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Using a Maximum Entropy (Maxent) approach based on climate variables (~5 km resolution) we constructed 
predictive distribution models (PDM) of climate niches for eight encyrtid species (Anagyrus pseudococci 
(Girault), A. aligarhensis Agarwal and Alam, A. dactylopii (Howard), A. sp. nr. pseudococci, Syrphophagus 
aphidivorus (Mayr), Ageniaspis fuscicollis (Dalman), Discodes coccophagus (Ratzeburg), Cerapterocerus 
mirabilis Westwood (Hymenoptera: Chalcidoidea, Encyrtidae)) – all of them important in biological control as 
case studies for PDM. Models successfully predicted all of the known distribution for each species and identifi ed 
additional suitable areas where each species could be used as a biological control agent. The results show that 
all the modeled species are highly associated with temperature variables. The mean annual temperature, minimal 
temperature of coldest month and isothermality are the most important determinants for the distribution of 
encyrtids. These parameters (and all other bioclimatic variables in general) are not fully independent and may 
confound the interpretation of variable importance. Modeling results showed that the distribution range of A. sp. 
nr. pseudococci falls within the ranges of two other Anagyrus species, except the extreme southeast, which could 
be the bias caused by improper taxon sampling. Here, we suggest that A. sp.nr. pseudococci should be considered 
as a synonym of A. dactylopii (Howard). In this study we show relatively fast and simple ways of using PDM for 
encyrtid species in the biological control planning and solving of taxonomic problems. 

INTRODUCTION
Species of Encyrtidae (Hymenoptera: Chalcidoidea) are 
signifi cant as biological control agents because many 
species regulate important pests of natural or agricultural 
ecosystems. This group has particular importance in 
parts of the world where natural control is preferred over 
pesticides for ecological, fi nancial, or political reasons [1-
3]. Understanding a species’ response to environmental 
variability is paramount in the successful management of 
natural enemies [4-6], especially when natural enemies 
are being introduced to new locations for the purpose 
of biological control, making such knowledge a useful 
in the successful management of pests. Despite the 
acknowledged importance of encyrtids in pest control, 

no extensive data sets have been developed on their 
distribution and ecology. For many of the described 
species, only a few exact localities are available and their 
broader distributions are usually unknown. In such cases 
it is not possible to plan biological control programs 
effectively. It is a widely accepted principle in biological 
control that agents (natural enemies) should be collected 
from climates that match the environments they will be 
introduced into as closely as possible [6]. This is diffi cult 
to achieve in practice, as a ‘climate’ is a term denoting 
many interacting environmental factors, and because the 
collection locations of a biological control agent may not 
represent the optimal climatic conditions for that species. 
Therefore, it is important to develop models for use either 
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in selecting search areas where biological control agents 
of particular interest might be found, or release areas most 
suitable for their introduction.
One of the best known methods for potential distribution 
analysis in the framework described above is a climate 
matching system called CLIMEX [7]. CLIMEX is a 
simple way to construct a species’ actual and potential 
distribution by combining temperature and/or rainfall 
variables. However, this method has several important 
limitations. It neither allows for a rigorous statistical 
evaluation of derived models nor does it provide fl exibility 
(i.e., the ability to manipulate or incorporate many types 
of variables). In addition, it is not free. Because of these 
drawbacks, use of CLIMEX is rather limited. Another 
approach, discussed below, is predictive modeling of 
species distribution (PDM), which is a statistical detection 
of the pattern of species distribution based on the observed 
occurrence and associated environmental variables [8]. 
PDM is widely used for predicting a species’ potential 
distribution for several reasons [9]: PDM is increasingly 
acknowledged as an effective tool in biological control 
planning and in resolving systematic problems, as it aims to 
construct species-specifi c niche distribution maps [4,6,10-
15]. In theory, PDM is particularly useful when the species 
is widespread and the occurrence data are scarce; however, 
modern PDM methods are unfortunately decreasing in 
power as data becomes scarcer and more artifi cially based 
[16]. The results of PDM are roughly equally dependent 
on the algorithms used and on the quality of the input 
data (occurrence and/or absence, predictor variables), and 
these input data are hardly (if ever) perfect. Because of 
these imperfections the results of PDM vary signifi cantly 
between algorithms and studies [16-19].  
Despite the popularity of PDM, this method is not commonly 
used to model encyrtid species distribution ranges. In 
this study, we highlighted a fast and relatively easy way 
to construct PDM for encyrtid species with different 
biological and ecological characteristics. The derived 
models we created were used to develop distributional 
maps, potentially useful in the search/release of target 
species in new locations. We also examined whether the 
distribution models could help resolve systematic problems 
associated with the allopatrically distributed cryptic species, 
particularly species in the genus Anagyrus Howard, 1896 
(Hymenoptera: Chalcidoidea, Encyrtidae) (A. pseudococci 
(Girault, 1915), A. sp. nr. pseudococci and A. dactylopii 
(Howard, 1898)), which are the subject of ongoing debates 
about the validity of their systematic position [20-23]. 

OBJECTIVES AND  METHODS
Target species and occurrence data 
This study is a part of an ongoing project to develop a 
distributional database for encyrtid parasitoids and their 

hosts in the Trans-Caucasian countries, Turkey, and Iran. 
Insect distribution data were collected from different 
published sources from Georgia, Armenia, Azerbaijan, 
Turkey and Iran (1,22,24-33]. The data were mapped with 
the help of ArcGIS 9.3 (ESRI, Redlands, CA, USA) and 
Google Earth v.6.2.2 (Google Inc.) based on UTM grid 
system (Appendix 1).
For this study we choose eight species, for which we 
constructed PDM models (Table 1; Appendix 1). Four 
species were from same genus (Anagyrus pseudococci, 
A. dactylopii, A. sp. nr. pseudococci and A. aligarhensis 
Agarwal & Alam, 1959) – all parasitoids of pseudococcids. 
First three species are very close to each other with 
their morphological and biological features, which 
make troubles for correct taxonomic identifi cation and 
their successful use in biocontrol [23]. Another four 
parasitoid species were from different genera possessing 
different biological characteristics (the aphid parasitoid 
Syrphophagus aphidivorus Mayr, 1876, the lepidopteran 
parasitoid Ageniaspis fuscicollis (Dalman, 1820), 
Discodes coccophagus (Ratzeburg, 1848) (Hymenoptera: 
Chalcidoidea, Encyrtidae), a primary parasitoid of the scale 
Sphaerolecanium prunastri (Boyer De Fonscolombe, 1834) 
(Hemiptera: Coccoidea, Coccidae), and Cerapterocerus 
mirabilis Westwood, 1833 (Encyrtidae), a hyperparasitoid 
of parasitoids of several soft scales, such as S. prunastri, 
probably parasitizing D. coccophagus). A. fuscicollis and S. 
aphidivorus are widely distributed, almost cosmopolitan. 
D. coccophagus and C. mirabilis are important primary and 
secondary parasitoids of  S. prunastri [34,35]. All species are 
important biocontrol agents and comparativeComparative 
study of the distribution of these  species can provide new 
insights into their ecology.  
Environmental variables
Apart from collecting representative occurrence data for 
species needing to be modeled, another major challenge 
with PDM is the selection of environmental variables. Use 
of accessible environmental variables is limited, and we do 
not know whether any particular variable or combination of 
variables determines species’ distribution. However, based 
on the assumption that species distribution can be correlated 
with available variables, we used those that are available 
without strong preliminary inspection. Besides this, 
sometimes we need to defi ne the probabilistic ecological 
niche dimension [36] within the framework of one or more 
classes of variables. This is the case when no preliminary 
assumption of the variable importance is needed. Rather, 
we seek all the potential areas where suitable combinations 
of analyzed variables (or the ecological niche – as defi ned 
by those variables) are met for any particular species [9,37]. 
The most intuitive and frequently used ecological variable 
class in PDM is climatic variables (i.e., temperature and 
rainfall combinations and derivatives), based on which 
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potential climatic niches are constructed. In recent years 
such climate databases have been developed for the whole 
world at various resolutions [38]. These climate databases 
contain 19 bioclimatic variables derived from monthly 
temperature and precipitation values, and are used to 
generate more meaningful and easily interpreted variables, 
such are annual and seasonal trends in temperature or 
precipitation and also possible limiting climate variables 
(e.g., temperature in coldest month, etc.; Table 1). To 
build potential PDMs (based on climate niche) for each 
target species, we used 19 bioclimatic variables with a 
spatial resolution of ~5 km. Detailed descriptions of each 
bioclimatic variable can be found in the data base website 
http://worldclim.org. 
Selection of modeling techniques 
Selecting the most suitable modeling method is not 
straightforward and is heavily dependent on the kind 
of data used, its quality, and the researcher’s experience 
[39]. Normally, two classes of modeling algorithms are 
considered in constructing PDMs based on the input 
occurrence data: (1) only presence-based algorithms and 
(2) presence/absence-based algorithms. Theoretically, 
presence/absence methods are preferred in constructing 
PDMs because the input data provides information about 
unacceptable or nearly unacceptable conditions for the 
species under consideration. However, uncertainties 
concerning the validity of absence data (such as possible 
confounding biotic interactions which generally are not 
included in PDMs) can be important sources for uncontrolled 
bias in constructing PDMs. In contrast, models based 
solely on presence data are free from such uncertainties, 
although most such algorithms are less powerful [16]. 
Since only occurrence data are available for most species, 
presence-only modeling methods are especially important 
and popular. Many presence-only methods are currently 
available, but not all of them perform well consistently. 
For example, one of the well-known methods is BIOCLIM 
[40], which has gained popularity in recent years because 
of its simplicity. However, BIOCLIM has been shown to 
be not very powerful and prone to biases [41]. The most 
complicated methods are machine learning methods 
such as the entropy maximization approach – commonly 
known as Maxent [42]. The diffi culty associated with 
such sophisticated methods is their “black box” nature, 
which means that the interpretation of the outputs is not 
straightforward [16]. 
In this study we used Maxent to model distributions of 
encyrtid species because of several advantages the method 
had: (1) there is a free and easy-to-use software package 
(MAXENT v.3.( http://www.cs.princeton.edu/~schapire/
maxent/)) available; (2) it is one of the most frequently 
used and tested modeling methods (result of Google scholar 
search at 05.2013); (3) Maxent has been proven to be a 

robust method against variable multi-colinearity (however, 
one must be careful in the interpretation of the outputs 
if the variables are highly correlated, and some authors 
suggest sieving such variables before calculation [43] and 
(4) Maxent uses a “hinge” function by which it can deal 
with piecewise linear responses of explanatory variables 
[44]. In general, Maxent has been shown to be a candidate 
for the best performing modeling algorithm available today 
[41,45-48]. 
Here, we briefl y describe the conceptual characteristics of 
Maxent; a full description with comprehensive explanation 
can be found elsewhere [42,49]. Maxent is an algorithm 
that uses a comparison between presence and available 
background localities (randomly sampled pseudo-absence 
points) to make predictions of probability distribution for 
target species. The Maxent algorithm is designed for the 
incomplete distributional data in order to produce probability 
distribution across a study area; however, Maxent assumes 
that sampling localities contain unbiased information, 
which can otherwise become a source of uncontrolled 
biases in the fi nal model [49]. Maxent maximally uses all 
the information included in presence localities (making 
no additional assumptions unsupported by the presence 
data) and fi nds a probability distribution maximally close 
to uniform. This is achieved by minimizing entropy 
between the probability distribution of presence localities 
and randomly selected background points [16,50]. Thus, 
Maxent is most suitable for modeling the distribution of 
species with few (around 10) presence points [51]. Maxent 
is able to handle continuous and categorical variables and 
it is also able to analyze complex functional relationships 
between predictor and response (linear, quadratic, threshold 
and piecewise (hinge) forms). All this makes Maxent one 
of the most powerful and intuitive modeling methods in 
determining niche conception [44,52].
In our study, the occurrence data used for model building 
for each of our species were well scattered (not clumped) 
within the respective distributional area, which makes the 
assumption of representativeness highly probabilistic. The 
number of available presence points was not less than 25 
per species, excluding A. dactylopii, which had only 12 
localities (Table 2). 
Occurrence data and variable layers (ASCII raster formats) 
were imported in software MAXENT [49]. For model 
building, default options were used except the random 
background sampling limitations, which were set up to one 
pixel size radius for each occurrence such that no selected 
random localities could occur more closely. Five hundred 
iterations were performed with 20% of occurrences used 
as test data. Models were computed with the “logistic” 
option, which returns the map of continuous probabilities 
of prediction (ranging between 0 and 1) with a “hinge” 
option. For visualization purpose, we applied the threshold 



36

to Maxent models at a value above which 95% of training 
localities occurred.
Model validation
Although there are several statistical measures to evaluate 
the performance of the model, no unbiased statistical 
evaluation is possible [53]. The best and most frequently 
used statistical means of model performance is considered 
the threshold independent discrimination measure - AUC 
(Area Under the ROC [Receiver Operating Characteristics] 
Curve) [54,55,56,57]. When AUC = 0.5, then model 
discriminatory ability is no better than random, whereas 
AUC values close to 1 means perfect performance of the 
model. In our case, we considered a model’s performance 
to be good if its AUC values was close to 0.9 (or 
AUC~0.9). With the pure statistics, which shows only 
mechanistic performance of the algorithm, we used expert 
knowledge (in the term “expert knowledge” we consider 
all the scientifi c information about the distribution of target 
species collectively) to additionally evaluate the quality 
of produced models. In regard to statistical evaluations, 
expert knowledge of a specifi c taxon under study can be 
very important in model building and evaluation [53,58]. 
Knowledge of a species’ distribution pattern and its 
physiological and ecological requirements can contribute 
greatly in assessment, and in the future improvement of 
model performance. For this additional assessment we 
mapped the known distribution of each species by country 
(Fig. 1), which by itself is too rough to talk about a species’ 
exact distribution. However, even such a rough map can still 
be used in model validation. In particular, we calculated the 
index for model performance - IMP as follows: IMP=CnP/
(CN-CM) where CN denotes the total number of countries 
where the species is known to exist, CM is the number of 
countries where model training samples are collected and 
CnP is the  number of countries from where the species is 
known to occur but was not predicted by the model (See 
Table 1). The IMP index varies between 0 and 1. If IMP 
= 0 then the model prediction optimal, whereas an IMP 
approaching 1 indicates that the model prediction is not as 
good. The IMP index is not defi ned when CN equals CM, 
and hence can only be used when the number of countries 
with the presence points used in model training is less than 
the actual known distribution. 

RESULTS ANA ANALYSIS
Modeling results
In general, Maxent algorithm had very good performance, 
as the average AUC value (for test data) did not fall below 
0.95 and had a low standard deviation (Table 2). Our study 
did not intend to analyze the details of the importance or 
response of each species to each variable; however, it should 
be noted that all the modeled species are highly associated 
with temperature variables (Table 1). Specifi cally, mean 

annual temperature, minimal temperature of coldest month 
and isothermality are the most important determinants for 
the distribution of encyrtids. Clearly, these parameters 
(and all other bioclimatic variables in general) are not 
fully independent and may confound the interpretation of 
variable importance. 
The IMP index showed very good results as well (i.e., 
correctly predicted a great deal of the known distribution 
for each species based on a relatively small sample) (Table 
2). Hence, the derived models for each species are highly 
acceptable based on both evaluation methods used.
Informing biological control planning
The Maxent algorithm successfully predicted the species’ 
actual distribution areas based on a small subset of 
occurrence localities, and gave important range extensions 
for several of them (Fig. 1). This in turn suggests that 
the area where such species is currently unknown can 
either be searched for a target species or subjected to 
biological control agents. One of the important questions 
during biological control planning is whether a biological 
control agent will establish and hence be effective against 
a particular pest. The bioclimate models are largely able 
to answer this question. As climate is the most important 
driver of species distribution [59], predictive models 
based on climate data should be at least standard starting 
procedure for biological control planning. 
Despite the limited occurrence data used to build models 
for A. fuscicollis, D. coccophagus, and A. aligarhensis, the 
resulting models correctly predicted all countries where 
these species have so far been recorded (Table 2). Only 
a slight gap was detected in the predicted distribution of 
C. mirabilis where one country (South Africa) was not 
covered by the model (Fig. 1). However, this species has 
a Holarctic distribution pattern as well as its host species 
D. coccophagus [34,35] and the records from South Africa 
[60] (which is far outside the general distribution area of C. 
mirabilis) are doubtful and need reexamination. It should 
also be noted that Noyes [2] reported a possible bias in 
specimen identifi cation from these regions.
Anagyrus aligarhensis is an important biological control 
agent that parasitizes pests such as Nipaecoccus viridis 
(Newstead), Pseudococcus comstocki (Kuwana), Trion-
ymus multivorus (Kiritchenko) (Hemiptera: Coccoidea, 
Pseudococcidae) and other mealybugs [2].  The species 
is currently known to occur in 25 countries (Fig.).  Our 
modeling gave quite trustworthy data for this species: all 
countries where A. aligarhensis has been previously recorded 
were covered by the model, and it predicted 44 additional 
countries for future introduction (both the AUC and IMP 
statistics performed well) (Table 2). Australia, New Zealand, 
and numerous African and South American countries can 
either be considered as not yet known distributional areas or 
as potential areas of introduction for pest control.
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Similar results have been derived for two other species (A. 
sp. nr. pseudococci and A. dactylopii). Maxent provided 
detailed distribution for both species within their known 
ranges and predicted susceptible areas in other regions as 
well (Fig. 1). While the models can be useful in biological 
control, it is important to understand the systematics of 
this species (including A. pseudococci) as incorrectly 
identifying the species can lead to an uncontrolled bias in 
the distribution modeling. 
The modeling results of the two remaining species were less 
perfect. Specifi cally, Maxent was not able to detect 6 and 7 
countries (with known distribution) for S. aphidivorus and 
A. pseudococci, respectively (these two species also have 
the largest IMP index) (Table 2). Since the derived models 
are still informative and useful for biological control 
purposes, it will be important to determine the causes for the 
incongruence between the models and known distribution. 
The data for the distribution of S. aphidivorus in Mongolia, 
Sudan, Peru, and Cuba needs checking, as these countries 
have very different climates from other areas where this 
species occurs, suggesting possible identifi cation mistakes. 
Although modeling shows lower climatic fi t with previous 
records from Brazil, Kenya, India and Mexico, these 
records may also refl ect biases in species identifi cation. 
There are many data sets where parasitoid species were 
misidentifi ed by various authors (2; Trjapitzin 1989). 
Guerrieri and Pellizzari [20] also mention the possible 
misidentifi cation of A. pseudococci, used so widely in 
biological control programs worldwide, and suggest that in 
some cases the species identifi ed as A. nr. pseudococci may 
in fact be A. dactylopii. We would suggest making a full 
revision of the distribution of these species before using 
them as biological control agents.
Possible solution for the systematics of the A. pseudococci 
species group
The systematics of the A. pseudococci species group is 
still controversial [22,23,61,62]. The morphological and 
molecular characteristics of A. pseudococci, A. dactylopii 
and A. sp.nr. pseudococci were discussed by Triapitsyn et. 
al. [23], where molecular data has shown that A. dactylopii 
and A. sp.nr. pseudococci are more closely related than 
A. pseudococci with A. sp.nr. pseudococci, while the 
morphological characteristics (coloration of fi rst funicular 
segment, frontovertex width) are the same. This opinion 
was later supported by Karamaouna et al. [21].  
Distributional data about A. dactylopii  indicates that the 
species’ occurs in the far south, east and southeastern 
Asia, Australia and Asia Minor. Meanwhile, a doubtful 
identifi cation was recorded in Peru [2]. This destributional 
data is based on the work of Noyes and Hayat [22], 
however, information about Peru was not foundin this 
work. The distribution area of A. pseudococci is wider and 
includes all of Africa, all of the Americas and almost all 

of Eurasia wheareas  A. sp. nr. pseudococci is known from 
USA and few European and South-West Asian countries. 
Presumably, A. dactylopii is an Oceania-Asian “species”, 
while A. pseudococci can be described as Mediterranean. 
Noyes and Hayat [22] have previously discussed different 
races of these close related forms, such as Mediterranean, 
Asiatic, African, and Middle Eastern. Host species of both 
forms are almost the same, and the suggestion that there 
are some specifi c differences in their host specifi city is not 
documented. The latest data on A. sp. nr. pseudococci shows 
that this “species” has a wider range of hosts [61] than 
previously thought [23]. The suspicion that A. dactylopii  
and A. pseudococci are conspecifi c is discussed in Noyes and 
Hayat [22]. Despite the fact that experiments to interbreed 
A. pseudococci and A. dactylopii populations have failed 
[22], this cannot be considered proof that they are different 
species. As Noyes and Hayat [22] state, the holotype of 
A. dactylopii consists only of a foreleg, making further 
comparison of new material with the holotype diffi cult. One 
of us (G. Japoshvili) has been working on this taxon for a 
long time and has had the chance to examine material from 
different parts of the world and from different museums; 
he has come to the conclusion that A. sp.nr. pseudococci 
is morphologically indistinguishable from A. dactylopii 
(unpublished material). Triapitsyn et al. [23] also noted the 
closeness of these “species”, and pro posed that they could 
be clones of the same species, although the authors could not 
test this experimentally. It seems very probable that all these 
three “species” represent a monophyletic group of lineages 
(Triapitsyn et al. 2007; 21).
Our modeling results showed that the distribution of A. 
sp. nr. pseudococci falls in the distribution of two other 
“species” except in the extreme southeast Asia, which could 
also be a bias caused by improper taxon sampling. Based 
on all these observations we suggest A. sp. nr. pseudococci 
to be considered as a synonym of A. dactylopii, however 
further studies are needed to confi rm this proposal. 

CONCLUSION
Distribution data for encyrtids (many of them of high 
economic importance) are incomplete, which makes it 
diffi cult to properly and quickly plan biological control 
projects. Determining the actual and potential geographic 
distribution of certain species can lead to improved success 
when introducing natural enemies, as well as better 
predictions of the risk of accidental pest establishment 
[6,63]. Here, we showed that PDM, using freely available 
software and environmental data, can be successfully used 
in studies of the distribution of encyrtid species. Apart 
from using PDM in solving taxonomic problems, most 
importantly, areas potentially suitable for the effective 
use of these species as biological control agents can be 
predicted. The further improvement of the predictive ability 



38

of the algorithm can be achieved either by incorporating 
other environmental predictors or increasing occurrence 
data of the target species being modeled. 
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ПРОГНОЗНОЕ МОДЕЛИРОВАНИЕ КЛИМАТА ПРИ РАСПРЕДЕЛЕНИИ И СИСТЕМАТИКЕ 
ПОЛЕЗНЫХ ЭНЦИРТИД (HYMENOPTERA: CHALCIDOIDEA: ENCYRTIDAE)

Г.О. Джапошвили, М.М. Фаллахзадех, Л.ДЖ. Мумладзе

Использование максимальной энтропии (MaxEnt) - подход, основанный на климатической переменчивости (с 
разрешением ~ 5 км). Были построены модели прогнозирования распределения (ДПМ) климатических ниш для 
восьми видов энциртид (Anagyrus pseudococci, А. aligarhensis, А. dactylopii, А.sp.nr. pseudococci, Syrphophagus 
aphidivorus, Ageniaspis fuscicollis, Discodes coccophagus, Cerapterocerus mirabilis (Hymenoptera: Chalcidoidea). 
Все они имеют значение в биологическом контроле. В нашем случае используются как модельные виды для 
исследования по PDM. Модели успешно предсказали все известные распределения для каждого вида и предложили 
дополнительные территории их возможного распространения, где каждый вид может быть использован в 
качестве агента биологической борьбы. Результаты показали, что все моделированные виды высоко привязаны к 
температурной высокой связности и температурной вариабельности. Средняя годовая температура, минимальная 
температура самого холодного месяца и изотермичность являются наиболее важными факторами, определяющими 
распределение энциртид. Эти параметры (и вся другая биоклиматическая изменчивость в целом) не являются 
полностью независимыми и могут запутать интерпретацию переменных значений. Результаты моделирования 
показали, что диапазон распределения А. sp. nr. pseudococci попадает в пределы двух других видов Anagyrus, за 
исключением крайнего юго-востока. Такой показатель может быть вызван неправильным определением вида. 
Предполагаем, что А. sp.nr. pseudococci следует рассматривать как синоним А. dactylopii. Предлагаем относительно 
быстрый и простой способ планирования биологического контроля и решения таксономических проблем для 
видов энциртид с использованием PDM.
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Table 1. Bioclimatic variables used in the Maxent modeling.
BIO1  - Annual Mean Temperature

BIO2  - Mean Diurnal Range (Mean of monthly (max temp - min temp))

BIO3  - Isothermality (BIO2/BIO7) (* 100)

BIO4  - Temperature Seasonality (standard deviation *100)

BIO5  - Max Temperature of Warmest Month

BIO6  - Min Temperature of Coldest Month

BIO7  - Temperature Annual Range (BIO5-BIO6)

BIO8  - Mean Temperature of Wettest Quarter

BIO9  - Mean Temperature of Driest Quarter

BIO10  - Mean Temperature of Warmest Quarter

BIO11  - Mean Temperature of Coldest Quarter

BIO12  - Annual Precipitation

BIO13  - Precipitation of Wettest Month

BIO14  - Precipitation of Driest Month

BIO15  - Precipitation Seasonality (Coeffi cient of Variation)

BIO16  - Precipitation of Wettest Quarter

BIO17  - Precipitation of Driest Quarter

BIO18  - Precipitation of Warmest Quarter

BIO19  - Precipitation of Coldest Quarter

Table 2. Indexes of model performance (AUC and IMP) are presented. CN - Number of countries with known distribution; 
CM - Number of countries used in PDM; OD – Occurrence data used in model building; CnP - Number of countries 
with known distribution but not predicted by the Maxent; CaP - Number of additionally predicted countries; AUC – Area 
Under the (ROC) Curve with standard deviation indicated in brackets; IMP – Index for Model Performance (see main 
text for more details). 

Species CN CM OD CnP CaP AUC IMP
Ageniaspis fuscicollis 41 8 30 0 23 0.99(0.003) 0.00
Discodes Coccophagus 25 8 27 0 24 0.97(0.016) 0.00
Cerapterocerus mirabilis 31 9 25 1 30 0.99(0.002) 0.05
Anagyrus aligarhensis 25 13 41 0 44 0.87(0.049) 0.00
Anagyrus sp.nr.pseudococci 6 5 12 0 46 0.94(0.038) 0.00
Anagyrus dactylopii 14 3 26 1 61 0.98(0.005) 0.09
Syrphophagus aphidivorus 44 6 38 6 32 0.98(0.007) 0.16
Anagyrus pseudococci 44 12 37 7 37 0.99(0.003) 0.19
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Fig. Predicted binary distribution maps for Encyrtidae species. Gridded area denotes known presence of target species 
in respective countries, while the black color indicates predicted distribution after applying the threshold (see main text 
for more details). 


