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Spatial and temporal constraints on dispersal explain the absence of species from areas with potentially suitable
conditions. Previous studies have shown that post-glacial recolonization has shaped the current ranges of many
species, yet it is not completely clear to what extent interspecific differences in range size depend on different
dispersal rates. The inferred boundaries of glacial refugia are difficult to validate, and may bias spatial distribution
models (SDMs) that consider post-glacial dispersal constraints. We predicted the current distribution of 12
Caucasian forest plants and animals, factoring in the effective geographical distance from inferred glacial refugia
as an additional predictor. To infer glacial refugia, we tested the transferability of the current SDMs based on the
distribution of climatic variables, and projected the most transferable ones onto two climate scenarios simulated
for the Last Glacial Maximum (LGM). We then calculated least-cost distances from the inferred refugia, using
elevation as a friction surface, and recalculated the current SDMs incorporating the distances as an additional
variable. We compared the predictive powers of the initial with the final SDMs. The palaeoclimatic simulation that
best matched the distribution of species was assumed to represent the closest fit to the true palaeoclimate. SDMs
incorporating refugial distance performed significantly better for all but one studied species, and the Model for
Interdisciplinary Research on Climate (MIROC) climatic simulation provided a more convincing pattern of the
LGM climate than the Community Climate System Model (CCSM) simulation. Our results suggest that the
projection of suitable habitat models onto past climatic conditions may yield realistic boundaries of glacial refugia,
and that the current distribution of forest species in the study region is strongly associated with locations of former
refugia. We inferred six major forest refugia throughout western Asia: (1) Colchis; (2) western Anatolia; (3) western
Taurus; (4) the upper reaches of the Tigris River; (5) the Levant; and (6) the southern Caspian basin. The
boundaries of the modelled refugia were substantially broader than the refugia boundaries inferred solely from
pollen records. Thus, our method could be used to: (1) improve models of current species distributions by
considering the dispersal histories of the species; and (2) validate alternative reconstructions of palaeoclimate with
current distribution data. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012,
105, 231–248.
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INTRODUCTION

Spatial and temporal constraints on dispersal may be
important in shaping the ranges of species, in addi-
tion to habitat suitability (Pulliam, 2000; Guisan &
Thuiller, 2005). Species may be absent from suitable
habitats because of limited dispersal ability, prevent-
ing full recolonization after historical reduction of

their ranges (Pulliam, 2000; Araújo et al., 2005;
Guisan & Thuiller, 2005; Marsico, 2009).

The Last Glacial Maximum [LGM; c. 21 thousand
years (ky) BP] was a crucial event that determined the
current landscape and species diversity throughout
the Earth. In temperate zones, forests were confined
to isolated refugia during the LGM (Van Andel
& Tzedakis, 1996), and their current distribution
reflects post-glacial expansion from these refugia.
One can expect that the expansion rates of different
species were dependent on several factors, such as*Corresponding author. E-mail: davitar@gmail.com
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dispersal ability, physiological tolerances and com-
petitive ability. It has been suggested that post-glacial
dispersal patterns should be considered when
explaining current distributions (Svenning & Skov,
2004; Graham, Moritz & Williams, 2006). The analy-
sis of the distribution of multiple forest plant species
shows that the distance from glacial refugia may be
more important than the current climatic conditions
in explaining species diversity (Willner, Di Pietro &
Bergmeier, 2009).

The incorporation of post-glacial dispersal patterns
into current spatial distribution models (SDMs)
requires a good knowledge of the geographical ranges
of species during the LGM. Traditional methods for
the reconstruction of ancient ranges, based on the
analyses of fossils, provide a limited and biased
picture, because dead organisms tend to decompose,
and conditions favouring fossilization are unevenly
distributed in space and time (e.g. Signor, 1985). This
is particularly true for the reconstruction of glacial
refugia: they can often be overlooked if molecular
genetic data are not considered (Provan & Bennett,
2008; Tarkhnishvili et al., 2008). Since gridded
palaeoclimatic data became widely available (Bracon-
not et al., 2007), researchers have been trying to
reconstruct ancient distributions of plants and
animals by projecting SDMs, based on present occur-
rence data, onto past conditions (Graham et al., 2006;
Martínez-Meyer & Peterson, 2006; Davies, Purvis &
Gittleman, 2009). Palaeovegetation data suggest that,
since the LGM, the ecological requirements of long-
lived, temperate tree species have not changed con-
siderably (Martínez-Meyer & Peterson, 2006), and the
projection of current SDMs onto past conditions may
provide a realistic output.

The consideration of dispersal history may improve
current distribution models for plants (Svenning,
Normand & Skov, 2008; Willner et al., 2009; Normand
et al., 2011). Because the precision of the shape, size
and location of glacial refugia was not the primary
objective of these studies, the authors did not discuss
different palaeoclimatic simulations, or species–
climate modelling algorithms, and the studies were
applied at coarse spatial resolutions. Normand et al.
(2011), who inferred glacial refugia and included as
many as 1016 plant species in their study, only indi-
cated the consistency of the results without address-
ing the issue of model transferability before inferring
the location of glacial refugia.

Nogués-Bravo (2009) emphasized that the majority
of palaeodistribution reconstructions have not been
tested using independent data. Indeed, it is difficult
to validate the models inferring future or past dis-
tributions because of a lack of test occurrence loca-
tions. Sometimes palaeodistribution data, e.g. pollen
records, are used for validation (Martínez-Meyer &

Peterson, 2006), but known occurrences may not
capture the full extent or climatic diversity of the
ancient range, leading to poor predictive performance.

Palaeodistribution models can be validated indi-
rectly through an examination of which of the com-
peting LGM climate simulations best explains the
current distribution of the species. This approach
considers the incorporation of the spatio-temporal
autocorrelation of an inferred ancient distribution
into current distribution models, followed by a test of
the predictive power of a corrected current SDM.

In this article, we predict the current distribution of
several plants and animals in the Caucasus and
western Asia at a high spatial resolution by the
incorporation of the least-cost distance from the
inferred species-specific location of glacial refugia as
an additional predictor in the modelling of species
distributions. We infer the glacial refugia by project-
ing the current species–climate models onto available
palaeoclimatic simulations. We assume that the
palaeoclimatic simulation that best matches the
species distributions represents the closest fit to
the true palaeoclimate. Thus, our method could be
used to: (1) improve models of current species distri-
butions by considering the distribution histories of
the species; and (2) validate palaeoclimatic simula-
tions using current distribution data.

METHODS
STUDY AREA AND TARGET SPECIES

The Caucasus Ecoregion and surrounding parts of
western Asia and eastern Europe (latitudinal range,
32–48°N; longitudinal range, 26–54°E) were selected
as a study area. Most of this region has a dry conti-
nental or Mediterranean-type climate and a forest-
less landscape. Forests are associated with distinct
areas of mesic climates. The largest continuous mesic
forest landscapes are located along the southern
and eastern Black Sea coast, north-west of the Greater
Caucasus, and along the southern coast of the Caspian
Sea (Fig. 1). They support biological communities with
several dominant trees, including oriental beech
(Fagus orientalis) (Denk et al., 2002). The area har-
bours multiple glacial relict populations, which sur-
vived the LGM in forest refugia (Kikvidze & Ohsawa,
1999; Denk, Frotzler & Davitashvili, 2001; Milne &
Abbott, 2002). The ranges of many forest plants and
animals overlap, either throughout western Asia, or in
its larger subsections, although the extent of such
overlap varies from species to species.

For our study, we selected 12 species for which we
had sufficiently accurate distribution data and that
only coexist in the eastern Black Sea region known as
Colchis. Selecting the species from the Colchis, which
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is traditionally associated with glacial refugia, made
it possible to compare the extents of post-glacial dis-
persal for diverse life forms. The selected species
represent taxonomic groups with different life cycles,
physiologies, reproduction and dispersal potential.
The list includes five trees typical for the Caucasian
forests (Abies nordmanianna, Picea orientalis, Casta-
nea sativa, Fagus orientalis, Carpinus betulus),
common rhododendron (Rhododendron ponticum), an
endemic snail (Helix buchi), Caucasian salamander
(Mertensiella caucasica), northern banded newt
(Ommatotriton ophryticus), Caucasian parsley frog
(Pelodytes caucasicus), Ajarian lizard (Darevskia
mixta) and Robert’s snow vole (Chionomys roberti).
Helix buchi and D. mixta have parapatric sister
species with very similar habitat requirements:
H. goderdziana and D. clarkorum, respectively
(Murphy et al., 2000; Mumladze et al., 2008). In our
analyses, each pair of sister species was treated as a
single taxon. For each of these study taxa, our
datasets included 31–1000 presence locations cover-
ing the extent of occurrence of each taxon throughout
the Caucasus. The datasets of species occurrence
were from published data, the Soviet military topo-
graphical maps at a scale of 1 : 50 000 (for data on
tree species) and field data collected by the authors
since the early 1980s (Darevskii, 1967; Tarkhnishvili
& Gokhelashvili, 1999; Tarkhnishvili et al., 2008;
Bukhnikashvili, 2004; Kryštufek & Vohralík, 2004.
Supporting Information Table S1 and Fig. S1).

We paid particular attention to the accuracy of the
presence locations of the studied species (Table S1). In
mountain areas such as the Caucasus, climate
changes abruptly with horizontal distance, and inac-
curate locations can strongly bias the modelling
output. This explains the relatively small number of
species used in our analyses.

GENERAL METHODOLOGICAL REMARKS

Niche-based SDMs with the best predictive power are
commonly based on many predictors and consider
interactions among them (McPherson, Jetz & Rogers,
2006; Cordellier & Pfenninger, 2009). A number of
commonly used modelling techniques, including logis-
tic regression (Hosmer & Lemeshow, 1989), maximum
entropy (Phillips & Dudik, 2008), neural networks
(Fitzgerald & Lees, 1992) and simple or partitioned
Mahalanobis distance (MD) (Rotenberry, Preston &
Knick, 2006; Griffin et al., 2010) estimate the strength
and type of association between predictors. Some
of these methods help to estimate the relative impor-
tance of predictors in distinguishing between
presence and absence locations.

However, these methods have major limitations that
result in poor transferability of the respective models.
SDMs rarely perform well outside the extent of
training locations (Barry & Elith, 2006; Hijmans &
Graham, 2006), and one could expect similar problems
with SDMs projected into different geological periods.
There are two potential reasons for this issue. First,
the association between environmental predictors may
be specific to a particular area (Pearson & Dawson,
2003; Randin et al., 2006), causing loss of model accu-
racy elsewhere. Second, predictors that separate pres-
ence and absence locations within the extent of
training data may be unimportant elsewhere (Guisan
& Thuiller, 2005). To estimate the transferability of
SDMs, several approaches have been applied (Thomas
& Bovee, 1993; Randin et al., 2006; Vanreusel et al.,
2006), based on a comparison of SDM predictive power
within and outside the extent of training locations.

There are also ways of increasing transferability. It
has been suggested that only mechanistic SDMs,
based on an a priori knowledge of the ecophysiological

Figure 1. Current distribution of forests in western Asia, extracted from Land Cover Type 1 of the MODIS Land Cover
Yearly L3 Global 500-m dataset coded MCD12Q1 (EOS Data Gateway, 2010).
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requirements of a species, provide a reliable basis for
the potential niche (Kearney & Porter, 2004; McPher-
son et al., 2006; Zarnetske, Edwards & Moisen, 2007),
although relevant knowledge is very limited (Guisan
& Thuiller, 2005). If an SDM is based on empirical
occurrence data, one should expect higher transfer-
ability for simple models, not including assumptions
whose relevance is difficult to test – such as inter-
actions between the predictors. One example of
this simple approach is climatic envelope analysis
(Hijmans & Graham, 2006; Pearson et al., 2006), a
straightforward methodology linking the suitability of
a habitat with empirically identified tolerance limits,
or its modifications, such as fuzzy envelope (FE)
analysis (Skov & Svenning, 2004; Svenning & Skov,
2004). Bioclimatic envelope models provide a good
first approximation on large geographical scales
(Pearson & Dawson, 2003). In addition, transferable
SDMs should be based only on the environmental
predictors whose impact on a species has a simple and
straightforward explanation.

We applied two approaches for inferring sufficiently
powerful and, simultaneously, transferable suitable
habitat models, prior to correcting the models using
the post-glacial dispersal constraints: one focused on
the increasing predictive power of a model within the
training extent, and the other on a simple intuitive
approach, based on fixed, expert-selected environmen-
tal predictors.

The purposes of our study included: (1) the devel-
opment of sufficiently transferable suitable habitat
models of the study species, based on the current
distribution of climates; (2) the projection of the
models for each species onto LGM conditions, accord-
ing to two different palaeoclimatic simulations, and
inferring the extent of LGM refugia; (3) refinement of
the current SDMs by the incorporation of post-glacial
dispersal constraints; and (4) testing of the predictive
power of the refined SDMs, based on different palaeo-
climatic simulations, within the geographical extent
of the analysis, in order to identify which palaeocli-
matic simulation was in better accordance with
current species distributions (Fig. 2).

SELECTION OF THE MOST TRANSFERABLE

DISTRIBUTION MODELS

As environmental predictors for SDM development,
we used climatic grids downloaded from WorldClim
Version 1.4 (http://www.worldclim.org/), a set of global
climate layers with a spatial resolution of 5 km2,
which provide various parameters of temperature and
precipitation at a global scale (Hijmans et al., 2005).

We applied two algorithms requiring presence-only
datasets: FE analysis (Skov & Svenning, 2004) and
the MD method (Clark, Dunn & Smith, 1993).

The analyses were based on two alternative
approaches – an ‘iterative’ approach and an approach
based on the expert selection of environmental pre-
dictors. In the ‘iterative’ approach, multiple models
were developed, based on various combinations of
climatic variables, with MD considering correlations
among the predictors and FE excluding these corre-
lations. For the iterative approach, we used six
predictors: (1) mean annual temperature; (2) isother-
mality; (3) maximum temperature of the warmest
month; (4) minimum temperature of the coldest
month; (5) annual precipitation; and (6) precipitation
seasonality. We developed multiple models including
one to all six climatic variables in different combina-
tions, such that all combinations with two or more
predictors included at least one that described tem-
perature (1, 2, 3, 4) and at least one that represented
precipitation (5, 6). Thus, we had 45 combinations in
total (Appendix). Based on each predictor combina-
tion, we developed 90 spatial models for each combi-
nation of the predictors and selected the MD and FE
models with the highest predictive power for the
training extent (hereafter referred to as ‘iteratively
fitted models’) for further analyses.

As an alternative approach, we selected three pre-
dictors with a straightforward impact on the ecological
performance of a wide range of biological species and
applied the FE algorithm based on these predictors
(fixed-predictor models). The predictors were
the maximum temperature of the warmest month,
minimum temperature of the coldest month and
annual precipitation. Annual precipitation is routinely
used as an important predictor in spatial models
developed for both animals and plants. Temperature
extremes may have lethal effects, and may be impor-
tant at long time intervals (Barry & Elith, 2006).

Three-quarters of the occurrence locations of each
species (training locations) were used for the devel-
opment of the models, and the remaining presence
locations (test locations) were used for model valida-
tion at a local scale. In order to test the predictive
power of the derived models, we estimated the area
under the curve (AUC) of the receiver operating char-
acteristic (ROC) curve (Fielding & Bell, 1997; Hand &
Till, 2001) based on the predicted probabilities of
presence for test occurrence locations and 5000
random (‘pseudo-absence’) locations, generated within
the study extent using the random point generator
extension for ArcView GIS 3.x (Jenness, 2004). We
applied shuffling (1000 permutations) to randomly
subdivide the original occurrence datasets into test
vs. training locations, and selected subsets of the test
pseudo-absence locations equal in size to a set of test
presence locations. For each permutation, the pre-
dicted probabilities of the test presence and test
pseudo-absence locations and respective AUC values
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were estimated, using Microsoft Excel; the mean AUC
value over 1000 permutations was used as a final
output. For the permutation procedure, we used
‘shufflerows’ and ‘MonteCarlo methods’ options in the
Microsoft Excel application PopTools (Hood, 2010).

Based on test presence data from Europe, we tested
the transferability level of iteratively fitted MD and
FE models with the highest predictive power, and
that of the fixed-predictor models. This was per-
formed in order to select the model with the best
transferability – that is, that which performed best in

areas distant from the training extent. The best
transferable model in space would be highly likely to
retain its predictive power over time, which is impor-
tant when considering making inferences in the
remote past, typically with no validation data.

As a test European dataset, we downloaded or
generated occurrence locations of the target species
and their closest relatives/ecological counterparts
(Supporting Information Table S2). Abies alba, Picea
abies, Fagus sylvatica, Helix pomatia and Chioglossa
lusitanica are closest or very close relatives of A. nor-

Figure 2. Diagram showing sequential steps in the modelling (see Methods section for explanations). AUC, area
under the curve; CCSM, Community Climate System Model; FE, fuzzy envelope; LGM, Last Glacial Maximum;
MD, Mahalanobis distance; MIROC, Model for Interdisciplinary Research on Climate.
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dmanianna, P. orientalis, F. orientalis, H. buchi +
H. goderdziana and M. caucasica, respectively
(Farjon, 1990; Veith et al., 1998; Denk et al., 2002;
Schütt, 2005), and were used as their ecological coun-
terparts in Europe. Castanea sativa, C. betulus and
R. ponticum form natural or invasive populations in
Europe. We did not test the transferability of the SDMs
for P. caucasicus, O. ophryticus, D. mixta and C. rob-
erti, because they do not have single, unequivocal
ecological counterparts in the regions remote from
western Asia. Because the test occurrence locations
from Europe did not always cover the entire ranges of
the species or their equivalents, we did not apply AUC
analysis, but used omission error as an indicator of
SDM transferability. We calculated median probability
values and applied a Kruskall–Wallis nonparametric
test in order to compare mean ranks of estimated
probabilities for test European locations, based on the
three competing models. A model with the highest
mean rank/highest median value was assumed to be
the most transferable. The significance of the differ-
ence between the competing models of the same
species was tested with the Mann–Whitney nonpara-
metric test.

Model projections were visualized using the
ArcView GIS module Spatial Analyst (ESRI, Red-
lands, CA, USA) and the MD extension for ArcView
GIS 3.x (Jenness, 2003).

CONSIDERATION OF POST-GLACIAL

DISPERSAL PATTERNS

We identified the 95th percentile cut-off of the most
transferable models and projected the output onto
LGM climatic conditions to infer the spatial distribu-
tion of glacial refugia. We used grids based on two
palaeoclimatic models downscaled to a resolution
of 5 km2: the Community Climate System Model
(CCSM) and the Model for Interdisciplinary Research
on Climate (MIROC) (Braconnot et al., 2007). We
selected these two climate models because of their high
resolution and availability at the time of our study. The
areas suitable for the target species under LGM con-
ditions were defined as ‘refugia’. Subsequent analyses
were based on the incorporation of spatio-temporal
autocorrelation into the current, most transferable
models by including the distance from the boundaries
of the refugia as an additional predictor in order to
explain the current distribution of the study species.

Two sets of polygons of potential post-glacial dis-
persal sources were used for each species: (1) all
continuous refugia throughout western Asia and the
Caucasus region; and (2) only the refugia that fell
within, overlapped or were geographically closest to
the current distribution of the species. We derived
least-cost distances from refugial polygons (hereafter

referred to as REFDIST) based on the cost-distance
algorithm in the ArcGIS module Spatial Analyst
(ESRI). This algorithm considers a friction or cost grid
that is a raster map in which each cell indicates the
relative difficulty (cost) of moving through that cell. A
least-cost path minimizes the sum of frictions of all
cells along the path, and this sum is the least-cost
distance (Adriaensen et al., 2003). In the calculation of
cost-distances, we incorporated information about
climate suitability to provide more realistic distances
regarding the dispersal. We used elevation (source: the
SRTM 1-km grid of elevation available at Global Land
Cover Facility, 2010) as the surrogate for climate at a
regional level to derive the cost-distance from the
refugia. We assumed that the cost-distance between a
refugium and a certain point accounted for not only the
straight-line distance, but also the additional effort
made by the species population to expand through
inclement terrain to reach or colonize that point. The
cost-distance grids were calculated separately for each
studied species, and for CCSM and MIROC palaeocli-
matic models. We developed one-sided fuzzy envelopes
for REFDIST at four different settings for each studied
species (Table 1). We tested a set of each of the four
REFDIST predictors and climatic variables included in
potential climatic niche models to validate our SDMs
against the current distributions of the study species.

Finally, we estimated AUC of the spatial models by
incorporating spatio-temporal autocorrelation, using
the described permutation procedure. The models
were not tested with the occurrence data outside the
study extent, because distributions of the studied
species in distant geographical areas relate to glacial
refugia outside the western Asian region.

Figure 2 shows the interrelations between the
sequential steps of the analysis.

RESULTS
PREDICTIVE POWER AND TRANSFERABILITY

OF ITERATIVELY FITTED MODELS

For most species, the highest AUC value at the train-
ing extent was obtained for either the MD or FE
model that included three or more predictors. For
each species, different combinations of the predictors
produced the best statistically fitted models (Table 1,
Appendix).

However, the transferability of most of the itera-
tively fitted FE and MD models was moderate or low
(Table 1), as the respective spatial projections onto
the whole of Europe and western Asia underpredicted
the presence of the species in many regions in which
they or their closest relatives occurred (Supporting
Information Fig. S2). The omission error was particu-
larly high for the MD-based models, but also substan-
tial for iteratively fitted FE models (Table 1).
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FIXED-PREDICTOR FE MODELS

The AUC values of the fixed-predictor FE models,
based on the maximum temperature of the warmest
month, minimum temperature of the coldest month
and annual precipitation, exceeded 0.82 for all
studied species except F. orientalis, but were lower
than those of the iteratively fitted models (Table 1).
Even minor differences were highly significant
(P < 0.001), given 1000 permutations.

However, the transferability index of the FE
models, based on the three fixed predictors, was
higher than that of the iteratively fitted models
(Table 1). The differences were significant for all
studied species (P < 0.001, Mann–Whitney test).

Visually, the predicted suitable areas for the selected
species covered the entire ranges of the studied species
in western Asia and Europe, although the presence of
some species or their relatives was overpredicted in
northern and/or eastern Europe (Fig. S2).

In addition, spatial projection of the models onto
the Caucasus and western Asia showed large areas
beyond the actual distribution of some species,
expanding the predicted ranges eastwards and
southwards from their actual ranges (Fig. 4, left
panel).

PROJECTION OF THE MOST TRANSFERABLE

MODELS ONTO LGM CONDITIONS

The refugia, defined as projections of the most trans-
ferable models onto LGM land surfaces, showed
similar ranges for all studied species. Throughout the
Caucasus and western Asia, a large refugium with a
suitable climate was concentrated along the southern
and eastern Black Sea coast (Colchis), and smaller
refugia occurred in the southern Caspian basin, at
the eastern Mediterranean coast (the Levant) and
throughout different parts of Anatolia (Fig. 3). The
refugia were more fragmented according to the
MIROC model than the CCSM model. The MIROC
model, unlike the CCSM model, identified large
refugia in western Anatolia, the westernmost Taurus
Mountains and the upper reaches of the Tigris River,
but showed fewer refugial areas at the southern
Black Sea coast (Fig. 3).

MOST TRANSFERABLE MODELS INCORPORATING

SPATIO-TEMPORAL AUTOCORRELATION

The inclusion of refugial distance in the most trans-
ferable models increased significantly the values of
AUC for most of the species, relative to the original
models. The AUC gain was particularly high when
the distance was calculated from the refugia that
spatially matched the current distributions (Table 2).

The REFDIST calculated from MIROC-based
refugia yielded a greater increase in model predictive
power than that based on the CCSM-based refugia.
The increase in the predictive power of the SDMs,
incorporating the distance from the MIROC-based
refugia, was significant (P < 0.001) in all species
except O. ophryticus; the corrected models of A. nor-
dmanianna, P. orientalis and C. sativa had the
highest predictive power. The increase in the predic-
tive power of SDMs incorporating the distance from
the CCSM-based refugia was not significant for
R. ponticum, P. caucasicus and O. ophryticus, and the
predictive power of all corrected models (except
O. ophryticus) was lower than the models corrected
using MIROC-based refugia.

Comparison of the models with the actual distribu-
tion maps (Fig. S1) showed qualitative improvement
of the most transferable models with spatio-temporal
autocorrelation, when compared with the models in
which autocorrelation was not incorporated (Fig. 4).
For all species, the SDMs incorporating refugial dis-
tance based on the MIROC climatic simulation
showed higher specificity than the models that incor-
porated refugial distance based on the CCSM climatic
simulation. The models calculated from the CCSM-
based refugia overpredicted the presence of animals
endemic to the Caucasus (H. buchi + H. goderdziana,
M. caucasica, P. caucasicus, D. mixta + D. clarkorum,
C. roberti) on the south-western Black Sea coast,
whereas the models based on the MIROC simulation
did not (Fig. 5).

DISCUSSION

The potential niche of a species, which defines the
spatial distribution of suitable environments, only
partly explains the observed distribution patterns
(Pulliam, 2000; Guisan & Thuiller, 2005). In order to
increase the predictive power of SDMs based on the
analysis of abiotic environmental predictors, we
should consider biotic interactions, metapopulation
dynamics and dispersal limitations (Legendre, 1993;
Gavashelishvili, 2004; Hampe, 2004; Svenning &
Skov, 2004; Barry & Elith, 2006). The last two factors
can be incorporated into SDMs by accounting
for spatial or temporal autocorrelation patterns
(Lichstein et al., 2002; Araújo et al., 2005; Randin
et al., 2006). Our results show that factoring in a few
environmental predictors and modelling post-glacial
dispersal patterns improves the predictive power of
spatial models for Caucasian forest species, whose
ranges were reduced during glacial advances in the
Pleistocene. The results also suggest that the distri-
bution models based on different simulations of
palaeoclimate are not equally powerful in explaining
current distribution patterns, and that forest distri-
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Figure 3. The distribution of climates suitable for the 12 forest plants and animals during the Last Glacial Maximum
(LGM) throughout the Caucasus and western Asia. Shade intensity indicates the number of species out of the 12 for which
the LGM climate was suitable. Our data show that the Model for Interdisciplinary Research on Climate (MIROC) climatic
simulation provides a more realistic pattern of the LGM climate than the Community Climate System Model (CCSM)
simulation. The CCSM-based inference indicates a large refugium throughout most of the Black Sea coast (BSC) and
smaller refugia in western Anatolia (WA), the southern Caspian basin (SC) and the Levant (LV). The MIROC-based
inference suggests that major refugia existed in Colchis (CL), the southern Caspian basin (SC), western Anatolia (WA),
the western Taurus Mountains (WT), the upper reaches of the River Tigris (TR) and the Levant (LV). Contours in the
maps show the current sea surface line and political borders.

Table 2. Predictive power (area under the curve, AUC) of the most transferable models (MTMs), based solely on habitat
suitability and corrected by incorporating the post-glacial dispersal pattern. The Community Climate System Model (CCSM)
and Model for Interdisciplinary Research on Climate (MIROC) are two different reconstructions of the palaeoclimate (see
the text for details); ‘alref ’ refers to all inferred continuous refugia for one species, whereas ‘specref ’ refers to those refugia
that overlap with the current range of the species. See Table 1 for abbreviations of the studied species. The standard error
is below 0.001 for all cases at 1000 permutations. The highest AUC values are shown in bold type

Model An Po Cs Cb Fo Rp Hb Mc Pc Oo Dm Cr

MTM 0.892 0.884 0.840 0.661 0.709 0.823 0.836 0.829 0.852 0.878 0.851 0.860
CCSM_alref 0.909 0.894 0.872 0.746 0.732 0.806 0.841 0.863 0.858 0.874 0.863 0.870
MIROC_alref 0.911 0.897 0.864 0.762 0.787 0.820 0.832 0.873 0.845 0.870 0.863 0.858
CCSM_specref 0.912 0.913 0.891 0.746 0.732 0.818 0.869 0.870 0.857 0.872 0.881 0.879
MIROC_specref 0.918 0.920 0.904 0.762 0.787 0.833 0.883 0.883 0.870 0.870 0.885 0.885
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bution in western Asia during the LGM was consid-
erably broader than is reflected in the existing pollen
record (Van Andel and Tzedakis, 1996; Arslanov,
Dolukhanov & Gei, 2007; Connor & Kvavadze, 2008).

FE models, which do not consider interactions
between variables, had a higher predictive power
within the training extent than the models that con-
sidered these interactions for all species except F. ori-
entalis and H. buchi (Table 1). Fixed-predictor FE
models had a higher transferability than the itera-
tively fitted models, but somewhat lower predictive
power within the training extent. Apparently, this
outcome is a result of overfitting of the training
dataset. The selection of predictors based on expert
ecological knowledge has clear advantages (Midgley
et al., 2002; Kearney & Porter, 2004). This approach
is commonly used for modelling suitable habitats
(Hijmans & Graham, 2006; Pearson et al., 2006).
Increased interest in the models of ancient ranges
(Martínez-Meyer & Peterson, 2006; Davies et al.,
2009) requires the availability of environmental vari-
ables for a sufficiently wide temporal and spatial
scale. Climatic variables important for the survival of
species (Midgley et al., 2002; Skov & Svenning, 2004)
are not always available for distant geological
periods. The three simple predictors selected for this
study have an obvious impact on a broad range of
living organisms, and the respective climatic grids are
freely available for both present and glacial time (as
well as for the predicted future).

Although the fixed-predictor FE models had only
moderate predictive power on a local spatial scale, the
incorporation of palaeoclimatic information into these
models provided a reasonable improvement. The
explanations of the observed distribution patterns,
based on the dispersal hypothesis, appear to be more
plausible in many cases than those based on complex
hypotheses on the interaction between an organism
and its environment. The Caucasian ranges of R. pon-
ticum, A. nordmanianna and P. orientalis extend only
slightly east to the boundaries of the inferred Colchis
refugium. In contrast, the ranges of F. orientalis and
C. betulus go far beyond this area, to the eastern
Caucasus (Nakhutsrishvili, 1999). The forests of
Colchis (where all listed species are sympatric) gen-
erally have a higher annual rainfall than the forests
of eastern Georgia, where only beech and hornbeam
are found. One can obtain an impression that the last

two species are more resistant to the lack of humidity
than the others. This is not true. The areas in the
southern Black Sea coast west of Trabzon, where all
five species coexist, have lower annual rainfall and
colder winters than many areas of the eastern Cau-
casus. This also applies to variables more directly
reflecting summer drought, including the ratio of the
rainfall level to the sum of positive temperatures
throughout the year. The simplest explanation of the
observed distribution patterns is that all included
species survived during the LGM at the Black Sea
coast, but some failed to recolonize the central and
eastern Caucasus during the Holocene.

In general, the diversity of species increases rapidly
near the sources of post-glacial dispersal. The expan-
sion of forests in the Caucasus was directed from the
west to the east (Connor & Kvavadze, 2008), and
more competitive trees and shrubs might have pre-
vented the dispersal of the less competitive ones. This
is in line with the suggestion that the distribution of
plants typical for temperate rainforests, such as
rhododendrons, is largely limited by the presence of
competitors (Vetaas, 2002). Similarly, congeneric
species have a substantial impact on the realized
niche of D. mixta (Tarkhnishvili et al., 2010), and this
may explain why this species failed to recolonize the
areas east of the LGM refugium.

MIROC climatic grids better describe the current
distribution patterns than do CCSM grids. Although
the former model suggests the presence of isolated
refugia in Colchis, the latter expands the boundaries
of suitable climates west to the Bosporus with limited
interruptions (Fig. 4). Consequently, the CCSM model
fails to explain the presence of multiple species
endemic to the western Caucasus (Zazanashvili et al.,
2004), whereas the MIROC model explains this phe-
nomenon well. Molecular genetic data also support
the presence of isolated refugia in the western Cau-
casus. A number of Caucasian endemics have been
isolated from their relatives throughout the world
since the Pliocene, such as the Caucasian rhododen-
dron (Milne, 2004), Caucasian salamander (Weisrock
et al., 2001), Caucasian parsley frog (Garcia-Paris,
Buchholz & Parra-Olea, 2003) and Caucasian grouse
(Lucchini et al., 2001). All of these species have sister
taxa in distant parts of Europe, East Asia and North
America, but none in geographically close and poten-
tially suitable habitats in western Turkey. A broad

Figure 4. Spatial projection of the most transferable models on the Caucasus and western Asia under current climatic
conditions: left, uncorrected models; right, models corrected with the refugial distance. Dotted outlines indicate the areas
in which the presence of a species is overpredicted. An, Abies nordmanianna; Cb, Carpinus betulus; Cr, Chionomys roberti;
Cs, Castanea sativa; Dm, Darevskia mixta + D. clarkorum; Fo, Fagus orientalis; Hb, Helix buchi + H. goderdziana; Mc,
Mertensiella caucasica; Oo, Ommatotriton ophryticus; Pc, Pelodytes caucasicus; Po, Picea orientalis; Rp, Rhododendron
ponticum.
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Figure 4. Continued
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gap with unfavourable climate, which existed
between the Colchis and western Anatolia during the
LGM according to our MIROC-based model (Fig. 4),
explains the limited current distribution of the listed
species. Currently, a dry segment of the southern
Black Sea coast between Ordu and Sinop in Turkey,
where annual rainfall at the coast is below 700 mm
and forest vegetation is scarce (Fig. 1), hinders the
dispersal of the Caucasian endemics into north-
western Anatolia. However, if the CCSM-based model
is considered, we should expect a continuous distri-
bution of suitable habitats along the southern Black
Sea coast in LGM, and the absence of a number of
Caucasian endemics from the south-western Black
Sea coast becomes difficult to explain.

The reconstruction of the ancient suitable areas
provides us with improved insight into the spatial
position of glacial refugia, where forest-associated
biological communities could survive the glacial
period. Palynology suggests the presence of forests
during the LGM in limited parts of Europe and
western Asia (van Andel & Tzedakis, 1996). These
areas are concentrated in the Alps, the Carpathians
and along the south-eastern Black Sea coast. Beyond
these major refugia, pollen records (Arslanov et al.,
2007; Connor & Kvavadze, 2008) provide evidence of
uninterrupted forest cover at the north-eastern Black
Sea coast. However, there is a lack of pollen diagrams
which could either confirm or reject the occurrence of
forests in the rest of the modelled Colchis refugium
earlier than 10 ky BP (Connor & Kvavadze, 2008). Did
the forests actually occur in the areas predicted by the
palaeodistribution models? Genetic studies support a
pattern in line with the modelling results. Mertensiella
caucasica, which is found exclusively in forests or near

the timberline, has two evolutionary lineages isolated
from each other since pre-glacial time (Tarkhnishvili
et al., 2000, 2008). The eastern lineage is limited to the
eastern part of the western Caucasus, i.e. the area
outside the palynologically confirmed refugia. The
same applies to D. mixta (Murphy et al., 2000). This
means that the allopatric evolutionary lineages of the
salamander and rock lizard independently survived
the LGM in the south-western and eastern parts of the
western Caucasus, and that the east of the inferred
Colchis refugium had forests undetected so far in
pollen profiles. The genetic data suggest that the
actual distribution of forests in Colchis was more
fragmented than predicted by the palaeodistribution
models, but confirm that forests did exist in parts of
Colchis, where palynological evidence is still lacking.

Our inference of the broader distribution of forests
than that obtained from the available pollen records
is in accordance with the outcomes of phylogeographi-
cal and vegetation studies. Van Zeist & Bottema
(1991) postulated the presence of woodland during
the LGM in parts of the Near East where the current
forest distribution is limited (e.g. Levantine Moun-
tains), based on the analysis of the current distribu-
tion of plants and the synthesis of palaeoecological
data. The presence of multiple cryptic refugia in
Europe (Provan & Bennett, 2008) and the isolation of
evolutionary lineages of forest frogs and banded
newts from the southern Caspian area and the
Levant from their close relatives in Colchis since the
Tertiary period support the presence of multiple,
mesic, glacial refugia in western Asia (Veith et al.,
2003; Litvinchuk et al., 2005). Our study suggests
that, in all potential refugia, shown in Figure 4B,
suitable climates existed during the LGM for temper-

Figure 5. Southern coast of the Black Sea, with the predicted distribution of five endemic Caucasian animals,
incorporating the distance from the Last Glacial Maximum (LGM) refugia, according to Community Climate System
Model (CCSM) and Model for Interdisciplinary Research on Climate (MIROC) climate simulations. For abbreviations
see Figure 3. The broken line indicates the current westernmost limit of the distribution of the species. CCSM
simulation overpredicts the presence of all species at the south-western Black Sea coast, whereas MIROC simulation
does not.
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ate forest species, and this pattern provides a plau-
sible explanation for their current distributions.

A comparison of the current distribution of suitable
climates (Fig. 3) with the actual distribution of forests
in western Asia (Fig. 1) suggests that the area of the
potentially suitable climates for some tree species,
including beech and hornbeam, is wider than the
actual distribution. Even distribution models for
these two species, corrected by the post-glacial dis-
persal constraints (Fig. 3, right panel), predict their
presence in the western Tarsus and in the upper
reaches of the Tigris. The most likely explanation of
their absence in the indicated areas is deforestation
caused by human activity, especially in the areas in
which the human population has remained dense for
thousands of years. In particular, the inferred ref-
ugium in the upper reaches of the Tigris River, where
mesic forests are currently absent, is located in the
specific small region of the Fertile Crescent, which
has been suggested to be the cradle of agriculture
(Diamond, 1997; Abbo, Lev-Yadun & Gopher, 2010).
The human-caused deforestation in the Caucasus was
less extensive in the past than in the south of the
Middle East, although substantial transformation of
forests in the historical past has been suggested for
this area as well (Dolukhanov, 1966). The palynologi-
cal record of the mid-Holocene suggests that forests
existed in many potentially suitable, but nowadays
treeless, agricultural areas (Connor & Kvavadze,
2008). The current vegetation of areas such as the
upper reaches of the Tigris does not encourage veg-
etation scientists to hypothesize the presence of forest
refugia there. Conversely, spatial modelling suggests
the presence of a climate suitable for forest vegetation
in a number of currently treeless regions.

The results of the present study suggest that,
during the LGM, climates suitable for forest vegeta-
tion existed in six regions of western Asia: Colchis,
western Anatolia, western Taurus, the upper reaches
of the Tigris River, Levant and the southern Caspian
basin. Figure 4B roughly outlines the spatial posi-
tions of these forest refugia, which could help to
better understand the geographical distribution of
plants and animals throughout the Near and Middle
East. Further palaeobiological and phylogeographical
studies may verify the exact position of the predicted
refugia and add more details to the inferred pattern.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Figure S1. Maps of occurrence locations for 12 plants and animals, used as training locations for spatial
modelling. An, Abies nordmanianna; Cb, Carpinus betulus; Cr, Chionomys roberti; Cs, Castanea sativa; Dm,
Darevskia mixta + D. clarkorum; Fo, Fagus orientalis; Hb, Helix buchi + H. goderdziana; Mc, Mertensiella
caucasica; Oo, Ommatotriton ophryticus; Pc, Pelodytes caucasicus; Po, Picea orientalis; Rp, Rhododendron
ponticum.
Figure S2. Iteratively fitted and fixed-predictor models of suitable climates for four plant and two animal
species projected on Europe: A, iteratively fitted Mahalanobis distance models; B, iteratively fitted fuzzy
envelope (FE) models; C, fixed-predictor FE models; D, European range of a species or its ecological equivalent.
1, Abies nordmanianna; 2, Picea orientalis; 3, Castanea sativa; 4, Carpinus betulus; 5, Fagus orientalis; 6,
Rhododendron ponticum; 7, Helix buchi + H. goderdziana; 8, Mertensiella caucasica. See Table 1 for transfer-
ability estimates.
Table S1. Species occurrence data from the Caucasus Ecoregion.
Table S2. Data sources for testing model transferability (occurrence data for the target species or their
ecological equivalents from Europe).

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials
supplied by the authors. Any queries (other than missing material) should be directed to the corresponding
author for the article.
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