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We consider gravitational waves (GWs) generated by primordial inverse-cascade helical magneto-
hydrodynamical (MHD) turbulence produced by bubble collisions at the electroweak phase transitions
(EWPT). Compared to the unmagnetized EWPT case, the spectrum of MHD-turbulence-generated GWs
peaks at lower frequency with larger amplitude and can be detected by the proposed Laser Interferometer
Space Antenna.
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When detected, primordial cosmological GWs will pro-
vide a very valuable probe of the very early Universe [1].
Various mechanisms that generate such GWs have been
discussed: quantum fluctuations [2], bubble wall motion
and collisions during phase transitions [3,4], cosmic strings
[5], cosmological magnetic fields [6–8], and plasma tur-
bulence [9–12]. From the direct detection point of view,
GWs generated during the EWPT are promising since their
peak frequency lies in or near the Laser Interferometer
Space Antenna (LISA) [13] frequency band [14]; however,
to produce a detectable signal the EWPT must be strong
enough [15–17]. Currently, discussed EWPT models do
not predict an observable GW signal from bubble colli-
sions [17], nor for GWs produced by unmagnetized turbu-
lence [12].

Here, we study the generation of GWs during a first-
order EWPT assuming that bubble collisions produce hel-
ical MHD turbulence. (Kinetic or magnetic helicity gen-
eration at the EWPT is studied in Refs. [18]. Previously, we
studied generation of GWs by direct-cascade turbulence
and found that, due to parity violation in the early
Universe, the induced GWs are circularly polarized [11].
Polarized GWs are present in other models [19], and the
polarization of the GW background is in principle observ-
able, either directly [20] or through the CMB [7,21].) In the
case of unmagnetized hydrodynamical turbulence, the
peak frequency of the GW power spectrum is determined
by the inverse turnover time of the largest eddy and the
energy scale when the GW is generated. Recently, dis-
cussed modifications of the standard EWPT model place
the transition at a higher energy scale [16]. As a result, the
GW power spectrum peak frequency is shifted to higher
frequency which, since the GW spectrum is sharply
peaked, reduces the possibility of detection by LISA. On
the other hand, in the case of MHD turbulence, the pres-
ence of an energy inverse cascade leads to an increase in
the effective size of the largest eddy (now associated with
an helical magnetic field), and can result in the GW power

spectrum peaking in the LISA band, with amplitude large
enough to be detected by LISA. We adapt the technique
developed in Ref. [12] to study this case here. We model
MHD turbulence and obtain the GW spectrum by using an
analogy with the theory of sound wave production by
hydrodynamical turbulence [22–25].

Since the turbulent fluctuations are stochastic, so are the
generated GWs. The GW energy density is [14]
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Here, the times t0�00� � t� jx� x0�00�j, i, and j are spatial
indices (repeated indices are summed), the source
Sij�x; t� � Tij�x; t� � �ijTkk�x; t�=3 is the traceless part of
the stress-energy tensor Tij, G is the gravitational constant,
and we use natural units with @ � 1 � c. We assume that
the turbulence exists for a time short enough to neglect the
cosmological expansion during GW production. We con-
sider metric perturbations in the far-field limit (i.e., for
x� d, where d is a characteristic length scale of the
source region), where GWs are the only metric perturba-
tions [26], and replace jx� x0j by jxj in Eq. (1). If the
turbulence is stationary, then the GW spectral energy den-
sity I�x; !� [�GW�x� �

R
d!I�x; !� where ! is the angu-

lar frequency] is [12]
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Here, Hijij�x0;k; !� (where k is a proper wave vector) is
the (double traced) four-dimensional Fourier transform of
the two-point time-delayed fourth-order correlation tensor,
hSij�x0; t�Slm�x00; t� ��i=w2, with respect to x00 � x0 and �,
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where w � �� p is the enthalpy density and p and � the
pressure and energy density of the plasma.

We assume that primordial MHD turbulence is gener-
ated at time t? at proper length scale l0 � 2�=k0 with
characteristic velocity perturbation v0. (We assume that
the usual and magnetic Reynolds numbers are much
greater than unity on scales �l0; otherwise, there is no
turbulence. Throughout this Letter, the symbol � repre-
sents equality to the accuracy of a dimensionless multi-
plicative constant of order unity.) The dynamics of MHD
turbulence is dominated by Alfvén waves for which the
magnetic and kinetic energy densities are in approximate
equipartition [27]. In this case, v0 � b0, where b0 �

B0=
����������
4�w
p

is the characteristic magnetic field perturbation
expressed in velocity units. While MHD turbulence is
isotropic on large scales, it is locally anisotropic on small
scales [28], resulting in small-scale anisotropy in the gen-
erated GW background. However, GWs are generated
mainly by the largest eddies [12] so we adopt an isotropic
turbulence model, and thus the magnetic field two-point
correlation function is hb?i �k; t�bj�k

0; t� ��i �
FMij �k; t�f���k�; ����k� k0�, with [22]

 FMij �k; �� � Pij�k�
EM�k; t�

4�k2 � i"ijlkl
HM�k; t�

8�k2 : (3)

Here, Pij�k� � �ij � kikj=k2 and EM�k; t� and HM�k; t�
are the magnetic field energy and helicity densities. The
Schawarz inequality implies jHM�k; t�j � 2EM�k; t�=k
[27]. For the total magnetic energy EM�t� �

R
EM�k; t�dk

and helicity HM�t� �
R
HM�k; t�dk, we get HM�t� �

2�M�t�EM�t�, where �M�t� 	
R
EM�k; t�k�1dk=EM�t� is

the magnetic-eddy correlation length. ��k� is an autocor-
relation function that determines the characteristic function
f���k�; �� that describes the temporal decorrelation of tur-
bulent fluctuations. In the following, we use f���k�; �� �
exp�� ��2�k��2=4� [29].

After generation, primordial turbulence freely decays.
We adopt the decaying MHD turbulence model of
Refs. [30,31]. For nonzero initial magnetic helicity, turbu-
lence decay is a two-stage process. First, decay stage
dynamics is governed by a direct cascade of energy density
lasting for a time �s0 � s0�0, several times (s0 � 3–5)
longer then the characteristic largest-eddy turnover time
�0 � l0=v0 � 2�=k0v0. During the first stage, energy den-
sity flows from large to small scales and finally dissi-
pates on scales �ld � 2�=kd (kd � k0) where one of
the Reynolds numbers becomes of order unity. Because
of the selective decay effect [27], magnetic helicity is
nearly conserved during this stage [31]. To compute the
GWs generated by decaying MHD turbulence, we as-
sume that decaying turbulence lasting for time �s0 is
equivalent to stationary turbulence lasting for time �s0=2.
This can be justified using the Proudman [22,25] argument
for (unmagnetized) hydrodynamical turbulence. Conse-
quently, when computing the emitted GWs, we ignore
the time dependence of EM�k; t� and HM�k; t�. We also

assume small initial magnetic helicity, �? 	HM�t?�=

2�M�t?�EM�t?�� � 1. For EM�k; t� and ��k�, we use the
Kolmogorov model,

 EM�k; t� � "2=3k�5=3; ��k� � "1=3k2=3=
�������
2�
p

; (4)

for k0 < k< kd. Here, "� k0v
3
0 is the energy dissipation

rate per unit enthalpy.
At the end of the first stage, turbulence relaxes to a

maximally helical state, �s0 � 1 [31,32]. Accounting for
conservation of magnetic helicity, the characteristic veloc-
ity and magnetic field perturbations at this stage are v1 �

�1=2
? v0 and b1 � �

1=2
? b0. Second stage dynamics is gov-

erned by a magnetic helicity inverse cascade. If both
Reynolds numbers are large at the end of the first stage,
magnetic helicity is conserved during the second stage.
The magnetic eddy correlation length evolves as �M�t� �
l0

������������������
1� t=�1

p
[30,31] where �1 � l0=v1 � �0=

������
�?
p

is the
characteristic energy containing eddy turnover time at the
beginning of the second stage. The magnetic EM�t� and
kinetic EK�t� energy densities evolve as [30,31]

 E M�t� / �1� t=�1�
�1=2wb2

1; EK�t� / �1� t=�1�
�1wv2

1:

(5)

These imply that the characteristic turnover (�to) and
cascade (�cas) time scales evolve as

 �to � �cas � �1�1� t=�1�: (6)

To compute the GWs emitted during the second stage,
we use the stationary turbulence model that has the same
GW output. Introducing the characteristic wave number
k��t� � 2�=�M�t� and using Eqs. (5), we find EM �
wv2

1k��t�=k0 and EK � wv
2
1
k��t�=k0�

2 since b1 � v1.
The time when turbulence is present on scale �M�t� is
determined by Eq. (6) which can be rewritten as �cas �

�1
k0=k��t��
2. So instead of considering decaying turbu-

lence, we consider stationary turbulence with a scale-
dependent duration time (time during which the magnetic
energy is present at the scale), �s1 � �1
k0=k�2 (for k � k�
this coincides with �cas).

The expression for EM yields the time-independent

 EM�k; t� � C1v2
1=k0 � kHM�k; t�=2; kS < k < k0:

(7)

Here, C1 is a constant of order unity, kS is the smallest
wave number where the inverse cascade stops, and the
second equation follows from saturating the causality con-
dition. For the second stage autocorrelation function,
which is inversely proportional to the turnover time (6),
we assume ��k� � �k=k0�

2=
�������
2�
p

�1. At the largest scales,
there is no efficient dissipation mechanism, so the inverse
cascade will be stopped at scale lS�t� � 2�=kS where
either the cascade time scale �cas reaches the expansion
time scale H�1

? � H�1�t?�, or when the characteristic
length scale �M�t� � lS reaches the Hubble radius. These
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conditions are ��1=2
? l2S=v0l0 � H�1

? or lS � H�1
? (the cas-

cade time is scale dependent and maximal at k � kS).
Defining � � l0=H

�1
? (� � 1), it is easy to see that the

first condition is fulfilled first and consequently k0=kS �
�v0=��

1=2�1=4
? . To have an inverse cascade requires

k0=kS 
 1, leading to a constraint on initial helicity, � �
M�1=2

? (where M � v0 is the turbulence Mach number).
The magnetic field perturbation stress-energy tensor is

TMij �x; t� � wbi�x; t�bj�x; t�. For the first decay stage, we
compute for this magnetic part and then double the result to
account for approximate magnetic and kinetic energy equi-
partition for Alfvén waves. During the second stage, ac-
cording to Eqs. (5), kinetic energy can be neglected
compared to magnetic energy. To compute Hijij�k; !�,
we assume Millionshchikov quasinormality [22] and use
the convolution theorem (for details see Sec. III of
Ref. [12]). Using the (k! 0) aero-acoustic approximation,
which is accurate for low Mach number (M � 1), and
slightly overestimates GWs amplitude for the Mach num-
ber approaching unity (M ! 1) [12]), we find

 Hijij�k; !� � Hijij�0; !�

�
7C2

1M
3�3=2

?

6�3=2k0

Z k0

kS

dk

k4

� exp
�
�

!2k2
0

�?M2k4

�
erfc

�
�

!k0������
�?
p

Mk2

�
: (8)

The integral is dominated by the contribution of large scale
(k ’ kS) perturbations and is maximal at !�II�max �

�1=2
? Mk2

S=k0 � 2�H?. For the first-stage direct-cascade
turbulence, the peak frequency is !�I�max � k0M [12]. To
determine the peak frequency at the current epoch, we
need to account for the cosmological expansion which
decreases the GW amplitude and frequency by the factor
a?=a0, where a? and a0 are the values of the cosmological
scale factor at the GW generation and current epochs.

The total GW energy spectrum at a given space-time
event is obtained by integrating over all source regions
with a lightlike separation from that event, and includes
contributions from GW generated during the first and
second stages. For the first stage (with duration time ��I�T �
s0�0), ��I�GW�!� is given by Eqs. (21) and (A3) of Ref. [12].
For the second stage contribution, we must account for the
scale dependence of the cascade time. The total GW frac-
tional energy density parameter at the moment of emission
�GW;? is 105H4

?!
3P

m�
�m�
T H�m�ijij�0; !?�=H2

0 [12]. Here, the
index m runs over I and II for the first and second decay
stages, H0 !? is an angular frequency at the moment of
emission. The current GW amplitude is related to the
current fractional energy density parameter through
hC�f� � 1:26� 10�18�1 Hz=f�
h2

0�GW�f��1=2 (where h0

is the current Hubble parameter H0 in units of
100 km sec�1 Mpc�1) [14], and

 hC�f� ’ 2� 10�14

�
100 GeV

T�

�

�

�
100

g�

�
1=3X

m


��m�T !?H4
?H
�m�
ijij�0; !?��

1=2: (9)

Here, the linear frequency f � �a?=a0�f? with f? �
!?=2�, T? and g? are the temperature and effective num-
ber of relativistic (all fields) degrees of freedom at scale
factor a?.

Figure 1 shows hC�f� for a few initial magnetic helicity
values. GWs emitted during direct-cascade unmagnetized
turbulence peak at current f�I�max ’ M	? [12]. We find that
the MHD-inverse-cascade generated GW (current epoch)
peak frequency is determined by cosmology parame-
ters, f�II�max � H?a0=a? � 1:6� 10�5 Hz�g�=100�1=6�
�T�=100 GeV� and is independent of turbulence parame-
ters. On the other hand, f�II�max � �f�I�max=M is shifted to
lower frequency compared to the unmagnetized case.
From Eq. (9), the amplitude of MHD-turbulence-generated
GWs at the peak is a factor ��9=8

? ��3=4M3=4 larger than
that in the unmagnetized case.

When modeling turbulence, we used the Biskamp and
Muller model, [30,31]. If we adopt the helical MHD tur-
bulence model of Banerjee and Jedamzik [32] (also see
Refs. [33]), the GW peak frequency remains the same
while the amplitude of the signal doubles.

Figure 1 shows that even for small values of magnetic
helicity, the main contribution to the GW energy density is
from the second, inverse-cascade stage. The GWs will be
strongly polarized since magnetic helicity is maximal at
the end of the first stage [11]. LISA should be able to detect
such GW polarization [20]. Unlike the unmagnetized case
due to the second (inverse-cascade) stage contribution, the
GW amplitude is large enough at 10�4 Hz to be detectable
by LISA. If the EWPT occurs at higher energies (T? >
100 GeV), the peak is shifted to higher frequency, closer to
LISA sensitivity peak, which leads to a stronger signal. Our
formalism is applicable for GW production at an earlier

10
−6 10−5 10−4 10−3

0

5

10

15

f/Hz

h c(f
)

× 
10

20

FIG. 1. The spectrum of gravitational radiation from MHD
turbulence for g� � 100, T� � 100 GeV, � � 0:01, and M �
1=

���
3
p

, for four different initial magnetic helicity values, �? � 0
(solid line), �? � 0:02 (dashed line), �? � 0:05 (dash-dotted
line), and �? � 0:1 (dotted line). The bold line is the LISA
design sensitivity curve.
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QCD phase transition, assuming the presence of colored
magnetic fields [34], or for any other phase transitions [3];
the peak frequency will be shifted according to the changes
in T? and g?. The GW signal estimated here exceeds that
from bubble collisions [4,15,16] or from hydrodynamical,
unmagnetized turbulence [9,10,12]. Of course, this strong
signal assumes initial nonzero (although small) magnetic
helicity, so detection of polarized GWs by LISA will
indicate parity violation during the EWPT as proposed in
Refs. [18].
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