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ABSTRACT. In this article we consider the two-point boundary
value problem
u® () = p(t)u(t) + h(t) for a<t< b,
uD(a) = criy, uD(b) =coy (i=0,1),
where cy;,¢0; € R, h,p € L([a,b]; R). Here we study the ques-
tion of dimension of the space of nonzero solutions and oscillatory
behaviors of nonzero solutions on the interval [a, b] for the corre-

sponding homogeneous problem, and establish efficient sufficient
conditions of solvability for nonhomogeneous problem.
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INTRODUCTION

Consider on the interval [a,b] the fourth order linear ordinary dif-
ferential equation

u(t) = p(t)u(t) + h(t) (0.1)
with the boundary conditions
U(l) ((l) = Cpi, U(z) (b) = Cy1; (l = 07 1) (02)
and corresponding homogeneous problem
v (t) = p(t)o(t) (0.3)
vW(@)=0, v¥B) =0 (i=0,1) (0.4)

where cg;, c1; € R, h, p € L([a,b]; R).

By a solution of the problem (0.1), (0.2) we understand a function
u e C3(I, R), which satisfies the equation (0.1) almost everywhere on
I and satisfies the conditions (0.2).

The bibliography on two-point problems studied specifically for fourth
order ordinary differential equations is currently not extensive. The
few papers devoted to this topic are focused mainly on beam equations
under the boundary conditions u(a) = u(b) = 0,u”(a) = u”"(b) = 0
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(see [1], [2], [3], [4], [6]), although there are works where these prob-
lems are studied in more general cases (see [5], [9], [10], [11]). As
regards the oscillatory properties on unbounded intervals for fourth
order linear ordinary differential equations, one can mention, e.g., the
work [7], where detailed results are obtained.

Our aim here is to fill this gap in a certain sense. In the first
section, we study the problem on the dimension of the space of the
nonzero solutions and oscillatory behavior of the nonzero solutions of
problem (0.3), (0.4) on the bounded interval [a, b]. The second section
is devoted to the unique solvability of problem (0.1), (0.2), where some
results from the first section are essentially used.

We recall that the problem problem (0.1),(0.2) has the Fredholm’s
property (see [8]).

The following notations are used throughout the paper:

N is the set of all natural numbers. R is the set of all real numbers.
C(I; R) is the Banach space of continuous functions u : I — R with
the norm ||ul|c = max{|u(t)| : t € I}. C(I; R) is the set of functions
u : I — R which are absolutely continuous. 53(1 ; R) is the set of func-
tions v : I — R which are absolutely continuous together with their
third derivatives. L(I; R) is the Banach space of Lebesgue integrable
functions p : I — R with the norm ||p||, = fab Ip(s)|ds. Leo(I; R), is
the Banach space of essentially bounded functions p : I — R with the
norm ||p|lee = vraisup |p(t)]. S, is the space of the nonzero solutions
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€
of problem (0.3), (0.4).

Remark 0.1. If we assume existence of the nonzero solution v of prob-
lem (0.3),(0.4) and multiply equation (0.3) by this solution, then by
the integration by parts in view of conditions (0.4) we get [," v"?(s)ds =
[, p(s)v*(s)ds. Than it is obvious that we get the contradiction if
p(t) <0 for t € [a, b]. Therefore, this is the trivial case when problem
(0.3), (0.4) has only the zero solution and then the problem (0.1), (0.2)
is uniquely solvable for any co;,c1; € R, h, p € L([a,b]; R). For this
reason, we study problem (0.1), (0.2) under assumption that there ex-
ists such set A, C [a, b] of the positive measure, that

p(t) >0 for te A,

1. MAIN RESULTS

1.1. Problem (0.3),(0.4). First of all we introduce the propositions
about the dimension of the space of the nontrivial solutions and oscil-
latory behaviors of the nontrivial solutions of the homogeneous linear
problem (0.3), (0.4) on the finite interval [a, b].

Theorem 1.1. Let p € L([a, b]; R), than:
a) dim S, < 2;



b) dim S, <1 if
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Theorem 1.2. Let p € L([a, b]; R), n € N, and
p(s) >0 for te€]la,b, (1.2)
then:
a) dim S, < 1;
b) Any nontrivial solution of problem (0.3),(0.4) has less than n
zeros if
b
8- 2/ (n+2) (p 4 2)4
ds < . 1.3
[ ptoas < (13)

Theorem 1.3. Let p € Loo([a, b]; R), n € N, and condition (1.2)
holds. Than any nontrivial solution of problem (0.3),(0.4) has less
than n zeros if
16 - 4"/ (+2) (4 2)4

(b—a)t

[1Plloo <

1.2. Problem (0.1),(0.2).
Theorem 1.4. Let p,h € L(]a, b]; R), cl-j € R(i,j=0,1) and

/ Ip(s)|ds < ) (1.4)

Then problem (0.1),(0.2) is uniquely solvable
Theorem 1.5. Let p,h € L([a, b]; R), ¢;j € R(i,j = 0,1), condition

(1.2) holds, and
b
/ p(s)ds < (bl_%. (1.5)

Then problem (0.1),(0.2) is uniquely solvable.

Theorem 1.6. Let p € Lo([a, b]; R),h € L([a, b]; R), ¢;j € R(i,j =
0,1), condition (1.2) holds, and
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/a p(s)ds < b—ap

Then problem (0.1),(0.2) is uniquely solvable.

2. AUXILIARY PROPOSITIONS

Definition 2.1. Let ¢ € {-1, 1}, n € {0,1,2,..},y € L([a, b]; R)
and I be a subinterval of [a, b]. Then we sad that N(y, ) = n if exists
the system of intervals {I;}*' such that:

n+1

U Ii=1, supl,=infl;; (i =1,n),



