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Ecology and evolutionary biology are two closely 
related disciplines, yet their theoretical directions do

not always overlap. Therefore, an effort to synthesize the 
theoretical directions developing within these disciplines 
has the potential to provide crucial insight into biology’s
challenging issues. Because biotic interactions are the foun-
dation for many important ecological and evolutionary 
concepts, including speciation, extinction, niche theory, and
geographical distributions, they provide important inter -
disciplinary common ground. While ecologists studied the
mechanisms of biotic interactions, evolutionists explored
their genetic consequences. Here we suggest that recent eco-
logical advances on understanding how species interact have
important implications for evolutionary theory.

Ecological studies of biotic interactions have a long history,
yet until recently, theories on coexistence, diversity-ecosystem
function, meta-population dynamics, the niche, and the fun-
damental nature of communities have focused on negative in-
teractions such as competition and predation, whereas positive
interactions were considered to be interesting but idiosyncratic
(Callaway 1997, Stachowicz 2001). Only since the 1990s has
compelling evidence accrued for facilitation—that is, species
interactions that are mutually beneficial—as a ubiquitous
and important component of the suite of biotic interactions
that determine fundamental ecological theory (Callaway
1998, 2007, Bruno et al. 2003, Brooker et al. 2008). Current

models that include direct and indirect species interactions
in ecological communities predict that positive interactions
are as probable and as important as negative interactions
(Callaway 2007).

Evolutionary theory has also explicitly based the origins of
new lineages on negative biotic interactions, since the elim-
ination of less fit individuals is very often the negative effect
of one organism on another. But as in ecology, this focus has
been criticized for the neglect of positive interactions as im-
portant drivers of evolution (Kutschera and Niklas 2004). The
core of this criticism has been that novel biological structures
cannot emerge unless functional links and cooperation, 
essentially positive interactions, occur among the compo-
nents of a system. For example, the theory of natural selec-
tion on phenotypes resulting exclusively from mutations
does not satisfactorily explain the rapid and important evo-
lutionary transitions necessary to produce eukaryotic cells
(Ryan 2002). Thus, most biologists now accept the en-
dosymbiotic hypothesis, which explicitly bases the origins of
eukaryotic cells on positive interactions (Margulis et al. 2000,
Kooijman et al. 2003).

In fact, ecology’s relatively recent shift in focus regarding
biotic interactions in ecology has a parallel in evolutionary bi-
ol ogy. In their book The Major Transitions in Evolution, John
Maynard Smith and Eörs Szathmáry (1997) demonstrate
how the problems that have proved difficult for mainstream
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evolutionary theory have been tackled by invoking new hy-
potheses that shift the focus from negative to positive inter-
actions (also see Queller 1997). Maynard Smith and Szathmáry
analyzed the strengths and weaknesses of evolutionary the-
ory and argued that when evolution is presented as a series
of major evolutionary transitions from less complex to more
complex biological forms (eukaryotic cells are more complex
than prokaryotic cells, animals and plants are more com-
plex than protists, and so on), the theory of natural selection
needs substantial modifications to predict or explain the
emergence of new and more complex biological structures. 

This problem becomes more evident if we superimpose
evolutionary theory onto another general biological 
concept—the hierarchy of biological organization (figure 1,
left panel). The hierarchical presentation of biological orga-
nization is heuristically useful because it portrays the com-
plexity of all biological forms precisely and succinctly (McShea
2001).The general hierarchical pattern is “nestedness”: higher
levels of biological organization include lower levels (organ-
isms include cells, cells include organelles, and so on). The 
major transitions refer precisely to these passages from one
level of biological organization to another (figure 1, yellow 
arrows). A competition-based view of natural selection suc-
cessfully explains emergence of biological diversity within
levels, especially at the levels of cells and organisms, but a com-
petition-based approach fails to satisfactorily explain the 
major transitions from lower to upper levels—and this 
pattern of nestedness, which portrays some of the most 
fundamental evolutionary changes in life. 

The problem, as Maynard Smith and Szathmáry (1997) ex-
plained, is that natural selection based on negative interactions
predicts competition between entities at the lower level (repli-
cating molecules, free-living prokaryotes, single cells, individual
organisms), which disrupts their ability to integrate into
higher levels (chromosomes, eukaryotic cells, multicellular or-
ganisms, social structures). These important gaps left by the
theory of natural selection have been filled in a rather hap-
hazard manner by other biological theories, which devel-
oped independently to describe the emergence of each level
of biological organization. One example is the endosymbiotic
theory mentioned above (Margulis et al. 2000, Kooijman et
al. 2003).

Two generalizations inferred from a large body of research
on ecological facilitation apply directly to major evolution-
ary transitions. First, facilitative interactions become ecolog-
ically (and hence evolutionarily) meaningful in stressful
environments where protection from environmental impacts
is a principal general mechanism of facilitation (Callaway 2007,
Brooker et al. 2008). Consequently, under certain conditions,
the evolutionary process may be affected more strongly by fa-
cilitative interactions, and major evolutionary transitions
may have been initiated in environments in which facilitation
was important. The second generalization is that facilitating
organisms aggregate closely with each other (Callaway 2007,
Brooker et al. 2008); hence, major evolutionary transitions trig-
gered by positive effects are clearly compatible with the nested

hierarchy of life. Here we assess the potential of positive in-
ter actions to provide conceptual generality for major evolu-
tionary transitions by discussing the importance of facilitation
in the context of specific theories.

Overview of specific theories on major 
evolutionary transitions
The sequence of major evolutionary transitions, the most suc-
cessful specific theories explaining these transitions, and the
ecological interactions hypothesized to drive them are sum-
marized in figure 1. Below we comment briefly on each of
these transitions, from subcellular structures to socially or-
ganized populations. As this overview includes a broad range
of biological hypotheses, we have presented them in a basic
format that emphasizes fundamental underlying biotic inter -
actions and, for brevity’s sake, leaves out other important 
details.

Precellular evolution to simple cells. Precellular evolution includes
at least two major evolutionary transitions: (1) from bio-
molecules to supermolecular aggregations such as chromo-
somes and ribosomes, and (2) from supermolecular
aggregations to prokaryotic cells. No fossils were left by pre-
cellular transitions, and research relies mainly on the physics
and chemistry of biomolecules, reconstructions of metabolic
pathways for different evolutionary lineages, and theoretical
modeling. The many hypotheses these studies produced are
reviewed and discussed elsewhere (e.g., Knoll 2004, Martin and
Russell 2007), but to date the leading theory is the “RNA-
world” (Alberts et al. 2002). This hypothesis is based on the
ability of RNA molecules (ribozymes) not only to self-repli-
cate but also to catalyze necessary chemical reactions. Al-
though a complete chemical reconstruction of self-replicating
ribozymes is still to be achieved, the current hypothesis is con-
sistent with the theory of hypercycles (Eigen and Schuster
1979). Hypercycles are new structures that emerge (nucleate)
from interacting biomolecules such as nucleic acid chains, 
proteinoids, and lipids (Martin and Russell 2007). According
to the stochastic corrector model (Szathmáry and Maynard
Smith 1999), in which self-replicators represent sequences
composed of a small number of building blocks (e.g., 
nucleotides), under certain conditions (new sequences enter
the system only through copying other sequences that are 
already present, but incorrect inclusion of nucleotides is 
allowed, and raw materials for replications are always suffi-
ciently available), these molecular complexes can form “quasi-
species” (Eigen et al. 1989) that can participate in natural
selection and may evolve gradually into cellular structures.

A brief synopsis of this theory for precellular evolution is
that different biomolecules compete for resources (simpler
chemical compounds that allow them to self-reproduce),
but may also participate in positive interactions through the
exchange of the products of chemical reactions specific to dif-
ferent biomolecules (Martin and Russell 2007). Under certain
conditions as assumed by the stochastic corrector model,
the selection jumps to an upper or group level (Szathmáry and
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Maynard Smith 1999). Importantly, 
after this transition, the usefulness of mu-
tations is evaluated not from the point of
view of a given individual, but from the
point of view of the entire group. Conse-
quently, a group becomes a new quasi-
species but with a more complex structure
that integrates the previous lower levels. As
new quasi-species multiply, they compete
strongly with each other and diverge into
different lineages. In other words, compe-
tition between groups drives selection at
the group level, whereas within groups,
individuals facilitate each other; the tran-
sition is based on a certain, hierarchically
structured interplay between negative and
positive interactions. Such cycles could re-
peat more than one time and in more than
one system. For example, through facili-
tative interactions, quasi-species could
emerge from ribozymes, proteinoids, and
lipids to develop into ribo somes, and in
parallel, DNA chains could interact posi-
tively with other proteinoids and evolve
into chromosomes. Consequently, through facilitative inter-
actions, chromosomes and ribosomes could nucleate new
quasi-species that evolve into prokaryotic cells. Prokaryotic
cells represent compartments surrounded by well-developed
outer membrane systems that protect genes and all the meta-
bolic machinery; these cells are the first level of biological or-
ganization that left fossils (Cavalier-Smith 2006, Martin and
Russel 2007).

From simple to complex cells. Many theories have competed
to describe the transition from prokaryotic to eukaryotic
cells, but the indisputable winner over the last three decades
is the endosymbiotic theory mentioned above (Margulis et
al. 2000, Kooijman et al. 2003). This theory is based on fos-
sils, cell structure, metabolic pathways, genetic composition,
and mathematical modeling (Margulis et al. 2000, Watson
and Pollack 2003). The most accepted modern version is the 
serial endosymbiotic theory. This theory states that the evo-
lution of eukaryotes from prokaryotes involved series of
symbiotic unions of several previously independent ances-
tors, in which some independent organisms became or-
ganelles such as mitochondria and chloroplasts—and
perhaps even nuclei, although the experimental evidence for
this is not strong (Kooijman et al. 2003). The serial en-
dosymbiotic theory explicitly bases these transitions on
positive interactions that lead to a switch from natural se-
lection acting on individual prokaryote cells to selection act-
ing on cell unions (Watson and Pollack 2003). Also at this
major transition we see a hier archically structured interplay
of positive and negative inter actions: the cell unions survive
and spread because cells engaging in endosymbiosis out-
compete those that do not.

Interestingly, early versions of the endosymbiotic theory 
assumed that the evolution of complex cells started from
parasitism (e.g., Cavalier-Smith 2006). However, parasitism
as a starting point for symbiosis raises two issues that are dif-
ficult to explain. First, this presumes the existence of ad-
vanced, already complex, large cells that might host the
hypothetical parasitic precursors of the organelles, and there
is no evidence that such cells existed. Second, how do para-
sites become symbiotic? The necessity of an additional mech-
anistic process is not parsimonious. Even if parasitism has
contributed to the origins of complex cells, these inter actions
between simple cells still may be classified as facilitative be-
cause facilitation does not exclude parasitism. There are many
examples of benefactors experiencing competition and other
negative effects from beneficiaries (Callaway 1994, 2007,
Kikvidze et al. 2001). 

From colonial to differentiated multicellular organisms. The clas-
sic theory of natural selection has been highly successful for
explaining the evolution of different taxa of multicellular
organisms. This level of biological organization has been in-
tensively researched, producing elaborate phylogenies based
on compelling evidence from fossils, embryology, physiology,
biochemistry, and genetics. In general, these phylogenies 
divide multicellular organisms into three kingdoms: plants,
animals, and fungi, and indicate a common ancestor from
which these types of organisms have been originated: green
algae for plants and spongelike organisms for animals and
fungi (for reviews, see Graham et al. 2000 for plants, Dewel
2000 for animals, James et al. 2006 for fungi). These theories
coincide in the idea that all of these lineages evolved from a
colonial organism—an aggregation of identical, nondiffer-
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Figure 1. Ascending complexity and nestedness of biological hierarchy as a 
sequence of major evolutionary transitions driven by facilitative interactions.
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entiated cells. This is the stage at which the theory of natural
selection could be revised to emphasize positive interactions.
It is difficult to explain the origins of colonial organisms be-
cause ecological competition for resources should drive spa-
tial dispersion among cells, not aggregation (Maynard Smith
and Szathmáry 1997), or lead to the death of large propor-
tions of the populations (Agusti et al. 1987). Nevertheless,
colonies evolved and thrive today (Müller 2003).

The benefits of colonial lifestyles for cells are often em-
phasized (Solari et al. 2006), and these benefits are generally
linked to the size of the colony—a larger size enables colonies
to explore new niches, escape predation, and resist abiotic dis-
turbance. The importance of positive interactions (“cooper-
ation”) among the cells of a colony, which start to differentiate
and specialize in distinct functions, is also emphasized (Kirk
2005). These positive interactions within the colony can cre-
ate selective pressures, leading to further evolution of cell
differentiation (Michod 2007). Yet these ultimate benefits
cannot provide proximate mechanisms by which the evo -
lutionary transition from unicellular to colonial organisms 
occurs (Maynard Smith and Szathmáry 1997). Although 
agglomeration of cells to avoid predation could be considered
a proximate common mechanism that drives selection for 
intercellular cooperation (Sachs 2008), this problem has not
been fully addressed. 

Herron and Michod (2007) conducted a thorough inves-
tigation on the origins of multicellularity in colonial algae.
They derived a nearly complete phylogenetic reconstruction
of the origins of multicellularity for volvocine algae that
complements the hypothetical 12-step transitional chain
elaborated earlier (Kirk 2005). Two striking features of this re-
construction are that (1) positive interactions and coopera-
tion among cells at early steps were crucial for starting the
evolution of multicellularity, and (2) when positive inter -
actions weakened, colonies were disrupted and evolution of
multicellularity reversed. Overall, the evolution of multi -
cellularity has initiated and reversed more than once (Herron
and Michod 2007), thus emphasizing the importance of pos-
itive interactions for the evolutionary transition from the
unicellular to the multicellular form of life.

From individuals to superorganisms. Our arguments so far have
explored the evolutionary transitions from molecules to mul-
ticellular organisms. Unfolding the potential of facilitation for
evolutionary theory would not be complete without includ-
ing social organization of populations, which also can be
considered a product of the next major evolutionary transi-
tion (Maynard Smith and Szathmáry 1997). The most promi-
nent products of this transition are the highly organized
populations of social insects, such as bees and ants, often
called “superorganisms” (Maynard Smith and Szathmáry
1997, Reeve and Hölldobler 2007). Superorganisms resemble
multicellular differentiated organisms in that the specialized
castes of individuals within superorganisms show division of
functions similar to different cell types and tissues within the
organisms (Maynard Smith and Szathmáry 1997, Jones and

Oldroyd 2007). This division of labor is genetically determined
so that the colonies, and not their individual members, are
units of evolution (Wilson 1975). For clarity we break down
the evolution of superorganisms into two consecutive stages:
first, the aggregation of individuals into groups, and second,
the evolution of social (altruistic) behavior in superorganisms.
Both stages pose specific difficulties for the theory of natural
selection.

Natural selection predicts that individuals in a popula-
tion will compete for resources, and hence losers must disperse
away from winners in search of new space with resources
(Maynard Smith and Szathmáry 1997). Many species conform
to this prediction, but many other species form groups that
gain social benefit from the group (e.g., flocks or herds).
This inconsistency is addressed by a specific hypothesis of re-
source dispersion, which tries to explain aggregation in a
group by the heterogeneity of the environment (Johnson et
al. 2002). However, empirical evidence provides poor support
for this hypothesis (Revilla 2003). We suggest that facilitation
has good potential to resolve this problem: facilitative inter-
actions that increase in intensity in stressful environments may
explain the transition from solitary to group organization of
populations, as discussed in the previous section for the tran-
sition from unicellular to colonial organisms.

Second, the organization of populations into groups and
superorganisms requires the social (altruistic) behavior of in-
dividuals. Such behavior is evidently a product of evolution
(Komdeur 2006), yet the theory of natural selection does
not include altruism (Maynard Smith and Szathmáry 1997).
This conflict has been resolved by kin selection, a modifica-
tion of evolutionary theory (Hamilton 1964a, 1964b, Maynard
Smith 1964). Kin selection predicts that when a group is ge-
netically homogeneous, helping other individuals increases
the probability of reproducing genes that beneficiary and
benefactor individuals share. Another popular theory is that
of group selection (Borello 2005, Reeve and Hölldobler 2007),
which suggests that a transition of selection from individu-
als to groups is possible when there is a higher payoff for an
individual to invest in helping individuals of the group than
to invest in within-group competition. The approaches of kin
and group selection are not exclusive and potentially can be
combined (Boomsma and Franks 2006, Wilson and Wilson
2007), and both theories shift in focus from competitive to fa-
cilitative interactions.

As a final note, genetically determined division of labor can
be found among organisms of different species: obligatory mu-
tualisms present a clear example of such an above-organism
level of biological organization. Obligatory mutualisms are 
often observed among very different biological forms (plant-
bacteria, plant-animal, animal-bacteria, fungi-algae, etc.; for
reviews, see Simms and Taylor 2002, Bronstein et al. 2006, Kiers
and van der Heijden 2006, Thrall et al. 2007), and evolu-
tionary theory explains their origins by coevolution based on
positive interactions. For example, the symbiotic inter actions
that produce lichens can actually accelerate the evolution of
individual partner organisms (Lutzoni and Pagel 1997).
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Facilitation in major evolutionary transitions
Our analysis has followed the lead of earlier critics of theory
for major evolutionary transitions. These critics suggested re-
visions in evolutionary theory to emphasize the importance
of cooperation (positive interactions) for these transitions
(Maynard Smith and Szathmáry 1997, Queller 1997). We
have added analysis of the competing theories for major 
evolutionary transitions, and argued that seemingly idio-
syncratic theories that were used to fill gaps in the theory 
of natural selection find cohesion and generalization in 
facilitation. 

A detailed review of these theories is not possible in a
short article, but even a brief overview indicates that the
most successful theories—hypercycles, endosymbiosis, mul-
ticellularity, kin selection, and group selection—explicitly
invoke positive biotic interactions (figure 1). The ecological
equivalent of these interactions is facilitation, which is sim-
ple, can emerge spontaneously in environments under certain
conditions, and may serve as a starting point for the evolu-
tion of the above-mentioned advanced types of positive in-
teractions. A broader synthesis of specific biological theories
for different aspects of natural selection may benefit from a
more explicit focus on facilitation. One principal contribu-
tion from the ecological literature on facilitation is to provide
a new way of perceiving the role of the environment in evo-
lution. Environment not only filters out less fit individuals,
but can create shifts from competitive interactions to facili-
tation. Facilitation and competition operate simultaneously
(Callaway et al. 1991, Callaway 2007), but under stress, facil-
itation can increase the probability of survival of aggregated
self-replicating entities more than competition can reduce their
fitness. In this way, environmental conditions can alter the bal-
ance of facilitation and competition: within aggregated groups,
the balance is shifted to facilitation, but between these groups
competition prevails. This arrangement may provide the
mechanism that triggers gradual transitions to higher levels
of biological organization: although competitive interactions
eliminate less fit groups, fitness can ultimately depend on the
efficiency of facilitation within groups. Thus, ecological facil -
itation might advance cooperation and the division of func-
tion within aggregated groups of self-replicating entities.
Hence, an explicit integration of ecological facilitation might
contribute to the explanatory and predictive power of evo-
lutionary theory, and, most importantly, to the evolution of
large-scale increases in biological complexity.

Interestingly, the role of biotic interactions in the evolution
of biological hierarchy may find a parallel pattern in organi-
zation of ecological systems. As it has been proposed, the hi-
er archy of interactions can structure many communities
(Bruno and Bertness 2001, Baumeister and Callaway 2006, 
Altieri et al. 2007). For example, the formation of a commu-
nity often starts with a “foundation species” that functions to
engineer the habitat, which in turn facilitates an assemblage
of other species, some of which may act as benefactors for
other species. In turn, other types of biotic interactions, such
as competition and predation, may further shape community

organization within the habitat provided by the foundational
species. In short, some ecological successions can be viewed
as a cascade of positive and negative structure-driving inter-
actions that interchange sequentially to create an intricate net-
work of niches in an ecosystem (Altieri et al. 2007).

Conclusion
Overall, we find a striking parallel between ecology and evo-
lution when considering the different roles of facilitative and
competitive interactions in ecological processes and evo -
lutionary transitions. This parallel involves common complex
mechanisms that underpin biology and highlight the im-
portance of synthetic theory. Perhaps at this stage positive 
effects deserve special attention, because the inclusion of 
facilitative interactions in important biological models can
provide a powerful unifying generalization for explaining
and predicting conceptually difficult transitional aspects of
evolutionary theory, and may solve other major conceptual
problems in which facilitative processes have not yet been 
considered.
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