Experimental and Applied Acarology

, Volume 72, Issue 3, pp 245–262 | Cite as

Patterns of oribatid mite species diversity: testing the effects of elevation, area and sampling effort

Article

Abstract

Elevational gradients in species diversity and species area relationships are two well established patterns that are not mutually exclusive in space and time. Elevation and area are both considered as good proxies to detect and characterize the patterns of species diversity distribution. However, such studies are hampered by the incomplete biodiversity data available for ecologists, which may affect the pattern perceptions. Using the large dataset of oribatid mite communities sampled in Georgia, we tested the effects of altitude and area on species distribution using various approaches, while explicitly considering the biases from sampling effort. Our results showed that elevation and area are strongly correlated (with increasing absolute elevation, land area decreases) and both have strong linear effects on species diversity distribution when studied separately. Approaches based on multiple regression and direct removal of co-varied factors, indicated that the effect of area can actually override the effect of elevation in describing the oribatid species diversity distribution along with elevation. On the other hand, the bias of sampling proved significant in perception of elevational species richness pattern with less effect on elevational species area relationship. We suggest that the sampling alone may be responsible for patterns observed and thus should be considered in ecological studies when eligible.

Keywords

Elevational gradient Species diversity Species-area relationship Oribatid mites Sampling 

Supplementary material

10493_2017_153_MOESM1_ESM.pdf (149 kb)
Supplementary material 1 (PDF 149 kb)
10493_2017_153_MOESM2_ESM.xlsx (36 kb)
Supplementary material 2 (XLSX 35 kb)
10493_2017_153_MOESM3_ESM.xlsx (26 kb)
Supplementary material 3 (XLSX 26 kb)
10493_2017_153_MOESM4_ESM.xlsx (15 kb)
Supplementary material 4 (XLSX 15 kb)
10493_2017_153_MOESM5_ESM.xlsx (15 kb)
Supplementary material 5 (XLSX 15 kb)

References

  1. Adams J (2009) Species richness: patterns in the diversity of life. Springer, ChichesterCrossRefGoogle Scholar
  2. Anderson JM (1978a) A method to quantify soil-microhabitat complexity and its application to a study of soil animal species diversity. Soil Biol Biochem 10:77–78. doi:10.1124/dmd.105.003822.30 CrossRefGoogle Scholar
  3. Anderson JM (1978b) Inter- and intra-habitat relationships between woodland cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia 32:341–348CrossRefPubMedGoogle Scholar
  4. Arrenhius O (1921) Species and area. J Ecol 9:95–99CrossRefGoogle Scholar
  5. Aslan EG, Mumladze L, Japoshvili G (2017) List of leaf beetles (Coleoptera: Chrysomelidae) from Lagodekhi reserve with new records for Transcaucasia and Georgia. Zootaxa 4277:86–98. doi:10.11646/zootaxa.4277.1.6 CrossRefGoogle Scholar
  6. Azovsky AI (2011) Species-area and species-sampling effort relationships: disentangling the effects. Ecography 34:18–30. doi:10.1111/j.1600-0587.2010.06288.x CrossRefGoogle Scholar
  7. Bachman S, Baker W, Brummitt N, Brummitt N, Dransfield J, Moat J (2004) Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27:299–310. doi:10.1111/j.0906-7590.2004.03759.x CrossRefGoogle Scholar
  8. Barton K (2016) MuMIn: multi-model inference. R Packag Version 1156:1–45. doi:10.1111/j.1420-9101.2010.02210.x Google Scholar
  9. Berry JK (2002) Use surface area for realistic calculations. Geoworld 15:20–21Google Scholar
  10. Boucher-Lalonde V, Kerr JT, Currie DJ (2014) Does climate limit species richness by limiting individual species’ ranges? Proc Biol Sci 281:20132695. doi:10.1098/rspb.2013.2695 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  12. Cam E, Nichols JD, Hines JE, Sauer JR, Alpizar-Jara R, Flather CH (2002) Disentangling sampling and ecological explanations underlying species-area relationships. Ecology 83:1118–1130. doi:10.1890/0012-9658(2002)083[1118:DSAEEU]2.0.CO;2
  13. Cao Y, Hawkins CP, Larsen DP, Van Sickle J (2007) Effects of sample standardization on mean species detectabilities and estimates of relative differences in species richness among assemblages. Am Nat 170:381–395. doi:10.1086/520117 CrossRefPubMedGoogle Scholar
  14. Chaladze G (2012) Climate-based model of spatial pattern of the species richness of ants in Georgia. J Insect Conserv 16:791–800. doi:10.1007/s10841-012-9464-5 CrossRefGoogle Scholar
  15. Chaladze G, Otto S, Tramp S (2014) A spider diversity model for the Caucasus Ecoregion. J Insect Conserv 18:407–416. doi:10.1007/s10841-014-9649-1 CrossRefGoogle Scholar
  16. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  17. Chao A, Ma KH, Hsieh TC (2016) iNEXT (iNterpolation and EXTrapolation) Online: software for interpolation and extrapolation of species diversity. http://chao.stat.nthu.edu.tw/wordpress/software_download/
  18. Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity research, monitoring and modeling: conceptual background and old world case studies. Parthenon Publishing, Paris, pp 285–309Google Scholar
  19. Coleman BD (1981) On random placement and species-area relations. Math Biosci 54:191–215CrossRefGoogle Scholar
  20. Colwell R, Lees D (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76. doi:10.1016/S0169-5347(99)01767-X CrossRefPubMedGoogle Scholar
  21. Colwell RK, Rahbek C, Gotelli NJ (2015) The mid-domain effect: there’s a baby in the bathwater. Am Nat 166:E149–E154. doi:10.1086/491689 CrossRefGoogle Scholar
  22. Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 113:791–833. doi:10.1086/283438 CrossRefGoogle Scholar
  23. Currie DJ, Kerr JT (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecol Monogr 78:3–18. doi:10.1890/06-1302.1 CrossRefGoogle Scholar
  24. Dengler J (2009) Which function describes the species-area relationship best? A review and empirical evaluation. J Biogeogr 36:728–744. doi:10.1111/j.1365-2699.2008.02038.x CrossRefGoogle Scholar
  25. Erdmann G, Scheu S, Maraun M (2012) Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Exp Appl Acarol 57:157–169. doi:10.1007/s10493-012-9546-9 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fischer A, Blaschke M, Bässler C (2011) Altitudinal gradients in biodiversity research: the state of the art and future perspectives under climate change aspects. Landschaftsforschung und Naturschutz 11:35–47Google Scholar
  27. Gaston KJ (1998) Species-range size distributions: products of speciation, extinction and transformation. Philos Trans R Soc B Biol Sci 353:219–230CrossRefGoogle Scholar
  28. Gaston KJ (2009) Geographic range limits of species. Proc Biol Sci 276:1391–1393. doi:10.1098/rspb.2009.0100 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  30. Guo Q, Kelt DA, Sun Z et al (2013) Global variation in elevational diversity patterns. Sci Rep 3:3007. doi:10.1038/srep03007 CrossRefPubMedGoogle Scholar
  31. Herzog SK, Kessler M, Bach K (2005) The elevational gradient in Andean bird species richness at the local scale: a foothill peak and a high-elevation plateau. Ecography 28:209–222. doi:10.1111/j.0906-7590.2005.03935.x CrossRefGoogle Scholar
  32. Hill JL, Curran PJ, Foody GM (1994) The effect of sampling on the species-area curve. Glob Ecol Biogeogr Lett 4:97–106. doi:10.2307/2997435 CrossRefGoogle Scholar
  33. Hu W, Wu F, Gao J, Yan D, Liu L, Yang X (2016) Influences of interpolation of species ranges on elevational species richness gradients. Ecography. doi:10.1111/ecog.02534 Google Scholar
  34. Illig J, Norton RA, Scheu S, Maraun M (2010) Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Exp Appl Acarol 52:49–62. doi:10.1007/s10493-010-9348-x CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jackman S (2015) pscl: Classes and methods for R Developed in the Political Science Computational Laboratory, Stanford UniversityGoogle Scholar
  36. Jenness J (2013) DEM surface tools manual. http://www.jennessent.com/. Jennes Enterp
  37. Jing S, Solhøy T, Huifu W, Vollan TI, Rumei X (2005) Differences in soil arthropod communities along a high altitude gradient at Shergyla Mountain, Tibet, China. Arctic Antarct Alp Res 37:261–266. doi:10.1657/1523-0430(2005)037[0261:DISACA]2.0.CO;2
  38. Jones JI, Li W, Maberly SC (2003) Area, altitude and aquatic plant diversity. Ecography 26:411–420. doi:10.1034/j.1600-0587.2003.03554.x CrossRefGoogle Scholar
  39. Karger DN, Klüge J, Krömer T, Hemp A, Lehnert M, Kessler M (2011) The effect of area on local and regional elevational patterns of species richness. J Biogeogr 38:1177–1185. doi:10.1111/j.1365-2699.2010.02468.x CrossRefGoogle Scholar
  40. Kleiber C, Zeileis A (2008) Applied Econometrics with R. Springer, New York. doi:10.1007/978-0-387-77318-6 Google Scholar
  41. Kluge J, Kessler M, Dunn RR (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr 15:358–371. doi:10.1111/j.1466-822X.2006.00223.x CrossRefGoogle Scholar
  42. Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574. doi:10.1016/j.tree.2007.09.006 CrossRefPubMedGoogle Scholar
  43. Lomolino M, Riddle B, Brown J (2006) Biogeography. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  44. Maraun M, Schatz H, Scheu S (2007) Awesome or ordinary? Global diversity patterns of oribatid mites. Ecography 30:209–216. doi:10.1111/j.2007.0906-7590.04994.x CrossRefGoogle Scholar
  45. Matthews TJ, Guilhaumon F, Triantis KA, Borregaard MK, Whittaker RJ (2016) On the form of species-area relationships in habitat islands and true islands. Glob Ecol Biogeogr 25:847–858. doi:10.1111/geb.12269 CrossRefGoogle Scholar
  46. McCain CM (2007) Area and mammalian elevational diversity. Ecology 88:76–86. doi:10.1890/0012-9658(2007)88[76:AAMED]2.0.CO;2
  47. McCain CM (2009) Global analysis of bird elevational diversity. Glob Ecol Biogeogr 18:346–360CrossRefGoogle Scholar
  48. McCain CM, Grytnes JA (2010) Elevational gradients in species richness. Wiley, ChichesterCrossRefGoogle Scholar
  49. Mumladze L, Cameron R, Pokryszko B (2014) Endemic land mollusks in Georgia (Caucasus): how well are they protected by existing reserves and national parks? J Mol Stud 80:67–73. doi:10.1093/mollus/eyt047 CrossRefGoogle Scholar
  50. Mumladze L, Murvanidze M, Maraun M, Salakaia M (2015) Oribatid mite communities along an elevational gradient in Sairme gorge (Caucasus). Exp Appl Acarol 66:41–51. doi:10.1007/s10493-015-9893-4 CrossRefPubMedGoogle Scholar
  51. Mumladze L, Asanidze Z, Walther F, Hausdorf B (2017a) Beyond elevation: testing the climatic variability hypothesis versus Rappaport’s rule in vascular plant and snail species in the Caucasus. Biol J Linn Soc. doi:10.1093/biolinnean/blx027 Google Scholar
  52. Mumladze L, Ulrich W, Asanidze Z, Japoshvili G (2017b) An inverse elevational richness gradient of Caucasian vascular plants and Encyrtidae (Hymenoptera, Chalcidoidea). Ecol Res. doi:10.1080/11956860.2017.1324717 Google Scholar
  53. Murvanidze M, Mumladze L (2016) Annotated checklist of Georgian oribatid mites. Zootaxa 4089:1–81. doi:10.11646/zootaxa.4089.1 CrossRefPubMedGoogle Scholar
  54. Murvanidze M, Mumladze L, Arabuli T, Kvavadze E (2013) Oribatid mite colonization of sand and manganese tailing sites. Acarologia 53:203–215. doi:10.1051/acarologia/20132089 CrossRefGoogle Scholar
  55. Nielsen UN, Osler GHR, Campbell CD, Neilson R, Burslem DFRP, van der Wal R (2010) The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS ONE 5:e11567. doi:10.1371/journal.pone.0011567 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Patiño J, Guilhaumon F, Whittaker RJ et al (2013) Accounting for data heterogeneity in patterns of biodiversity: an application of linear mixed effect models to the oceanic island biogeography of spore-producing plants. Ecography 36:904–913. doi:10.1111/j.1600-0587.2012.00020.x CrossRefGoogle Scholar
  57. Quinn G, Keough M (2002) Experimental design and data analyses for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205. doi:10.1111/j.1600-0587.1995.tb00341.x CrossRefGoogle Scholar
  59. Rahbek C (1997) The relationship among area, elevation, and regional species richness in neotropical birds. Am Nat 149:875–902. doi:10.2307/2678832 CrossRefPubMedGoogle Scholar
  60. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239. doi:10.1111/j.1461-0248.2004.00701.x CrossRefGoogle Scholar
  61. Reddy S, Dávalos LM (2003) Geographic sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30:1719–1727. doi:10.1046/j.1365-2699.2003.00946.x CrossRefGoogle Scholar
  62. Ricklefs RE, Lovette IJ (1999) The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. J Anim Ecol 68:1142–1160. doi:10.1046/j.1365-2656.1999.00358.x CrossRefGoogle Scholar
  63. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Rowe RJ (2009) Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32:411–422. doi:10.1111/j.1600-0587.2008.05538.x CrossRefGoogle Scholar
  65. Sanders N (2002) Elevational gradients in ant species richness: area, geometry, and Rappaport’s rule. Ecography 25:25–32. doi:10.1034/j.1600-0587.2002.250104.x CrossRefGoogle Scholar
  66. Sanders NJ, Rahbek C (2012) The patterns and causes of elevational diversity gradients. Ecography 35:1–3. doi:10.1111/j.1600-0587.2011.07338.x CrossRefGoogle Scholar
  67. Schatz H, Behan-Pelletier V (2007) Global diversity of oribatids (Oribatida: Acari: Arachnida). Hydrobiologia 595:323–328. doi:10.1007/s10750-007-9027-z CrossRefGoogle Scholar
  68. Scheiner SM (2003) Six types of species-area curves. Glob Ecol Biogeogr 12:441–447. doi:10.1046/j.1466-822X.2003.00061.x CrossRefGoogle Scholar
  69. Schoener TW (1976) The species–area relationship within archipelagos: models and evidence from island birds. In: Firth HJ, Calaby JH (eds) Proceedings of XVI international ornithological congress. Aistralian Academy of Science, pp 629–642Google Scholar
  70. Schoereder H, Galbiati C, Ribas CR, Sobrinho TG, Sperber CF, DeSousa O, Lopes-Andrade C (2004) Should we use proportional sampling for species-area studies? J Biogeogr 31:1219–1226. doi:10.1111/j.1365-2699.2004.01113.x CrossRefGoogle Scholar
  71. Sexton JP, Mcintyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Syst 40:415–436. doi:10.1146/annurev.ecolsys.110308.120317 CrossRefGoogle Scholar
  72. R Core Team. (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  73. Terborgh J (1977) Bird species diversity on an Andean elevational gradient. Ecology 58:1007–1019CrossRefGoogle Scholar
  74. Triantis KA, Guilhaumon F, Whittaker RJ (2012) The island species-area relationship: biology and statistics. J Biogeogr 39:215–231. doi:10.1111/j.1365-2699.2011.02652.x CrossRefGoogle Scholar
  75. Walter DE, Proctor HC (2013) Mites: ecology, evolution and behaviour, 2nd edn. Springer, DordrechtGoogle Scholar
  76. Williams CB (1943) Area and number of species. Nature 152:264–267. doi:10.1038/152264a0 CrossRefGoogle Scholar
  77. Yamaura Y, Connor EF, Royle JA et al (2016) Estimating species-area relationships by modeling abundance and frequency subject to incomplete sampling. Ecol Evol 6:4836–4848. doi:10.1002/ece3.2244 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zachos E, Habel J (eds) (2011) Biodiversity hotspots–distribution and protection of conservation priority areas. Springer, HeidelbergGoogle Scholar
  79. Zuur A, Ieno E, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, DordrechtCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Biodiversity Research Center (Institute of Ecology), Institute of ZoologyIlia State UniversityTbilisiGeorgia
  2. 2.Invertebrate Research Centre (IRC)TbilisiGeorgia
  3. 3.Institute of Entomology of AgriculturalUniversity of GeorgiaTbilisiGeorgia
  4. 4.JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany

Personalised recommendations