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Efficient sufficient conditions are established for the solvability of the mixed problem

u′′(t) = p(t)u(t) + f (t, u(t)) + h(t), u(a) = 0, u′(b) = 0,

where h, p ∈ L([a, b]; R) and f ∈ K ([a, b] × R; R), in the case where the homogeneous linear problem
w′′(t) = p(t)w(t), w(a) = 0, w′(b) = 0 has nontrivial solutions.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Consider on the set I = [a, b] the second order nonlinear ordinary differential equation

u′′(t) = p(t)u(t) + f (t, u(t)) + h(t) for t ∈ I (1.1)

with the boundary conditions

u(a) = 0, u′(b) = 0, (1.2)

where h, p ∈ L(I ; R) and f ∈ K (I × R; R). By a solution of problem (1.1), (1.2) we understand a function
u ∈ C̃ ′(I, R), which satisfies Equation (1.1) almost everywhere on I and satisfies conditions (1.2). Along with
(1.1), (1.2) we consider the homogeneous problem

w′′(t) = p(t)w(t) for t ∈ I, (1.3)

w(a) = 0, w′(b) = 0. (1.4)

At present, the foundations of the general theory of two-point boundary value problems are already laid and
problems of this type are studied by many authors and investigated in detail (see, for instance, [3], [4], [6],
[14]–[15]). On the other hand, in all of these works, only the non resonance case is considered. If we study
literature, we’ll see that the case where the problem (1.3), (1.4) has the nontrivial solution has not been practically
investigated in difference with the Dirichlet BVP, which has been considered in a number of articles in resonance
case. Even the Dirichlet BVP for the second order ODE at resonance in the majority of articles, is studied in the
case when the first coefficient of homogeneous linear problem is a constant (see, for instance, [1], [2], [4], [9],
[11], [16]). In the article [17] we developed the technique which enabled us to established the Landesman–Lazer’s
type conditions for the solvability of Dirichlet BVP for second order ODE at resonance in the case when the first
coefficient of homogeneous equation is not necessarily constant. The theorems proved in this study significantly
generalize and improve other authors results (see, [1], [2], [4], [7], [16]). In the present paper we generalize the
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method developed in the article [17], and prove the Landesman–Lazer’s type conditions for solvability of our
problem at the resonance case, when the function p ∈ L(I ; R) is not necessarily constant.

Throughout the paper we use the following notations: N is the set of all natural numbers. R is the set of all
real numbers, R+ = [0,+∞[. C(I ; R) is the Banach space of continuous functions u : I → R with the norm
‖u‖C = max{|u(t)| : t ∈ I }. C̃ ′(I ; R) is the set of functions u : I → R which are absolutely continuous together
with their first derivatives. L(I ; R) is the Banach space of the Lebesgue integrable functions p : I → R with the
norm ‖p‖L = ∫ b

a |p(s)| ds. K (I × R; R) is the set of the functions f : I × R → R satisfying the Carathéodory

conditions. Having w : I → R, we put: Nw
de f= {t ∈ ]a, b] : w(t) = 0}.

2 Main results

Theorem 2.1 Let w be a nonzero solution of problem (1.3), (1.4),

Nw = ∅, (2.1)

let there exist a constant r > 0, functions f −, f + ∈ L(I ; R+) and g, h0 ∈ L(I ; ]0,+∞[ ) such that

f (t, x)sgnx ≤ g(t)|x | + h0(t) for |x | ≥ r (2.2)

and

f (t, x) ≤ − f −(t) for x ≤ −r, f +(t) ≤ f (t, x) for x ≥ r (2.3)

on I . Let, moreover, there exist ε > 0 such that

−
∫ b

a
f −(s)|w(s)| ds + ε||γr ||L ≤ −

∫ b

a
h(s)|w(s)| ds

≤
∫ b

a
f +(s)|w(s)|ds − ε||γr ||L , (2.41)

where γr (t) = sup{| f (t, x)| : |x | ≤ r}. Then problem (1.1), (1.2) has at least one solution.

Theorem 2.2 Let w be a nonzero solution of problem (1.3), (1.4), condition (2.1) hold, there exist a constant
r > 0, functions f −, f + ∈ L(I ; R+) and q ∈ K (I × R; R+) such that q is non-decreasing in the second argument,

| f (t, x)| ≤ q(t, x) for |x | ≥ r, (2.5)

f −(t) ≤ f (t, x) for x ≤ −r, f (t, x) ≤ − f +(t) for x ≥ r (2.6)

on I, and

lim
|x |→+∞

1

x

∫ b

a
q(s, x) ds = 0. (2.7)

Let, moreover, there exist ε > 0 such that

−
∫ b

a
f −(s)|w(s)| ds + ε||γr ||L ≤

∫ b

a
h(s)|w(s)| ds ≤

≤
∫ b

a
f +(s)|w(s)| ds − ε||γr ||L , (2.42)

where γr is the function defined in Theorem 2.1. Then problem (1.1), (1.2) has at least one solution.

Corollary 2.3 Let a nonzero solution w of problem (1.3), (1.4), and a constant r > 0, be such that conditions
(2.1) and (2.2) hold. Let, moreover, the equality

lim inf
x→±∞ f (s, x)sgnx = +∞ uniformly on I (2.8)
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be fulfilled. Then problem (1.1), (1.2) has at least one solution for arbitrary h ∈ L(I, R).

Corollary 2.4 Let a nonzero solution w of problem (1.3), (1.4), a constant r > 0, and the non-decreasing in the
second argument function q ∈ K (I × R; R+) be such that conditions (2.1), (2.5) and (2.7) hold. Let, moreover,
the equality

lim inf
x→±∞ f (s, x)sgnx = −∞ uniformly on I (2.9)

be fulfilled. Then problem (1.1), (1.2) has at least one solution for arbitrary h ∈ L(I, R).

Example 2.5 It follows from Corollary 2.3 that the equation

u′′(t) = −u(t) + σ |u(t)|αsgn u(t) + h(t) for a ≤ t ≤ b (2.10)

where σ = 1, α ∈ ]0, 1], and a = 0, b = π/2 with conditions (1.2) has at least one solution for arbitrary h ∈
L([0, π/2], R).

Example 2.6 It follows from Corollary 2.4 that problem (2.10), (1.2) with σ = −1, α ∈ ]0, 1[ and a = 0,

b = π/2 has at least one solution for arbitrary h ∈ L([0, π/2]; R).

Remark 2.7 If f �≡ 0 the condition (1.4i ) of Theorem 2.i (i = 1, 2) can be replaced by

−
∫ b

a
f −(s)|w(s)| ds < (−1)i

∫ b

a
h(s)|w(s)| ds <

∫ b

a
f +(s)|w(s)| ds, (2.11i )

because, from 2.11i there follows the existence of a constant ε > 0 such that condition (1.4i ) is satisfied.

3 Auxiliary propositions

Let un ∈ C̃ ′(I ; R), ‖un‖C �= 0 (n ∈ N), w be an arbitrary solution of problem (1.3), (1.4), and r > 0. Then, for

every n ∈ N , we define the sets An,1
de f= {t ∈ I : |un(t)| ≤ r}, An,2

de f= {t ∈ I : |un(t)| > r}, for which it is clear
that

An,1 ∩ An,2 = ∅, An,1 ∪ An,2 = I. (3.1)

Lemma 3.1 Let un ∈ C̃ ′(I ; R)(n ∈ N), r > 0, w be an arbitrary nonzero solution of problem (1.3), (1.4),
Nw = ∅, and

||un||C ≥ 2rn for n ∈ N , (3.2)

||vn − w||C ≤ 1/2n for n ∈ N , (3.3)

where vn(t) = un(t)||un||−1
C . Then

lim
n→+∞ mes An,1 = 0, lim

n→+∞ mes An,2 = mes I. (3.4)

P r o o f . First we define the set Tn
de f= [a, a + 1/n] and show that, for every n0 ∈ N , there exists n1 > n0

such that

An,1 ⊆ Tn0 for n ≥ n1. (3.5)

Suppose on the contrary that, for some n0 ∈ N , there exists the sequence tn j ∈ An j ,1( j ∈ N) with n j < n j+1, such
that tn j �∈ Tn0 for j ∈ N . Without loss of generality we can assume that lim j→+∞ tn j = t0. Then from conditions
(3.2), (3.3), the definition of the set An,1 and the equality w(t0) = (w(t0) − w(tn j )) + (w(tn j ) − vn j (tn j )) +
vn j (tn j ), we get w(t0) = 0, i.e., t0 = a. But this contradicts the condition tn j �∈ Tn0 and thus (3.5) is true. Since
limn→+∞ mes Tn = 0, it follows from (3.1) and (3.5) that (3.4) is valid. �

Lemma 3.2 Let all the conditions of Lemma 3.1 be fulfilled and there exist r > 0 such that the condition

0 ≤ f1(t, x)sgnx for t ∈ I, |x | ≥ r (3.6)
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holds, where f1 ∈ K (I × R; R). Then

lim
n→+∞ inf

∫ t

s
f1(ξ, un(ξ))sgnun(ξ) dξ ≥ 0 for a ≤ s < t ≤ b. (3.7)

P r o o f . Let γ ∗
r (t)

de f= sup{| f1(t, x)| : |x | ≤ r} for t ∈ I . Then, according to (3.1) and (3.6), we obtain the
estimate ∫ t

s
f1(ξ, un(ξ))sgnun(ξ) dξ ≥ −

∫
[s,t ]∩An,1

γ ∗
r (ξ) dξ +

∫
[s,t ]∩An,2

∣∣ f1(ξ, un(ξ))
∣∣ dξ

for a ≤ s < t ≤ b, n ∈ N . This estimate and (3.4) imply (3.7). �

Lemma 3.3 Let r > 0, the functions f1 ∈ K (I × R; R), h1 ∈ L(I ; R), f +, f − ∈ L(I ; R+) be such that

f1(t, x) ≤ − f −(t) for x ≤ −r, f +(t) ≤ f1(t, x) for x ≥ r (3.8)

on I , and there exist ε > 0, and nonzero solution w0 of problem (1.3), (1.4), such that Nw0 = ∅ and

−
∫ b

a
f −(s)|w0(s)|ds + ε||γ ∗

r ||L ≤ −
∫ b

a
h1(s)|w0(s)| ds

≤
∫ b

a
f +(s)|w0(s)|ds − ε||γ ∗

r ||L , (3.9)

where γ ∗
r is the function defined in the proof of Lemma 3.2. Then, for every nonzero solution w of problem (1.3),

(1.4), and functions un ∈ C̃ ′(I ; R)(n ∈ N) such that conditions (3.2),∣∣∣v(i)
n (t) − w(i)(t)

∣∣∣ ≤ 1/2n for t ∈ I, n ∈ N , (i = 0, 1) (3.10)

where vn(t) = un(t)||un||−1
C for t ∈ I and

un(a) = 0, u′
n(b) = 0 (3.11)

are fulfilled, there exists n1 ∈ N such that

Mn(w)
de f≡

∫ b

a
(h1(s) + f1(s, un(s)))w(s) ds ≥ 0 for n ≥ n1. (3.12)

P r o o f . First note that, for any nonzero solution w of problem (1.3), (1.4), there exists β �= 0 such that
w(t) = βw0(t). Also, it is not difficult to verify that all the assumptions of Lemma 3.1 are satisfied for the function
w(t) = βw0(t). From the unique solvability of the Cauchy problem for Equation (1.3) and conditions (1.4) we
conclude that w′(a) �= 0 and w(b) �= 0. Therefore, in view of (3.10) and (3.11), there exists n2 ∈ N such that

un(t) sgn β w0(t) > 0 for n ≥ n2, a < t ≤ b. (3.13)

Moreover, if σ = sgnβ, by (3.1) we get the estimate

Mn(w)
|β| ≥ −

∫
An,1

γ ∗
r (s)|w0(s)| ds + σ

∫ b

a
h1(s)w0(s) ds

+ σ

∫
An,2

f1(s, un(s))w0(s) ds. (3.14)

Now note that f − ≡ 0, f + ≡ 0 if f1(t, x) ≡ 0. Then by virtue of (3.4), we see that there exist ε > 0
and n1 ∈ N(n1 ≥ n2) such that

∫ b
a f ±(s)|w0(s)| ds − ε

2 ||γ ∗
r ||L ≤ ∫

An,2
f ±(s)|w0(s)| ds and ε

2 ||γ ∗
r ||L ≥∫

An,1
γ ∗

r (s)|w0(s)| ds for n ≥ n1. By these inequalities, (3.2), (3.8) and (3.13), from (3.14) we obtain

Mn(w)
|β| ≥ −ε||γ ∗

r ||L +
∫ b

a
h1(s)|w0(s)| ds +

∫ b

a
f +(s)|w0(s)| ds
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if n ≥ n1, σw0(t) ≥ 0, and

Mn(w)
|β| ≥ −ε||γ ∗

r ||L −
∫ b

a
h1(s)|w0(s)| ds +

∫ b

a
f −(s)|w0(s)| ds

if n ≥ n1, σw0(t) ≤ 0. From the last two estimates in view of (3.9) it follows that (3.12) is valid. �

Now we consider the definitions of the set V2 0((a, b)) introduced and described in [14] (see [Definition 1.3,
p. 2350]).

Definition 3.4 We say that the function p ∈ L([a, b]) belongs to the set V2 0((a, b)) if for any function p∗

satisfying the inequality p∗(t) ≥ p(t) for t ∈ I the unique solution of the initial value problem

v′′(t) = p∗(t)v(t) for t ∈ I, v(a) = 0, v′(a) = 1, (3.15)

has no zeros in the interval ]a, b[ and v′(b) > 0.

Lemma 3.5 Let w be a solution of the problem (1.3), (1.4), and Nw = ∅. Then for every n ∈ N

p + 1/n ∈ V2 0((a, b)). (3.16)

P r o o f . Assume that there exists n0 ∈ N such that p + 1/n0 �∈ V2 0((a, b)). Then in view of Definition 3.4
there exists p∗(t) ≥ p(t) + 1/n0 such that the solution v of problem (3.15) has a zero point t∗ ∈]a, b]. Then from
the Sturm’s comparision theorem it follows the existence of t0 ∈]a, t∗[ such that w(t0) = 0, which contradicts the
condition Nw = ∅, i.e., our assumption is invalid and p + 1/n ∈ V2 0((a, b)) for every n ∈ N . �

Lemma 3.6 Let problem (1.3), (1.4) has the nontrivial solution. Then there exists ε > 0 such that the equation

w′′(t) = λp(t)w for t ∈ I, (3.17)

under boundari conditions (1.4) has only the trivial solution if λ ∈ ]1, 1 + ε].

P r o o f . Let G be the Green’s function of the boundary value problem u′′(t) = 0, u(a) = 0, u′(b) = 0, then
problem (3.17), (1.4) is equivalent to the equation w(t) = λ
(w)(t), where the operator 
 : C(I ; R) → C(I ; R)
by the equality 
(x)(t) = ∫ b

a G(t, s)p(s)x(s) ds is defined. As it is well-known 
 : C(I ; R) → C(I ; R) is the
compact operator, and then for every r > 0 the disc |λ| ≤ r, contains at most finite number of characteristic values
[see. [10], Capitel XIII, §3, Theorem 1]. From this fact the existence of ε > 0 such that the set ]1, 1 + ε] does not
contain the characteristic values of the equation w(t) = λ
(w)(t), it follows. Consequently this equation, i.e.,
problem (3.17), (1.4) has only the trivial solution if λ ∈ ]1, 1 + ε]. �

4 Proof of the main results

P r o o f o f T h e o r e m 2.1 Let pn(t) = p(t) + 1/n and, for any n ∈ N , consider the equation

u′′
n(t) = pn(t)un(t) + f (t, un(t)) + h(t) for t ∈ I, (4.1)

under boundary conditions (3.11). In view of condition (2.1) and Lemma 3.5, the inclusion (3.16) holds for every
n ∈ N . On the other hand, from conditions (2.2) and (2.3) we find

0 ≤ f (t, x) sgn x ≤ g(t)|x | + h0(t) for t ∈ I, |x | ≥ r. (4.2)

Then the inclusion (3.16), as is well-known (see [14, Theorem 2.2, p. 2367]), guarantees that problem (4.1), (3.11)
has at least one solution, suppose un . In view of condition (2.2), without loss of generality we can assume that
there exists ε∗ > 0 such that h0(t) ≥ ε∗ on I . Then it is not difficult to verify that un is also a solution of the
equation

u′′
n(t) = (pn(t) + p0(t, un(t)) sgn un(t))un(t) + p1(t, un(t)) (4.3)
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with p0(t, x) = f (t,x)g(t)
g(t)|x |+h0(t) , p1(t, x) = h(t) + f (t,x)h0(t)

g(t)|x |+h0(t) . Now assume that

lim
n→+∞ ||un||C = +∞ (4.4)

and vn(t) = un(t)||un||−1
C . Then

v′′
n (t) = (pn(t) + p0(t, un(t)) sgn un(t))vn(t) + ||un||−1

C p1(t, un(t)), (4.5)

vn(a) = 0, v′
n(b) = 0, (4.6)

and

||vn||C = 1 (4.7)

for any n ∈ N . In view of the condition (4.2), the functions p0, p1 ∈ K (I × R; R) are bounded respectively by
the functions g(t) and h(t) + h0(t). Therefore, from (4.5), by virtue of (4.4), (4.6) and (4.7), we see that there
exists r0 > 0 such that ||v′

n||C ≤ r0. Consequently in view of (4.7), by the Arzela–Ascoli lemma, without loss of

generality we can assume that there exists w ∈ C̃ ′(I, R) such that limn→+∞ v
(i)
n (t) = w(i)(t)(i = 0, 1) uniformly

on I . From the last equality and (4.4) there follows the existence of an increasing sequence {αk}+∞
k=1 of a natural

numbers, such that ||uαk ||C ≥ 2rk and
∣∣∣∣v(i)

αk − w(i)
∣∣∣∣

C ≤ 1/2k for k ∈ N . Without loss of generality we can
suppose that un ≡ uαn and vn ≡ vαn . In this case we see that un and vn are the solutions of problems (4.1), (3.11)
and (4.5), (4.6) respectively with pn(t) = p(t) + 1/αn for t ∈ I, n ∈ N , and that the inequalities

||un||C ≥ 2rn,
∣∣∣∣v(i)

n − w(i)
∣∣∣∣

C ≤ 1/2n for n ∈ N (4.8)

are fulfilled. Analogously, since the functions p0, p1 ∈ K (I × R; R) are bounded, in view of (4.4), we can assume
without loss of generality that there exists a function p̃ ∈ L(I ; R) such that

lim
n→+∞ ||un||− j

C

∫ t

a
p j (s, un(s)) sgn un(s) ds = (1 − j)

∫ t

a
p̃(s)ds (4.9 j )

uniformly on I for j = 0, 1. By virtue of (4.7)–4.9 j ( j = 0, 1), from (4.5) we obtain

w′′(t) = (p(t) + p̃(t))w(t), w(a) = 0, w′(b) = 0, (4.10)

and

||w||C = 1. (4.11)

From conditions (2.3) and (4.8) it is clear that all the assumptions of Lemma 3.2 with f1(t, x) = f (t, x) are
satisfied, and thus we obtain from (4.9) ( j = 0) the relation

∫ t
s p̃(ξ) dξ ≥ 0 for a ≤ s < t ≤ b, i.e., p̃(t) ≥ 0

on I . Now assume that p̃ �≡ 0 and w0 is a solution of problem (1.3), (1.4). Then using Sturm’s comparison theorem
for Equations (1.3) and (4.10), from the inequality p̃(t) ≥ 0 we see that there exists a point t0 ∈ ]a, b[ such that
w0(t0) = 0, which contradicts the condition Nw = ∅. This contradiction proves that p̃ ≡ 0 and w is a solution of
problem (1.3), (1.4). Multiplying Equations (4.1) and (1.3) respectively by w and −un , and therefore integrating
their sum from a to b, in view of conditions (3.11) and (1.4), we obtain

−||un||C
αn

∫ b

a
w(s)vn(s) ds =

∫ b

a
(h(s) + f (s, un(s)))w(s) ds (4.12)

for n ≥ n0. Therefore by virtue of (4.8) we get∫ b

a
(h(s) + f (s, un(s)))w(s) ds < 0 for n ≥ n0. (4.13)

On the other hand, in view conditions (2.1)–(2.41), (3.11), and (4.8) it is clear that all the assumption of
Lemma 3.3 with f1(t, x) = f (t, x), h1(t) = h(t) are fulfilled. Therefore, inequality (3.12) is true, which con-
tradicts (4.13). This contradiction proves that (4.4) does not hold and thus there exists r1 > 0 such that
||un||C ≤ r1 for n ∈ N . Consequently, from (4.1) and (3.11) it is clear that there exists r ′

1 > 0 such that
||u′

n||C ≤ r ′
1 and |u′′

n(t)| ≤ σ (t) for t ∈ I, n ∈ N , where σ (t) = (1 + |p(t)|)r1 + |h(t)| + γr1(t). Hence, by the
Arzela–Ascoli lemma, without loss of generality we can assume that there exists a function u0 ∈ C̃ ′(I ; R) such

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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that limn→+∞ u(i)
n (t) = u(i)

0 (t)(i = 0, 1) uniformly on I . Therefore, it follows from (4.1) and (3.11) that u0 is a
solution of problem (1.1), (1.2). �

P r o o f o f C o r o l l a r y 2.3 Let h ∈ L(I, ]0, +∞[) is an arbytrary function and β
de f= − ∫ b

a h(s)|w(s)| ds.
On the other hand, from condition (2.8) it follows that for our β there exists numbers r > 0 such that
f (t, x) sgn x > (|β| + 1)||w||−1

L almost everywhere on I for |x | > r . Consequently all the conditions of The-
orem 2.1 except (2.41), are fulfilled with f −(t) = f +(t) = (|β| + 1)||w||−1

L , and it is easy to verify that instead
(2.41) condition (2.111) holds. Then from Remark 2.7 it follows validity of our corollary. �

P r o o f o f T h e o r e m 2.2 Let pn(t) = (1 + 1/n)p(t) for any n ∈ N , and n0 ∈ N be such that λ
de f=

1 + 1/n ∈ ]1, 1 + ε] for n ≥ n0, where ε is the number defined in Lemma 3.6. Now consider the problem (4.1),
(3.11), and the corresponding homogeneous problem

w′′(t) = pn(t)w(t), w(a) = 0, w′(b) = 0. (4.14)

In view of Lemma 3.6, problem (4.14) has only the zero solution for every n ≥ n0. Therefore, as is well-known
(see [13, Corollary 2.1, p. 2271]), from conditions (2.5), (2.7) it follows that problem (4.1), (3.11) has at least one
solution, suppose un . Assume that (4.4) holds and put vn(t) = un(t)||un||−1

C . Then conditions (4.6) and (4.7) are
fulfilled, and

v′′
n (t) = pn(t)vn(t) + ||un||−1

C ( f (t, un(t))) + h(t)). (4.15)

In view conditions (2.5) and (2.7), from (4.15) there follows the existence of r0 > 0 such that ||v′
n||C ≤ r0.

Consequently, in view (4.7) by the Arzela–Ascoli lemma, without loss of generality we can assume that there
exists a function w ∈ C̃ ′(I, R) such that limn→+∞ v

(i)
n (t) = w(i)(t)(i = 0, 1) uniformly on I . Analogously as in

the proof of Theorem 2.1, we can find an increasing sequence {αk}+∞
n=1 of natural numbers such that, if we suppose

un = uαn then the conditions (4.8) will by true when the functions un and vn are the solutions of problems (4.1),
(3.11) and (4.15), (4.6) respectively with pn(t) = (1 + 1/αn)p(t) for t ∈ I, n ∈ N . From (4.15), by virtue of
(4.6), (4.8) and (2.7), we obtain that w is a solution of problem (1.3), (1.4) and ||w||C = 1. In a similar manner as
condition (4.12) in the proof of Theorem 2.1, we show that∫ b

a
(h(s) + f (s, un(s)))w(s) ds = −||un||C

αn

∫ b

a
p(s)w(s)vn(s) ds

for n ≥ n0. On the other hand by (4.8), (1.3), and (1.4) we get

lim
n→+∞

∫ b

a
p(s)w(s)vn(s) ds =

∫ b

a
p(s)w2(s) ds = −

∫ b

a
w′2(s) ds < 0,

and then
∫ b

a (h(s) + f (s, un(s)))w(s) ds > 0. Now note that, in view of conditions (2.1), (2.6), (2.42), (3.11),
and (4.8), all the assumptions of Lemma 3.3 with f1(t, x) = − f (t, x), h1(t) = −h(t) are satisfied. Hence,
analogously as in the proof of Theorem 2.1, from the last inequality follows the solvability of problem (1.1),
(1.2). �

P r o o f o f C o r o l l a r y 2.4 Is similar to proof of Corollary 2.3. �
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