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Quantum simulation of correlated-hopping models with fermions in optical lattices
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By using a modulated magnetic field in a Feshbach resonance for ultracold fermionic atoms in optical lattices,
we show that it is possible to engineer a class of models usually referred to as correlated-hopping models. These
models differ from the Hubbard model in exhibiting additional density-dependent interaction terms that affect
the hopping processes. In addition to the spin-SU(2) symmetry, they also possess a charge-SU(2) symmetry,
which opens the possibility of investigating the η-pairing mechanism for superconductivity introduced by Yang
for the Hubbard model. We discuss the known solution of the model in one dimension (where η states have been
found in the degenerate manifold of the ground state) and show that, away from the integrable point, quantum
Monte Carlo simulations at half filling predict the emergence of a phase with coexisting incommensurate spin
and charge order.
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I. INTRODUCTION

The use of ultracold atoms in optical lattices as condensed
matter simulators has brought a major advance in physics
in the last decade. Both bosonic [1,2] and fermionic [3,4]
Hubbard models have been theoretically and experimentally
investigated, and the simulation of artificial gauge fields
[5,6] and quantum Hall physics [7–9] are some of the many
phenomena that this active field is unveiling [10–12].

The realization of the fermionic Hubbard model opens
the possibility of using quantum simulators to treat strongly
correlated fermionic systems, with the ultimate goal of
understanding high-Tc superconductivity. While it is more
challenging to cool fermionic systems than bosonic ones,
state-of-the-art techniques have recently allowed fermionic
atoms to be cooled sufficiently to reach the regime where
quantum magnetism is manifest [13].

A particular interest with ultracold gases is the use of
time-dependent driving potentials. Using this technique, it has
been possible to observe the transition from a Mott insulator to
a superfluid phase in the Bose-Hubbard model by a dynamical
suppression of tunneling [14–16], as well as the simulation
of frustrated classical magnetism [17,18], and schemes for
the realization of Abelian [19] and non-Abelian gauge fields
[20]. More recently, a time-dependent modulation of Feshbach
resonances has been proposed for a system of ultracold
bosons, leading to a model with density-dependent hopping
coefficients, and exotic phenomena like pair superfluidity and
holon and doublon condensation [21].

In this paper we extend this idea to fermionic atom systems.
We show how a time-dependent manipulation of the interaction
strength allows us to simulate an unusual class of “correlated-
hopping models” [22], opening a window for the experimental
observation of a novel and elusive form of superconductivity
called η superconductivity proposed by Yang in 1989. After
discussing the model derivation and its symmetries, we focus
on the one-dimensional (1D) case at half filling and perform
quantum Monte Carlo (QMC) simulations for arbitrary values
of the Hubbard interaction U and of the correlated-hopping
parameter γ . Our results show that the model can exhibit an

interesting phase, with coexisting incommensurate spin- and
charge-density-wave order.

II. MODEL

We consider a system of (pseudo)spin-1/2 fermions in the
lowest band of an optical lattice, and use a Feshbach resonance
to modulate the interactions in time [21]. The Hamiltonian of
the model reads

H = −J
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + Ū (t)

∑
i

ni↑ni↓, (1)

where J is the fermion hopping amplitude between nearest-
neighbor sites 〈i,j 〉, and Ū (t) ≡ U + U1 cos(ωt) is the time-
(t-) dependent amplitude of the two-fermion coupling at the
same site.

According to Floquet theory [23], a time-periodic
Hamiltonian H (t) = H (t + T ) is described by a set of Floquet
modes |un(t)〉 which are time periodic with the same period
T , and a set of quasienergies En which are solutions of the
eigenvalue equation

H(t)|un(t)〉 = En|un(t)〉,
where H(t) ≡ H (t) − i�∂t is called the Floquet Hamiltonian.
Solutions |ψn(t)〉 of the Schrödinger equation thus have the
form |ψn(t)〉 = exp(−iEnt/�)|un(t)〉, and are unique up to
a shift E′

n = En + m�ω of the quasienergies by an integer
multiple m of �ω, which thus gives a Brillouin-zone structure
in quasienergy. The eigenvalue problem is defined in the
composite Hilbert space [24] H′ = H ⊗ HT , where H is
the standard Fock space and HT is the Hilbert space of
time-periodic functions. Let us define the following Floquet
basis:

|{njσ },m〉 = |{njσ }〉e−i(U1/�ω) sin(ωt)
∑

j nj↑nj↓+imωt , (2)

where m labels the basis of the periodic functions, and |{njσ }〉
indexes the Fock states. The unitary transformation per-
formed by the operator exp[−i(U1/�ω) sin(ωt)

∑
j n̂j↑n̂j↓]

leads to the time-independent Floquet Hamiltonian. The
main goal is now the calculation of the Floquet quasienergy
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spectrum, for which one needs the matrix elements
〈〈{njσ },m|H(t)|{n′

jσ },m′〉〉T . The symbol 〈〈· · · 〉〉T means that
the ordinary scalar product defined in H has been time
averaged, defining the natural scalar product in H′. In
the high-frequency regime �ω 	 J,U , states with different
labels m decouple, and the Floquet Hamiltonian matrix ele-
ments can be approximated by 〈〈{njσ },m|H(t)|{n′

jσ },m′〉〉T ≈
δm,m′ (〈{njσ }|Heff|{n′

jσ }〉 + m�ωδn,n′ ), defining an effective
static Hamiltonian

Heff = −J
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.)J0[K(niσ̄ − njσ̄ )]

+U
∑

i

ni↑ni↓. (3)

The function J0[K(niσ̄ − njσ̄ )] is a Bessel function of the first
kind. Its argument is the density operator difference between
sites i and j relative to the spin σ̄ , where σ̄ ≡ ↓ (↑) if σ = ↑
(↓), and the parameter K = U1/�ω.

We now perform a Taylor expansion of the Bessel function
to rewrite the hopping term. Using the fact that the Bessel func-
tion is an even function, we can write its Taylor series (without
necessarily specifying the coefficients of the expansion) as

J0[K(niσ − njσ )] =
∞∑

m=0

c2mK2m(niσ − njσ )2m

= 1 + [J0(K) − 1](niσ + njσ − 2niσ njσ ).

(4)

In deriving (4) we noted that the first term in the expansion
with m = 0 is just 1, and have used the fermion identity
(niσ − njσ )2m = niσ + njσ − 2niσ njσ for arbitrary m > 0.
This allows the Hamiltonian to be rewritten as

Heff = −J
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.){1 − X(niσ̄ + njσ̄ − 2niσ̄ njσ̄ )}

+U
∑

i

ni↑ni↓ ≡ HJ + HU, (5)

where we define X = 1 − J0(K).
Equation (5) can be easily recognized as the Hamiltonian

of the Hubbard model with a correlated-hopping interaction
[22,25]. Similar interaction terms have appeared in a different
context in cold atoms. If one considers a fermionic lattice
system very close to the Feshbach resonance (which is not the
regime studied here) in a static magnetic field, the behavior of
the system cannot be described using the one-band Hubbard
model because the on-site interaction energy exceeds the
energy gap and higher bands play an important role. The
physics in this regime can be described by an effective one-
band model with density-dependent tunneling rates [26,27].

Let us now discuss some limits of the Hamiltonian (5). In
the absence of the driving (U1 = K = 0), the Bessel function
J0(K) = 1, and so the effective Hamiltonian (5) coincides
with the Hamiltonian of the standard Hubbard model. Tuning
the driving to K = 2.4048 . . ., where J0(K) = 0 and X = 1,
produces a Hamiltonian that coincides, in d = 1, with an
exactly solvable limit of the correlated-hopping model (5),
in which the strongly correlated dynamics of the electrons
ensures separate conservation of the doubly occupied sites,

empty sites, and singly occupied sites [28]. Interest in models
with this particular type of fermionic dynamics was triggered
by the concept of η superconductivity proposed by Yang [29].
Motivated by the discovery of high-Tc superconductivity, Yang
proposed a class of eigenstates of the Hubbard Hamiltonian
which have the property of off-diagonal long-range order,
which in turn implies the Meissner effect and flux quantization
[30–32], i.e., superconductivity. These eigenstates are con-
structed in terms of operators η

†
π ≡ ∑

r e−iπ ·rc†r↑c
†
r↓ that create

pairs of electrons of zero size with momentum π . Yang also
proved, however, that these states cannot be ground states of the
Hubbard model with finite interaction; η superconductivity is
realized in the Hubbard model only at infinite on-site attraction
in d � 2 [33]. Later, several generalizations of the Hubbard
model showing η superconductivity in the ground state (for a
finite on-site interaction) were proposed [34–38].

The exactly solvable limit of the model (5) (X = 1 in d = 1)
has been analyzed in detail by Arrachea and Aligia [28,39].
Away from the exactly solvable limit, the model has been
mainly studied in the weak-coupling limit (X � J ) using the
continuum-limit bosonization treatment and finite-chain exact-
diagonalization studies [40,41].

The infrared behavior of the system (5), determined by
the unusual correlated dynamics of fermions, is also strongly
influenced by its high symmetry. The three generators of the
spin-su(2) algebra

S+ =
∑

i

c
†
i↑ci↓, S− =

∑
i

c
†
i↓ci↑, Sz = 1

2

∑
i

(ni↑ − ni↓)

(6)

commute with the Hamiltonian (5), which shows its spin-
SU(2) invariance.

To keep the discussion as general as possible, let us consider
the case of bipartite lattices that we label A,B and introduce the
index αi which assumes values αi = 1 if i ∈ A and αi = −1
if i ∈ B. In d = 1, in particular, one can choose A to be the
even sites and B to be the odd sites and one simply has αi =
(−1)i . The electron-hole transformation ci,σ → (−1)αi c

†
i,σ

leaves the Hamiltonian unchanged and therefore the model
is characterized by the electron-hole symmetry. Moreover,
for the case of half filling that we consider in this work, the
model (5) possesses an additional spin-SU(2) symmetry. The
transformation

ci↑ → ci↑, ci,↓ → (−1)αi c
†
i↓ (7)

interchanges the charge and spin degrees of freedom and
converts

Heff(J,U,X) → Heff(J, − U,X). (8)

In this case therefore, the charge sector is governed by the
same SU(2) symmetry as the spin sector, and the model has
the SU(2) ⊗ SU(2) symmetry [28] with generators

η+ =
∑

i

(−1)ic†i↑c
†
i↓, η− =

∑
i

(−1)ici↓ci↑,

(9)

ηz = 1

2

∑
i

(1 − ni,↑ − ni,↓).
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Henceforth we will focus on the case d = 1 where an
exact solution of the model exists both for X = 0 (Hubbard
model) and X = 1, as previously mentioned. For the half-filled
Hubbard model the SU(2) ⊗ SU(2) symmetry implies that the
gapped charge and the gapless spin sectors for U > 0 are
mapped by the transformation Eq. (7) into a gapped spin and
a gapless charge sector for U < 0. Moreover, at U < 0 the
model is characterized by the coexistence of charge-density-
wave (CDW) and singlet superconducting instabilities in the
ground state [42].

In contrast to the on-site Hubbard interaction U , the X term
remains invariant with respect to the transformation Eq. (7).
For a given X, this immediately implies the following:

(a) For U = 0 the properties of the charge and the spin
sectors are identical.

(b) In the limit in which U 	 X one expects that the
large on-site repulsion will open a gap in the charge sector.
Since for U = 0 the spin and charge degrees of freedom
have the same properties because of the X symmetry, there
must exist a critical value of the Hubbard coupling Uc � 0
corresponding to a crossover from the X-dominated regime
into a U -dominated regime.

(c) The Luttinger-liquid parameters of the model charac-
terizing the gapless charge (Kρ) and spin (Kσ ) degrees of
freedom are Kρ = Kσ = 1.

In the following sections, we will separately consider the
exactly solvable cases (X = 0 and X = 1), and the physically
relevant case of (0 < X < 1).

III. EXACTLY SOLVABLE CASE: X = 1, d = 1

In this section, we mainly follow the route developed by
Arrachea and Aligia [28]. At X = 1, the hopping of an electron
with spin σ from a site i to a neighboring site j is possible
only if there are no other particles on the sites (niσ̄ = njσ̄ = 0),
or if both sites are occupied by electrons with opposite spins
(niσ̄ = njσ̄ = 1). Thus, the only allowed hopping processes
in this limit are exchange processes of a singly occupied site
with a holon (e.g., |0,↑〉 ↔ |↑,0〉) and a doublon with a singly
occupied site (e.g., |↑↓,↑〉 ↔ |↑,↑↓〉).

It is convenient to use the slave-particle formalism to rewrite
the model in another basis, where all available processes are
clearly displayed. One defines the mapping

|0〉j → h
†
j |0〉, |σ 〉j → f

†
jσ |0〉, |↑↓〉j → d

†
j |0〉, (10)

where the slave particles must obey the constraint

h
†
i hi + d

†
i di +

∑
σ

f
†
iσ fiσ = 1 (11)

at each lattice site. The constraint physically means that the
slave particles act as hard-core particles, with an infinitely large
on-site repulsion. The h

†
i and d

†
i bosonic operators describe,

respectively, holons and doublons of the original system, while
the fermionic operators f

†
iσ describe fermions with spin σ .

Using this mapping, the Hamiltonian can be exactly rewritten
in the form

H 0
eff = −J

∑
〈i,j〉,σ

[f †
jσ fi,σ (h†

i hj − d
†
i dj ) + H.c.] + U

∑
i

d
†
i di,

(12)

where one can immediately observe that the numbers Nh,
Nd , Nf ↑, and Nf ↓ are separately conserved, because the
Hamiltonian (12) can only interchange individual particles.
This corresponds to a U(1) symmetry for each slave-particle
sector. These particle numbers will therefore be used as
quantum numbers to label the eigenstates. Notice that the U

term plays the role of a chemical potential for doublons and that
there is not, in general, a free part of the Hamiltonian for the
slave particles. We stress the sign difference in the exchange
process between doublons and holons in Eq. (12). The
additional minus sign for the doublons is responsible for the η

symmetry with momentum π . While the restricted dynamics of
hopping processes expressed in the Hamiltonian (12) is a very
general property of the choice X = 1, it is only in d = 1 that
there are additional symmetries (not discussed here) that allow
the model to be solved exactly. The solution of this model in
1D for open boundary conditions was given in Ref. [28]. The
physical properties of the 1D system described by Eq. (12) are
very peculiar. When a doublon and a holon are neighbors, they
act like hard-core bosons as previously mentioned, and cannot
tunnel through each other because of the dimensionality of
the system. Such a process would require the doublon and the
holon to annihilate into two single fermions on the neighboring
sites and then reform as a doublon and holon on exchanged
sites. This process is forbidden at X = 1, but is possible for
X �= 1.

As a result, there are three regimes for the ground-state
phase diagram, as shown in Fig. 1: in region I there are
only single fermions and holons (in region II, by particle-hole
symmetry, only doublons and single fermions); the dashed
line in Fig. 1 will be discussed later when we concentrate on
the regime n = 1; in region III all three types of particles are
present, single fermions, holons, and doublons; in region IV
there are no single fermions but only doublons and holons.
In all sectors the ground state is highly degenerate and, in
regions III and IV, one can show that η states also belong to
the ground-state manifold. For further details, we refer the
reader to Ref. [28].

In the following, we focus on the half-filled case n = 1,
for which we perform QMC simulations in Sec. V. Since at
X = 1 and half filling the number of doublons Nd , holons
Nh = Nd , and the singly occupied sites Nf = N − 2Nd are
integrals of motion, the delocalization energy of the system

I II

III

IV d h

h d

d h

0 0.5 1 1.5 2
6

4

2

0

2

4

6

n

U J

FIG. 1. (Color online) Phase diagram of model (5) obtained for
J0(K) = 0 in d = 1 [28].

013624-3



DI LIBERTO, CREFFIELD, JAPARIDZE, AND MORAIS SMITH PHYSICAL REVIEW A 89, 013624 (2014)

coincides with that of 2Nd hard-core bosons on a lattice of
N sites. This equivalence allows one to write the density of
energy at half filling as

ε(nd ) = −2J

π
sin(π − 2πnd ) + U nd. (13)

For the half-filled case, the three regimes mentioned before
become the following (see Fig. 1):

(i) U < −4J . In this case, the ground state contains only
doublons and holons (nd = nh = 1/2) that are frozen in the
ground state since no dynamics is allowed in the absence of
single fermions. The system is a doublon-holon insulator and
its energy is E0 = NU/2. The degeneracy of the ground state
∼N diverges in the thermodynamic limit.

(ii) U > 4J . In this case there are no doublons and holons
in the ground state; all sites are singly occupied and particles
cannot hop. The ground state has energy E0 = 0 and is 2N

times degenerate, due to the freedom of distribution of spins of
particles along the lattice. This state is thus a charge insulator.

(iii) −4J � U � 4J . In this case, the ground state consists
of a finite number of doublons and holons, separated by
singly occupied sites to ensure their maximal delocalization
along the lattice. It is clear that at U = 0 the minimum of
kinetic energy is reached at the densities nd = nh = 0.25. The
doublon density now depends on the ratio U/J :

nd = 1

2

[
1 − 1

π
arccos

(
− U

4J

)]
. (14)

IV. AWAY FROM THE EXACT SOLUTION

Deviation from the exactly solvable limit X = 1 produces
the new term

2γ J
∑

〈i,j〉,σ
[f †

i↑f
†
j↓(eidj + ejdi) + H.c.], (15)

where we have defined γ ≡ J0(K) = 1 − X. As these new
terms allow doublons to convert into two single fermions on
neighboring sites (and the reverse), the Hamiltonian no longer
conserves the individual number of slave particles, and thus no
exact solution is known. However, the η symmetry ispreserved
and one expects that the enormous degeneracy of the ground
state will again be removed. For γ � 1, i.e., |X| � 1,
the model can be treated using bosonization techniques
and the phase diagram is known (also in the presence of
nearest-neighbor interactions) [40], showing for U < 0 that
superconducting correlations coexist with CDWs. For the
strongly interacting case, exact diagonalization in 1D has been
used [43,44], for systems of up to 12–14 sites. Nakamura [44]
presented a phase diagram at one-half and one-quarter filling
(for X = ±1/4), and Arrachea et al. [43] have shown that
superconducting correlations can appear for n = 1. However,
the general picture for arbitrary filling is still missing.

In the next section we will use the QMC technique to
investigate the charge and spin ordering of the Hamiltonian
given by Eq. (5) at general values of X and see how the results
evolve between the two integrable cases (X = 0 and X = 1)
for the specific case of half filling.

V. QUANTUM MONTE CARLO METHOD

To treat the Hamiltonian (5), we employed a standard
“world-line” algorithm [45]. This is a finite-temperature
method, operating in the canonical ensemble, which is partic-
ularly well adapted to treat lattice spin-charge Hamiltonians.
In order to sample the zero-temperature behavior of the
system, it is important to set the inverse temperature of the
system, β = 1/kT , to a sufficiently large value. By comparing
the results for the ground-state energy of the system with
γ = 1 to the exact results for the Hubbard model available
from the Bethe ansatz, we established that a sufficiently
low temperature was βJ = 48, and accordingly we used this
value in all the simulations. The Trotter decomposition of
the imaginary-time axis gives systematic errors which can be
made arbitrarily small by increasing the number of time slices,
thereby reducing the imaginary-time discretization �τ . Our
simulations demonstrated that the convergence of the results
depended strongly on the value of γ . For the Hubbard model
(γ = 1) a relatively coarse value of �τ = 0.1 was adequate.
However, as γ was reduced, �τ also had to be reduced further,
the lowest values of γ = 0.2 requiring a discretization of
�τ � 0.02, with the simulation involving 2048 time slices.

As well as the increased number of time slices required,
taking lower values of γ was also hindered by ergodic
“sticking,” in which local Monte Carlo (MC) updates are
unable to evolve the system from local minima in energy.
It was this factor that set the practical barrier on the lowest
values of γ that we were able to simulate, and accordingly
we present results only for γ � 0.2. In order to obtain results
of high accuracy, typically 16 000 MC measurements would
be made for each set of parameters, with each measurement
being separated from the next by several MC sweeps in order
to reduce autocorrelation among the data.

A particular advantage of the world-line method is that as it
operates in the real-space occupation number basis, it is simple
to evaluate operators diagonal in number operators, such as the
on-site spin σi = ni↑ − ni↓, the on-site charge ρi = ni↑ + ni↓,
the doublon number, and correlations correlations between
pairs of operators. An especially useful quantity is the static
structure function

Sα(q) = 1

L

∑
m,n

eiq(m−n)〈αmαn − α2〉, (16)

where m and n are integers labeling sites, α = σ (ρ) denotes
spin (charge), and L is the number of lattice sites. As well as
using the structure functions to investigate the type of spin and
charge ordering present in the system, they can also be used to
directly estimate the Luttinger-liquid parameters [46],

Kα = limq→0
Sα(q)

πq
. (17)

Thus, when the structure function is linear at low momentum,
the Luttinger-liquid parameter is well defined and is simply
related to its slope. On the other hand, if the function is
quadratic, this indicates that the Luttinger-liquid parameter
is not well defined and that this sector has a gap. In a uniform
system, continuity requires that S(q → 0) = 0. However, if
phase separation occurs S(q) will have a peak at the smallest
nonzero momentum, which will diverge as L increases. The
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FIG. 2. (Color online) Doublon density measured as γ is qua-
sistatically reduced toward zero. For U = 0 (blue squares) the
doublon density does not change, reflecting the symmetry of the
model. For positive U (black circles) the density drops as γ is reduced;
the reverse is the case for negative U (red squares). The data are
symmetric about nd = 0.25 [see Eq. (18)]. The solid lines are cubic
fits to the data to guide the eye. The arrows on the left indicate the
analytic values obtained in Ref. [28] for the limit γ = 0. Parameters
of the model: 32 sites, β = 48, n↑ = n↓.

regularity of S(q) for small momentum thus also provides a
first check that the system is not phase separated.

QMC results

Doublon density. In this section we will measure all energies
in units of J . In Fig. 2 we show the doublon density as
a function of γ for several different values of the Hubbard
interaction U . In these simulations, γ was initially set to 1, and
then reduced “quasistatically” in steps of �γ = 0.01. For each
value of γ and U the ensemble was allowed to rethermalize
and a number (typically 64) of MC measurements made.
This technique permits a rapid scan to be made through the
configuration space of the model, at the expense of producing
results of only moderate accuracy.

From Fig. 2, we can first see that for U = 0, the doublon
density does not depend on γ . This arises from the underlying
symmetry of the Hamiltonian at half filling. For negative U ,
we see that the doublon density increases as γ is reduced,
interpolating smoothly between the results for the Hubbard
model (γ = 1) and the exactly solvable case (γ = 0). The
results for positive U mirror those for negative U , and can be
related via

nd (+|U |) = 0.5 − nd (−|U |). (18)

The validity of Eq. (18) is clear from the numerical results in
Fig. 2. In addition, it can be easily proven, starting from Eq. (7)
and recalling that Nd = ∑

i ni↑ni↓.
Although γ = 0 is not directly accessible to our QMC

simulation due to ergodic trapping, we can obtain estimates
for the doublon density in this limit by extrapolating the data
in Fig. 2. We present the results in Fig. 3. The agreement
between the numerical results and the exact solution [28] is
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FIG. 3. (Color online) Comparison of the analytic results for the
doublon density for γ = 0 with the results obtained by extrapolating
the data shown in Fig. 2. The agreement is seen to be excellent.

excellent, demonstrating the accuracy and reliability of the
QMC simulation.

Correlation functions. In Fig. 4(a) we show the static
charge structure functions for strong repulsive interactions
U = 4. It can be clearly seen that for the Hubbard model
(γ = 1) the charge sector is gapped, and that the structure
function presents a weak peak at k = 2kF = π . Reducing
γ suppresses the structure function and weakens this peak
further. The spin structure function, shown in Fig. 4(b), shows
a contrasting behavior. For the Hubbard model this function
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FIG. 4. (Color online) (a) Charge structure function for the half-
filled model with U = 4. For γ = 1 there is a weak peak at
k = π ; as γ is reduced this peak is suppressed. (b) Spin structure
function. For γ = 1 there is a strong peak at k = π indicating strong
antiferromagnetic ordering. This peak is enhanced as γ is reduced.
(c) As (a), but for U = −4. (d) As (b), but for U = −4. The effect of
changing the sign of U is to interchange the spin and charge degrees
of freedom. Momentum is measured in units of the inverse lattice
spacing.
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FIG. 5. (Color online) (a) Charge structure function for U = −2.
As γ is reduced below 0.6, the system forms an incommensurate
CDW. (b) Spin structure function for U = −2. For low γ the system
also forms an incommensurate SDW. Momentum is measured in units
of the inverse lattice spacing.

possesses a strong peak at 2kF , indicating the presence of
strong antiferromagnetic ordering (↑,↓,↑,↓), and this peak is
enhanced as γ is reduced. An infinitesimally small deviation
of the coupling γ from zero opens channels for the exchange
of spins on neighboring sites. This gives a preference for an
alternating distribution of particles with opposite spins along
the lattice, i.e., a spin-density-wave (SDW) structure. The spin
excitations are gapless, and the spin-SU(2) symmetry sets the
Luttinger-liquid parameter Kσ = 1.

Below these plots we show the corresponding structure
functions for attractive interaction U = −4. It can be clearly
seen that changing the sign of U simply has the effect of
interchanging the spin and charge degrees of freedom, as noted
in Sec. II. In this case we see that reducing γ now has the
effect of suppressing the spin dynamics, while enhancing the
staggered charge order (d,h,d,h). As before, deviation from
the exact solution for γ = 0 opens channels for an alternating
distribution of doublons and holons along the lattice, i.e., a
CDW structure. Now the spin degrees of freedom are gapped,
the charge excitations are gapless, and due to the charge-SU(2)
symmetry, the Luttinger-liquid parameter Kρ = 1.

Results for U = −2 are given in Fig. 5. Looking first at
the charge structure function, the result for the Hubbard model
looks similar to that seen previously for U = −4. As γ is
reduced, however, a new behavior emerges. When γ is reduced
below 0.6, the charge structure function forms a peak at an
incommensurate momentum, indicating the formation of an
incommensurate CDW. At the same time an incommensurate
SDW forms in the spin sector, at a smaller value of momentum.
This incommensurate ordering is reminiscent of the behavior
known for stripes in the 2D conventional Hubbard model upon
doping [47].

The incommensurate order occurs generally for low values
of γ for |U | < 4 (region III of the phase diagram Fig. 1).
Reducing |U | further to U = 0 shows the effect of γ on
a noninteracting system. For γ = 1 the system consists of
free fermions, and as can be seen in Fig. 6 the charge
and spin correlators are identical to each other and are
featureless. At γ = 0.6 the dynamics of the system is again
slightly suppressed, but at γ = 0.2 the system again manifests
incommensurate charge and spin order, with the structure
functions peaking at k = kF .
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FIG. 6. (Color online) (a) Charge structure function for U = 0.
(b) Spin structure function for U = 0. For the noninteracting case the
charge and spin degrees of freedom behave identically. At γ = 1 they
show no structure (free fermions), but form incommensurate ordered
phases for low γ . Momentum is measured in units of the inverse
lattice spacing.

Let us try to understand how these results connect to
the exact solution for |U | � 4. In this case the ground
state consists of a finite number of doublons and holons,
separated by singly occupied sites to ensure their maximal
delocalization along the lattice. Thus, in this sector a rather
special ordering, characterized by coexistence of CDW and
SDW order on different lattice sites, is possible. For a more
detailed description let us consider a few particular cases.

Let us start from the U = 0 case, where nd = 0.25. The
ground-state configuration at X � 1 consists of an alternating
distribution of doublons and holons, separated by singly
occupied sites with alternating spins on these sites. A possible
configuration would be

(d ↑h ↓ d ↑h ↓ d ↑h ↓ · · · ),

showing the coexistence of period-4 charge- and spin-density
modulations, as observed in Fig. 6.

At U = −2, where nd = 0.3(3), a possible configuration
would be

(d ↑ h d ↓h d ↑ h d ↓h · · · ),

showing the coexistence of a period-3 charge modulation with
a period-6 spin density modulation.

For other values of U , the number of doublons (and
singly occupied sites) will be in general incommensurate. The
structure of the coexisting charge- and spin-density waves
must reflect this incommensurability, and will consequently
be much more complicated.

For 0<U<4, the behavior is the same as for −4<U<0,
but with the spin and charge structure functions inverted. For
instance, for U = 2 Fig. 5(a) would hold for spin and Fig. 5(b)
would hold for charge, indicating an incommensurate spin-
charge-density wave.

To ensure that the behavior we have seen is not an artifact
of the finite system size, we have repeated our simulations
for U = 2.5 for lattice sizes between 16 sites and 100 sites.
We show the results in Fig. 7, and it is clear that the
incommensurate structure seen in the structure functions
hardly alters as the lattice size is increased. We can thus be
confident that our standard size of L = 32 is sufficiently large
for finite-size effects to be neglected.
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FIG. 7. (Color online) The charge structure function for U =
−2.5 as the lattice size is increased. The results show little dependence
on lattice size, indicating that finite-size effects are not important in
our analysis. Momentum is measured in units of the inverse lattice
spacing.

From the simulation we have also evaluated the Luttinger
parameter Kρ , using Eq. (17). As shown in Fig. 8, for γ = 1Kρ

is equal to 1 for negative values of U (the 10% deviation is
within the numerical error of our calculation), indicating the
coexistence of superconductivity and charge-wave ordering.
As U becomes positive, a gap opens in the charge sector and
Kρ can no longer strictly be defined for the half-filled case. This
is marked in Fig. 8 by the calculated value of this parameter
abruptly dropping, as the charge structure function is no longer
linear at small momentum. For γ = 0.6 a similar behavior is
seen, except that the opening of the charge gap now occurs
at a higher value of U � 1.8. As γ is reduced further this
trend continues, and for γ = 0.2 we find that the critical U

has a value of approximately 3.5, in good agreement with the
estimate given in Ref. [28].

Before closing this section, we want to mention that a model
similar to the one presented here, but without the three-body
term, has been been previously investigated [48,49]. For this
so-called Hirsch model (see, for instance, Ref. [50]), the

-4 -2 0 2 4
U (J)

0.5

1

K

=1
=0.6
=0.4

FIG. 8. (Color online) Luttinger-liquid parameter Kρ . For γ = 1,
Kρ is approximately equal to 1 for negative U , and then drops as U

becomes positive, signaling the opening of the charge gap. As γ is
decreased, this drop occurs at larger values of U . The dashed line is
a guide to the eye, to assist in estimating where the drop occurs.

strongly correlated regime at half filling exhibits an incom-
mensurate (singlet) superconducting phase that shows many
similarities with our findings. This phase has been captured
using density-matrix renormalization-group techniques, while
bosonization and RG were unable to describe the transition
[51].

At present, the phase diagram of the model (5) in 1D is
only partially known; however, as we will show in the last
section, the model can describe realistic experiments using
cold atoms. This represents a good challenge for quantum
simulations, as well as for new numerical calculations. A
fascinating possibility would be an emerging superconducting
phase, with tightly bound pairs of momentum π .

VI. EXPERIMENTAL PARAMETERS

For the experimental realization of this model (in 1D for
instance) we consider an optical lattice V (r) = Vx sin2(kx) +
Vy sin2(ky) + Vz sin2(kz) with k = 2π/λ generated by a laser
with wavelength λ = 1064 nm; we take the limit Vx,Vy 	 Vz

to allow dynamics only in one dimension. We studied the
Feshbach resonance for 40K at B0(G) = 224.2, characterized
by a width �(G) = 9.7 and a background scattering length
abg/aB = 174, where aB denotes the Bohr radius [52]. The
dependence of the scattering length as on the magnetic field B

is given near resonance by

as = abg

(
1 − �

B − B0

)
. (19)

We choose a time-dependent magnetic field of the form B(t) =
Bm + B1 cos(ωt) and consider |B1| � |Bm − B0|. Therefore,
at first order in B1/(Bm − B0) we can write

as � abg

[
1 − �

Bm − B0

(
1 − B1 cos(ωt)

Bm − B0

)]

≡ a0 + a1 cos(ωt), (20)

where we have defined a0 = abg[1 − �/(Bm − B0)] and
a1 = −abgB1�/(Bm − B0)2.

In Figs. 9(a) and 9(b), we plot the driving frequency values
corresponding to the zero of the Bessel function J0(U1/�ω) =
0 in both the attractive and repulsive cases, respectively, in a
particular range of parameters near the zero of the Feshbach
resonance (so that we can reach the region of interest in the
regime of strong coupling analyzed in this paper) and compare
with an estimate of U and J for the 1D case. We find that
ω is in the subkilohertz regime ω � 2π × 500–600 Hz and
we observe that such a choice of parameters fulfills the main
approximations required from Floquet theory, i.e., ω 	 U,J .
Actually, in typical experiments [16] the kilohertz energy scale
is far below the band gap and higher-band contributions do
not play a role, except for possible multiphoton processes.
Moreover, one can see that the range where Floquet theory
can be applied for this choice of parameters of the resonance
allows us to explore the phase diagram in the main region
of interest, where the correlated-hopping model should reveal
interesting phenomena. Such a choice of parameters plotted
in Fig. 9 can be considered as an example to show that the
model described here can be realized in experiments; one
would envisage that for different values or ranges of U/J ,
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FIG. 9. (Color online) Comparison between frequency modula-
tion ω of the magnetic field, hopping parameter J , and Hubbard
interaction U (all measured in hertz) at the zero of the Bessel
function J0(U1/�ω) for 40K close to a zero of a Feshbach resonance
[B0(G) = 224.2, �(G) = 9.7, and abg/a0 = 174]. (a) In the attractive
case a0 < 0, we have chosen Bm(G) = 233.5 and B1(G) = 4; (b)
in the repulsive case a0 > 0, we have chosen Bm(G) = 234.36 and
B1(G) = 4. The optical lattice parameters are Vx = Vy = 25 ER ,
Vz = V0, and λ = 1064 nm.

the optimal parameters will be chosen accordingly. We finally
want to mention that to calculate the parameters U and J

we have used the approximate formulas [given in terms of
the recoil energy ER = �

2(2π/λ)2/2m, with m denoting the
atomic mass] [11]: U/ER = (2π/λ)as

√
8/π V

1/4
0 V

1/2
x,y and

J/ER = (4/
√

π ) V
3/4

0 e−2
√

V0 , where we have introduced the
potential depth V0 = Vz (assuming that the electron dynamics
will be in the z direction), and frozen the motion in the x and y

directions, taking Vx = Vy = 25 ER such that we can consider
one-dimensional effective systems.

VII. CONCLUSIONS

We have discussed a scheme for cold atoms to engineer an
extension of the Hubbard model that includes nearest-neighbor
correlations affecting the hopping processes for fermions in
optical lattices. After imposing a time-dependent driving of
the s-wave scattering length between atoms in two different
hyperfine states (which we have modeled as a pseudospin-1/2
system assuming no spin imbalance), we have shown within
Floquet theory that the system can be described by an effective
Hamiltonian with correlated-hopping interactions. The model
has an additional SU(2) symmetry, with respect to the usual
spin-SU(2) symmetry of the Hubbard model, generated by
the algebra of η operators. This fact opens the possibility
of searching for a ground state characterized by the exotic
η-pairing superconductivity proposed by Yang in 1989 as a

metastable state of the Hubbard model. This model, for the
particular case of d = 1 on which we focused in this work, has
two integrable points as a function of the driving parameter X

that tunes the coupling of the correlated-hopping interactions:
one is the Hubbard model (X = 0) and the other one (X = 1)
has been analyzed in Ref. [28] by Arrachea and Aligia. The
integrable point discussed by them manifests η pairing in the
ground state. Unfortunately, the huge degeneracy of the ground
state prevents the system from showing superconducting
properties, like anomalous flux quantization [39]. Exploring
this region of the phase diagram that extends over the whole
filling axis (see Fig. 1, region III) can be quite challenging in
general for experiments. Indeed, as discussed for the case of
the supersymmetric model by Essler et al. [35], it is possible
to draw the phase diagram of Fig. 1 using the grand canonical
ensemble. Such representation is of fundamental importance
because in typical cold atom systems the presence of the trap
can be interpreted, in the local-density approximation, as a
local chemical potential such that different shells with different
quantum phases would appear radially in the trapped gas.
The consequence of this, however, is that the central “dome”
(region III) will correspond to a single value of chemical
potential μ = 0, thus rendering its observation problematic.

We have focused on the study of the half-filled model,
away from the integrable point X = 1, using the world-line
algorithm to perform QMC simulations. We have explored the
parameter space in the strong-coupling regime, where known
analytical methods like bosonization and RG techniques
cannot be employed. We have found that an incommensurate
order in the charge and the spin sectors sets in for the
ratio |U/J | < 4, where U and J are respectively the on-site
interaction and the bare hopping amplitude. We have observed
that the two kinds of orders are manifest as peaks in the spin
and charge structure functions at incommensurate (distinct)
momenta. The two orders exchange their behavior when
U → −U as expected from the symmetries of the model.
In particular, for the case U = 0 a peak appears exactly at
kF = π/2 in both structure functions.

A further investigation of the model would require the
measurement of other types of orders, to see, for instance, what
role is played by superconductivity when the incommensurate
spin and charge order appears. These types of correlations
cannot be computed with the QMC algorithm used in this
work since it is based on a number-conserving representation
of the fermionic Hilbert space; one would thus need to employ
other techniques to look, for instance, at the two-body density
matrix. Moreover, deviations from half filling are still to be
studied in the strong-coupling regime and the phase diagram
has not been established yet, except for the case X = 1/4 [44].

In dimensions d � 2, the physics of the model is almost all
to be explored; weak-coupling Hartree-Fock calculations in
d = 2 show that the model can exhibit d-wave superconduc-
tivity [53]. A very interesting possibility, deferred to further
studies, would be the appearance of η superconductivity in the
ground state.
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APPENDIX: DERIVATION OF THE EFFECTIVE MODEL

The Hamiltonian of the Hubbard model with a time-
dependent interaction reads

H = −J
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + Ū (t)

∑
i

ni↑ni↓

= −J
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + U

∑
i

ni↑ni↓

+U1 cos(ωt)
∑

i

ni↑ni↓

≡ HJ + HU + Hd (t). (A1)

Let us define the following Floquet basis:

|{njσ },m〉

= |{njσ }〉 exp

⎛
⎝−i

U1

�ω
sin(ωt)

∑
j

nj↑nj↓ + imωt

⎞
⎠ ,

(A2)

where |{njσ }〉 stands for a Fock state, and compute the Floquet
Hamiltonian matrix elements using this basis (the double
angular brackets indicate the time average),

〈〈{n′
jσ },m′|H − i�∂t |{njσ },m〉〉. (A3)

The derivative −i�∂t |{njσ },m〉 cancels with Hd (t)|{njσ },m〉.
Let us examine HU . We have to calculate the following
term:

1

T

∫ T

0
dt eiωt(m−m′)〈{n′

jσ }|HU |{njσ }〉

exp

⎡
⎣−i

U1

�ω
sin(ωt)

∑
j

(nj↑nj↓ − n′
j↑n′

j↓)

⎤
⎦ . (A4)

|{njσ }〉 are eigenstates of HU ; hence njσ = n′
jσ , ∀ j , and we

find

1

T

∫ T

0
dt eiωt(m−m′)〈{n′

jσ }|HU |{njσ }〉

= 〈{n′
jσ }|HU |{njσ }〉δm,m′ . (A5)

For the hopping part, we have to calculate

1

T

∫ T

0
dt eiωt(m−m′)〈{n′

jσ }|HJ |{njσ }〉

exp

⎡
⎣−i

U1

�ω
sin(ωt)

∑
j

(nj↑nj↓ − n′
j↑n′

j↓)

⎤
⎦ . (A6)

It is crucial now to evaluate the term 〈{n′
jσ }|HJ |{njσ }〉. The

typical form of this quantity is

〈{n′
jσ }|c†iσ ckσ |{njσ }〉. (A7)

If σ = ↑ (and then defining σ̄ ≡ ↓), it implies that n′
iσ =

niσ + 1, n′
iσ̄ = niσ̄ , n′

kσ = nkσ − 1, n′
kσ̄ = nkσ̄ , and n′

jρ = njρ

for j �= i,k. As a consequence, the density-dependent part in
the exponential becomes

ŝ ≡
∑

j

(nj↑nj↓ − n′
j↑n′

j↓)

= ni↑ni↓ + nk↑nk↓ − (ni↑ + 1)ni↓ − (nk↑ − 1)nk↓
= −ni↓ + nk↓. (A8)

An analogous result holds for σ = ↓. We now use the integral
representation of Bessel functions of the first kind:

Jn(x) = 1

2π

∫ π

−π

dt ei(x sin t−nt), (A9)

define τ = ωt , and then shift τ → τ + π . The integral then
becomes

1

2π

∫ π

−π

dτ ei(τ+π)(m−m′)−i(U1/�ω)ŝ sin(τ+π)

= (−1)m−m′

2π

∫ π

−π

dτ eiτ (m−m′)+i(U1/�ω)ŝ sin τ , (A10)

which yields

(−1)m−m′Jm′−m

(
U1

�ω
ŝ

)
, (A11)

which can be reabsorbed in HJ . In the large-frequency
limit �ω 	 J,U , the off-diagonal elements of the Floquet
Hamiltonian can be (perturbatively) neglected and we can thus
consider only m = m′ and choose m = 0 in the first Floquet
Brillouin zone. Therefore, the approximate form of the Floquet
Hamiltonian is

Heff = −J
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.)J0[K(niσ̄ − njσ̄ )]

+U
∑

i

ni↑ni↓, (A12)

where we defined K ≡ U1/�ω.
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[19] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet,
A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Phys. Rev. Lett. 108, 225304 (2012).

[20] P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet,
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