PHYSICAL REVIEW D 69, 063006 (2004

Cosmic microwave background and helical magnetic fields: The tensor mode
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We study the effect of a helicity component of a primordial magnetic field on the tensor part of the cosmic
microwave background temperature anisotropies and polarization. We give analytical approximations for the
tensor contributions induced by helicity, discussing their amplitude and spectral index in dependence of the
power spectrum of the primordial magnetic field. We find that an helical magnetic field creates a parity odd
component of gravity waves inducing parity odd polarization signals. However, only if the magnetic field is
close to scale invariant and if its helical part is close to maximal, the effect is sufficiently large to be
observable. We also discuss the implications of causality on the magnetic field spectrum.
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[. INTRODUCTION fluid vorticity field or nonparity invariant initial spectrum of
gravitational waves produced during inflation could induce
The observed Universe is permeated with large scale corery similar effects; in that sense our results are more generic
herent magnetic fields. It is still under debate whether theséhan their derivation.
magnetic fields have been created by charge separation pro- In the next section, we discuss the magnetic field spec-
cesses in the late Universe, or whether primordial seed fieldsum and define its symmetric and helical contributions.
are needed. Recently, it has been propd4¢dhat also “he-  Then we compute the tensor component of the magnetic field
lical” magnetic fields, i.e., fields with a nonvanishing com- energy momentum tensor which acts as a source for gravity
ponent in the direction of the currer, (VxXB)#0, could waves. In Sec. IV we determine the induced gravity wave
be produced e.g. during the electroweak phase transé®®  spectrum which also has a symmetric and a helical contribu-
also[2]). tion. In Sec. V we compute the induced CMB temperature
Extended studies have already investigated effects of stqisotropy and polarization spectra as well as the above men-
chastic magnetic fields with vanishing helicity on the cosmictioned correlations. Finally, we discuss our results and draw
microwave backgroundCMB) (see[3-6] and others Ina  some conclusions. The paper is complemented by an Appen-

seminal papef7], Pogosian and collaborators have investi-dix where details of calculations and tests of some approxi-
gated the possibility that a helical magnetic field can inducnations can be found.

correlations between the temperature anisotropy andBthe
mode CMB polarization.

.In this paper we want to go beyond that work. We deter- Il. THE MAGNETIC FIELD SPECTRUM
mine all the effects on the CMB induced by a helical mag-
netic field. We shall actually show that, contrary to the state- We consider a primordial stochastic magnetic field created
ment in Ref.[7], a helical component also introduces purebefore equality, during the radiation-dominated epdoh
CMB anisotropies and polarization. But of course its mostearliep. During this period of the evolution of the Universe,
remarkable effect is the above mentioned correlation of temthe conductivity of the primordial plasma on scales larger
perature anisotropy and polarization. We shall show that than the Silk scale.>\g is very high, effectively infinite
also a correlation betwedn andB polarization is induced. [8]. Hence, the “frozen-in” condition holdsE= —vXxB,

In this paper we discuss only the tensor mode, gravitawherev is the plasma flux velocityE is the electric field
tional waves, since the calculations for this case are simplesihduced by plasma motions ar8l is the magnetic field.
Even if the resulting observational effects are small and mayloreover, large scale magnetic fields always induce aniso-
not be detectable, we find it interesting since it is completelytropic stresses, so that their energy denBit{8= must be a
new and contains several surprising elements. Furthermore, sanall perturbation, in order not to break the isotropy of the

Friedmann-Robertson-Walker background. This allows us to
apply linear perturbation theory. Both, the magnetic field en-

*Electronic address: caprini@astro.ox.ac.uk ergy and the plasma peculiar velocity are treated as first or-
"Electronic address: ruth.durrer@physics.unige.ch der perturbations; consequently, the energy density of the
*Electronic address: tinatin@amorgos.unige.ch induced electric field will be 3rd order in perturbations
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theory, and can be neglected. Also ter®;B; are of second .e*=0, ande”(k)=e"(—k), as well asikxe®==+e".

order and therefore neglected. . The components of a vector with respect to this basis will be
At sufficiently large scales, it is possible to neglect thejndicated by a superscript. For a fixed k-independent

effects of back reaction of the fluid on the evolution of the pasis we will instead use the usual Latin letters as indices.

magnetic field: the time dependence decouples from the spam arbitrary transverse vectar can be decomposed as

tial structure, and, due to flux conservation, the magnetic-;,*e* 4 ~e". Herev ™ is the positive helicity component

field evolves likeB(7,x)=B(7o,X)/a(7)? where we use andy - is the negative helicity component.

the normalizatiora(7o) =1 and a subscript O denotes today.  wjth the definiton (1), and the reality condition

At smaller scales however, the interaction between the fluigg=(k))* = —B*(—k), we obtain the connection between

and the magnetic field becomes important, leading mainly t@ne power spectr§(k), A(k) and the magnetic field compo-

two effects: on intermediated scale, the plasma undergogsents in the new basis:

Alfvén oscillations, andB?(k)—B?(k)co(vakz) [where

vi= B?/(47(p+p)] is the Alfven velocity, andB is the field

averaged over a scale of ordeg#); on very small scales, —(BT(k)B*(—k")+B7(k)B™(—k"))

the field is exponentially damped due to shear viscosity ,

[3,4,9,1Q. As in Ref.[4], we will account for this damping =(2m)*S(k) 8(k—k’), )

by introducing an ultraviolet cutoff at wave numbey(#) in

the spectrum oB (see alsd6]). n i , _ _ ,
Following Refs.[1,7], we introduce an helicity compo- (BT (k)BT (-k")=B~(k)B"(-k")

nentA(k) in the magnetic field two point correlation func- =(2m)3A(k) S(k—k"). (5)

tion:

(2m)°
2

, oA In other words A(k) represents the difference of the expec-
S(k=k")[PjiS(k) + i €jimkmA(K) ], tation values of the positive and negative helicity field com-
(1) ponents. IfA does not vanish, the left handed and right
handed magnetic fields have different strength.
where S(k) and A(k) are respectively the symmetric and  We assume that both the symmetric and helical terms of
helical part of the magnetic field power spectrum;= &;; the magnetic field power spectru¢h) can be approximated
—kik; is the usual transverse plane projector satisfying thé®y a simple power laJ7]:

conditionsP;; Py, = Py, PinJ-:O, €1 is the totally antisym-

(Bj(K)Bf (k")=

metric tensor, anét; =k;/k. We use the Fourier transforma- Sy ks, for k<kp,
tion convention S(k)= . (6)
0 otherwise
Bj(k)=J d3x exp(ik-x)B;(X),
and
B,0= 53 | Ckexp—ik 0Bk (2
i(X)=-—5—3 exp(—ik-x)B;(k).
R (2m)® ) Ao kM, for k<kp,
o A= herwi )
For simplicity, as in Refs[4,6] and others, we shall assume otherwise

that the magnetic field is a Gaussian random field. Then all
the statistical information is contained in the two-point cor-
relation function and the higher moments can be obtained vi
Wick’s theorem.

As explained in Ref[7], the magnetic field helicity is
determined by(B-(VXB)). For a better physical under-
standing of the effects which this new helicity term has on
CMB anisotropies, it is useful to introduce the orthonormal

“helicity basis” (e*,e*,e3=l2) (see alsd7,11]), where

&/hereso, A, are the normalization constants, amgln, the
spectral indices of the symmetric and helical parts respec-
tively.

With Egs.(6), (7), we can express the normalization con-
stantsS, and A, in terms of the averaged magnetic field
energy densit)BfE<B(x)-B(x))|A, and the absolute value
of the averaged helicityB2=\|(B(x) (VX B(x)))||, re-
spectively, both smoothed over a sphere of comoving radius
i \. By, measures the amplitude of helicity on the given co-

F(K)=— — (e *i moving scale.
& (k) \/f(el_IGZ)' ® In c?rder to calculate these quantities, we convolve the
magnetic field and its helicity with a 3D-Gaussian filter func-
and (e;,e,,e;=k) form a right-handed orthonormal basis tion, so thatB;— B;* f, , wheref, (k)=exp(-=\%3/2). The
with e,= kX e;. Under the transformatiok— —k we choose mean-square valudZ and 3} are then given by the Fourier
e, to change sign whileg; remains invariant. The basis transform of the products of the corresponding spe§(ig

(e*,e",k) has the following propertiese™-e*=—1, =  andkA(k) with the square of the filter functioh, :
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,_ 1 S F ()2 S, 1 (ns—l—3
= o) ks | )
(8)
B2= fd3kk|A(k)|fx(k)2
Y(2m)?
Al 1 na+4
_(277)2 )\nA+3 2 ) (9)
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scales\>\p=1/kp. As we now show, this is always the
case if the magnetic field is causally produced.

Most mechanisms to produce magnetic fields with a heli-
cal component are causal. By this we mean that all correla-
tions above a certain scale, usually some fraction of the
Hubble scale at formation, have to vanish. If this is the case,
causality implies an additional interesting constraint, which
we now derive. For this we assume that the correlation func-
tions (B;(x)B;(y)) and (B;(x)(VXB(y));) have to vanish
for |x—y|>R for some scaleR. Hence they are functions
with compact support, which implies that their Fourier trans-

In order not to overproduce long range magnetic fields oforms, P;;S(k) and € kjA(k) are analytic functions. There-

helicity ask—0, we require for the spectral indices>
—3 andn,> —4 [for ng<—3 andn,=< —4 the integralg8)
and (9) diverge at smalk].

Using Eqgs(8), (9) and the definition of the magnetic field
spectrum(1l), we can rewrite expressiorid) and (5) in the
form (see alsd7])

—(B*(k)B"(—k")+B"(k)B"(—k"))

3p?2
_ A n — Kk’
=(2m)° not 3 (NK)"sé(k—k"), (10
2
(B"(k)B*(—k")—B"(k)B"(—k"))
5 )\385 n ’
=(2m) W()\k) Ad(k—k'), (11
I 2

for k<kp and 0 fork>kp .
Using that

lim |((I2>< B(k))-B(—k’))|=< lim (B(k)-B(—k"))
k' —k k' —k
we can conclude that
S(k)=|A(K)|. (12

SinceS(k)={|B|?), it is clear thatS(k)=0. The reality con-
dition requiresA, to be real, but it can be either positive or
negative. For Eq(12) to be valid on very small values &f
requires

13

Applying Eq.(12) also close to the upper cutdf, , we have
in addition

| Aol =Sokp® ™. (14
In terms of the magnetic fields on scalethis gives roughly

B2<B2(kp\)"s™"A, (15)

fore, for sufficiently small values df they can be approxi-
mated by power laws as in Eqg6), (7). Sincek; is not
analytic butkk; is, this implies

ng=2 and np=1, (16)

whereng has to be an even integer whilg has to be an odd
integer. But since we neau,=ng, this leaves us with

17)
(18

ng=2, an even integer and
n,=3, an odd integer.

Causality together with the conditidi2) leads to an addi-
tional suppression of helical fields on large scales. Also or-
dinary causal magnetic fields cannot be white noise but are
severely suppressed on large scale due to the non-analytic
pre-factorP;; in the power spectrum which is a simple con-
sequence of the fact that magnetic fields are divergence free
V-B=0. This has already been discussed in Rffs12].

The causality constraint need not to be satisfied if the mag-
netic fields are generated before or during a period of infla-
tion where the causal horizon diverges. For a detailed discus-
sion of causality segl3].

Ill. MAGNETIC SOURCE TERM FOR TENSOR METRIC
PERTURBATIONS

The anisotropic stresses which act as source for metric
perturbations are given by the magnetic field stress tensor
[14]

N —— if dsp[B(p)B*(p—k)
L (2m)° 4 nE

. (19

1
- §B|(P)B|*(p—k)5ij

Here we are interested in the generation of gravitational
waves, and consequently we need to extract the transverse
and traceless part af; . The form of a general projection to
extract any moddscalar, vector or tenspfrom a generic
tensorial perturbation can be found[ib5]. We make use of

the tensor projectoljim = Pj|Pjm— 3 Pi;Pim (see alsd4]).

The tensor contribution te,, is given by

Usually the damping scale is much smaller than the physical

scale of interest\ so that\kp>1. Therefore, ifng—nyu

#0, the helical contribution is significantly suppressed on all

1
I = PiIij_EPij Pim| Tim - (20)
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Moreover, since the magnetic field is a stochastic variable,
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Mijim Mijim = Ajjim Aijim = 8 (28)

we need to calculate the two point correlation tensor of

7;j(k), which takes the form

1 1
<Tij(k)7’l*m(k’)>:(47)2(27)6f d3pf d®q(Bi(p)

XBj(k—p)B{(—a)Bn(q—K'))+ - - - &
+ Sm, (21

and we are not interested in terms proportionalstp and
dim, Which after being projected out will not contribute to
the final result for the tensor perturbatioi;;I1,,,) (see Ap-
pendix A in[6]). Before applying the tensor projection, we
can simplify the right hand side of Eq21) using Wick’s

AulliJIm 0, Aijij -AiijI:AijII:O-

(29
According to Egq. (20, we have now to act on
(Tan(k) To4(k")) with the tensor projector

abcd(k k )

|Jlm

1 n
PiaPjb— Epijpab)(k)

1 .
X I:)I(:Pmd_ EPImPcd (kl) (30)

In these calculations we do not need to care about the posi-
tion (up or down of Latin indices as they are always con-

theorem, expressing the four point correlators in terms of theracted by a Kronecke$. The symmetric and antisymmetric

two point ones,
(Bi(ki)Bj(kj)By(k))Bm(km))
=(Bj(k;)B;(kj)){B(k))Bm(km)) +(Bi(ki)Bi(k))
X(Bj(Kj)Bm(km))+(Bi(Ki)Bm(km))(Bj(kj)B(k)).
(22)
Since the two point correlation function given in Eq) is

not symmetric, we are not allowed to change the order of

indicesi,j,l,m inside an expectation value. With E{.) we
can then compute the correlation functi®@il) which con-
sists of a purely symmetric part proportional to
Jd3pS(p)S(|k—pl|), a purely helical part proportional to
Jd*pA(p)A(lk—pl), and mixed termi fd®pS(p)A(|k—pl)
[the full expressions are given in Appendix A, E41)]. The
first two terms contribute to the symmetric part of the two

point correlation function of the tensor source, while the two
latter terms give rise to a helical contribution. To express

them we now introduce the two point correlation function for
the tensor source, which can be parametrized as

1
2 [Mijim F(K) 1 Ajmg(k) Jo(k—=k"),
(23

(I ()T (k")) =

where the tensordjj, and A, are given by

Mijim=PiiPjm+ PimPji = PijPim, (24)

Aijim= 5 (Pjm€iig T Pil €jmq™ Pim€jiq T Pji €img)-

(29)

-4
2

Clearly, both M, and Ajj, are symmetric in the first and
second pair of indicesM;;, is also symmetric under the
exchange ofj with Im while A;;,, is antisymmetric under
this permutation. We shall often use simple properties like
Mijij =4, Miim

=M;j; =0 (26)

PgiMijim=Mgjim»  PgidAijim = Agjim

(27)

parts of Eq.(23) are invariant under the application of the
projector(30), so that it is easy to separate the symmetric and
helical parts of the source spectruffk) andg(k):

(31)

1
S(k—k")f(k)= 5Mapcd Tan(K) Teq(k"))

d(k—k")g(k)= 7Aabcd<7ab(k)7:d(k,)>'

(32)
Moreover, by applying the tensovt;;,, to Eq.(Al) of Ap-

pendix A, we obtainthe first term of this has already been
computed in Refg4,6,12)

(k)= fd%[s S(k—p)(1+ yD)(1+ )

4 (4m)?
+4A(p)A(lk—pN)(vB)],

wherey=Fk-p andB=k- (k—p). Note that the square of the
helical part of the magnetic field spectrui) contributes to

the symmetric part of the source spectrum. This is not sur-
prising, since the product of two quantities with odd parity
has even parity. The antisymmetric part of the source spec-
trum is obtained by acting with{;;,, on Eq.(Al) of Appen-

dix A. It is given by the mixed terms,

(33

g(k)= f EpSPIAK—p)(L+y2)8. (34

(4)?

We can also express the correlat@B) in terms of the basis
e} introduced in[11],

3
== \[g(%iiez)ix(eliiez)j :

These form a basis of tensor perturbations, satisfying the
transverse-traceless conditiae;; =0, kie; =0 ande; e
=3/2. Positive circularly polarized gravity waves are propor-
tional to e”, while negative circularly polarized gravity
waves are given by the coefficient@f . In this basidl;; is
expressed as

(35
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I (K)=e; T (k) +e; 1 (K). (36)

We can rewritef (k) and g(k) in terms of the components
1" as

S(k—k")f(k)=8(k—k")[TI(k)|?
3
=E(H*(k)H**(k')+H*(k)H**(k')>,

(37

3
S(k=k")g(k)=— (I (k)TT"* (k")

=1 (kI * (k7). (38)

Here we have used the form 8ff and A in this basis,

4
Mijim= §[e Q€+ e @e]

4i

Ajjim = g[ei}r@e%_ei]@eﬁn]'

and the simple properties of1;, and A;;,, mentioned
above. Other useful relations are

2
3 S(k=K)T(k)
(39

(I~ (KIT* (k") + T (KT * (k")) =

2
50(k—Kg(k)
(40)

(I (I * (k) = (kI (k")) =
1
(I ()T (k")) = 7 o(k—k") (f(K)

+9(k)).

Similarly, defining the usual linear polarization basis

(41)

;= (e1X e~ X&)

e::(elxez"_ezxel)” y (42)
and the components @I with respect to this basis,
H HT T+H>< X (43)

Ij’

we obtain also

(TITTI™ (k") + T (KT (k")) = (k= k") (k)
(44)

(I (R)TI™ (k") = TTT(K)TT* (k")) =i 8(k— k") g (k).
(49)

With Egs.(33), (34), we find

PHYSICAL REVIEW D 69, 063006 (2004

f(k)+ g(k)— P[S(P)(1+ )
+2A(p)7]~[3(|k—p|)(1+[5’2)
+2A(lk—p|)B]. (46)
Let us introduce the tensor
1 ~ “
Qij(k)Em[Pij(k)S(k)"'ifijqkqA(k)] (47)
so that
- k)B¥ (k' o(k—k’ k (48)
23 2 BIOBT (K1) = 8(k—k")Qy ().

With Q;;(—k)=Qj; (k) one then finds

f(K)+g(K)=[Pi;(K) =i gkl Pim(K) +i €ime kg

XJ d*pQ;j(p)Qir(k—p). (49)
Using Eqgs.(6)—(9), (33) and(34), it is possible to calculate
f(k) andg(k). The details of the calculations are given in
Appendix A. The integrals cannot be computed analytically,
but a good approximation gives, feky (see alsd4,6)):

()\k)ZnSJrS

n
f(k)zAs(ukD)Z”s*%ﬁ

_.AA(()\k )2nA+3+ ()\k)ZnAJrB) (50)

nat4

9(k)=C(Xkp)"s" " 2(\k)

k )”s+”A+2

, (51

where Ag, A, and C are positive constants given in Egs.
(A13) to (A15) of Appendix A. They depend on the spectral
indicesng andn, of the magnetic field and on its amplitudes,
which are given in terms dBZ, B2, and\.

Note that the contribution of magnetic field helicity to the
symmetric part of the sourcé(k), is negative. But it is easy
to check that Eq(12) insures that it never dominates, hence
f=0. Forng,n,>—3/2, the two terms proportional to the
upper cutoﬁk2nSA+3 dominate inf(k), which consequently
depends only on the cutoff frequency and behaves like a
white noise sourcf4]. Forng<—3/2 or alson,< —3/2, the
dominating terms go lik&?"s*3 andk?"2* 3 respectively. On
the contrary, the antisymmetric sourgék) never shows a
white noise behavior. Faig+n,> —2 the dominant term is
proportional tokk?s" "2, Forns+n,<—2, g(k) does not
depend on the upper cutoff, but is proportionakfig® "a*3,
The singularities in the pre-factords, A, and C which
appear aing=—3 andny=—4 are the usual logarithmic
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singularities of scale invariant spectra. But as mentioned irfior example[4,6,12. The tensor modes are the simplest case
Sec. Il the helical contribution must obex=ng>—3. The of metric perturbations, and in the transverse and traceless
apparent singularities in the prefactorsnat,= —3/2 and at  gauge they are fully described by the tenbg(x, 77), satis-
Nng+na=—2 are removable when multiplied with the fying
k-dependent parts as in Eq&0) and (51). In the integrals N
overk which we shall perform to calculate ti@,’s we only hij=h;i, h;=0, h;k'=0. (54)
take into account the dominant terms.

If the magnetic field is causal, we expati=2 andny
=3, so that

The linear evolution equation for gravitational waves is

h: (k +2—. hi: (k, ) +k2hi; (k, ) = ——I1;: (k
ij(k,7) a ij(k,7) ij (K, 7) 2(m) ij (KD,
(59

wherell;;(k) is the source tensor given in EQ0), and we

Comparing the limit given in Eq(14) with the expressions have multiplied in the time dependenee %(7), which
for Ag and.A, derived in Appendix A, it is easy to see tifat comes from the fact that the magnetic field is frozen in the
always remains positive. plasma. Thereforell;;(k,») is a coherent source, in the

The analysis of the evolution of a nonhelical magneticsense that each mode undergoes the same time evolution
field interacting with the primordial plasma, and the deriva-[12]. We neglect other possible anisotropic stresses of the
tion of the appropriate damping scalg, has been discussed plasma(collisionless hot dark matter particles or massless
in Refs.[3] and[10], where the authors considered a mag-neutrinos have anisotropic stresses which do source gravita-
netic field with a tangled component superimposed on a hotional waves, but this effect is very smali8]).
mogeneous field. We assume that the latter can be obtained We want to compute the induced CMB anisotropies and
by smoothing our stochastic field on a scale which is largepolarization(see Sec. Y, which can be expressed in terms of
than the damping scaléor details, se¢4,12). The damping  the two-point correlation spectrugh;;(k)h,(k")), taking
scale for the tensor mode is obtained taking into account thahe form[4,12):
the source of gravitational radiation after equality becomes
subdominant so that the relevant tensor damping scale is the ; . , 1
Alfvén wave damping scale from the time of the creation of i (K, Mk’ 7)= 2 [MijimH(k, 7)
the magnetic field up to equalifit2]. Since we are interested
here in the imprint of the magnetic field on the CMB, we TiAmH(k, m)]6(k—k').
need not to care about the time evolution of the damping (56)
scale, the relevant scales for the CMB tensor anisotropies
being those which are greater or equal to the horizon afere H(k,77)5(k—k’)=[1/(27r)3]<hij(k)hi’}(k’)> is the
equality. Therefore, the relevant cutoff scale is given by thesyal isotropic part of the gravitational wave spectrum which
Alfvén wave damping scale at equali,'=val (Te9, s sourced byf(k), andH(k,7) describes the helical part,
wherel ,(T¢()~0.35 Mpc is the comoving diffusion length sourced byg(k).
of photons at equalitfhere we have used thaf™{T) The perturbation tensdr; can also be expressed in terms
~10%2 ecm(T/Tge9 ~3, from [10], as well asze~ 3454 and  of the basise]] defined in Eq(35):
Z4ec= 1088 from the WMAP resultgl6]]. The Alfven speed
is at most of order 10%, so that the damping scale is on the hij(k, 7)=h"(k, n)efjr—l-h_(k, 7)€ - (57
order of kpc or smaller. ) _ )

Even if considering an helical component in the magneticJ,USt like for the anisotropic stress power spectra, we now
field, we set all the power to zero on scales smaller thadind that
kp'. This is not really correct since simulations shpii]

f(k)zAS(kD)\)Y_AA(kD)\)g (52

g(k)=Ckx (kp\)7. (53)

. . A 3 . .

that the spectrum simply decays like a power law with index S(k—K"H(k,7)=z(h"(k,p)h™*(k’, )

of the order of—4 on small scalek>kp. However, as we 2

shall see, fong ,<—3/2 the induced,’s are dominated by TR (k. mMh—* (K’

the contribution at the largest scalds,®, for the kinks, (kph™*(K'sm),  (58)

nsa~ —4 part of the spectrum. Therefore, we do not loose 3 . .

much by neglecting the contribution from the scales smaller S(k—=k"YH(k,p)=— §(h+(k, h**(k’,n)

than kgl For ng<—3/2 the C,’'s are independent of the

cutoff. —h~(k,mh™*(K', 7). (59

IV. MAGNETIC FIELD INDUCED TENSOR METRIC In terms ofh™ andh*, defined like in Eq.(42), H param-

PERTURBATIONS etrizes the correlation betweérl andh*,

A stochastic magnetic field can act as a source for Ein-  (h*(k)h™ (k’)—hT(k)h** (k"))=i8(k—k') H(K).
stein’s equations and hence generate gravitational waves, see (60
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The evolution equation for the componerits (k,7) is  discuss the corrections which it induces to the previous re-

simply sults.
To compute the CMB fluctuation power spectra we use
- a. 87G the total angular momentum method introduced by Hu and
h=(k,7)+ Zghi(ky n)+k*h*=(k, )= () 1= (k). White [11]. By combining intrinsic angular structure with the

spatial dependence of plane waves, Hu and White obtained
integral solutions for all kind of perturbations. The angular

. o power spectrum of CMB fluctuations can then be expressed
We need to determine the functiohs (k, 7) [see Eq.(68) as[11]

below]. An approximate solution to the above differential
equation can be found i#] or [12]. The important point is 2 2k Xk

that because of the rapid falloff of the magnetic field source c%*'= _f dke > (me(K,70) Xty (K, 70) ,

in the matter dominated era, perturbations created after 7" m=—2 2(+1 26+1
equality (r.,) are subdominant, so that one obtains, for the (65
dominant contribution at> 7,

(61)

where X takes the values o), temperature fluctuatiork,

167G [z i5(k) polarization with positive parity, and®, polarization with
hi(k,n)z—z—ln<ﬂ)ﬂi(k) 287 , (62)  negative parity, for each perturbation mode. The index
HoQ, eq Y indicates the spin, and for tensor modas- =2. Since we

only consider tensor modes in this paper, we suppress the
where(), is the radiation density parameter today &l index 2 and just denote the two states-byand — in what
correspond to the redshifts at the moment of creation of they|lows. The description given in Ref6] applies the total
magnetic field and at matter radiation equality respectivelyangu|ar momentum method to panty even magnetic field
The functionj, is the spherical Bessel functidii9]. The  spectra: in this case, according to parity conservation the
term In(z,/zg) accounts for the logarithmic buildup of grav- suym over=+ can be replaced by a factor 2. In our case in-
ity waves fromz;, to zeq. For the spectr58) and(59) we  stead, we always need to sum over both states.
then obtain From the form off(k), the parity even CMB fluctuation
correlators can be expressed as

: 2
167G Zin)Jz(kn)
H(k, n)= Inf — f(k), 63 X ~XX X
167G [z ja(kn)]? whgrecfﬁﬁ' is the power spectrum induced by the purely
H(k,7) 2o, M 2 . g(k). helical part of the source term, proportional to
0=~r eq

A(p)A(]k—p|). The contribution of this helical part to the
parity even CMB power spectra is always negative, but, as

i H XX XX
The gravity wave power spectra are constant on large scale¥€ Shall see, the conditioid2) insures thaCyz), < Cigj; so

k<1 and decay and oscillate inside the horizon. that the power spectra do not become negative. o
Our first result is that a helical magnetic field induces a '€ nNew effectis that the helical part of the@;nagnetlEcBﬂeld
parity odd gravity wave component. From Ef1) itis clear, ~NOW a@lso induces parity odd CMB correlato€s, ™ andC¢~
that such a component is introduced whenever there are paige€ aisd7]). These are expressed in terms of the helical
ity odd anisotropic stresses. It could principle also be —Magnetic sourcg(k) which is proportional to the convolu-
detected directly, via gravity wave background detection exdion of A(k) with S(k) [see Eq(34)]. N
periments. We do not discuss this very hypothetical idea any We now derive the CMB fluctuations®; (7o.k),
further, but calculate the effect of such a component on CMEE; (70.K), B (70.k) and then perform the integrab5).

(64)

anisotropies and polarization. Rather than a numerical study, we present analytical approxi-
mations for our results. These are not very accurate, but al-
V. CMB ELUCTUATIONS low a discussion of the dependence of the correlatoragpn

andn,. We will also be able to determine the spectral index
Magnetic fields in the Universe lead to all types of metricof the CMB correlatorgdependence of) as a function of

perturbationgscalar, vector and tensor; for more details seeng andn, . At the present stage, we think this scaling infor-
[5]). In [6] it is shown that vector and tensor perturbationsmation is more interesting than accurate numerical results.
from magnetic fields induce CMB anisotropies of the sameThese can than follow for specific, interesting values of the
order of magnitude. In this paper we estimate CMB fluctuaspectral indices in future work. For a magnetic field with no
tions due to gravitational waves induced by a stochastic madielical component, this program has been carried out in Ref.
netic field, the spectrum of which contains an helicity com-[6], and we shall just refer to their results but not rederive
ponent, A(k)#0. Since the CMB signature of chaotic them here.
magnetic fields with only an isotropic spectrum is given in  Below, we shall always work in the approximation of “in-
detail in Refs[4,6], here we concentrate on the effects from stant recombination.” Moreover, in our approximations we
the helical part of the magnetic field spectrum, and we willdid not take into account the decay of gravity waves for
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modes which entered the horizon before decoupling. Our reA good approximation for the functiofi(k) is given in Ap-
sults therefore will be reasonable approximatiéwithin a  pendix A, Eq.(A9). The first term of Eq(A9) comes entirely
factor of two or s¢ only for <60, where the tensor CMB from the nonhelical compone, , and has already been
signal is largest. Even though, this may seem poor accuracygetermined in Refs[4,6]; the second term comes instead
here we only want to obtain estimates of the correct order ofrom the helical component, and its influence on @gis
magnitude of this anyway small effect. This will enable us tonew. We denote it b(x),. Then, splitting the induced tem-
judge for which cases a more involved numerical study isperature anisotropy power spectrum as
justified. 06 60 06
Ci= (S)e_C(A)ev (72)
A. CMB temperature anisotropies we obtain(now x, is renamed)

QA ( Zin)
Qr Zeq

Within the instant recombination approximation, gravita-
tional waves simply cause CMB photons to propagate along
perturbed geodesics from the last scattering surface to us.

2

: . ; . 4(4m)* 1\3
The induced CMB temperature anisotropies are given by (1@(: ¢5
(2na+3)I'2
~ 70 . . ~ A
O(79,k,n)= dnexp(—i(7o— n)k-n)hj;(k,7)nn; . )
Tdec Xp J(+3(X) nA_l X 2nA+3
(67) x J dx —
0 X4 nA+4 Xp

In the total angular momentum formalism this becomes (73

where we have setp=Kkp7o. We have introduced the “he-

@i(k, ) 4 (o - .
= f” dnh*(k, 7)j (k70— )], (68)

20+1  3),,. licity density parameter?), defined by
2
wherej; are the tensor temperature radial functions of the 0= B (koh)™ 3 if“Dﬂ( dps(k) B,
two different parities, both given bjyl1] AT 8mp. P " peJo k dlogk  8mp.’
(74)
3(+2)!]
o (X)=1\ /§ 56—2;@ (690  and analogously we will use
—2)
B2 ., 1 [fodkdpg(k) Bl
The somewhat unusual factor 4/3 comes from the fact that Qg= 8 (Kp\)Nsto= —f K dloak_ 8w’
this formula takes into account polarization, while EG7) Pe Pelo 9 Pe (75

does not. A detailed derivation can be found in Ré&f].
Using the solution(62) for h=(k, »), we obtain where we have introduced; =B} (kp\)""3, the field
strength at the cutoff scale kY, and correspondingly for

O (k, 7’0)2 A /E (€+2)! 8 n(ﬂ By,- With these definitions the results will be expressed en-
26+1 8 (€=2)![pcQd; "\ Zeq tirely in terms of physical quantities and the reference scale
o ja(X) Je(Xe=X) \ does no longer enter. PP
X 1% (K) =227 7 Remember also that @@*(BiA"A"°) /T “((na+4)/2)
Xee X (Xg—X)? =|Aq|% where|A| is the normalization of the helical com-

ponent of the magnetic power spectrim. The integral71)
_ 2 In( ﬁ)m ) Je+3(Xo) (52 (70 IS dominated ato=~C. With Xo/Xgec= 770/ 74e=60, this
pc); 3 means that our approximation is valid f6< 60.

If ny>—3/2, the first term in the square bracket in Eg.
where we have sex=k# and x,=kz,. For the second (73) dominates. Since the integral converges anq is maximal
~ sign we have used the approximatiéB5) given in  aroundk={/no<kp, we can replace it by the integral to
Appendix B for the integral ovek. This approximation is [nfinity and use Eq(B7) of Appendix B. This gives
valid only for Xge=K7gec= 1.

The general expressiof®5) for the temperature anisot-

Zeq Xo

ropy power spectrum now gives ) 06 32(4m)3 Q| Zgg ¢ \3
(A=
27 nA+4 anO
0o 16[ 1 7\ 1265 (kom0 J2,4(X0) [ Xo (2n,+3)T2
Col=z=|——Inl—|| = dxo———f| —|.
37 pcd; | Zeg 7590 Xo 70
(71 for npy>—3/2. (76)
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The temperature power spectrum has the well known behathe mentioned modifications fcIE(S)e A short calculation

ior of C,’s induced by white noise gravity wave§,o{.

gives

If na<—3/2, the second term in the square bracket of Eq.

(73) dominates, and we find

%In(ﬁ)z F(E—n)
oo 204m* [0z 2 A
o« 9\/; (2t 31 na+4\ I'(1—np)
2
na—1[ € \2Ma*6
" anO) for —3<n,<—3/2.

(77

Like for the symmetric contribution given in Refigt,6],
we get a scale-invariant spectrum fog= —3. The expres-

sions for€ZC(S)€ are obtained from those given above upon

replacing Q5 by Qg, ns by ng and I'?((ny+4)/2) by
I'?((ng+3)/2). For —3<ng<—3/2, one also has to replace

the factor o—1)/(na+4) by ng/(ng+3). We do not re-

peat these formulas here since they can be found in[BEf.

(up to some factors of order unity which are of no relevance

for this discussion
This is in principle the final result for temperature
anlsotroples Let us check th@(@A){ is indeed never larger

than C(S)g so that
Ce C(S)€ C(A)€/0

We first consideny=ng>—3/2. Then

coo B4F2 )(2n5+3)(kD)\)2(”A ns)
(A)[_
na+4
Clor B;‘rz( A= 2na+3)
|Ag)?2  2ng+3

- S 2,73 < (78

In the first equality we have inserted the definitions(bf
and Qg and the last inequality comes from Eq44) and
(13). If insteadng=n,<—3/2, we find

C@@ |A |2 ¢ 2(np—ng)
(A€ 0
=N(ny,ng) — ( ) , (79
C(S)( ATIS S(% ké(nS nA) kD 7o

whereN(n4,ng) is a function of the spectral indices and
ny. It is of order unity in the allowed range; 3<na<ng
<—3/2. Now kpny>¢ for all values of¢ for which our
result applies. Hence again

C(A)€

(80

=

C(S)(

Finally, we consider the case 3< nS< 3/2<n,, so that
we have to apply the resul76) for C(A)K and Eq.(77) with

Ko 70
4

C(A){,’ |A0| (
T2 2(ng—ny)
C(S)( SOkD s A

=

=

11

2ng+3
) (81)

since the first factor is less than one due to Egl and
kp> €/ ny with ng<—3/2.

Clearly, the helical component is maximal fap=ng,
where we may havpAy|=S,

B. The induced CMB polarization

Tensor perturbations induce bdpolarization with posi-
tive parity, andB polarization with negative parity. CMB
polarization induced by gravity waves has been studied for
example in Refs[11,21,23, while the contribution from a
magnetic field has been discussed[@?23]. Our aim is to
estimate the effect on the polarization signal from the helical
component of the magnetic field. Like for the temperature
anisotropies, we use the angular momentum method devel-
oped in Ref[11].

1. E type polarization

The integral solution foE type polarization from gravity
waves is given if11]. Again, we will work in the “instant
recombination” approximation. The order of magnitude of
our result is still reasonable fdr<60, since in this case also
we restrict ourselves to the evaluation of the superhorizon
scales spectrum. In our approximation we have

E{/(k 7]0) \[ . +
i 1 J”decdﬂh (k,m)e; [k(mo—n)].
(82
Here
N 1 je()  je(x)
& (0=7|~ic A
62
=—|—j,—2j,(x)| for €>1 (83
4| x2

is the E-type polarization radial function for the tensor
modg11], and for the last equality we have used the recur-
rence relations for spherical Bessel functigBd4), (B15).

We now use our solutior62) to expressh®(k,») in
terms ofI1= (k). With this, Eq.(82) becomes

E (K, 3[ 1 Zin X
¢ ( 7]0):\/: n = (k) d] )
2¢0+1 2| pcQ, Zeq Xdec
€2
X| =24+ —|j(Xg—X
(Xo—X)2 je(Xo=X)
11 Zin) Jeva(Xo)
=——|——In| —| |——=——II7(k
2L’(:Qr (Zeq \/X—O )
(84)
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where agairk=k»n andxy,=k7y, and we have evaluated the Again theE polarization power spectrum from the symmet-
time integral using approximatio(B9). Here we have also ric part of the magnetic field spectrum is obtained upon re-
neglected a term of the order of4/x3)J; . 3(Xo), which in  placement of, by ng andQ, by Q. Similar evaluations
principle is of the same order in the above expression, but ike the ones presented in the previous paragraph show
always subdominant once we perform the integral duer that

Since the power spectra for tHe polarization are parity

even, only the parity even part of thé" autocorrelatofEq.

EE_ EE

(37)] contributes to the expression f@:F derivable from CE™=Clg¢—Cw =0 (88)
Eq. (65). Again we present here only the effect coming from

the helical part of the magnetic field; using E49) we find 2. B type polarization

(Xo is renamedk) Like for E polarization, the integral solutions f& polar-

2 . . . K .
ization in the case of tensor perturbations are giveflid.

QA ( Zin)
_|n -
Q| Zgg

4(2m)* In the approximation of instant recombination we have
EE -3
(A= (kp70)
° (2np+3)I2 nat4 B7 (K, 7o) \[ - y
i 1 o Cd77 .17 B [K(70— 7)1,
f 2 na—1/[ x )2”A+3 (89)
dxx X)| 1+ — .
i +3(X) ot a | o
where
(85)
The corresponding equation fﬁr (5¢ can be found in Ref. . 1 J(( )
[6]. There, a somewhat different approximation than ours has Be(X)=%5 je(x)+2
been used for the time integral.
Forn,=—2, the integral ovek is dominated by the up- 1
per cutoff, xp =kp 7. Using the approximatioriB10), we = 5 —je(X)=jer1(x)| for€=>1. (90
obtain
QAI zn\ 7 With Eq. (62) we can write the above integral in terms of the
(4m)° o Mo ¢ \2 tensor sourcedl * (k):
¢2CEE — r €q
e 9 9 nA+4 kD Mo
(2na+3)T B (ko) _*\6 (Zn) . o [ axi2®
20+1  p ), Zeq Xdec
(1 forny>—3/2,
nya—1 X je(Xo—X)—] Xo— X
A for —2<na<—3/2, XO_XJe( 0= X) " Je+1(Xo—X)

3 [ Kkpmo +1 ( Zinq) Jera(Xo) .
- for na=—2. ~ in| =1 = (k),
2In( 2 or Ny 250, " 2, e (k)
\

9D
(86)
The result forCfg, is obtained upon replacing, by ngand ~ Where we have again used approximati&9). Like for the
Qa by Qg [more preC|ser the factdf?((n,+4)/2) has to  E polarization, in this case also it is the parity even part of
be replaced by'?((ng+3)/2) and the factor iga—1)/(n,  the m.agnetic sourcef,(k), which contributes to theC,.
+4) by ng/(ng+3)]. For —3<n,<-2, using Eq.(B7), Equation(65) takes the form

we obtain
QA Zln)}2 QAI (Zin)}z
(2CEE 2(2m)4 Qr \Zgq I'(—nay—2) o8B _ 4(2)4 O\ Zgq (ko mo)-3
A oV Nat4 3 A nata) P70
(2np+3)I? I'| —ny— 5) (2np+3)T2
nA_l { 2np+6 Xp nA_l X 2np+3
for —3<n,<-—2. Xf dxxF (x| 1+ — .
nA+4 kD770 0 nA+4 XD
(87 (92
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Note that within our approximation, fo>1, CPg, Qn [ zn\ ]2
=C{ay¢- This is also the case fdE(g), and C(g; see[6]. 42 Q—In -
Evaluating the integral using expressidg4.0) and(B7), for OE _ r eq (Kp77) 357
the different ranges of the spectral index, we obtain (A 9 np+4 bo
(2np+3)T2
2
2 _ 2n,+3
et i xfdexJM(X) ot i) ’
(4m)° Q, \z ¢ \? 0 x32 na+41Xp
02CBB ~ ' €a
(A 9 2 nA+4 anO (95)
(2ny+3)T . . .
We can evaluate this integral using E&7), and we find
(1 forn,>—3/2, Qa (Zin)r (3)
—In| — ri-
nya—1 4 3
A for —2<n,<—3/2, seoe _ 22M° L \Zeq 4 ( ¢
X< (nA+4)(2nA+4) (A¢ \/; 5 nA+4 5 kD7]0 ,
3 (komg (2n,+3)0 r 2
——In( forn,=-2,
L 2\ e for ny> —3/2 (96)
and
il i) rl-i)
~ - ~ - — A
- ~2(2w)4 QO \zgg 2C0E 2(2m)* O\ zgg 4
(A
na+4 9 nA+4 1
9\m (2na+3)T2 2 Vm (2na+3)T2 F(_Z_”A
F(—nA—Z) / ¢ 2np+6 nA—l ¢ 2np+6
X for na<-—2. X ,  for —3<np<—3/2.
T'(—na—3/2) | ko 70 nat4\kpmo
(93 (97)

In this case also, the contribution from the symmetric part

. _— ) of the magnetic field spectrum to th@-E correlator is al-
Again, the contributions from the symmetric part are Ob'ways larger than this helical part.

tained by replacing) 5 by Q05 andn, by ng, up to factors of
order unity and we find VI. CMB CORRELATORS CAUSED BY MAGNETIC
FIELD HELICITY

If the source(or the initial conditiony have no helical

CBB=CB8,—CB8,=0. (94)  component{TT* (k)T " (k"))=(TI"(k)TI~(k")), the above
’ correlators are the only nonvanishing ones. However, as soon
as the tensor magnetic source spectrum has a helical contri-

Within our approximation, which is better than a factor of 2, bution[see Eq/(38)]

we have C28=CEE. From ordinary inflationary perturba- 3 . - L,
tions one expect€2®= £ CEF for gravity waves, which is g(k)=— (I (I (k) = I (k) LT (k)) #0,

comparable to our findings. ) )
the parity odd CMB power spectra are nonzero. This has

o _ been observed first ifi7], where the vector contributions
3. Temperature ancE polarization cross correlation have been calculated. Here we compute the gravity wave
The symmetric part of the source terfi(k), can only .Contr|but|ons. We need agam to evaluate Eﬁﬁ); Taking
induce parity even CMB correlators. Besides the power spedito account that the gravity waves componentgk) are
tra for temperature anisotropies aBdand B type polariza-  directly proportional to the source componefiy. (62)],
tions analyzed in the previous subsections, it can also sour@d considering the parity of the radial functidisys. (69),
the cross-correlation between temperature anisotropyEand (83), (90)]
polarization. In order to evaluate this contribution, we have i+ —i~(x €5 (X)= e (X +x)=— B (X
to substitute into Eq(65) the integral solutions for the tensor JeCO=1e 00, er)=€ (. Be(x) Bl )(’98)

mode Eqgs(70) and(84), to obtain o .
it is clear that cross correlations between temperatureBand
063006-11
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polarlzanonC

spectraC{® andCE®.

A. Temperature and B polarization cross correlation

, and betweerk and B poIanzauonC ,
cannot vanish, since they are given by momentum mtegralsce =T
of g(k). Using the expression of the tensor integral solutions
0, (70, E; (84) andB; (91), we can calculate the power

PHYSICAL REVIEW D 69, 063006 (2004
2 [ 1

(Pch)z In (Zeq)
X<H+(k)H+*(k)—H_(k)H_

€5/2j d k2J€+3(X)‘]€+4( )

X7/2

*(k)).

The antisymmetric source functigi{k) is given in Eq.(51),
and the integral ovek can be calculated using E¢B7).
Note thatg(k) depends on both the spectral indicesand

(99

For temperature an8 polarization cross correlation we ng, and we will have to evaluate the integral dividing the

obtain after integrating over time

two caseq+ngs—2. We finally arrive at

Z.
o[ Zn
os_  8(4m)* fs24ln (Zeq) K )~ €5/2fde Je+3(X) I+ 4(X) na—1/[ x |"ATnst2
¢ = 5 na+4\ [ng+3 (kp70) 0 X ns+3 | xp
Qf(np+ngt2)T
2 2
Z.
4\/77/2(277)499(1A|n2(zi) ¢ 4
) natd net 3 anO) for ngtny,>-2,
Q%(ny+ng+2)T
2 2
4 C?B 4 5[ Zin ng ng 3
4(47)"QsQpln Zeq M-5-5-7 na—1/ ¢ )nA+ns+6
a nat+4) [ng+3 na ns 1| ngt+3\k
907 02(ny+ gt 2)T| A ( = (—7“—75—2 sT= 1o

Independently on the spectral indice€?CP® is always

negative for positived,.

In this case of temperature amlpolarization cross cor-

for —6<ngtn,<-—-2. (100

In the case,+ng>—2, the integral ik=Kk 7 is divergent,
and we need to evaluate it using approximaiiB@t2), which
gives

relation, we have computed the spectr(tf0) also numeri-
cally, in order to test the reliability of our analytical estima-
tion. The amplitude of the numerical result is bigger than the
analytic one by a factor of two or less, so within the error we
estimated for our approximatiorisee Appendix B We ex-
pect this to be one of the worst approximations due to the
relatively slow convergence gfdxJ, ., 3(X)J,+ 2(X)/X.

B. E and B polarization cross correlation

Following the same procedure as in the previous para-
graph, we can evaluate tlieandB polarization cross corre-

2~EB_

ag0, | 22
4(477)3 SQA eq

¢ na+4

5 r

Q%(ny+n +2)r( E)
r LA S

2
(1)

X
Kp 70

¢ 2
sin(2xD)(ﬁ) for ng+np>—2.

(102

lation created by the helical part of the magnetic field. Using

the formula(65), we get
Zln

Q0 4In2

2(4m)*

EB__ eq

It is not possible to assign a precise value to the variable
Xp= 1oKp , because of the unavoidable incertitude in the es-
timation of the magnetic field damping scale, which depends
on the amplitude of the magnetic field and is therefore

¢ na+4

2

Q2(ny+ngt 2)r(

2

X (kp 770)74JOXDdXX2~Je+3(X)J€+4(X)

I’IA— 1
ng+3

X )nA+nS+2

Xp

ng+3

smeared out over a certain range of scales. Therefore, we

) expect that the presence of the term skgj2most probably
leads to a considerable suppression in the amplitude of the
E—B cross correlation term.

Fornp+ng<—2, the momentum integral in EG10Y) is
dominated by the second term in the square brackets, and in
order to perform the integration, we need to distinguish two

(101 different cases: For-4<n,+ng<—2, the exponent ok is
still positive, so that we have to use the approximation given
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in Eq. (B12). A further distinction is therefore necessary, and tensor perturbations which are typically of the same or-

since the dominant term in approximati@®12) depends on

der. In this sense the tensor contribution can be regarded as

whether the exponent is above or below 1 as discussed in ti&n order of magnitude estimate for the full contribution.

Appendix:
Q50 aIN2 Zn
4(4m)° A zeq
¢2Ct®
nat4 ns+3
Q2(ny+ng+2)T r 5
na—1 (—1)¢ ( ¢ )2
sin(2Xp)
ns+3 Kp7no kom0
for —3<np+ng<—2; (103
Q50 aIN? ﬁ
4(4m)3 A zeq
€2CEB=
nay+4 ng+3
Q2(npy+ng+2)I 5
nA_l (_1)€+1 €2 na+ngt4
X —sin(2€2)( )
Ns+3 (kp7o)? Ko 770
for —4<np+ng<-—3. (109

As it has already been found in Refd,6], the C,’s are

proportional to
Qg\2 [z
2 TEB a2 Zn
cc{ g (q)

The first term is (5 /Q,)?=10"1%B/10"8 G)*, hence for a
primordial magnetic field of the order &=10 °to 10 8 G

we would expect to detect its effects in the CMB anisotropy
and polarization spectrum. He@= Bk, = B,(Akp)""2 is

the maximum value of thB field which is always the field at
the upper cutoff scale Rf which we also denote
by BkD'

In Eq. (106) Qg stands forQ)g or Q4 and in the above
expression foerD, n stands forn, or ng depending on

which contribution we are considering. The second term rep-
resents the logarithmic build up of gravity waves,
Inz(zm/zeq)z660 to 3100. Here the first value corresponds to
magnetic field generation at the electroweak phase transition,
T,,=200 GeV and the second value represents a possible
inflationary generation &af;,= 10> GeV. For scale invariant
spectrah,=ng= —3, the right hand side of E¢106) gives
roughly the amplitude of the induced CMB perturbations.
Taking into account the prefactor 243%/(9), scale
invariant magnetic fields produced at some GUT scdle,

(106

Both contributions are suppressed by the presence of the twe 10" GeV have to be of the order @=5=10""'G to
terms Sin(z’z) and Sin(XD) Since, usua"y one averages over contribute a 5|gna| on the level of about 1% to the CMB

band powers i (for the second casend alsoxp is not a

temperature anisotropies and polarization.

very sharp cutoff but has a certain width, as mentioned above !f the initial magnetic field is not scale invariant, the

(for the first casg

If —6<nj+ng<—4, the second term in the integrand o
Eq. (10)) still dominates, but since the exponentas now
negative, the integral converges and we can make use
approximation(B7)

040, 2( Zi”)
n R
¢2CE®B (4m)* i eq
c 9\/; nA+4 ns+3
Q2(npy+ng+2)T 5
ng ng 3
N=27272) nem1y € mrnsre
Na Ng ns+3 kDﬂo)
rf————- 1
2 2
for —6<np+ng<—4. (105

This result is not suppressed by oscillations.

VII. DISCUSSION AND CONCLUSIONS

scalesky and 7, suppress the results by factors ofKH.)

¢ and€/(kp 7o) which are much smaller than unity. Note that

the reference scal® introduced in Eqs(8), (9), does not

ter in the final results at all, since it is of course arbitrary.

As already discussed, the damping sdaleis given by
ko =val (Teg =v4%0.35 Mpc, andv, is the Alfven ve-
locity, va=(B)?/(4m(p+p)) for the magnetic field aver-
aged over a scale larger than the damping scale. Clearly,
va=102 so thatB does not induce density perturbations
larger than 10°. Therefore, the damping scale is of the or-
der of 1 kpc or less. The latter value is reached for maximal
magnetic fields which are of the order @)~10° G. On
the other handiy( 79— 74ed = 70 IS Simply the angular di-
ameter distance to the last scattering surface, which has been
very accurately measured with the WMAP satellii®], 7,
=d,=13.7+0.5 Gpc. So thakp 7,~ 10" or even larger, de-
pending on the magnetic field amplitude.

Our results differ somewhat, but not in a very significant
way from the results obtained in R¢6]. Since our magnetic
field spectra are either scale invariant or blue, the induced
spectra¢?C, are also either scale-invariant or blue. They
grow towards largé. It is therefore an advantage to choose
¢ as large as possible. However, in our calculations we have
not taken into account the decay of gravity waves which

In this paper we have computed CMB anisotropies due t@nter the horizon before decoupling. Our results are therefore
gravity waves induced by a primordial magnetic field. We correct only for€ < nq/ 4.~ 60. To be on the safe side, we
have mainly concentrated on the effects of a possible helicathoosef =50 in our graphics.

component of the field. Magnetic fields induce scalar, vector In Fig. 1, we show¢2C{XY)

(ay¢ at €=50 for the different

063006-13
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4

QA 2 2 Zin — 10| BkD

—| 2| = |=101 —>—| ,

Q, Zgq 10°G

and

—~ 2 2
?)— QAQS 2 Zin _ 10| BkD BkD
o 2 |n _— :10 9 9
E Qr Zeq 10° G/ \10° G

Note that the correlatoi6{™ andC{’® are always negative
and have to be subtracted fro8{5" which is of the same
order of magnitude or larger sin€s=() , andng=<n, . For

the limiting case)g=Q, andns=n,, the presence of an
helical component in the magnetic field spectrum can in prin-
ciple cancel the effect of the symmetric part on the CMB. In
that very particular case, the signature of the presence of a
magnetic field will appear only through the parity odd corr-
elators.

From Fig. 1 it is clear that only fon, s=—2 and (),
=s~10 >, the effect on the CMB will be of the order of a
percent or more. In Refl12] it has been shown that farg
> —2, magnetic fields witB, =101 G overproduce grav-
ity waves on small scales which is incompatible with the
nucleosynthesis bound, fox~1 Mpc. Here we require
Bszlo‘8 G so thatQpg remains a small fraction of the

radiation density throughout. TheB, =By _(\kp) """
<By, for n>—2. Therefore, by keepin@kD sufficiently

small, we automatically satisfy the bound derived in Ref.
[12]. The result is most interesting for the window of3
<ng=na=-2 and Q,=Q0¢~10"° which requiresB,_
=By,~10 *°G. Especially, if magnetic field helicity is
causally produced which impliess=2 andn,=3, this ef-

fect cannot be observed in the CMB since the parity violat-
ing terms are suppressed by about 15 orders of magnitude
(see lines in the lower right corner of the bottom panel of
Fig. 1.

FIG. 1. On the top panel we show the amplitudes of the parity In Fig. 2 we show the ratitﬁi((’f)g/C([’E)1€ for ng=—3 as
even correlators¢*C{{}} (solid, black, ¢>C{55) (dotted, redland  function ofn, . Again, we are mainly interested in the part of
ecyy’ (dashed, blueas a function of the spectral indew for  the graph with—3<n,<—2, where this ratio raises from
€=50. The logarithm of the absolute value GIC{})? is shown in  the order unity to about £0 Hence if a close to maximal
units of (%%/Q_r)z_mz(zn/zeo)- We do not plot¢“C{Z? which  helical magnetic field, with a spectrum not too far from scale
egu?Elgqu){? within our approximation. The spikesaf=—2for jnyariant, —3<ng<n,<—2 is produced in the early Uni-
€°C;~ and atn,=—3/2 are not real. They are artifacts due to the yerge it js more promising to search for its parity violating
breakdown of our approximations at these values. On the bottorf, s than for the parity even contributions.
panel we show the corresponding parity odd correlat6f&(35) We can conclude that helical magnetic fields with a spec-
(solid, black, (“Cga)¢ (dashed, red in units of QaQs/ 40 close to the scale invariant value,3<ng=nj< —2

02 IN%(z,/2¢g) for ng=—2.99 andng=2. In this last case, only the : .
allowed rangeny=ng=2 is plotted. Again the spike at,=1 for and close to maximal amplitudes on small Scaleib

ng=—2.99 and the precipitous dropat=—1 in ¢2C(5%), are due =10 10 G can lead to observable parity violating ter®&>
to the limitation of our approximation close to the transition and CE® in the CMB. Such magnetic fields might in prin-
indices. ciple be produced during some inflationary epoch where the
photon is not minimally coupled or via its coupling to the
guantities(temperature anisotrop¥ andB polarization and dilaton (see[24,25 for various proposal of magnetic field
correlatorg as a function oh, with ng fixed to 2 and—2.99.  production during an inflationary phaséiowever, so far no
We show the absolute value of the correlator in unitsconcrete proposal has ledng o= — 3, nor to the creation of

of a helical term. As we have shown, the effect is largely sup-

log(12C}Y)

-15

-20
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log(C®/CTE), log(CF®/CEE)

FIG. 2. We show the ratio of the correlato@{’®)/C{’® (solid,
black, and C{E®/C{E® for ng=—3 as functions of the spectral
indexny for € =50. The logarithm of the absolute value is shown in
units of O5/Qg<1. The spikes visible at certain values of the
spectral index, are mainly due to our relatively crude approxima-
tions.

PHYSICAL REVIEW D 69, 063006 (2004

Nevertheless, our calculation also demonstrates the effect
of parity violating processes during inflation which may lead
to a nonvanishing helical component of gravity waves,
#0; see Eq(59). In this case the above calculation can be
trivially repeated and will result in nonvanishing parity vio-
lating CMB correlatorsC? 0 andCEB+0. We think that
already this remark, together with our knowledge that at least
at low energies, nature does violate parity, should be suffi-
cient motivation to derive experimental limits on these corr-
elators.
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APPENDIX A: THE SOURCE FOR GRAVITY WAVES

In this appendix we present some details on how to com-
pute the gravity wave source functiofgk) andg(k). The
first step is to evaluate the two point correlator of the mag-

pressed and clearly unobservable for causally produced magetic field stress-energy tens@1): using Wick's theorem
netic fields, e.g., during the electroweak phase transition of22) and definition(1), after a longish but simple calculation

even later.

we obtain

1 1 - - —
<Tij(k)7'l*m(k,)>:Zwé(k_k,)j d*p{S(p)S(Ik— PN (8 = PiP1) (§jm— (k—P)j(k—P)m)

+(Sim=PiPm) (3)1 — (K= p); (K= P))]— A(P)A( k= P|)[ €1t €mePr(K— ),
+ €imr€jigPr(K—P)gl +iS(P)A(K— D)L €mr( 81t = PiP) (K—P)s + €jig( Sim— PiPm) (K—P)g]
+iA(p)s(|k_p|)[€ilt(5jm_(k/_\p)j(k/_\p)m)ﬁt+ fimf(5j|_(k/_\p)j(k/_\p)|)ﬁf]} + it Oim -

AlK)= —
The isotropic tensor spectrum in the case of a magnetic field k)= 4

spectrum without helicity term is derived i@]. Here we

concentrate on the source terms which contain the helical

part of the magnetic field spectrum.
By acting with tensor projector on E¢AL), we find ex-

pressiong33) and(34) for the symmetric and helical parts of
the source spectrum. Taking into account that the aggle

=k-(k=p)=(k—py)/Vk2—2kpy+ p?, we can rewrite the

two expressions which contai(k) in the form

(A1)
[

= [ apamadicph et

@amz) P e ke 2

(A2)

2 (4m)? 7P P Vk?—2kpy+ p?

+A |k— | 2 _M A3
(P)S(lk=p))| 2y K2~ 2kpy+ p’ (A3)
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The contribution tof (k) from S alone is computed in Ref.

[4]. There one finds

1 1

£S(K) =
(k)= 4 (4n)?

f d*pS(p)S(|k—p|)(1+9?)

(k—py)?

X1+ ——
k?—2kpy+ p?

(Ad)

We can now substitute the power law ans@y (7) for S

andA in these expressmns and try to calculate the |ntegraIS[0D—fo+fk

The integration overy= k- p is elementary, using
f dy(K?*+p®—2kpy)*?

1
=i (K+p?

_ (a+2)12
kp(a+2) 2kpy)

f dyy™(k?+ p?—2kpy)“?

m

= _ 7—(k2+ p2_

(a+2)/2
kp(a+2) 2kpy)

m
. m—1/1,21 ~2_ (a+2)12
+kp(a+2)dey (k“+p°—2kpy) .

(A5)

PHYSICAL REVIEW D 69, 063006 (2004

(k+p)a+2ni|k— p|a+2n
(kp)"

: (A6)

withn=1,2, ... (n+1). To evaluate the integral ovpr we

can expand those terms using the binomial decomposition
(1+Xx)%=1+ax+a(a—1)x?+--- . Since, in general, the
value of the exponent is not an integer, we need to truncate
the series somewhere, which is well justified onlyxi&1.

To achieve thls, we split the integral into two contributions,
In the first termp/k<<1, while in the second

k/p<1, which allows us to approximate EGA6) truncating
the binomial series at the second term,

(k+p)*—|k—p|*
a—1 1 a—3n3
2ak p+§a(a—1)(a—2)k p°, P<Kk,
- 1
2apa_1k+§a(a—1)(a—2)p“_3k3, p>k
(A7)
and
o1t k(e 2k*+ a(a—1)k* 2p?, p<k,
( +p) +| _p| - Zpa+a(a_1)pa—2k2’ p>k
(A8)

This last integration by parts has to be performed in the

worst cases three times, reducing the poweof y from 3
down to O.

Since we are integrating over the interval —1,1], we
get a series om+1 terms of the form

We then perform the integration over For each contribu-
tion we keep only the terms which, depending on the value
of the spectral index, may dominate the result. So, we finally
obtain, fork<kp

3 2p2 12
f(k)z A (277) B)\ (Ak)2n3+3 )2n5+3
4d7(2ng+3) ng+3
2r
2
N (2m)’B5 1 2np+3 a—1
— A 2np+3
2m(2na+3) | Jnaray | | Mo T g (MTA (A9)
2
=A )\2ns+3 k2n3+3+ Ns k2n5+3 —A )\ZnA+3 k2nA+3+ nA_1k2nA+3 (A]_O)
s ° ns+3 A D nat+4
2 Ak (217)2Bi (277)265 Ne+np+2 ng+np+2
g(k)zﬁ(nernAJrZ) (ns+3) na+4 (Nkp)Ts™ma + ()\k) s (A11)
2T
2
1/ k Ng+np+2
~ ngtnp+2 Na—
=CkA(Nkp)"sT"ATA 1+ —r net 3 kD) , (A12)
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where the coefficients are given by the magnetic field ampliperform an integration ovek. For ¢ fixed, this integral is

tudes at scalé:

A3 (2m)%B2 |2
As= 47(2ng+3) ng+3 (AL3)
2r
2
A8 (2m)°B2 2
An= 127(2n,+3) nA+4)
r
2
(A14)
; 2 A3 (27)%B2
" 37 (ng+tNa+2) ns+3)
r
2
(2m)?B2
W (A15)
2

The first part off(k), which is the contribution from the
symmetric part of the magnetic field power spectrum, has

been taken fron{4,6]. The singularities ahg, ny=—3/2
respectively and atg+n,= —2 are removable.

APPENDIX B: USEFUL MATHEMATICAL RELATIONS

1. Integrals of Bessel functions

In Sec. V, we use approximate solutions for the three in-

either dominated by the contribution lajo=X,= € or at the
upper cutoff,ky . For the integrals which are dominated at
Xo=Kkmo~¢, the inequalityxy<1 is equivalent tof =xq
=60Xge=60. In some cases, however, our integral dves
dominated at the upper cutokfy with 74.&p>60 and of
course alsorgkp>60. Since for¢ =60, the dominant con-
tribution to the integral comes from< 60, our inaccuracy of
the boundary will not invalidate the approximation also for
this case.

The approximation in the upper boundary of the integral,
Xo— Xgec=Xg Makes us miss the characteristic decay of fluc-
tuations on angular scales corresponding 360.

To make the first integral in EqB1) solvable analyti-
cally, we now modify the powers gfandxy,—y. Taking into
account that the spherical Bessel functjg(x) has its maxi-
mum value ak=v, we make the attempt:

ond J2(X) Je(Xo=X)
X —
0 X (xg—X)?

:zjxodXJs/z(X) Je 12 Xg—X)
2Jo x32 (xg—x)%?

T [2 (% Js(Xo—Y) Jer1AY)
_E\/QL e el

tegrals
7 2 Jea(Xo) (B3)
jXO dsz(x) Je(Xo=X) JXO dsz(X) Je(Xo—X) 5 V56 x2
Xdec X (XO_X)2 , Xdec X (XO_X) '
X0 ja(X) For the last equality, we have used 6.581.22%],
dx je(Xg—X). (B1)
Xdec
These integrals are solvable only by numerical method. a o1 4
However, the aim of this paper is to give an approximate 0 dxx™(a=x)"Jp(x)Jq(a=x)
analytic result. In this appendix we therefore derive and test
analytic approximations to the above integrals. To achieve ob % (—1)™(b+p+m)[(b+m)
this, we first modify them slightly, in order to make them = a0 mIT (o)L (pLm+ 1)
solvable analytically. Then, we adjust the result obtained in 4 m=0 ' P
this way by comparing it with the exact numerical integra- X (b+p+q+2m)Jps i s 2m(a)
tion.
Let us concentrate, as an example, on the first integral. We [Re(b+p)>0, Req>0] (B4)

first perform a variable transform o= x,—Xx. The integra-
tion boundaries then become 0 axyt- X4e.. Below, we de-
rive an approximation for
JXOj 2(Xo=Y) je(y)
—— ——dy.
0o XTYy o y"
Since Bessel functions change on a scale~1, this ap-

proximation is good for the integrals in EqB1) if Xgec
<1. After the integration ovek in Eq. (B1) we have to

and the recurrence relatiod,_1(x)+J,.1(X)=(2v/x)J,
(9.1.27 of[19]), keeping only the highest order terms4n

We can now compare this approximated analytic result with
an exact numerical integration. Since the analytic result is
again a Bessel function divided by a power law, it has a
maximum atx,=¢, and its envelope has a power law decay
for xo>¢. These two characteristics are very well
reproduced by the numerical result, which however decays
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FIG. 3. In both panels, as a function x§: the green dotted line shows the numerical value of the integral i), the blue, long
dashed line shows the analytic approximafioght-hand side of Eq(B5)], and the red, solid line shows the numerical value of inte@8)
if XgeciS NOt put to zero. All these functions are squared, and multipliegibyhis gives us an indication of the result, after the integration
overXxg, as stated in EqB6). In the left panelf =50; in the right panel =200. First of all, we note that it appears clearly that the value
of the integrals is dominated ay=¢, and that the function goes to zero quicker tb@’ﬁ, which justifies our approximatiory— o and
the use of formuldB7). Secondly, we note that fdt=50 andxy,~ €, our approximatioriblue, long-dasheds good for both the integrals.
However, if € =200, the approximation overestimates the correct numerical result by about a factor of ten.

somewhat faster; it turns out that a better approximation is proximation underestimates the numerical result by about a
factor of two; for € =40, the error reduces to 15%, and is
. . always smaller for larger values 6t
fxodxw J((Xo—X) 1. [3€ J¢+3(%0) (B5) Figure 3 shows the numerical result for the integral in Eq.
0 X (xp—x)2 3V 2 xg ' (B5) (green, dotted ling together with its analytical approxi-
mation[the right hand side of EqB5), blue, long dashed
vgnd a numerical evaluation of the same integral wkgnis
not set to zerdred, solid. For small values of (in the left
hand panel of Fig. 3¢ =50), Eq.(B5) is a good approxima-
tion in the regionxy=¢. However, if {>60 settingXqec
—0 causes a large overestimation of the result. In the right

To estimate the goodness of our approximation, let us no
take into account the integration overas in Eq.(65). What
we are finally interested in iKEq. (73)]

Xp J%+3(Xo) Na—1[xq|2Na*3 hand panel of Fig. 3 it is shown that, fé= 200, the differ-
f dxox3 5 1+ e (B6)  ence between the integral with lower bound 0 and the one
0 Xo A b with lower boundxge is of more than a factor of ten. Con-

sequently, as already stated before, we can rely on all our
As already discussed in the main text, this integral is alwayspproximations only foi <60.
convergent and dominated by the contribution arougd We proceed now to evaluate integré®6). Since xp
=¢: we should therefore make sure that our approximation=kp7,=10P, for <60, integral(B6) can be calculated in
is good around that value. We have that for 30, our ap- the limit xp—, using formula 6.574.2 di26]:

p+gq—b+1
P ————
dxJ,(X)J (X)X P= Rep+g+1)>Reb>0]. (B7
fo (X1 g(X) —p+q+b+1\ [p+g+b+1| [p—g+b+1 [Re(p+q+1) I (B7)
2°T 5 r 5
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This approximation is used for example in E¢g6), (77).

With the same procedure we can approximate the seconc

integral of Eq.(B1), for which we find ¢ <60)

)
dx

Xdec

120¥) Je(Xo—x) 1

1 [30J¢13(%0)
X (X%—x) 3V2 2

(B8)

This approximation underestimates the numerical result with 1

an error of about 40% fof =30, which reduces to 20% at
€=60. In this case also, the integral ovey is convergent,
and we can proceed as before.

The situation is different for the third integral of E@1).

In this case, the numerical result is approximated by the fol-

lowing function (€ =60):

o jaX) 1
X —je(xo=X)=3

Xdec

(B9)

\EJHs(Xo)
5 WX

It is clear that if we insert this function in an integral like Eq.
(B6) we cannot perform the limixy—cc since this integral
is dominated at the upper cutoff. Consequently, we need

good approximation for the behavior of the integral for large

values ofxy—Xp . In this case, we no longer require our
approximation to be accurate ga§=¢, but we concentrate
on its behavior for high values of, which will dominate in
the integral overx,. Figure 4 shows the approximation for

€ =30, which overestimate the numerical result by an error

within 1%.

We also have to evaluate the integral oxgdx, of the
square of Eq.B9), which we encounter in two different
cases. The firstsee Sec. V Bis of the kindngdxprﬁ(x).

For p<O this integral converges and we may evaluate it in

the limit xp—, in which it is of the form(B4). For p>0

PHYSICAL REVIEW D 69, 063006 (2004

1000 T T T TTTTT T

T T TTTTIT
11 11l

100

T IIIIIIII
L1 11111l

10

T |I|I|I||
Al S

T IIIIIIII

0.1

0.01
10

x0

FIG. 4. We plot the value of integrdB9) squared and multi-
plied by xg as a function of,, for €=30. The green, dotted line
represents again the numerical resulj.(—0), and the blue, long
dashed line is the analytic approximation. In this case the slope is
positive, and hence the integrdk,/x, of this function is domi-
nated by the upper cutoff.

a

Je(X)Jg41(X)

- eood o2t lood -3
_RCO X_(2€+1)Z co x—(2€+3)z

Frood et s e 1]
Rco X_(2€+1)Z sin| x—(2€+1)z

€+1
2

e+l
’77) %cos&x),

1 (
—sin| 2x—
X

(B11)

and xp> €2, the integral can be approximated using theSO that forp>0

asymptotic expansion of,(x) for large argumentg19],
Jo(X)~+2/(7X) cogx—(2¢+1)w/4]. Approximating the os-
cillations by a factor of 1/2, we obtain

p
. p>0,
*D 2 *o 2 &
dxxPJg(x)= £odxxPI5(x) =
W”(e ) P
(B10)

For the second caséngX)@Je(x)Jﬂl(x), which we en-

| P a,003:400

-1 €+1 ~y
= %j dexxp‘1 cog 2x)
¢

(__1)€+l
= ———(xB " sin(2xp) — €27 sin(2¢2)).
(B12)

In the limits to which we have restricted ourselves, we al-
ways havexp>€2. Consequently, the dominant contribution
in the last expression can be given either by the first term in

counter in Sec. VI, we use again the large argument approxihe bracket, ifp>1, or by the second term, f<1. Numeri-

mation for the Bessel functions, foe> €2,

cal checks show that the approximation is gooddorl, but

063006-19



CAPRINI, DURRER, AND KAHNIASHVILI PHYSICAL REVIEW D 69, 063006 (2004

it is rather poor in the second cages.1. Since we shall not 2. Recurrent relations for spherical Bessel functions

be very much interested in this case, we do not go any fur-

ther in this work.
When evaluating expressidB7), we often also use

22)(—1 1
I'(2x)= rrix+-
(20=—=Tx) 2)
I'(xt+a) a-b a-b-1
m"“x +O(x ) forx>1
(B13)

[see Eqs(6.1.18 and(6.1.47 of [19]].

We use several recurrence relations for spherical Bessel
functions in our derivations, most notably

€+1 , _
10 (0=]e-1(%) (B14)
and
¢ . .
=T =] 1(%). (B15)
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