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Cosmic microwave background and helical magnetic fields: The tensor mode
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We study the effect of a helicity component of a primordial magnetic field on the tensor part of the cosmic
microwave background temperature anisotropies and polarization. We give analytical approximations for the
tensor contributions induced by helicity, discussing their amplitude and spectral index in dependence of the
power spectrum of the primordial magnetic field. We find that an helical magnetic field creates a parity odd
component of gravity waves inducing parity odd polarization signals. However, only if the magnetic field is
close to scale invariant and if its helical part is close to maximal, the effect is sufficiently large to be
observable. We also discuss the implications of causality on the magnetic field spectrum.
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I. INTRODUCTION

The observed Universe is permeated with large scale
herent magnetic fields. It is still under debate whether th
magnetic fields have been created by charge separation
cesses in the late Universe, or whether primordial seed fi
are needed. Recently, it has been proposed@1# that also ‘‘he-
lical’’ magnetic fields, i.e., fields with a nonvanishing com
ponent in the direction of the current,B•(¹3B)Þ0, could
be produced e.g. during the electroweak phase transition~see
also @2#!.

Extended studies have already investigated effects of
chastic magnetic fields with vanishing helicity on the cosm
microwave background~CMB! ~see@3–6# and others!. In a
seminal paper@7#, Pogosian and collaborators have inves
gated the possibility that a helical magnetic field can indu
correlations between the temperature anisotropy and thB
mode CMB polarization.

In this paper we want to go beyond that work. We det
mine all the effects on the CMB induced by a helical ma
netic field. We shall actually show that, contrary to the sta
ment in Ref.@7#, a helical component also introduces pu
CMB anisotropies and polarization. But of course its m
remarkable effect is the above mentioned correlation of te
perature anisotropy andB polarization. We shall show tha
also a correlation betweenE andB polarization is induced.

In this paper we discuss only the tensor mode, grav
tional waves, since the calculations for this case are simp
Even if the resulting observational effects are small and m
not be detectable, we find it interesting since it is complet
new and contains several surprising elements. Furthermo
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fluid vorticity field or nonparity invariant initial spectrum o
gravitational waves produced during inflation could indu
very similar effects; in that sense our results are more gen
than their derivation.

In the next section, we discuss the magnetic field sp
trum and define its symmetric and helical contribution
Then we compute the tensor component of the magnetic fi
energy momentum tensor which acts as a source for gra
waves. In Sec. IV we determine the induced gravity wa
spectrum which also has a symmetric and a helical contr
tion. In Sec. V we compute the induced CMB temperatu
anisotropy and polarization spectra as well as the above m
tioned correlations. Finally, we discuss our results and d
some conclusions. The paper is complemented by an App
dix where details of calculations and tests of some appro
mations can be found.

II. THE MAGNETIC FIELD SPECTRUM

We consider a primordial stochastic magnetic field crea
before equality, during the radiation-dominated epoch~or
earlier!. During this period of the evolution of the Univers
the conductivity of the primordial plasma on scales larg
than the Silk scalel.lS is very high, effectively infinite
@8#. Hence, the ‘‘frozen-in’’ condition holds,E52v3B,
where v is the plasma flux velocity,E is the electric field
induced by plasma motions andB is the magnetic field.
Moreover, large scale magnetic fields always induce an
tropic stresses, so that their energy densityB2/8p must be a
small perturbation, in order not to break the isotropy of t
Friedmann-Robertson-Walker background. This allows us
apply linear perturbation theory. Both, the magnetic field e
ergy and the plasma peculiar velocity are treated as first
der perturbations; consequently, the energy density of
induced electric field will be 3rd order in perturbation
©2004 The American Physical Society06-1
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theory, and can be neglected. Also termsEiBj are of second
order and therefore neglected.

At sufficiently large scales, it is possible to neglect t
effects of back reaction of the fluid on the evolution of t
magnetic field: the time dependence decouples from the
tial structure, and, due to flux conservation, the magn
field evolves likeB(h,x)5B(h0 ,x)/a(h)2, where we use
the normalizationa(h0)51 and a subscript 0 denotes toda
At smaller scales however, the interaction between the fl
and the magnetic field becomes important, leading mainl
two effects: on intermediated scale, the plasma underg
Alfvén oscillations, andB2(k)→B2(k)cos2(vAkh) @where
vA

25B2/(4p(r1p)# is the Alfvén velocity, andB is the field
averaged over a scale of ordervAh); on very small scales
the field is exponentially damped due to shear visco
@3,4,9,10#. As in Ref. @4#, we will account for this damping
by introducing an ultraviolet cutoff at wave numberkD(h) in
the spectrum ofB ~see also@6#!.

Following Refs.@1,7#, we introduce an helicity compo
nent A(k) in the magnetic field two point correlation func
tion:

^Bj~k!Bl* ~k8!&5
~2p!3

2
d~k2k8!@Pjl S~k!1 i e j lmk̂mA~k!#,

~1!

where S(k) and A(k) are respectively the symmetric an
helical part of the magnetic field power spectrum.Pi j [d i j

2 k̂i k̂ j is the usual transverse plane projector satisfying
conditionsPi j Pjk5Pik , Pi j k̂ j50, e i j l is the totally antisym-
metric tensor, andk̂i5ki /k. We use the Fourier transforma
tion convention

Bj~k!5E d3x exp~ ik•x!Bj~x!,

Bj~x!5
1

~2p!3E d3k exp~2 ik•x!Bj~k!. ~2!

For simplicity, as in Refs.@4,6# and others, we shall assum
that the magnetic field is a Gaussian random field. Then
the statistical information is contained in the two-point co
relation function and the higher moments can be obtained
Wick’s theorem.

As explained in Ref.@7#, the magnetic field helicity is
determined by^B•(¹3B)&. For a better physical under
standing of the effects which this new helicity term has
CMB anisotropies, it is useful to introduce the orthonorm
‘‘helicity basis’’ (e1,e2,e35 k̂) ~see also@7,11#!, where

e6~k!52
i

A2
~e16 ie2!, ~3!

and (e1 ,e2 ,e35 k̂) form a right-handed orthonormal bas
with e25 k̂3e1. Under the transformationk→2k we choose
e2 to change sign whilee1 remains invariant. The basi
(e1,e2,k̂) has the following properties:e6

•e7521, e6
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•e650, and e6(k)5e7(2k), as well asi k̂3e656e6.
The components of a vector with respect to this basis will
indicated by a superscript6. For a fixed (k-independent!
basis we will instead use the usual Latin letters as indic
An arbitrary transverse vectorv can be decomposed asv
5v1e11v2e2. Herev1 is the positive helicity componen
andv2 is the negative helicity component.

With the definition ~1!, and the reality condition
„B6(k)…* 52B6(2k), we obtain the connection betwee
the power spectraS(k), A(k) and the magnetic field compo
nents in the new basis:

2^B1~k!B1~2k8!1B2~k!B2~2k8!&

5~2p!3S~k!d~k2k8!, ~4!

^B1~k!B1~2k8…2B2~k!B2~2k8!&

5~2p!3A~k!d~k2k8!. ~5!

In other words,A(k) represents the difference of the expe
tation values of the positive and negative helicity field co
ponents. If A does not vanish, the left handed and rig
handed magnetic fields have different strength.

We assume that both the symmetric and helical terms
the magnetic field power spectrum~1! can be approximated
by a simple power law@7#:

S~k!5H S0 knS, for k,kD ,

0 otherwise
~6!

and

A~k!5H A0 knA, for k,kD ,

0 otherwise
~7!

whereS0 , A0 are the normalization constants, andnS ,nA the
spectral indices of the symmetric and helical parts resp
tively.

With Eqs.~6!, ~7!, we can express the normalization co
stantsS0 and A0 in terms of the averaged magnetic fie
energy densityBl

2[^B(x)•B(x)&ul , and the absolute value
of the averaged helicityB l

2[lu^B(x)•„“3B(x)…&uul re-
spectively, both smoothed over a sphere of comoving rad
l. Bl measures the amplitude of helicity on the given c
moving scalel.

In order to calculate these quantities, we convolve
magnetic field and its helicity with a 3D-Gaussian filter fun
tion, so thatBi→Bi* f l , where f̂ l(k)5exp(2l2k2/2). The
mean-square valuesBl

2 andB l
2 are then given by the Fourie

transform of the products of the corresponding spectraS(k)
andkA(k) with the square of the filter functionf̂ l :
6-2
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Bl
25

1

~2p!3E d3kS~k! f̂ l~k!25
S0

~2p!2

1

lnS13
GS nS13

2 D ,

~8!

B l
25

l

~2p!3E d3kkuA~k!u f̂ l~k!2

5
uA0u

~2p!2

1

lnA13
GS nA14

2 D . ~9!

In order not to overproduce long range magnetic fields
helicity as k→0, we require for the spectral indicesnS.
23 andnA.24 @for nS<23 andnA<24 the integrals~8!
and ~9! diverge at smallk].

Using Eqs.~8!, ~9! and the definition of the magnetic fiel
spectrum~1!, we can rewrite expressions~4! and ~5! in the
form ~see also@7#!

2^B1~k!B1~2k8!1B2~k!B2~2k8!&

5~2p!5
l3Bl

2

GS nS13

2 D ~lk!nSd~k2k8!, ~10!

^B1~k!B1~2k8!2B2~k!B2~2k8!&

5~2p!5
l3Bl

2

GS nA14

2 D ~lk!nAd~k2k8!, ~11!

for k,kD and 0 fork.kD .
Using that

lim
k8→k

u^„k̂3B~k!…•B~2k8!&u< lim
k8→k

^B~k!•B~2k8!&

we can conclude that

S~k!>uA~k!u. ~12!

SinceS(k)}^uBu2&, it is clear thatS(k)>0. The reality con-
dition requiresA0 to be real, but it can be either positive o
negative. For Eq.~12! to be valid on very small values ofk
requires

nA>nS . ~13!

Applying Eq.~12! also close to the upper cutoffkD , we have
in addition

uA0u<S0kD
nS2nA . ~14!

In terms of the magnetic fields on scalel this gives roughly

B l
2,Bl

2~kDl!nS2nA. ~15!

Usually the damping scale is much smaller than the phys
scale of interest,l so thatlkD@1. Therefore, ifnS2nA
Þ0, the helical contribution is significantly suppressed on
06300
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scalesl.lD51/kD . As we now show, this is always th
case if the magnetic field is causally produced.

Most mechanisms to produce magnetic fields with a h
cal component are causal. By this we mean that all corr
tions above a certain scale, usually some fraction of
Hubble scale at formation, have to vanish. If this is the ca
causality implies an additional interesting constraint, wh
we now derive. For this we assume that the correlation fu
tions ^Bi(x)Bj (y)& and ^Bi(x)„¹3B(y)…j& have to vanish
for ux2yu.R for some scaleR. Hence they are functions
with compact support, which implies that their Fourier tran
forms, Pi j S(k) ande i j l k̂lA(k) are analytic functions. There
fore, for sufficiently small values ofk they can be approxi-
mated by power laws as in Eqs.~6!, ~7!. Since k̂ j is not
analytic butkk̂j is, this implies

nS>2 and nA>1, ~16!

wherenS has to be an even integer whilenA has to be an odd
integer. But since we neednA>nS , this leaves us with

nS>2, an even integer and ~17!

nA>3, an odd integer. ~18!

Causality together with the condition~12! leads to an addi-
tional suppression of helical fields on large scales. Also
dinary causal magnetic fields cannot be white noise but
severely suppressed on large scale due to the non-ana
pre-factorPi j in the power spectrum which is a simple co
sequence of the fact that magnetic fields are divergence
¹•B50. This has already been discussed in Refs.@4,12#.
The causality constraint need not to be satisfied if the m
netic fields are generated before or during a period of in
tion where the causal horizon diverges. For a detailed disc
sion of causality see@13#.

III. MAGNETIC SOURCE TERM FOR TENSOR METRIC
PERTURBATIONS

The anisotropic stresses which act as source for me
perturbations are given by the magnetic field stress ten
@14#

t i j ~k!5
1

~2p!3

1

4pE d3pFBi~p!Bj* ~p2k!

2
1

2
Bl~p!Bl* ~p2k!d i j G . ~19!

Here we are interested in the generation of gravitatio
waves, and consequently we need to extract the transv
and traceless part oft i j . The form of a general projection to
extract any mode~scalar, vector or tensor! from a generic
tensorial perturbation can be found in@15#. We make use of
the tensor projectorTi jlm5Pil Pjm2 1

2 Pi j Plm ~see also@4#!.
The tensor contribution tot lm is given by

P i j 5S Pil Pjm2
1

2
Pi j PlmD t lm . ~20!
6-3
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Moreover, since the magnetic field is a stochastic varia
we need to calculate the two point correlation tensor
t i j (k), which takes the form

^t i j ~k!t lm* ~k8!&5
1

~4p!2

1

~2p!6E d3pE d3q^Bi~p!

3Bj~k2p!Bl~2q!Bm~q2k8!&1•••d i j

1•••d lm , ~21!

and we are not interested in terms proportional tod i j and
d lm , which after being projected out will not contribute
the final result for the tensor perturbation^P i j P lm& ~see Ap-
pendix A in @6#!. Before applying the tensor projection, w
can simplify the right hand side of Eq.~21! using Wick’s
theorem, expressing the four point correlators in terms of
two point ones,

^Bi~k i !Bj~k j !Bl~k l !Bm~km!&

5^Bi~k i !Bj~k j !&^Bl~k l !Bm~km!&1^Bi~k i !Bl~k l !&

3^Bj~k j !Bm~km!&1^Bi~k i !Bm~km!&^Bj~k j !Bl~k l !&.

~22!

Since the two point correlation function given in Eq.~1! is
not symmetric, we are not allowed to change the order
indicesi , j ,l ,m inside an expectation value. With Eq.~1! we
can then compute the correlation function~21! which con-
sists of a purely symmetric part proportional
*d3pS(p)S(uk2pu), a purely helical part proportional to
*d3pA(p)A(uk2pu), and mixed term,i *d3pS(p)A(ukÀpu)
@the full expressions are given in Appendix A, Eq.~A1!#. The
first two terms contribute to the symmetric part of the tw
point correlation function of the tensor source, while the t
latter terms give rise to a helical contribution. To expre
them we now introduce the two point correlation function f
the tensor source, which can be parametrized as

^P i j ~k!P lm* ~k8!&[
1

4
@Mi j lm f ~k!1 iAi j lmg~k!#d~kÀk8!,

~23!

where the tensorsMi j lm andAi j lm are given by

Mi j lm[Pil Pjm1PimPjl 2Pi j Plm , ~24!

Ai j lm[
k̂q

2
~Pjme i lq1Pil e jmq1Pime j lq1Pjl e imq!.

~25!

Clearly, bothMi j lm andAi j lm are symmetric in the first and
second pair of indices.Mi j lm is also symmetric under th
exchange ofij with lm while Ai j lm is antisymmetric under
this permutation. We shall often use simple properties lik

Mi j i j 54, Mi i lm5Mi j l l 50 ~26!

PqiMi j lm5Mq jlm , PqiAi j lm5Aq jlm
~27!
06300
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Mi j lmMi j lm5Ai j lmAi j lm58 ~28!

Ai j lmMi j lm50, Ai j i j 5Ai i j l 5Ai j l l 50.
~29!

According to Eq. ~20!, we have now to act on
^tab(k)tcd* (k8)& with the tensor projector

P i j lm
abcd~ k̂,k̂8!5S PiaPjb2

1

2
Pi j PabD ~ k̂!

3S PlcPmd2
1

2
PlmPcdD ~ k̂8!. ~30!

In these calculations we do not need to care about the p
tion ~up or down! of Latin indices as they are always con
tracted by a Kroneckerd. The symmetric and antisymmetri
parts of Eq.~23! are invariant under the application of th
projector~30!, so that it is easy to separate the symmetric a
helical parts of the source spectrum,f (k) andg(k):

d~k2k8! f ~k!5
1

2
Mabcd̂ tab~k!tcd* ~k8!& ~31!

d~k2k8!g~k!5
2 i

2
Aabcd̂ tab~k!tcd* ~k8!&.

~32!

Moreover, by applying the tensorMi j lm to Eq. ~A1! of Ap-
pendix A, we obtain~the first term of this has already bee
computed in Refs.@4,6,12#!

f ~k!5
1

4

1

~4p!2E d3p@S~p!S~ uk2pu!~11g2!~11b2!

14A~p!A~ uk2pu!~gb!#, ~33!

whereg5 k̂•p̂ andb5 k̂•(k2p̂). Note that the square of th
helical part of the magnetic field spectrum~1! contributes to
the symmetric part of the source spectrum. This is not s
prising, since the product of two quantities with odd par
has even parity. The antisymmetric part of the source sp
trum is obtained by acting withAi j lm on Eq.~A1! of Appen-
dix A. It is given by the mixed terms,

g~k!5
1

~4p!2E d3pS~p!A~ uk2pu!~11g2!b. ~34!

We can also express the correlator~23! in terms of the basis
ei j

6 introduced in@11#,

ei j
652A3

8
~e16 ie2! i3~e16 ie2! j . ~35!

These form a basis of tensor perturbations, satisfying
transverse-traceless conditiond i j ei j

650, k̂iei j
650 andei j

6ei j
7

53/2. Positive circularly polarized gravity waves are prop
tional to ei j

1 , while negative circularly polarized gravity
waves are given by the coefficient ofei j

2 . In this basisP i j is
expressed as
6-4
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P i j ~k![ei j
1P1~k!1ei j

2P2~k!. ~36!

We can rewritef (k) and g(k) in terms of the component
P6 as

d~k2k8! f ~k![d~k2k8!uP~k!u2

5
3

2
^P1~k!P1* ~k8!1P2~k!P2* ~k8!&,

~37!

d~k2k8!g~k!52
3

2
^P1~k!P1* ~k8!

2P2~k!P2* ~k8!&. ~38!

Here we have used the form ofM andA in this basis,

Mi j lm5
4

3
@ei j

1
^ elm

2 1ei j
2

^ elm
1 #

Ai j lm5
4i

3
@ei j

1
^ elm

2 2ei j
2

^ elm
1 #,

and the simple properties ofMi j lm and Ai j lm mentioned
above. Other useful relations are

^P2~k!P1* ~k8!1P1~k!P2* ~k8!&5
2

3
d~k2k8! f ~k!

~39!

^P1~k!P2* ~k8!2P2~k!P1* ~k8!&5
2

3
d„k2k8…g~k!

~40!

^P1~k!P2* ~k8!&5
1

3
d~k2k8!~ f ~k!

1g~k!!. ~41!

Similarly, defining the usual linear polarization basis

ei j
T 5~e13e12e23e2! i j

ei j
35~e13e21e23e1! i j , ~42!

and the components ofP with respect to this basis,

P i j 5PTei j
T 1P3ei j

3 , ~43!

we obtain also

^PT~k!PT* ~k8!1P3~k!P3* ~k8!&5d~k2k8! f ~k!
~44!

^P3~k!PT* ~k8!2PT~k!P3* ~k8!&5 id~k2k8!g~k!.
~45!

With Eqs.~33!, ~34!, we find
06300
f ~k!1g~k!5
1

4

1

~4p!2E d3p@S~p!~11g2!

12A~p!g#•@S~ uk2pu!~11b2!

12A~ uk2pu!b#. ~46!

Let us introduce the tensor

Qi j ~k![
1

~4p!
@Pi j ~ k̂!S~k!1 i e i jq k̂qA~k!# ~47!

so that

2

~2p!3

1

4p
^Bi~k!Bj* ~k8!&5d~k2k8!Qi j ~k!. ~48!

With Qi j (2k)5Qi j* (k) one then finds

f ~k!1g~k!5@Pi j ~ k̂!2 i e i jq k̂q#@Plm~ k̂!1 i e lmq8k̂q8#

3E d3pQi j ~p!Qlm* ~kÀp!. ~49!

Using Eqs.~6!–~9!, ~33! and ~34!, it is possible to calculate
f (k) and g(k). The details of the calculations are given
Appendix A. The integrals cannot be computed analytica
but a good approximation gives, fork,kD ~see also@4,6#!:

f ~k!.ASS ~lkD!2nS131
nS

nS13
~lk!2nS13D

2AAS ~lkD!2nA131
nA21

nA14
~lk!2nA13D ~50!

g~k!.C~lkD!nS1nA12~lk!

3F11
nA21

nS13 S k

kD
D nS1nA12G , ~51!

where AS , AA and C are positive constants given in Eq
~A13! to ~A15! of Appendix A. They depend on the spectr
indicesnS andnA of the magnetic field and on its amplitude
which are given in terms ofBl

2 , B l
2 , andl.

Note that the contribution of magnetic field helicity to th
symmetric part of the source,f (k), is negative. But it is easy
to check that Eq.~12! insures that it never dominates, hen
f >0. For nS ,nA.23/2, the two terms proportional to th
upper cutoffkD

2nS,A13 dominate inf (k), which consequently
depends only on the cutoff frequency and behaves lik
white noise source@4#. For nS,23/2 or alsonA,23/2, the
dominating terms go likek2nS13 andk2nA13 respectively. On
the contrary, the antisymmetric sourceg(k) never shows a
white noise behavior. FornS1nA.22 the dominant term is
proportional tokkD

nS1nA12 . For nS1nA,22, g(k) does not
depend on the upper cutoff, but is proportional toknS1nA13.
The singularities in the pre-factorsAS , AA and C which
appear atnS523 and nA524 are the usual logarithmic
6-5
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singularities of scale invariant spectra. But as mentioned
Sec. II the helical contribution must obeynA>nS.23. The
apparent singularities in the prefactors atnS,A523/2 and at
nS1nA522 are removable when multiplied with th
k-dependent parts as in Eqs.~50! and ~51!. In the integrals
overk which we shall perform to calculate theC,’s we only
take into account the dominant terms.

If the magnetic field is causal, we expectnS52 andnA
53, so that

f ~k!.AS~kDl!72AA~kDl!9 ~52!

g~k!.Ckl~kDl!7. ~53!

Comparing the limit given in Eq.~14! with the expressions
for AS andAA derived in Appendix A, it is easy to see thaf
always remains positive.

The analysis of the evolution of a nonhelical magne
field interacting with the primordial plasma, and the deriv
tion of the appropriate damping scalekD , has been discusse
in Refs. @3# and @10#, where the authors considered a ma
netic field with a tangled component superimposed on a
mogeneous field. We assume that the latter can be obta
by smoothing our stochastic field on a scale which is lar
than the damping scale~for details, see@4,12#!. The damping
scale for the tensor mode is obtained taking into account
the source of gravitational radiation after equality becom
subdominant so that the relevant tensor damping scale is
Alfvén wave damping scale from the time of the creation
the magnetic field up to equality@12#. Since we are intereste
here in the imprint of the magnetic field on the CMB, w
need not to care about the time evolution of the damp
scale, the relevant scales for the CMB tensor anisotro
being those which are greater or equal to the horizon
equality. Therefore, the relevant cutoff scale is given by
Alfvén wave damping scale at equalitykD

21.vAl g(Teq),
where l g(Teq)'0.35 Mpc is the comoving diffusion lengt
of photons at equality@here we have used thatl g

phys(T)
.1022 cm(T/Tdec)

23, from @10#, as well aszeq.3454 and
zdec51088 from the WMAP results@16##. The Alfvén speed
is at most of order 1023, so that the damping scale is on th
order of kpc or smaller.

Even if considering an helical component in the magne
field, we set all the power to zero on scales smaller th
kD

21 . This is not really correct since simulations show@17#
that the spectrum simply decays like a power law with ind
of the order of24 on small scales,k.kD . However, as we
shall see, fornS,A,23/2 the inducedC,’s are dominated by
the contribution at the largest scales,kD

21 , for the kinks,
nS,A;24 part of the spectrum. Therefore, we do not loo
much by neglecting the contribution from the scales sma
than kD

21 For nS,23/2 the C,’s are independent of the
cutoff.

IV. MAGNETIC FIELD INDUCED TENSOR METRIC
PERTURBATIONS

A stochastic magnetic field can act as a source for E
stein’s equations and hence generate gravitational waves
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for example@4,6,12#. The tensor modes are the simplest ca
of metric perturbations, and in the transverse and trace
gauge they are fully described by the tensorhi j (x,h), satis-
fying

hi j 5hji , hii 50, hi j k̂
j50. ~54!

The linear evolution equation for gravitational waves is

ḧi j ~k,h!12
ȧ

a
ḣi j ~k,h!1k2hi j ~k,h!5

8pG

a2~h!
P i j ~k!,

~55!

whereP i j (k) is the source tensor given in Eq.~20!, and we
have multiplied in the time dependencea22(h), which
comes from the fact that the magnetic field is frozen in
plasma. Therefore,P i j (k,h) is a coherent source, in th
sense that each mode undergoes the same time evol
@12#. We neglect other possible anisotropic stresses of
plasma~collisionless hot dark matter particles or massle
neutrinos have anisotropic stresses which do source gra
tional waves, but this effect is very small@18#!.

We want to compute the induced CMB anisotropies a
polarization~see Sec. V!, which can be expressed in terms
the two-point correlation spectrum̂ḣi j (k)ḣlm(k8)&, taking
the form @4,12#:

^ḣi j ~k,h!ḣlm* ~k8,h!&5
1

4
@Mi j lmH~k,h!

1 iAi j lmH~k,h!#d~k2k8!.

~56!

Here H(k,h)d(k2k8)5@1/(2p)3#^ḣi j (k)ḣi j* (k8)& is the
usual isotropic part of the gravitational wave spectrum wh
is sourced byf (k), andH(k,h) describes the helical part
sourced byg(k).

The perturbation tensorhi j can also be expressed in term
of the basisei j

6 defined in Eq.~35!:

hi j ~k,h!5h1~k,h!ei j
11h2~k,h!ei j

2 . ~57!

Just like for the anisotropic stress power spectra, we n
find that

d~k2k8!H~k,h![
3

2
^ḣ1~k,h!ḣ1* ~k8,h!

1ḣ2~k,h!ḣ2* ~k8,h!&, ~58!

d~k2k8!H~k,h![2
3

2
^ḣ1~k,h!ḣ1* ~k8,h!

2ḣ2~k,h!ḣ2* ~k8,h!&. ~59!

In terms ofhT and h3, defined like in Eq.~42!, H param-
etrizes the correlation betweenhT andh3,

^ḣ3~k!ḣT* ~k8!2ḣT~k!ḣ3* ~k8!&5 id~k2k8! H~k!.
~60!
6-6
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The evolution equation for the componentsh6(k,h) is
simply

ḧ6~k,h!12
ȧ

a
ḣ6~k,h!1k2h6~k,h!5

8pG

a2~h!
P6~k!.

~61!

We need to determine the functionsḣ6(k,h) @see Eq.~68!
below#. An approximate solution to the above differenti
equation can be found in@4# or @12#. The important point is
that because of the rapid falloff of the magnetic field sou
in the matter dominated era, perturbations created a
equality (heq) are subdominant, so that one obtains, for
dominant contribution ath.heq,

ḣ6~k,h!.
16pG

H0
2V r

lnS zin

zeq
DP6~k!

j 2~kh!

h
, ~62!

whereV r is the radiation density parameter today andzin,eq
correspond to the redshifts at the moment of creation of
magnetic field and at matter radiation equality respectiv
The function j 2 is the spherical Bessel function@19#. The
term ln(zin /zeq) accounts for the logarithmic buildup of grav
ity waves fromzin to zeq. For the spectra~58! and ~59! we
then obtain

H~k,h!.F16pG

H0
2V r

lnS zin

zeq
D j 2~kh!

h G 2

f ~k!, ~63!

H~k,h!.F16pG

H0
2V r

lnS zin

zeq
D j 2~kh!

h G2

g~k!.

~64!

The gravity wave power spectra are constant on large sc
kh!1 and decay and oscillate inside the horizon.

Our first result is that a helical magnetic field induces
parity odd gravity wave component. From Eq.~61! it is clear,
that such a component is introduced whenever there are
ity odd anisotropic stresses. It couldin principle also be
detected directly, via gravity wave background detection
periments. We do not discuss this very hypothetical idea
further, but calculate the effect of such a component on C
anisotropies and polarization.

V. CMB FLUCTUATIONS

Magnetic fields in the Universe lead to all types of met
perturbations~scalar, vector and tensor; for more details s
@5#!. In @6# it is shown that vector and tensor perturbatio
from magnetic fields induce CMB anisotropies of the sa
order of magnitude. In this paper we estimate CMB fluctu
tions due to gravitational waves induced by a stochastic m
netic field, the spectrum of which contains an helicity co
ponent, A(k)Þ0. Since the CMB signature of chaot
magnetic fields with only an isotropic spectrum is given
detail in Refs.@4,6#, here we concentrate on the effects fro
the helical part of the magnetic field spectrum, and we w
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discuss the corrections which it induces to the previous
sults.

To compute the CMB fluctuation power spectra we u
the total angular momentum method introduced by Hu a
White @11#. By combining intrinsic angular structure with th
spatial dependence of plane waves, Hu and White obta
integral solutions for all kind of perturbations. The angu
power spectrum of CMB fluctuations can then be expres
as @11#

C,
X,X 85

2

pE dkk2 (
m522

12 X(m),~k,h0!

2,11

X 8*(m),~k,h0!

2,11
,

~65!

whereX takes the values ofQ, temperature fluctuation,E,
polarization with positive parity, andB, polarization with
negative parity, for each perturbation mode. The indexm
indicates the spin, and for tensor modesm562. Since we
only consider tensor modes in this paper, we suppress
index 2 and just denote the two states by1 and2 in what
follows. The description given in Ref.@6# applies the total
angular momentum method to parity even magnetic fi
spectra: in this case, according to parity conservation
sum over6 can be replaced by a factor 2. In our case
stead, we always need to sum over both states.

From the form off (k), the parity even CMB fluctuation
correlators can be expressed as

C,
X,X 85C(S),

X,X 82C(A),
X,X 8, ~66!

whereC(A),
X,X 8 is the power spectrum induced by the pure

helical part of the source term, proportional
A(p)A(uk2pu). The contribution of this helical part to th
parity even CMB power spectra is always negative, but,
we shall see, the condition~12! insures thatC(A),

X,X ,C(S),
X,X so

that the power spectra do not become negative.
The new effect is that the helical part of the magnetic fie

now also induces parity odd CMB correlators,C,
QB andC,

EB

~see also@7#!. These are expressed in terms of the heli
magnetic sourceg(k) which is proportional to the convolu
tion of A(k) with S(k) @see Eq.~34!#.

We now derive the CMB fluctuationsQ,
6(h0 ,k),

E,
6(h0 ,k), B,

6(h0 ,k) and then perform the integral~65!.
Rather than a numerical study, we present analytical appr
mations for our results. These are not very accurate, bu
low a discussion of the dependence of the correlators onnS
andnA . We will also be able to determine the spectral ind
of the CMB correlators~dependence on,) as a function of
nS andnA . At the present stage, we think this scaling info
mation is more interesting than accurate numerical resu
These can than follow for specific, interesting values of
spectral indices in future work. For a magnetic field with
helical component, this program has been carried out in R
@6#, and we shall just refer to their results but not reder
them here.

Below, we shall always work in the approximation of ‘‘in
stant recombination.’’ Moreover, in our approximations w
did not take into account the decay of gravity waves
6-7
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modes which entered the horizon before decoupling. Our
sults therefore will be reasonable approximations~within a
factor of two or so! only for ,&60, where the tensor CMB
signal is largest. Even though, this may seem poor accur
here we only want to obtain estimates of the correct orde
magnitude of this anyway small effect. This will enable us
judge for which cases a more involved numerical study
justified.

A. CMB temperature anisotropies

Within the instant recombination approximation, gravit
tional waves simply cause CMB photons to propagate al
perturbed geodesics from the last scattering surface to
The induced CMB temperature anisotropies are given
@20#

Q~h0 ,k,n̂!.E
hdec

h0
dh exp„2 i ~h02h!k•n…ḣi j ~k,h!n̂i n̂ j .

~67!

In the total angular momentum formalism this becomes

Q,
6~k,h0!

2,11
52

4

3Ehdec

h0
dhḣ6~k,h! j ,

6@k~h02h!#, ~68!

where j ,
6 are the tensor temperature radial functions of

two different parities, both given by@11#

j ,
6~x!5A3

8

~,12!!

~,22!!

j ,~x!

x2
. ~69!

The somewhat unusual factor 4/3 comes from the fact
this formula takes into account polarization, while Eq.~67!
does not. A detailed derivation can be found in Ref.@11#.

Using the solution~62! for ḣ6(k,h), we obtain

Q,
6~k,h0!

2,11
.2A3

8

~,12!!

~,22!! F 8

rcV r
lnS zin

zeq
D G

3P6~k!E
xdec

x0
dx

j 2~x!

x

j ,~x02x!

~x02x!2

.
22

rcV r
lnS zin

zeq
DP6~k!

J,13~x0!

x0
3

,5/2 ~70!

where we have setx[kh and x0[kh0. For the second
. sign we have used the approximation~B5! given in
Appendix B for the integral overx. This approximation is
valid only for xdec5khdec&1.

The general expression~65! for the temperature anisot
ropy power spectrum now gives

C,
QQ.

16

3p F 1

rcV r
lnS zin

zeq
D G2,5

h0
3E0

kDh0
dx0

J,13
2 ~x0!

x0
4

f S x0

h0
D .

~71!
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A good approximation for the functionf (k) is given in Ap-
pendix A, Eq.~A9!. The first term of Eq.~A9! comes entirely
from the nonhelical componentBl , and has already bee
determined in Refs.@4,6#; the second term comes instea
from the helical component, and its influence on theC, is
new. We denote it byC(A),

QQ . Then, splitting the induced tem
perature anisotropy power spectrum as

C,
QQ5C(S),

QQ 2C(A),
QQ , ~72!

we obtain~now x0 is renamedx)

C(A),
QQ .

4~4p!4

9

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D ,5S 1

h0kD
D 3

3E
0

xD
dx

J,13
2 ~x!

x4
F11

nA21

nA14
S x

xD
D 2nA13G ,

~73!

where we have setxD5kDh0. We have introduced the ‘‘he
licity density parameter’’VA defined by

VA[
B l

2

8prc
~kDl!nA13.

1

rc
E

0

kD dk

k

drB~k!

d logk
.

BkD

2

8prc
,

~74!

and analogously we will use

VS[
Bl

2

8prc
~kDl!nS13.

1

rc
E

0

kD dk

k

drB~k!

d logk
.

BkD

2

8prc
,

~75!

where we have introducedBkD

2 5B l
2(kDl)nA13, the field

strength at the cutoff scale 1/kD , and correspondingly for
BkD

. With these definitions the results will be expressed
tirely in terms of physical quantities and the reference sc
l does no longer enter.

Remember also that (2p)4(B l
2lnA13)2/G2

„(nA14)/2…
5uA0u2, whereuA0u is the normalization of the helical com
ponent of the magnetic power spectrum~7!. The integral~71!
is dominated atx0.,. With x0 /xdec5h0 /hdec.60, this
means that our approximation is valid for,&60.

If nA.23/2, the first term in the square bracket in E
~73! dominates. Since the integral converges and is maxi
aroundk.,/h0!kD , we can replace it by the integral t
infinity and use Eq.~B7! of Appendix B. This gives

,2C(A),
QQ .

32~4p!3

27

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D S ,

kDh0
D 3

for nA.23/2. ~76!
6-8
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The temperature power spectrum has the well known beh
ior of C,’s induced by white noise gravity waves,C,},.

If nA,23/2, the second term in the square bracket of
~73! dominates, and we find

,2C,(A)
QQ .

2~4p!4

9Ap

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D

GS 1

2
2nAD

G~12nA!

3
nA21

nA14
S ,

kDh0
D 2nA16

for 23,nA,23/2.

~77!

Like for the symmetric contribution given in Refs.@4,6#,
we get a scale-invariant spectrum fornA523. The expres-
sions for,2C(S),

QQ are obtained from those given above up
replacing VA by VS , nA by nS and G2

„(nA14)/2… by
G2

„(nS13)/2…. For 23,nS,23/2, one also has to replac
the factor (nA21)/(nA14) by nS /(nS13). We do not re-
peat these formulas here since they can be found in Ref@6#
~up to some factors of order unity which are of no relevan
for this discussion!.

This is in principle the final result for temperatu
anisotropies. Let us check thatC(A),

QQ is indeed never large
thanC(S),

QQ so that

C,
QQ5C(S),

QQ 2C(A),
QQ >0.

We first considernA>nS.23/2. Then

C(A),
QQ

C(S),
QQ

5

B l
4G2S nS13

2 D ~2nS13!~kDl!2(nA2nS)

Bl
4G2S nA14

2 D ~2nA13!

5
uA0u2

S0
2kD

2(nS2nA)

2nS13

2nA13
<1. ~78!

In the first equality we have inserted the definitions ofVA
and VS and the last inequality comes from Eqs.~14! and
~13!. If insteadnS<nA,23/2, we find

C(A),
QQ

C(S),
QQ

5N~nA ,nS!
uA0u2

S0
2 kD

2(nS2nA) S ,

kDh0
D 2(nA2nS)

, ~79!

whereN(nA ,nS) is a function of the spectral indicesnS and
nA . It is of order unity in the allowed range,23,nA<nS
,23/2. Now kDh0@, for all values of, for which our
result applies. Hence again

C(A),
QQ

C(S),
QQ

<1. ~80!

Finally, we consider the case23,nS,23/2,nA , so that
we have to apply the result~76! for C(A),

QQ and Eq.~77! with
06300
v-

.

e

the mentioned modifications forC(S),
QQ . A short calculation

gives

C(A),
QQ

C(S),
QQ

.
uA0u2

S0
2kD

2(nS2nA) S kDh0

,
D 2nS13

<1, ~81!

since the first factor is less than one due to Eq.~14! and
kD@,/h0 with nS,23/2.

Clearly, the helical component is maximal fornA.nS ,
where we may haveuA0u.S0.

B. The induced CMB polarization

Tensor perturbations induce bothE polarization with posi-
tive parity, andB polarization with negative parity. CMB
polarization induced by gravity waves has been studied
example in Refs.@11,21,22#, while the contribution from a
magnetic field has been discussed in@6,23#. Our aim is to
estimate the effect on the polarization signal from the heli
component of the magnetic field. Like for the temperatu
anisotropies, we use the angular momentum method de
oped in Ref.@11#.

1. E type polarization

The integral solution forE type polarization from gravity
waves is given in@11#. Again, we will work in the ‘‘instant
recombination’’ approximation. The order of magnitude
our result is still reasonable for,&60, since in this case als
we restrict ourselves to the evaluation of the superhori
scales spectrum. In our approximation we have

E,
6~k,h0!

2,11
5A2

3Ehdec

h0
dhḣ6~k,h!e,

6@k~h02h!#.

~82!

Here

e,
6~x!5

1

4 F2 j ,~x!1 j ,9~x!12
j ,~x!

x2
14

j ,8~x!

x G
.

1

4 F,2

x2
j ,22 j ,~x!G for ,@1 ~83!

is the E-type polarization radial function for the tenso
mode@11#, and for the last equality we have used the rec
rence relations for spherical Bessel functions~B14!, ~B15!.

We now use our solution~62! to expressḣ6(k,h) in
terms ofP6(k). With this, Eq.~82! becomes

E,
6~k,h0!

2,11
.A3

2F 1

rcV r
lnS zin

zeq
D GP6~k!E

xdec

x0
dx

j 2~x!

x

3F221
,2

~x02x!2G j ,~x02x!

.2
1

2 F 1

rcV r
lnS zin

zeq
D GJ,13~x0!

Ax0

P6~k!

~84!
6-9
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where againx[kh andx0[kh0, and we have evaluated th
time integral using approximation~B9!. Here we have also
neglected a term of the order of (,2/x0

2)J,13(x0), which in
principle is of the same order in the above expression, bu
always subdominant once we perform the integral ovek.
Since the power spectra for theE polarization are parity
even, only the parity even part of theP6 autocorrelator@Eq.
~37!# contributes to the expression forC,

EE derivable from
Eq. ~65!. Again we present here only the effect coming fro
the helical part of the magnetic field; using Eq.~A9! we find
(x0 is renamedx)

C(A),
EE .

4~2p!4

9

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D ~kDh0!23

3E
0

xD
dxxJ,13

2 ~x!F11
nA21

nA14
S x

xD
D 2nA13G .

~85!

The corresponding equation forC(S),
EE can be found in Ref.

@6#. There, a somewhat different approximation than ours
been used for the time integral.

For nA>22, the integral overx is dominated by the up
per cutoff, xD5kDh0. Using the approximation~B10!, we
obtain

,2C(A),
EE .

~4p!3

9

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D S ,

kDh0
D 2

35
1 for nA.23/2,

nA21

~nA14!~2nA14!
for 22,nA,23/2,

2
3

2
lnS kDh0

,2 D for nA522.

~86!

The result forC(S),
EE is obtained upon replacingnA by nS and

VA by VS @more precisely the factorG2
„(nA14)/2… has to

be replaced byG2
„(nS13)/2… and the factor (nA21)/(nA

14) by nS /(nS13)]. For 23,nA,22, using Eq.~B7!,
we obtain

,2C(A),
EE .

2~2p!4

9Ap

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D

G~2nA22!

GS 2nA2
3

2
D

3
nA21

nA14
S ,

kDh0
D 2nA16

for 23,nA,22.

~87!
06300
is
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Again theE polarization power spectrum from the symme
ric part of the magnetic field spectrum is obtained upon
placement ofnA by nS andVA by VS . Similar evaluations
like the ones presented in the previous paragraph s
that

C,
EE5C(S),

EE 2C(A),
EE >0. ~88!

2. B type polarization

Like for E polarization, the integral solutions forB polar-
ization in the case of tensor perturbations are given in@11#.
In the approximation of instant recombination we have

B,
6~k,h0!

2,11
5A2

3Ehdec

h0
dhḣ6~k,h!b,

6@k~h02h!#,

~89!

where

b,
6~x!56

1

2 F j ,8~x!12
j ,~x!

x G
.6

1

2 F,

x
j ,~x!2 j ,11~x!G for ,@1. ~90!

With Eq. ~62! we can write the above integral in terms of th
tensor sourcesP6(k):

B,
6~k,h0!

2,11
.

6A6

rcV r
lnS zin

zeq
DP6~k!E

xdec

x0
dx

j 2~x!

x

3F ,

x02x
j ,~x02x!2 j ,11~x02x!G

.
71

2rcV r
lnS zin

zeq
D J,14~x0!

Ax0

P6~k!,

~91!

where we have again used approximation~B9!. Like for the
E polarization, in this case also it is the parity even part
the magnetic source,f (k), which contributes to theC, .
Equation~65! takes the form

C(A),
BB .

4~2p!4

9

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D ~kDh0!23

3E
0

xD
dxxJ,14

2 ~x!F11
nA21

nA14
S x

xD
D 2nA13G .

~92!
6-10
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Note that within our approximation, for,@1, C(A),
BB

.C(A),
EE . This is also the case forC(S),

BB and C(S),
EE ; see@6#.

Evaluating the integral using expressions~B10! and~B7!, for
the different ranges of the spectral indexnA , we obtain

,2C(A),
BB .

~4p!3

9

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D S ,

kDh0
D 2

35
1 for nA.23/2,

nA21

~nA14!~2nA14!
for 22,nA,23/2,

2
3

2
lnS kDh0

,2 D for nA522,

,2C(A),
BB .

2~2p!4

9Ap

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D

3
G~2nA22!

G~2nA23/2!
S ,

kDh0
D 2nA16

for nA,22.

~93!

Again, the contributions from the symmetric part are o
tained by replacingVA by VS andnA by nS , up to factors of
order unity and we find

C,
BB5C(S),

BB 2C(A),
BB >0. ~94!

Within our approximation, which is better than a factor of
we haveC,

BB.C,
EE. From ordinary inflationary perturba

tions one expectsC,
BB. 8

13 C,
EE for gravity waves, which is

comparable to our findings.

3. Temperature andE polarization cross correlation

The symmetric part of the source term,f (k), can only
induce parity even CMB correlators. Besides the power sp
tra for temperature anisotropies andE and B type polariza-
tions analyzed in the previous subsections, it can also so
the cross-correlation between temperature anisotropy anE
polarization. In order to evaluate this contribution, we ha
to substitute into Eq.~65! the integral solutions for the tenso
mode Eqs.~70! and ~84!, to obtain
06300
-

,

c-

ce

e

C(A),
QE .

4~2p!4

9

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D ~kDh0!23,5/2

3E
0

xD
dx

J,13
2 ~x!

x3/2
F11

nA21

nA14
S x

xD
D 2nA13G .

~95!

We can evaluate this integral using Eq.~B7!, and we find

,2C(A),
QE .

2~2p!4

9Ap

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D

GS 3

4
D

GS 5

4
D S ,

kDh0
D 3

,

for nA.23/2 ~96!

and

,2C(A),
QE .

2~2p!4

9Ap

FVA

V r

lnS zin

zeq
D G2

~2nA13!G2S nA14

2
D

GS 2
3

4
2nAD

GS 2
1

4
2nAD

3
nA21

nA14
S ,

kDh0
D 2nA16

, for 23,nA,23/2.

~97!

In this case also, the contribution from the symmetric p
of the magnetic field spectrum to theQ-E correlator is al-
ways larger than this helical part.

VI. CMB CORRELATORS CAUSED BY MAGNETIC
FIELD HELICITY

If the source~or the initial conditions! have no helical
component,̂ P1(k)P1(k8)&5^P2(k)P2(k8)&, the above
correlators are the only nonvanishing ones. However, as s
as the tensor magnetic source spectrum has a helical co
bution @see Eq.~38!#

g~k![2
3

2
^P1~k!P1* ~k!2P2~k!P2* ~k!&Þ0,

the parity odd CMB power spectra are nonzero. This h
been observed first in@7#, where the vector contribution
have been calculated. Here we compute the gravity w
contributions. We need again to evaluate Eq.~65!. Taking
into account that the gravity waves componentsḣ6(k) are
directly proportional to the source components@Eq. ~62!#,
and considering the parity of the radial functions@Eqs.~69!,
~83!, ~90!#

j ,
1~x!5 j ,

2~x!, e,
1~x!5e,

2~x!, b,
1~x!52b,

2~x!,
~98!
it is clear that cross correlations between temperature andB

6-11
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polarizationC,
QB , and betweenE and B polarizationC,

EB ,
cannot vanish, since they are given by momentum integ
of g(k). Using the expression of the tensor integral solutio
Q,

6 ~70!, E,
6 ~84! andB,

6 ~91!, we can calculate the powe
spectraC,

QB andC,
EB .

A. Temperature and B polarization cross correlation

For temperature andB polarization cross correlation w
obtain after integrating over time
a-
th
we

th

ra
-
in

06300
ls
s

C,
QB.

2

p F 1

~rcV r !
2 ln2S zin

zeq
D G,5/2E

0

kD
dkk2

J,13~x!J,14~x!

x7/2

3^P1~k!P1* ~k!2P2~k!P2* ~k!&. ~99!

The antisymmetric source functiong(k) is given in Eq.~51!,
and the integral overk can be calculated using Eq.~B7!.
Note thatg(k) depends on both the spectral indicesnA and
nS , and we will have to evaluate the integral dividing th
two casesnA1nS"22. We finally arrive at
C,
QB.2

8~4p!4

9

VSVAln2S zin

zeq
D

V r
2~nA1nS12!GS nA14

2 DGS nS13

2 D ~kDh0!24 ,5/2E
0

xD
dx

J,13~x!J,14~x!

Ax
F11

nA21

nS13 S x

xD
D nA1nS12G

,2C,
QB.

¦

2

4Ap/2~2p!4VSVAln2S zin

zeq
D

V r
2~nA1nS12!GS nA14

2 DGS nS13

2 D S ,

kDh0
D 4

for nS1nA.22,

2

4~4p!4VSVAln2S zin

zeq
D

9ApV r
2~nA1nS12!GS nA14

2 DGS nS13

2 D
GS 2

nA

2
2

nS

2
2

3

4D
GS 2

nA

2
2

nS

2
2

1

4D
nA21

nS13 S ,

kDh0
D nA1nS16

for 26,nS1nA,22. ~100!
ble
es-
ds
re

, we

the

d in
wo

en
Independently on the spectral indices,,2C,
QB is always

negative for positiveA0.
In this case of temperature andB polarization cross cor-

relation, we have computed the spectrum~100! also numeri-
cally, in order to test the reliability of our analytical estim
tion. The amplitude of the numerical result is bigger than
analytic one by a factor of two or less, so within the error
estimated for our approximations~see Appendix B!. We ex-
pect this to be one of the worst approximations due to
relatively slow convergence of*dxJ,13(x)J,14(x)/Ax.

B. E and B polarization cross correlation

Following the same procedure as in the previous pa
graph, we can evaluate theE andB polarization cross corre
lation created by the helical part of the magnetic field. Us
the formula~65!, we get

C,
EB.2

2~4p!4

9

VSVAln2S zin

zeq
D

V r
2~nA1nS12!GS nA14

2 DGS nS13

2 D
3~kDh0!24E

0

xD
dxx2J,13~x!J,14~x!

3F11
nA21

nS13 S x

xD
D nA1nS12G . ~101!
e

e

-

g

In the casenA1nS.22, the integral inx5kh0 is divergent,
and we need to evaluate it using approximation~B12!, which
gives

,2C,
EB.

4~4p!3

9

VSVAln2S zin

zeq
D

V r
2~nA1nS12!GS nA14

2 DGS nS13

2 D
3

~21!,

kDh0
sin~2xD!S ,

kDh0
D 2

for nS1nA.22.

~102!

It is not possible to assign a precise value to the varia
xD5h0kD , because of the unavoidable incertitude in the
timation of the magnetic field damping scale, which depen
on the amplitude of the magnetic field and is therefo
smeared out over a certain range of scales. Therefore
expect that the presence of the term sin(2xD) most probably
leads to a considerable suppression in the amplitude of
E—B cross correlation term.

For nA1nS,22, the momentum integral in Eq.~101! is
dominated by the second term in the square brackets, an
order to perform the integration, we need to distinguish t
different cases: For24<nA1nS,22, the exponent ofx is
still positive, so that we have to use the approximation giv
6-12
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in Eq. ~B12!. A further distinction is therefore necessar
since the dominant term in approximation~B12! depends on
whether the exponent is above or below 1 as discussed in
Appendix:

,2C,
EB.

4~4p!3

9

VSVAln2S zin

zeq
D

V r
2~nA1nS12!GS nA14

2
DGS nS13

2
D

3
nA21

nS13

~21!,

kDh0

sin~2xD!S ,

kDh0
D 2

for 23,nA1nS,22; ~103!

,2C,
EB.

4~4p!3

9

VSVAln2S zin

zeq
D

V r
2~nA1nS12!GS nA14

2
DGS nS13

2
D

3
nA21

nS13

~21!,11

~kDh0!2
sin~2,2!S ,2

kDh0
D nA1nS14

for 24,nA1nS,23. ~104!

Both contributions are suppressed by the presence of the
terms sin(2,2) and sin(2xD) since, usually one averages ov
band powers in, ~for the second case! and alsoxD is not a
very sharp cutoff but has a certain width, as mentioned ab
~for the first case!.

If 26,nA1nS,24, the second term in the integrand
Eq. ~101! still dominates, but since the exponent ofx is now
negative, the integral converges and we can make us
approximation~B7!

,2C,
EB.2

~4p!4

9Ap

VSVAln2S zin

zeq
D

V r
2~nA1nS12!GS nA14

2
DGS nS13

2
D

3

GS 2
nA

2
2

nS

2
2

3

2
D

GS 2
nA

2
2

nS

2
21D

nA21

nS13
S ,

kDh0
D nA1nS16

for 26,nA1nS,24. ~105!

This result is not suppressed by oscillations.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have computed CMB anisotropies due
gravity waves induced by a primordial magnetic field. W
have mainly concentrated on the effects of a possible he
component of the field. Magnetic fields induce scalar, vec
06300
he

o

ve

of

o

al
r

and tensor perturbations which are typically of the same
der. In this sense the tensor contribution can be regarde
an order of magnitude estimate for the full contribution.

As it has already been found in Refs.@4,6#, the C,’s are
proportional to

,2C,}S VB

V r
D 2

ln2S zin

zeq
D . ~106!

The first term is (VB /V r)
2.10210(B/1028 G)4, hence for a

primordial magnetic field of the order ofB.1029 to 1028 G
we would expect to detect its effects in the CMB anisotro
and polarization spectrum. HereB5BkD

5Bl(lkD)n13 is
the maximum value of theB field which is always the field a
the upper cutoff scale 1/kD which we also denote
by BkD

.
In Eq. ~106! VB stands forVS or VA and in the above

expression forBkD
, n stands fornA or nS depending on

which contribution we are considering. The second term r
resents the logarithmic build up of gravity wave
ln2(zin /zeq).660 to 3100. Here the first value corresponds
magnetic field generation at the electroweak phase transi
Tin5200 GeV and the second value represents a poss
inflationary generation atTin.1015 GeV. For scale invariant
spectra,nA5nS.23, the right hand side of Eq.~106! gives
roughly the amplitude of the induced CMB perturbations.

Taking into account the prefactor 2(4p)4/(9Ap), scale
invariant magnetic fields produced at some GUT scaleT
.1015 GeV have to be of the order ofB.B.10211 G to
contribute a signal on the level of about 1% to the CM
temperature anisotropies and polarization.

If the initial magnetic field is not scale invariant, th
scaleskD andh0 suppress the results by factors of 1/(kDh0)
and,/(kDh0) which are much smaller than unity. Note th
the reference scalel introduced in Eqs.~8!, ~9!, does not
enter in the final results at all, since it is of course arbitra

As already discussed, the damping scalekD is given by
kD

21.vAl g(Teq).vA30.35 Mpc, andvA is the Alfvén ve-
locity, vA

25^B&2/„4p(r1p)… for the magnetic field aver-
aged over a scale larger than the damping scale. Cle
vA&1023 so thatB does not induce density perturbation
larger than 1025. Therefore, the damping scale is of the o
der of 1 kpc or less. The latter value is reached for maxim
magnetic fields which are of the order of^B&;1029 G. On
the other handa0(h02hdec).h0 is simply the angular di-
ameter distance to the last scattering surface, which has
very accurately measured with the WMAP satellite@16#, h0
5dA513.760.5 Gpc. So thatkDh0;107 or even larger, de-
pending on the magnetic field amplitude.

Our results differ somewhat, but not in a very significa
way from the results obtained in Ref.@6#. Since our magnetic
field spectra are either scale invariant or blue, the indu
spectra,2C, are also either scale-invariant or blue. Th
grow towards large,. It is therefore an advantage to choo
, as large as possible. However, in our calculations we h
not taken into account the decay of gravity waves wh
enter the horizon before decoupling. Our results are there
correct only for,,h0 /hdec;60. To be on the safe side, w
choose,550 in our graphics.

In Fig. 1, we show,2C(A),
(XY) at ,550 for the different
6-13
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quantities~temperature anisotropy,E andB polarization and
correlators! as a function ofnA with nS fixed to 2 and22.99.
We show the absolute value of the correlator in un
of

FIG. 1. On the top panel we show the amplitudes of the pa
even correlators,,2C(A),

(uu) ~solid, black!, ,2C(A),
(EE) ~dotted, red! and

,2C(A)
(uE), ~dashed, blue! as a function of the spectral indexnA for

,550. The logarithm of the absolute value of,2C(A),
(XY) is shown in

units of (VA /V r)
2ln2(zin /zeq). We do not plot ,2C(A),

(BB) which
equals,2C(A),

(EE) within our approximation. The spikes atnA522 for
,2C,

(EE) and atnA523/2 are not real. They are artifacts due to t
breakdown of our approximations at these values. On the bot
panel we show the corresponding parity odd correlators,,2C(A),

(uB)

~solid, black!, ,2C(A),
(EB) ~dashed, red! in units of (VAVS /

V r
2)ln2(zin /zeq) for nS522.99 andnS52. In this last case, only the

allowed rangenA>nS52 is plotted. Again the spike atnA51 for
nS522.99 and the precipitous drop atnA521 in ,2C(A),

(EB), are due
to the limitation of our approximation close to the transitio
indices.
06300
s

S VA

V r
D 2

ln2S zin

zeq
D.10210S BkD

1029 G
D 4

,

and

VAVS

V r
2 ln2S zin

zeq
D.10210S BkD

1029 G
D 2S BkD

1029 G
D 2

.

Note that the correlatorsCA
(XX) andCA

(uE) are always negative
and have to be subtracted fromC(S)

(XY) which is of the same
order of magnitude or larger sinceVS>VA andnS<nA . For
the limiting case,VS.VA and nS.nA , the presence of an
helical component in the magnetic field spectrum can in p
ciple cancel the effect of the symmetric part on the CMB.
that very particular case, the signature of the presence
magnetic field will appear only through the parity odd co
elators.

From Fig. 1 it is clear that only fornA,S&22 and VA
.VS;1025, the effect on the CMB will be of the order of
percent or more. In Ref.@12# it has been shown that fornS
.22, magnetic fields withBl*10210 G overproduce grav-
ity waves on small scales which is incompatible with t
nucleosynthesis bound, forl;1 Mpc. Here we require
BkD

&1028 G so thatVB remains a small fraction of the

radiation density throughout. ThenBl5BkD
(lkD)2(n13)

!BkD
for n.22. Therefore, by keepingBkD

sufficiently
small, we automatically satisfy the bound derived in R
@12#. The result is most interesting for the window of23
,nS&nA&22 and VA.VS;1025, which requiresBkD

.BkD
;10210 G. Especially, if magnetic field helicity is

causally produced which impliesnS52 andnA53, this ef-
fect cannot be observed in the CMB since the parity viol
ing terms are suppressed by about 15 orders of magni
~see lines in the lower right corner of the bottom panel
Fig. 1!.

In Fig. 2 we show the ratioC(A),
uB /C(A),

uE for nS523 as
function ofnA . Again, we are mainly interested in the part
the graph with23,nA,22, where this ratio raises from
the order unity to about 105. Hence if a close to maxima
helical magnetic field, with a spectrum not too far from sca
invariant, 23,nS,nA,22 is produced in the early Uni
verse, it is more promising to search for its parity violatin
terms than for the parity even contributions.

We can conclude that helical magnetic fields with a sp
trum close to the scale invariant value,23,nS.nA&22
and close to maximal amplitudes on small scales,BkD

*10210 G can lead to observable parity violating termsCuB

and CEB in the CMB. Such magnetic fields might in prin
ciple be produced during some inflationary epoch where
photon is not minimally coupled or via its coupling to th
dilaton ~see@24,25# for various proposal of magnetic fiel
production during an inflationary phase!. However, so far no
concrete proposal has led tonS,A.23, nor to the creation of
a helical term. As we have shown, the effect is largely s

y

m
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pressed and clearly unobservable for causally produced m
netic fields, e.g., during the electroweak phase transition
even later.

FIG. 2. We show the ratio of the correlators,C,
(uB)/C,

(uE) ~solid,
black!, and C,

(EB)/C,
(EE) for nS523 as functions of the spectra

indexnA for ,550. The logarithm of the absolute value is shown
units of VA /VS<1. The spikes visible at certain values of th
spectral indexnA are mainly due to our relatively crude approxim
tions.
e

lic

f
e

06300
g-
or

Nevertheless, our calculation also demonstrates the e
of parity violating processes during inflation which may le
to a nonvanishing helical component of gravity waves,H
Þ0; see Eq.~59!. In this case the above calculation can
trivially repeated and will result in nonvanishing parity vio
lating CMB correlators,CuBÞ0 andCEBÞ0. We think that
already this remark, together with our knowledge that at le
at low energies, nature does violate parity, should be su
cient motivation to derive experimental limits on these co
elators.
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APPENDIX A: THE SOURCE FOR GRAVITY WAVES

In this appendix we present some details on how to co
pute the gravity wave source functionsf (k) and g(k). The
first step is to evaluate the two point correlator of the ma
netic field stress-energy tensor~21!: using Wick’s theorem
~22! and definition~1!, after a longish but simple calculatio
we obtain
^t i j ~k!t lm* ~k8!&5
1

4

1

~4p!2 d~k2k8!E d3p$S~p!S~ uk2pu!@~d i l 2 p̂i p̂l !„d jm2~k2p̂! j~k2p̂!m…

1~d im2 p̂i p̂m!„d j l 2~k2p̂! j~k2p̂! l…#2A~p!A~ uk2pu!@e i l t e jmrp̂t~k2p̂!r

1e im fe j lg p̂f~k2p̂!g#1 iS~p!A~ uk2pu!@e jmr~d i l 2 p̂i p̂l !~k2p̂!r1e j lg~d im2 p̂i p̂m!~k2p̂!g#

1 iA~p!S~ uk2pu!@e i l t „d jm2~k2p̂! j~k2p̂!m…p̂t1e im f„d j l 2~k2p̂! j~k2p̂! l…p̂f ]} 1•••d i j 1•••d lm .

~A1!
k 22kpg1p
The isotropic tensor spectrum in the case of a magnetic fi
spectrum without helicity term is derived in@4#. Here we
concentrate on the source terms which contain the he
part of the magnetic field spectrum.

By acting with tensor projector on Eq.~A1!, we find ex-
pressions~33! and~34! for the symmetric and helical parts o
the source spectrum. Taking into account that the anglb

5 k̂•(k2p̂)5(k2pg)/Ak222kpg1p2, we can rewrite the
two expressions which containA(k) in the form
ld

al

f A~k!5
1

4

1

~4p!2E d3pA~p!A~ uk2pu!
g•~k2pg!

Ak222kpg1p2

~A2!

g~k!5
1

2

1

~4p!2E d3pFS~p!A~ uk2pu!
~k2pg!~11g2!

Ak222kpg1p2

1A~p!S~ uk2pu!S 2g2
gp2~12g2!

2 2D G . ~A3!
6-15
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The contribution tof (k) from S alone is computed in Ref
@4#. There one finds

f S~k!5
1

4

1

~4p!2E d3pS~p!S~ uk2pu!~11g2!

3S 11
~k2pg!2

k222kpg1p2D . ~A4!

We can now substitute the power law ansatz~6!, ~7! for S
andA in these expressions and try to calculate the integr
The integration overg5 k̂•p̂ is elementary, using

E dg~k21p222kpg!a/2

52
1

kp~a12!
~k21p222kpg!(a12)/2

E dggm~k21p222kpg!a/2

52
gm

kp~a12!
~k21p222kpg!(a12)/2

1
m

kp~a12!
E dggm21~k21p222kpg!(a12)/2.

~A5!

This last integration by parts has to be performed in
worst cases three times, reducing the powerm of g from 3
down to 0.

Since we are integratingg over the interval@21,1#, we
get a series ofm11 terms of the form
06300
s.

e

~k1p!a12n6uk2pua12n

~kp!n
, ~A6!

with n51,2, . . . (m11). To evaluate the integral overp, we
can expand those terms using the binomial decomposi
(11x)a511ax1a(a21)x21••• . Since, in general, the
value of the exponenta is not an integer, we need to trunca
the series somewhere, which is well justified only ifx!1.
To achieve this, we split the integral into two contribution
*0

kD5*0
k1*k

kD . In the first termp/k,1, while in the second
k/p,1, which allows us to approximate Eq.~A6! truncating
the binomial series at the second term,

~k1p!a2uk2pua

.H 2aka21p1
1

3
a~a21!~a22!ka23p3, p,k,

2apa21k1
1

3
a~a21!~a22!pa23k3, p.k

~A7!

and

~k1p!a1uk2pua.H 2ka1a~a21!ka22p2, p,k,

2pa1a~a21!pa22k2, p.k.
~A8!

We then perform the integration overp. For each contribu-
tion we keep only the terms which, depending on the va
of the spectral index, may dominate the result. So, we fina
obtain, fork,kD
f ~k!.
l3

4p~2nS13! F ~2p!2Bl
2

2GS nS13

2 D G
2S ~lk!D

2nS13
1

nS

nS13
~lk!2nS13D

2
l3

12p~2nA13! F ~2p!2B l
2

2GS nA14

2 D G
2S ~lk!D

2nA13
1

nA21

nA14
~lk!2nA13D ~A9!

.A Sl2nS13S kD
2nS13

1
nS

nS13
k2nS13D2A Al2nA13S kD

2nA13
1

nA21

nA14
k2nA13D ~A10!

g~k!.
2

3p

l4k

~nS1nA12! F ~2p!2Bl
2

2GS nS13

2 D G F ~2p!2B l
2

2GS nA14

2 D G S ~lkD!nS1nA121
nA21

nS13
~lk!nS1nA12D ~A11!

.Ckl~lkD!nS1nA12F11
nA21

nS13 S k

kD
D nS1nA12G , ~A12!
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where the coefficients are given by the magnetic field am
tudes at scalel:

AS.
l3

4p~2nS13! F ~2p!2Bl
2

2GS nS13

2 D G
2

~A13!

AA.
l3

12p~2nA13! F ~2p!2B l
2

2GS nA14

2 D G
2

~A14!

C.
2

3p

l3

~nS1nA12! F ~2p!2Bl
2

2GS nS13

2 D G
3F ~2p!2B l

2

2GS nA14

2 D G . ~A15!

The first part of f (k), which is the contribution from the
symmetric part of the magnetic field power spectrum, h
been taken from@4,6#. The singularities atnS , nA523/2
respectively and atnS1nA522 are removable.

APPENDIX B: USEFUL MATHEMATICAL RELATIONS

1. Integrals of Bessel functions

In Sec. V, we use approximate solutions for the three
tegrals

E
xdec

x0
dx

j 2~x!

x

j ,~x02x!

~x02x!2
, E

xdec

x0
dx

j 2~x!

x

j ,~x02x!

~x02x!
,

E
xdec

x0
dx

j 2~x!

x
j ,~x02x!. ~B1!

These integrals are solvable only by numerical meth
However, the aim of this paper is to give an approxim
analytic result. In this appendix we therefore derive and
analytic approximations to the above integrals. To achi
this, we first modify them slightly, in order to make the
solvable analytically. Then, we adjust the result obtained
this way by comparing it with the exact numerical integr
tion.

Let us concentrate, as an example, on the first integral.
first perform a variable transform toy5x02x. The integra-
tion boundaries then become 0 andx02xdec. Below, we de-
rive an approximation for

E
0

x0 j 2~x02y!

x02y

j ,~y!

yn
dy.

Since Bessel functions change on a scaleDy;1, this ap-
proximation is good for the integrals in Eq.~B1! if xdec
,1. After the integration overx in Eq. ~B1! we have to
06300
i-

s

-

.
e
st
e

n
-

e

perform an integration overk. For , fixed, this integral is
either dominated by the contribution atkh05x05, or at the
upper cutoff,kD . For the integrals which are dominated
x05kh0;,, the inequalityxdec,1 is equivalent to,.x0

.60xdec&60. In some cases, however, our integral overk is
dominated at the upper cutoffkD with hdeckD@60 and of
course alsoh0kD@60. Since for,.60, the dominant con-
tribution to the integral comes fromy&60, our inaccuracy of
the boundary will not invalidate the approximation also f
this case.

The approximation in the upper boundary of the integr
x02xdec.x0 makes us miss the characteristic decay of flu
tuations on angular scales corresponding to,*60.

To make the first integral in Eq.~B1! solvable analyti-
cally, we now modify the powers ofy andx02y. Taking into
account that the spherical Bessel functionj n(x) has its maxi-
mum value atx.n, we make the attempt:

E
0

x0
dx

j 2~x!

x

j ,~x02x!

~x02x!2

5
p

2E0

x0
dx

J5/2~x!

x3/2

J,11/2~x02x!

~x02x!5/2

.
p

2
A 2

5,E0

x0
dx

J5/2~x02y!

x02y

J,11/2~y!

y2
~B2!

.
p

5
A 2

5,

J,13~x0!

x0
2

. ~B3!

For the last equality, we have used 6.581.2 of@26#,

E
0

a

dxxb21~a2x!21Jp~x!Jq~a2x!

5
2b

aq (
m50

`
~21!mG~b1p1m!G~b1m!

m!G~b!G~p1m11!

3~b1p1q12m!Jb1p1q12m~a!

[Re~b1p!.0, Req.0] ~B4!

and the recurrence relationJn21(x)1Jn11(x)5(2n/x)Jn

~9.1.27 of@19#!, keeping only the highest order terms in,.
We can now compare this approximated analytic result w
an exact numerical integration. Since the analytic resul
again a Bessel function divided by a power law, it has
maximum atx0.,, and its envelope has a power law dec
for x0.,. These two characteristics are very we
reproduced by the numerical result, which however dec
6-17
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FIG. 3. In both panels, as a function ofx0: the green dotted line shows the numerical value of the integral in Eq.~B5!, the blue, long
dashed line shows the analytic approximation@right-hand side of Eq.~B5!#, and the red, solid line shows the numerical value of integral~B5!
if xdec is not put to zero. All these functions are squared, and multiplied byx0

3: this gives us an indication of the result, after the integrat
over x0, as stated in Eq.~B6!. In the left panel,550; in the right panel,5200. First of all, we note that it appears clearly that the va
of the integrals is dominated atx0.,, and that the function goes to zero quicker thanx0

23, which justifies our approximationxD→` and
the use of formula~B7!. Secondly, we note that for,550 andx0;,, our approximation~blue, long-dashed! is good for both the integrals
However, if ,5200, the approximation overestimates the correct numerical result by about a factor of ten.
is

o
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-
our
somewhat faster; it turns out that a better approximation

E
0

x0
dx

j 2~x!

x

j ,~x02x!

~x02x!2
.

1

3
A3,

2

J,13~x0!

x0
3

. ~B5!

To estimate the goodness of our approximation, let us n
take into account the integration overk, as in Eq.~65!. What
we are finally interested in is@Eq. ~73!#

E
0

xD
dx0x0

2
J,13

2 ~x0!

x0
6 F11

nA21

nA14 S x0

xD
D 2nA13G . ~B6!

As already discussed in the main text, this integral is alw
convergent and dominated by the contribution aroundx0
.,: we should therefore make sure that our approximat
is good around that value. We have that for,530, our ap-
06300
w

s

n

proximation underestimates the numerical result by abou
factor of two; for ,540, the error reduces to 15%, and
always smaller for larger values of,.

Figure 3 shows the numerical result for the integral in E
~B5! ~green, dotted line!, together with its analytical approxi
mation @the right hand side of Eq.~B5!, blue, long dashed#
and a numerical evaluation of the same integral whenxdec is
not set to zero~red, solid!. For small values of, ~in the left
hand panel of Fig. 3,,550), Eq.~B5! is a good approxima-
tion in the regionx0.,. However, if ,.60 settingxdec
→0 causes a large overestimation of the result. In the ri
hand panel of Fig. 3 it is shown that, for,5200, the differ-
ence between the integral with lower bound 0 and the
with lower boundxdec is of more than a factor of ten. Con
sequently, as already stated before, we can rely on all
approximations only for,&60.

We proceed now to evaluate integral~B6!. Since xD
5kDh0*106, for ,&60, integral~B6! can be calculated in
the limit xD→`, using formula 6.574.2 of@26#:
E
0

`

dxJp~x!Jq~x!x2b5

G~b!GS p1q2b11

2
D

2bGS 2p1q1b11

2
DGS p1q1b11

2
DGS p2q1b11

2
D @Re~p1q11!.Reb.0#. ~B7!
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This approximation is used for example in Eqs.~76!, ~77!.
With the same procedure we can approximate the sec

integral of Eq.~B1!, for which we find (,&60)

E
xdec

x0
dx

j 2~x!

x

j ,~x02x!

~x02x!
.

1

3
A3,

2

J,13~x0!

x0
2

. ~B8!

This approximation underestimates the numerical result w
an error of about 40% for,530, which reduces to 20% a
,560. In this case also, the integral overx0 is convergent,
and we can proceed as before.

The situation is different for the third integral of Eq.~B1!.
In this case, the numerical result is approximated by the
lowing function (,&60):

E
xdec

x0
dx

j 2~x!

x
j ,~x02x!.

1

3
A2

5

J,13~x0!

Ax0

. ~B9!

It is clear that if we insert this function in an integral like E
~B6! we cannot perform the limitxD→` since this integral
is dominated at the upper cutoff. Consequently, we nee
good approximation for the behavior of the integral for lar
values ofx0→xD . In this case, we no longer require o
approximation to be accurate atx0.,, but we concentrate
on its behavior for high values ofx0, which will dominate in
the integral overx0. Figure 4 shows the approximation fo
,530, which overestimate the numerical result by an er
within 1%.

We also have to evaluate the integral overx0
2dx0 of the

square of Eq.~B9!, which we encounter in two differen
cases. The first~see Sec. V B! is of the kind*0

xDdxxpJ,
2(x).

For p,0 this integral converges and we may evaluate it
the limit xD→`, in which it is of the form~B4!. For p.0
and xD@,2, the integral can be approximated using t
asymptotic expansion ofJ,(x) for large arguments@19#,
J,(x);A2/(px) cos@x2(2,11)p/4#. Approximating the os-
cillations by a factor of 1/2, we obtain

E
0

xD
dxxpJ,

2~x!.ExD
,2dxxpJ,

2~x!.5
xD

p

pp
, p.0,

1

p
lnS xD

,2D , p50.

~B10!

For the second case,*0
xDdxxpJ,(x)J,11(x), which we en-

counter in Sec. VI, we use again the large argument appr
mation for the Bessel functions, forx@,2,
06300
nd

h

l-

a

r

i-

J,~x!J,11~x!

.
2

px
cosS x2~2,11!

p

4 D cosS x2~2,13!
p

4 D
5

2

px
cosS x2~2,11!

p

4 D sinS x2~2,11!
p

4 D
5

1

px
sinS 2x2S ,1

1

2Dp D5
~21!,11

px
cos~2x!,

~B11!

so that forp.0

E
0

xD
dxxpJ,~x!J,11~x!

.
~21!,11

p E
,2

xD
dxxp21 cos~2x!

.
~21!,11

2p
~xD

p21 sin~2xD!2,2p22 sin~2,2!!.

~B12!

In the limits to which we have restricted ourselves, we
ways havexD@,2. Consequently, the dominant contributio
in the last expression can be given either by the first term
the bracket, ifp.1, or by the second term, ifp,1. Numeri-
cal checks show that the approximation is good forp.1, but

FIG. 4. We plot the value of integral~B9! squared and multi-
plied by x0

3 as a function ofx0, for ,530. The green, dotted line
represents again the numerical result (xdec→0), and the blue, long
dashed line is the analytic approximation. In this case the slop
positive, and hence the integraldx0 /x0 of this function is domi-
nated by the upper cutoff.
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it is rather poor in the second case,p,1. Since we shall not
be very much interested in this case, we do not go any
ther in this work.

When evaluating expression~B7!, we often also use

G~2x!5
22x21

Ap
G~x!GS x1

1

2D
G~x1a!

G~x1b!
;xa2b1O~xa2b21! for x@1

~B13!

@see Eqs.~6.1.18! and ~6.1.47! of @19##.
06300
r-
2. Recurrent relations for spherical Bessel functions

We use several recurrence relations for spherical Be
functions in our derivations, most notably

,11

x
j ,~x!1 j ,8~x!5 j ,21~x! ~B14!

and

,

x
j ,~x!2 j ,8~x!5 j ,11~x!. ~B15!
ys.
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