upper boun
l 2Cl u l 550,8.531029 @18#. Given that we are interested i
galactic and cluster scales we fixl50.1h21 Mpc for the
remainder of this paper. In Fig. 1 we show the limit on
stochastic magnetic field as a function of the spectral in
n, using the damping scale given below as cutoff.

We now focus on a few particular cases of interest and
doing so we will derive an analytic expression which a
proximates the upper bound ofBl over the whole range ofn.

Scale invariant magnetic field: From Eq.~21! we see that
the result is independent of the cutoff. In the limit wheren
→23 we find that

Bl&1029 G, ~23!

i.e., of the same level as other constraints@9–14#.
Causal magnetic field: For this scenario we have, as e

plained above,n>2; we shall consider the case ofn52. For
instructive purposes let us first consider akc which is inde-
pendent of the magnetic field. The constraint is then

FIG. 1. The upper boundBl as a function of spectral index,n.
We assumezin /zeq5109 andl50.1h21 Mpc.
1-4
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TENSOR MICROWAVE ANISOTROPIES FROM A . . . PHYSICAL REVIEW D61 043001
Bl& ln21/2S zin

zeq
D ~kch0!27/4 G . ~24!

The cutoffkc will depend on the plasma properties and ev
lution; even though the conductivitys of the cosmic plasma
is very large, it is nevertheless finite. One actually finds@19#
that s5aT, where the parameter 1,a,7 is slowly
temperature dependent. By Ohm’s law, magnetic fields
small enough scales are exponentially suppres
B}exp(2ak2h/4ps), leading to a damping scale,kd(h)
5(4psa/h)1/25(h3231023 cm)21/2. This scale is
smaller than the comoving horizon scale for all temperatu
below the Planck scale. On scales smaller than 1/kd(heq),
the induced gravity waves have damped away even be
matter and radiation equality. Since the sourcing of grav
waves after equality is negligible, the damping scale relev
in our problem iskc5kd(heq),

kc.231013h2 Mpc21. ~25!

If we insert this damping scale in Eq.~24!, we obtainBl

&10229 G.
A more realistic scenario is to assume that the magn

field will be damped by electron viscosity. To proceed w
the analysis we shall split the stochastic magnetic field in
high-frequency component and a low-frequency compon
the scale which separates the two is the Alfven scale
equality, lA5VAheq where VA is the Alfven velocity,VA

2

5^B2&/„4p(r1p)…. From Eq.~4! of @12# we see that the
inhomogeneous magnetic field will obey a damped harmo
oscillator equation, with a time dependent damping coe
cient, D50.2k2l g(11z) ( l g is the physical photon mea
free path! and frequencyv2(h)5VA

2k22(Ḋ/2)2(D/2)2.
Within this setting we can estimate the damping scale of
magnetic field in the oscillatory regime of this system; t
amplitude of the effective homogeneous magnetic field,BA ,
which is responsible for the Alfve´n waves is related toBl

through

BA
2.Bl

2S l1029 G

3.831024BAheq
D n13

which leads to

BA5S Bl

1029 G
D 2/(n15)

~13h21!(n13)/(n15)1029 G.

~26!

We shall define the damping scale to be the scale at w
one e-fold of damping has occured by equality. Fro
*0

heq(D/2)dh51 one finds

kc54.5 Mpc21. ~27!

For this estimate to be valid, the system must be in
damped oscillatory regime~as opposed to overdamping r
gime!, i.e., v2(heq).0; this condition is satisfied ifBA
.5.5h2231029 G. We find that indeed this is the case
the range of interest.
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Combining Eqs.~20!, ~21!, and~27! and assuming a for-
mation redshift ofzin51015 ~although the final result is very
weakly dependentzin) we find that an approximation to th
bound is

Bl,7.931026e2.99n G, for n,23/2,

Bl,9.531028e0.37n G, for n.23/2. ~28!

The upper bounds corresponding to Eq.~28! represent a rea
sonable fit to Fig. 1. As one can see, the constraint o
causal magnetic field is well above 1029 G.

Throughout this derivation we have assumed that we
estimate the damping scale of the magnetic field by look
solely at the Alfven modes. A linear analysis of the rema
ing degrees of freedom also indicates that the magnetic fi
will be damped at the same scale as in Eq.~27!. It is possible
that nonlinear effects may prevent the tangled magnetic fi
from damping at this scale but an accurate quantita
analysis is still lacking.

Inflationary magnetic fields: Broken conformal invariance
allied with the inflationary period will create large sca
magnetic fields. Bertolami and Mota@2# estimate the spectra
index in such a mechanism to lie in the range around 0.
are then clearly in the regime where the cutoff is importa
Using the Alfvén damping scale at equality and assumi
magnetic field generation at 1010 GeV, we find Bl

&(1027–1028) G for n varying from20.5 to 0.5. A simi-
lar result can be obtained for the model of Gasperiniet al.
@2#.

V. DISCUSSION

Our calculation differs from most of the recent work o
the impact of primordial magnetic fields on structure form
tion: In estimating the CMB anisotropies we do not split t
magnetic field into a ‘‘large’’ homogenous mode and
‘‘small’’ fluctuation. The magnetic field then affects metr
perturbations quadratically. This has two effects. First it
lows us to consider the magnetic field as a stiff source,
discard@within the magneto hydrodynamics~MHD! approxi-
mation# the back reaction of the perturbations in the cosm
logical fluid. Indeed if wewere to consider back reaction
then we would knowa priori that we would be generating
unacceptable perturbations in the cosmological fluid. A
other way of phrasing this is that the magnetic field itself
1/2 order perturbation theory, while its energy momentu
tensor and consequently the induced metric perturbations
first order perturbations. The MHD back reactions onB
would be 3/2 order and may thus be neglected in linear p
turbation theory. We point out, however that, to obtain
estimate of the damping scale due to the viscosity in
MHD we had to consider a split between long wave leng
and short wavelength fluctuations inB.

Second, the stress energy tensor being quadratic in
magnetic field, leads to a ‘‘sweeping’’ of modes: large wav
length modes inTmn will in general be affected by all scale
of the spectrum ofB @12#. As we have seen in the caus
case, the small wavelength behavior of the magnetic fi
totally dominates the large wavelength pertubations. In@5#
1-5
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the magnetic field is modeled asB5B̄1B(1)(x) whereB̄ is a
homogeneous term; the stress energy tensor is then give
terms of the formB̄iBj

(1) , which are linear in the stochasti
component.

A few comments are in order with regards to our resu
Note that we are considering a specific class of mod
where the magnetic field seed is created at some well defi
moment in the early universe and then evolves accordin
the MHD equations. If the magnetic field is being constan
sourced throughout the radiation era, then our calculatio
not valid. An example of such a scenario was proposed
Vachaspati@3# where magentic fields are sourced by vortic
imprints from an evolving network of cosmic strings; a
though the scaling behavior of source may lead toB}a22,
the effective damping scale will be of order the horiz
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much larger than the Alfve´n damping scale. Another poss
bility has been put forward in@7#, where the onset of turbu
lence induces an amplification of power on large scales b
supression of power on small scales. This would further
creasekc but the results are still too qualitative to be prope
included in an analysis such as ours.
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