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Magnetic-field switchable metal-insulator transitions in a quasihelical conductor

Bernd Braunecker,1 Anders Ström,2 and G. I. Japaridze3,4
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We study Anderson localization in disordered helical conductors that are obtained from one-dimensional
conductors with spin-orbit interaction and a magnetic field, or from equivalent systems. We call such conductors
“quasihelical” because the spins of the counterpropagating modes are not perfectly antiparallel and have a small
spin-wave-function overlap that is tunable by the magnetic field. Due to the overlap, disorder backscattering
is possible and allows a localization transition. A conductor can pass through two localization transitions with
increasing field, one from the conventionally localized system to the quasihelical conductor (with localization
length exceeding the system length), and one at a higher field again to a localized state, due now, however,
to backscattering below the magnetic-field induced pseudogap. We investigate these transitions using a unified
two-step renormalization group approach.
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I. INTRODUCTION

Over 50 years ago, Anderson showed that a metal-insulator
transition can arise due to localization of particles by scattering
on a disorder potential.1 Since then, Anderson localization
has evolved into an important topic of condensed matter
physics, photonics, and ultracold atom gases.2 While the
basic localization mechanism can be understood on a single-
particle basis, a complete investigation needs to include further
interactions, especially if they compete against localization.
To study such a competition it would be advantageous to
control the interactions externally, and to pass through the
metal-insulator transition on demand. Here we show that this
can indeed be achieved in the presently much investigated
one-dimensional (1D) helical conductors through an external
magnetic field.

Helical conductors are characterized by spin-filtered trans-
port, in which opposite spins (or Kramers partners) are bound
to the right (R) and left (L) moving conduction modes. In
conventional 1D conductors, even weak disorder is already
sufficient to turn the conductor into an insulator3,4 by disorder-
induced backscattering between the Fermi points ±kF . In a
helical conductor, however, backscattering is only possible
together with a spin flip, and the conductor is insensitive to
normal, spin-preserving disorder scattering.5

Helical conductors appear at the edges of topological
insulators,6 or in quantum wires7 or nanotubes8 with strong
spin-orbit interaction (SOI). They have attracted much at-
tention recently as they allow for spin filtering,7 Cooper
pair splitting,9 and, if in contact with a superconductor, the
realization of Majorana end states.10 While localization cannot
occur in a perfect helical conductor, many of the investigated
conductors are imperfect and we call them “quasihelical”:
the spins moving in opposite directions are not perfectly
antiparallel. They provide the handle to tune localization
externally. Examples are semiconductor nanowires with strong
SOI in the presence of a uniform magnetic field7 or, without
SOI, of a spiral magnetic field,11 which can also take the form
of a spiral Overhauser field due to ordered nuclear spins.12

The SOI shifts the spin ↑,↓ bands by the wave vectors
±q0 (Fig. 1, dashed lines). A magnetic field Bx perpendicular
to the ↑,↓ axis has now two effects. It lifts the degeneracy
at k = 0 by opening a pseudogap (Fig. 1, solid lines), and
it breaks time-reversal symmetry. Tuning the Fermi level
to the center of the pseudogap by letting kF = q0 allows
conduction only through the modes close to momenta ±2q0

with opposite spins. Through Bx , however, these spins are
no longer antiparallel, disorder backscattering becomes again
possible, and localization can occur.

In this paper we provide a unified approach to such
localization, taking into account disorder, magnetic field, spin
overlaps, and electron interactions. We formulate a two-step
renormalization group (RG) approach within the Luttinger
liquid (LL) framework that provides us with a transparent
picture of the underlying physics. We consider the zero
temperature case, valid if the temperature is smaller than any
of the gap sizes.

As a result, we find that varying Bx can cause localization
transitions of two kinds. A localized system3,4 at Bx = 0 can
make a transition to a quasihelical conductor at a critical field
B∗

x lying (for the example of InAs nanowires) in the range
up to ∼1 T. This transition is quite abrupt and appears when
the Bx generated pseudogap overcomes the disorder gap, and
the quasihelical state is lower in energy. The transition is
marked by a rapid increase of the localization length ξloc,
and the system is conducting if ξloc is greater than the system
length L. Through the equal-spin overlap, ξloc then becomes
strongly Bx dependent and decreases with increasing field. At a
larger critical field B∗∗

x > 1 T, when ξloc < L, backscattering
between ±2q0 causes again localization, resulting in a 4q0

modulated density wave coexisting with the transverse spin
polarization generated by Bx . This coexistence of density
wave and uniform polarization distinguishes this phase from
conventional localization, and we shall call it “subgap localiza-
tion.” For very strong disorder, the helical phase is suppressed
(B∗

x = B∗∗
x ), and a transition takes place directly between

the two localized phases. We show concrete results for InAs
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FIG. 1. (Color online) Electron dispersion for the noninteracting
quantum wire with SOI for Bx = 0 (dashed lines) and Bx �= 0 (solid
lines). The magnetic field opens a pseudogap �Z = μBg|Bx |/2 at
k = 0. We denote the resulting lower (upper) band by a (b). At any
energy E the left (L) and right (R) moving states are labeled by
|a/b,L/R〉 as indicated in the figure. The color gradient from red to
blue indicates the spin mixing by Bx .

nanowires in Sec. VI below. The underlying physics, however,
is general and applies to many materials, except for the edge
states of topological insulators due to their different band
structure. For the latter, quasihelicity can still be obtained,
but has different interesting consequences.13

The plan of the remainder of the paper is as follows. In
Sec. II we introduce the model of the quasihelical conductor.
The approach for its solution in the presence of disorder is
discussed in Sec. III. In Sec. IV we present the necessary
background of the bosonization framework, and in Sec. V we
discuss the technical details of the two-step RG approach.
Section VI contains the discussion of the results for the
example of InAs nanowires and the conclusions.

II. MODEL

We consider a generic interacting 1D quantum wire of
length L with SOI and an external magnetic field, described
by the Hamiltonian

H =
∑
s,s ′

∫
dx ψ†

s (x)

[(
p2

2m
− μ

)
δs,s ′ + αRσ z

s,s ′p + �Zσx
s,s ′

]

×ψs ′ (x) + Ue−e + Udis. (1)

Here ψs(x) are the electron operators at position x for spin
s = ↑,↓ = +,−, p = −ih̄∂x is the momentum operator, μ

the chemical potential, m the band mass, αR the Rashba
SOI strength, and �Z = μBgBx/2 the Zeeman interaction
strength, with Bohr magneton μB and Landé g-factor g. Ue−e

is a general electron-electron interaction and Udis the disorder
potential. σx,z are the spin Pauli matrices, with the spin axes
chosen such that αR couples to σ z and Bx to σx . Equation (1)
describes a quantum wire with a single transverse subband, and
we exclude the influence of higher subbands.14,15 Realizations
of Eq. (1) are found in GaAs, InAs,11,16,17 Ge/Si,18,19 or InSb
nanowires.20

Without Ue−e and Udis, Eq. (1) leads to the bands shown in
Fig. 1. The SOI shifts the ↑,↓ dispersions by ±q0 = ±mαR/h̄.
The Bx field opens a pseudogap at momentum k = 0 by
spin-flip scattering. We denote the lower (upper) resulting
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FIG. 2. (Color online) Overlap integrals |〈a,R|a,L〉|2 and
|〈a,R|b,L〉|2 as functions of energy E > �Z = μBg|Bx |/2 ≈
0.5 meV (for InAs with Bx = 2 T).11 The states |a/b,L/R〉 are
as indicated in Fig. 1. The inset shows the Bx dependence of
|〈a,R|a,L〉|2 at energy E = μ in the middle of the �Z gap.

band by a (b). Diagonalizing H leads to the dispersions
E

a,b
k = h̄2k2/2m ∓

√
�2

Z + h̄2α2
Rk2, and the wave functions

|a,k〉 = u−k|↑〉 − uk|↓〉, |b,k〉 = uk|↑〉 + u−k|↓〉, with uk =
[1 + h̄αRk/

√
�2

Z + h̄2α2
Rk2]1/2/

√
2. Overlaps of the form

〈a/b,k|a/b,k′〉 weight the disorder backscattering amplitudes
at a given energy. Figure 2 shows the two overlaps which will
be relevant for the localization transition.

III. APPROACH

To study a disordered interacting conductor in 1D, it is
generally convenient to bosonize Eq. (1) and use an RG
approach. For the present model, however, this approach
exhibits some peculiarities. First, the overlap integrals depend
on k and the problem is no longer scale invariant, a central
assumption for an RG. Second, the low-energy physics below
the scale set by �Z is described mostly by the band a. Hence,
the RG procedure of reducing the energy scale can lead to
a problematic crossing the bottom of the b band, which also
invalidates the bosonization formulation that neglects the band
curvature. While the exact treatment of every aspect would
require a separate investigation, the following two observations
allow us to still implement a global RG scheme capturing the
relevant physics in a transparent way.

First, Fig. 2 shows that the spin overlaps above �Z

approach their asymptotics only slowly with increasing energy
E (as |〈a,R|a,L〉|2 ∼ �2

Z/2mα2
RE and |〈a,R|b,L〉|2 ∼ 1 −

�2
Z/4E2). Considering constant overlaps evaluated, e.g., at

half of the high-energy cutoff scale, yields a valid, rather
conservative estimate of the true influence of the overlaps.
Second, the interactions also renormalize �Z and it grows
quickly under the RG flow.11,12 Hence the reduced RG
bandwidth E meets the growing �Z at a value E = �∗

Z 
 �Z

well above the bottom of the b band, at which the linearity of
the bare dispersion remains valid.

Due to these two properties, we propose a unified two-
step RG approach to the effect of disorder based on the LL
theory. In the first step, we integrate over high energies far
above �Z using a constant backscattering overlap and the
standard inclusion of the disorder potential.3,4 If the disorder
is strong enough, localization already occurs in this regime
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by the conventional backscattering mechanism. Otherwise, at
E = �∗

Z , we proceed to the second step.
Crossing the gap �∗

Z corresponds to freezing out the
interaction-generated density fluctuations that renormalize
�Z , and hence is not a singular transition through the true band
bottom. While the description of the proper transition may be
quite challenging, the physics below �∗

Z becomes again sim-
ple. It is described by a different LL theory for the modes origi-
nating from the a band only.11,12,21 In this regime it is legitimate
to use a larger spin overlap value and, within the accuracy of LL
and RG theories, we choose to take the overlaps at the chemical
potential μ (see Fig. 2, inset). The evaluation of the disorder
backscattering (the second RG step) follows then the standard
lines of a spinless LL, and localization occurs if ξloc < L.

IV. BOSONIZATION

Above the pseudogap, all fluctuations of the a and b bands
must be taken into account. As we account for the overlap
integrals separately, the standard s =↑,↓ basis rather than the
a,b basis22 is more convenient for bosonizing. The electron
operators are decomposed into R and L moving components
as ψs(x) = eikFRsxψR,s(x) + e−ikFLsxψL,s(x), for kFRs,kFLs

the two Fermi points of the (nominal) spin s bands. We
then write ψr,s(x) = ηr,s exp(ri

√
π [ϕs(x) + rϑs(x)])/

√
2πκ

for r = R,L = +,−, the boson fields ϕs and ϑs satisfying
[ϕs ′ (x ′),∂xϑs(x)] = iδs,s ′δ(x − x ′), the Klein factors ηr,s , and
the short distance cutoff κ . Defining ϕρ,ϑσ = (ϕ↑ ± ϕ↓)/

√
2

and ϑρ,ϕσ = (ϑ↑ ± ϑ↓)/
√

2, we obtain the Hamiltonian22

(for Udis = 0) Hbos = ∑
ν=ρ,σ (uν/2)

∫
dx[K−1

ν (∂xϕν)2 +
Kν(∂xϑν)2], where Kρ,σ measure the interaction strengths
(0 < Kρ < 1 for repulsive Ue−e and22 Kσ ≈ 1) and uρ,σ are
renormalized velocities. Because μ lies in the pseudogap, �Z

renormalizes as well, expressed by a relevant Hamiltonian
∝ �Z cos[

√
2π (φρ + θσ )], acting on the fields of the b

band.11,12 We neglect further existing Cooper scattering
processes,22 which are overruled by the renormalization of
�Z and the disorder here but otherwise would dominate the
physics.

The second RG step starts when the growing �Z meets
the reduced bandwidth E at E = �∗

Z . The b-band fields are
then fully gapped,11,12 and the low-energy theory is described
by the fields related to the a band alone. The corresponding
Hamiltonian is obtained from Hbos by suppressing all b-related
fields, which leads to12,21 Ha

bos = (ua/2)
∫

dx[K−1
a (∂xϕa)2 +

Ka(∂xϑa)2], with u2
a = (1/4)[u2

ρ + u2
σ + uρuσ (KρKσ +

K−1
ρ K−1

σ )] and K2
a = KρK

−1
σ (uρKρ + uσK−1

σ )/(uρK
−1
σ +

uσKρ). We have neglected here also a marginal coupling
between a and b fields12 because it affects mostly the
fermionic response21,23 but not the bosonic theory.

V. DISORDER AND RENORMALIZATION
GROUP APPROACH

Disorder can be expressed by a random potential Udis

with Gaussian distribution3,4 that scatters between the bands
i,j = (a/b,L/R). The scattering amplitude is described by the
dimensionless disorder strength D̃ij , proportional to the square
of the strength of each individual scattering potential, which

in turn is proportional to |〈i|j 〉|2, hence D̃ij = |〈i|j 〉|4D̃.
Following the standard replica disorder averaging approach,3,4

we obtain the scaling equations (including also the amplitude
y expressing bulk backscattering; see Ref. 3)

∂lKρ = −uρK
2
ρ(2D̃ab + D̃aa)/4uσ , (2)

∂lKσ = −K2
σ (D̃ab + y2)/2 + D̃aa/4, (3)

∂ly = (2 − 2Kσ )y − D̃ab, (4)

∂lD̃aa = (3 − Kρ − K−1
σ )D̃aa, (5)

∂lD̃ab = (3 − Kρ − Kσ − y)D̃ab, (6)

∂luρ = −Kρu
2
ρ(2D̃ab + D̃aa)/4uσ , (7)

∂luσ = −uσ Kσ D̃ab/2 − uσK−3
σ D̃aa/4, (8)

∂lδ(l) = [2 − (Kρ + K−1
σ )/2]δ, (9)

with l the running RG scale, D̃aa = D̃(a,R),(a,L), and D̃ab =
D̃(a,R),(b,L). We have neglected scattering between (b,R) ↔
(b,L), (a,R) ↔ (b,R), (a,L) ↔ (b,L) after verifying that
it has no effect. We have also defined δ(l) = �Z(l)/E(l)
with E(l) = h̄vF /κ(l) the running effective bandwidth, for
κ(l) = κel and Fermi velocity vF .12 The latter equations
express the competition between disorder backscattering and
the delocalizing effect by repulsive interactions3 and by Bx

induced spin-flip scattering. Localization occurs when the
latter is not strong enough such that D̃ab ∼ 1 (D̃aa remains
small above the gap) before we reach E = �∗

Z (δ(l) ∼ 1) or
κ(l) > L. Otherwise we switch to the second step, described
by Ha

bos, with the parameters Ka and ua obtained from the
resulting Kρ,σ ,uρ,σ of the first step. As argued above, the spin
overlap weighting D̃aa can now (discontinuously) be replaced
by 〈a,L|a,R〉 evaluated at E = μ. The RG equations are

∂lKa = −K2
a D̃aa/2, (10)

∂lD̃aa = (3 − 2Ka)D̃aa, (11)

∂lua = −uaKaD̃aa/2, (12)

describing, for effectively spinless fermions, the competi-
tion between localization and delocalizing superconducting
fluctuations.3 The latter overrule disorder localization above
the critical attractive interaction strength3 Ka > 3/2. How-
ever, Ka < 1 for repulsive interactions, disorder scattering is
relevant, and localization occurs if D̃aa ∼ 1 is reached while
κ(l) < L; otherwise the (finite) system is a helical conductor.

VI. RESULTS AND DISCUSSION

To give a definite example, we focus on InAs nanowires,11,24

using αR = 4 × 10−11 eV m, g = −9, m = 0.040me (with
electron mass me), vF = 2 × 105 m/s, uρ = vF /Kρ and uσ =
vF /Kσ , with Kρ = 0.5, Kσ = 1, y = 0.1|〈aL|bR〉|2, and
short length cutoff κ = 15 nm (which is longer than the lattice
constant a0 = 6.06 Å, and expresses a smaller effective band-
width). The localization length is ξloc = minij κ(l∗)/D̃ij (l∗)
with l = l∗ the scale at which the RG flow stops (in the first
or the second step). If a D̃ij (l∗) = 1 is reached before κ(l) >

L, the system is localized, ξloc < L. We consider disorder
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FIG. 3. (Color online) Localization length ξloc of an InAs
nanowire as a function of Bx for D̃ = 0.01 and L = 5 μm. Close
to Bx = 0 the system is localized due to conventional backscattering.
At Bx ∼ B∗

x ≈ 0.9 T the system crosses over to a quasihelical
conductor and at Bx ∼ B∗∗

x ≈ 2 T to a localized phase due to subgap
backscattering. The transition at B∗

x results from the competition of
the renormalization of �Z and D̃ab and is thus expected to be quite
abrupt and independent of L. The transition at B∗∗

x is a strongly L
dependent crossover.

strengths about D̃ ∼ 0.01, leading at Bx = 0 to ξloc ∼ 0.3 μm.
For a sample length of, e.g., L = 5 μm, the system is well
localized. At small fields, the D̃ab and Bx scattering processes
compete, and if Bx passes a critical value B∗

x < 1 T, �Z(l)
overrules the disorder backscattering and the system becomes
a quasihelical conductor, where ξloc > L is now determined
by the subgap disorder strength D̃aa . At Bx = B∗∗

x ∼ 2 T,
|〈a,R|a,L〉| becomes large enough such that ξloc < L and the
system crosses over into the subgap localized phase. In Fig. 3
we plot this crossover behavior for D̃ = 0.01. Tracing similar
curves for various disorder strengths D̃ leads to the phase
diagram shown in Fig. 4. For strong disorder, the quasihelical
conduction phase is absent, and the crossover takes place
directly between the two localized phases.

To conclude, we note that the disordered quasihelical
system shows at B∗

x a phase transition from the conventional
Anderson localized phase in which ξloc only weakly increases
with Bx , to a phase in which ξloc jumps to a very large value and
then decreases with increasing Bx . For fields B∗

x < Bx < B∗∗
x ,

ξloc exceeds L and forms a quasihelical conductor before
crossing over into another localized phase. While the former

0.0 0.5 1.0 1.5 2.0 2.5
Bx (T)

0.00

0.01

0.02

0.03

D̃

conventional
localization

quasihelical conductor

subgap
localization

FIG. 4. (Color online) Phase diagram for InAs nanowires
obtained from curves as in Fig. 3 for various D̃. At D̃ >

0.023 the quasihelical phase is suppressed and there is a direct
crossover between the localized phases. Not visible on the shown
scale is the localization threshold for Bx = 0, occurring at D̃ ≈
0.003.

localized phase is characterized by the conventional 2kF = 2q0

modulated charge density wave, the latter subgap localized
phase combines a 4q0 density wave with a uniform electron
polarization as the order parameter. The existence of a quasi-
helical conduction state between the two insulating phases as
a function of Bx is a peculiar behavior that could be used
to test if a conductor is helical. Remarkably the conducting
phase extends into the regime of quite strong disorder, which
indicates that a quasihelical conductor does not necessarily
require ultraclean samples. The boundaries of this phase in
the phase diagram are controlled predominantly by �Z , and
so the g factor of the material has the largest influence on
the phase diagram. For instance, a similar phase diagram as
Fig. 4 for InSb with20 g ≈ 50 spans over Bx = 0 − 0.1 T and
D̃ = 0 − 0.002.
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