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Abstract. The a priori boundedness principle is proved for the Dirichlet boundary value
problems for strongly singular higher-order nonlinear functional-differential equations. Sev-
eral sufficient conditions of solvability of the Dirichlet problem under consideration are
derived from the a priori boundedness principle. The proof of the a priori boundedness
principle is based on the Agarwal-Kiguradze type theorems, which guarantee the existence
of the Fredholm property for strongly singular higher-order linear differential equations with
argument deviations under the two-point conjugate and right-focal boundary conditions.
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1. STATEMENT OF THE MAIN RESULTS

1.1. Statement of the problem and a survey of the literature. Consider
the functional differential equation

(1.1) ul™ (t) = F(u)(t)
with the two-point boundary conditions

(1.2) Wi Va)=0 (i=1,...,m), v VB =0(i=1,...,n—m).
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Here n > 2, m is the integer part of n/2, —o0o < a < b < +00, and the operator F is
acting from the set of (m — 1)-th time continuously differentiable on ]a, b[ functions
to the set Lioc(Ja,b[). By u=1(a) (uU~1) (b)) we denote the right (the left) limit of
the function »9=1) at the point a(b).

The problem is singular in the sense that for an arbitrary = the right-hand side of
equation (1.41) may have nonintegrable singularities at the points a and b.

Throughout the paper we use the following notation:

> RT =1[0,4oc[;

> [2]4 the positive part of a number x, that is [z] = F(x + |2);

> Lioc(]a, b])(Lioc(Ja, b])) is the space of functions y: Ja,b] — R, which are inte-

grable on [a + ,b — €] for arbitrarily small & > 0;

> La,g(Ja, b[)(L2 5(]a,b])) is the space of integrable (square integrable) with the

weight (¢ — a)®(b—t)° functions y: ]a,b] — R, with the norm

b
iz, = / (s — ) (b — )°|y(s)] ds

ey (5= )b — 555 ds)m);

> L([a‘v b]) = LO,O(]a‘v bD7 L2([@7 b]) = L(%.O(]aa b[),

> M(Ja,b]) is the set of measurable functions 7: ]a,b[ — ]a, b[;

> fiﬂ(]a,b[)@i(]a,b]) is the Banach space of y € Lioc(]a, b[)(Lioc(]a, b])) func-
tions, with the norm

Iz, = max{[/a“’(s_a)a</:y(€)d€>2d8]m: verc )
+max{ [/f,b(b_8)ﬁ</:y(5)d5)2d8]1/2r a;b <i< b} < +oo.

> Ly (Ja, b[) is the Banach space of y € Lioc(]a, b]) functions, with the norm

/

oz, =suw { (s == 0" (€0 @)]ag: a< s <o <) <vox,

> O (Ja, b)), (CR=Y(Ja, b)) is the space of functions y: Ja,b] — R which are
continuous (absolutely continuous) together with /,%”, ..., y™ Y on [a4e, b—¢]
for arbitrarily small £ > 0.

> C" 1™ (Ja, b)) is the space of functions y € CI'~'(Ja, b]). such that

loc

b
(1.3) / 120m) (5)[2 ds < 400,
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> C7""!(]a,b]) is the Banach space of functions y € C7"*(]a, b[), such that

loc
: 201 (1) ,
(14) hmtSEE(t—a)T""l/Q < +00 (z:l,...,m),
(i=1) (¢
lim sup = ®)] <400 (i=1,...,n—m),

o (b — ym—it1/2

with the norm:

D¢
[ 1—Zbup{|x ®]. a<t<b},

where a;(t) = (t — a)™ " TV2(b — t)ym—i+1/2,
> C""!(]a, b]) is the Banach space of functions y € C’I"(?C (Ja, b]), such that con-
ditions (1.3) and (1.4) hold, with the norm:

(=1 (¢
]l &g —ZSUP{|QC )|: a<t<b (/ |20 (s) |2d3)

> Dy (Ja,b] x R") is the set of such functions d: Ja,b[ x R™ — L,(]a,b]) that
d(t,-): RT — RT is nondecreasing for every ¢ € |a,b[, and &(-, 0) € Ly (]a,b])
for any o € RT.

> Dap_om—22m—2(Ja,b[ x R") is the set of such functions ¢: Ja,b[ x RT —
z%n_2m_2~2m_2(]a,b[) that §(¢,-): RT — RT is nondecreasing for every t €
la, b, and 6(-, 0) € Z%n_2m_272m_2(]a,b[) for any o € R,

> A solution of problem (1.1), (1.2) is sought in the space ™1™ (]a, b]).

1/2

The singular ordinary differential and functional-differential equations have been
studied with sufficient completeness under different boundary conditions, see for

example (1], [3], [4], [5], [6], [7], [8], [9], [11], [12], [13], [14], [16], [21], [22], [23],
[24], [25] and the references cited therein. But the equation (1.1), even under the
boundary condition (1.2), have not been studied in the case when the operator F’
has the form

m

(1.5) F2)(t) =Y pi(8)aV= 1 (7;(0) + f(2)(8),

Jj=1

where the singularity of the functions p;: Lioc([a,b]) is such that the inequalities
b
(1.6) [ =@ 1= 1 () ds < o,
ab . .
/ (5= )" (b — )™ |p;(s)| ds < 400 (j = 2.....m),
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are not fulfilled (in this case we say that the linear part of the operator F' is
strongly singular), the operator f is continuously acting from C7"~!(]a,b[) to

L~

7 (Ja, b)), and the inclusion

2
2n—2m—2,2m—2

(L.7) sup{f(@)(1): [l p1 < 0} € L3, _am22m—2(a.b])

holds. The first step in studying the differential equations with strong singularities
was made by R.P. Agarwal and I. Kiguradze in the article [2], where the linear ordi-
nary differential equations under conditions (1.2), in the case when the functions p;
have strong singularities at the points a and b, are studied. Also the ordinary differ-
ential equations with strong singularities under two-point boundary conditions are
studied in the articles of I. Kiguradze [10], [19], and N. Partsvania [20]. In the papers
[18], [15] these results are generalized to linear differential equations with deviating
arguments, i.e., the Agarwal-Kiguradze type theorems, which guarantee Fredholm’s
property for linear differential equations with deviating arguments are proved.

In this paper, on the bases of articles [2] and [17] we prove the a priori boundedness
principle for the problem (1.1), (1.2) in the case when the operator has the form (1.5).

Now we introduce some results from the articles [18], [15], which we need for this
work. Consider the equation

(1.8) ul(t) =Y pi(t)u D (7;(t) + q(t) fora<t<b
j=1
For problem (1.8), (1.2) we assume, that when n = 2m, then the conditions

(19) pj € Lloc(]a7b[) (j =1,... ’m)

are fulfilled and when n = 2m + 1, along with (1.9), the condition

t
(1.10) lim sup ‘(b — t)2"”_1/ pi(s)ds| < 400 (tl _at b)
t—b t1 2
holds.

By hj: Ja,b] x ]a,b[ — Ry and fj: [a,b] x M(]a,b]) — Cloc(Ja.b[ x |a,b]) (j =
1,...,m) we denote the functions and operators, respectively, defined by the equal-
ities

t
(1.11) t.s) = | [ (€= a1 (O] de|.
t
it =| [(e=armp©ae] G=2..m),
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and

1/2
(112)  fie,my)(t,8) =

t 75 (§) ]
/ (s—a>”‘2m|pj(£)|‘ /£ (& — > dg de‘.

Let k =2k + 1 (k1 € N), then we denote

" 1 for £ <0,
S l1-3-5-...-k fork>1.

Now we can introduce the main theorem of the paper [18].

Theorem 1.1. Let there exist numbers t* € ]a, b, ly; > 0, ly; > 0, and yg; > 0
(k=0,1;j=1,...,m) such that along with

m . . . —
om — 7)22m—j+1] . 92m—j—=1(px _ q\70i .
(1.13) BOEE:( (2m ”J) N ‘ (” a) ’”09 )
= 2m —1NE2m =2+ 1! (2m — 25 — DHI(2m — 3)!1, /270,
1
< —
27
“ (2m — 5)22m =i+ 22m=Ji=1(p — t*)70i [} ;
(1.14) BIEZ( I -y ; I HJ )
= 2m —1NE2m -2+ !N (2m — 25 — DN(2m — 3)!1, /271,
1
< —
27

the conditions

(1.15) (t =)™ Ihy(ts) <log,  (t=a)" 2 fi(a,m) (¢, 5) <log
fora <t <s<t*, and

(L16) (bt Ihy(ts) by (b T f(b ) (Es) < D

for t* < s <t < b hold. Then problem (1.8), (1.2) is uniquely solvable in the space
=t (Ja, b))

Also, in [15] the following theorem is proved:
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Theorem 1.2. Let all the conditions of Theorem 1.1 be satisfied. Then the
unique solution u of problem (1.8), (1.2) for every q € L3, 9,9 9m_2(]a, b[) admits
the estimate

(117) Ju®™llzs < rllallzs.

—2m—2,2m—2 ’
with

2m(14+b—a)(2n—2m—1) . Comel
vp — 2max{By, B1})(2m — )V’ Vom =1, Vom41 = 5
( {Bo,

and thus the constant r > 0 depends only on the numbers ly;, l_kj, v (k=1,2;
j=1,...,m), and a, b, t*, n.

Remark 1.1. Under the conditions of Theorem 1.2, for every
q e L%n—zm—Q,zm—z(]aabD
the unique solution v of problem (1.8), (1.2) admits the estimate
(m)|| ~ -
(1.18) [N gm—r <rallalzs, , .

with

m 2m—j+1/2
n=|1 . , -
' ( i ; (m —j)(2m —2j +1)1/2(b — a)m‘”m)
2™"(1+b—a)(2n—2m —1)
(vn — 2max{ By, B1})(2m — 1)!II’

1.2. Theorems on solvability of problem (1.1), (1.2).
Define an operator P: C{""!(]a,b]) x C7""!(Ja,b]) = Lioc(Ja,b[) by the equality

(1.19) Plag)(t) =3 5y @) (0= (r5(1) fora<t<b

=1

where p;: C7""'(Ja,b]) — Lioc(]a,b]), and 7; € M(]a,b[). Also, for any v > 0 define
a set A, by the relation

(1.20) 4, = {o e 6 (Ja,bD: flallgpor <7k
For formulating the a priori boundedness principle we have to introduce
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Definition 1.1. Let 9 and 7 be positive numbers. We say that the contin-
uous operator P: C7"(Ja,b]) x C7"*(Ja,b]) — Ln(Ja,b]) is v, consistent with
boundary condition (1.2) if:

(i) For any z € A,, and almost all ¢ € ]a, b[ the inequality

(1.21) S 12 @) 29 (75 (0)] < 8t (2] o) ] e
j=1

holds, where 6 € D, (Ja,b[ x RT).
(ii) For any x € Ay, and g € Z%n_Qm_Mm_Q(]a, b[) the equation
(1.22) y™(E) = pi@) )y (r3 (1) + q(t)

Jj=1

under boundary conditions (1.2) has a unique solution y in the space
C"~tm(]a,b]) and

(1.23) lyllgrm— <~ldallzs

2m—2,2m—2

Definition 1.2. We say that the operator P is v consistent with boundary con-
dition (1.2), if the operator P is 7,7 consistent with boundary condition (1.2) for
any o > 0.

In the sequel it will always be assumed that the operator Fj, defined by equality
Fy(x)(t) = ‘F(x)(t) =Y pi@)(®)a D (7;(0)(1)
7j=1

is continuously acting from C}"~*(Ja, b]) to Liz 2(]a, b[), and

(1.24) ﬁp(tv 0) = sup{Fy(z)(t): ||4U||c;"—1 <o} e zgn—2m—2,2m—2(]a:b[)

for each ¢ € [0, 400].
Then the following theorem is valid
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Theorem 1.3. Let the operator P be 7,7y consistent with boundary condition
(1.2), and let there exist a positive number gy < 7y, such that

(1.25) 1B, (-, min{200,70}) 1 72 <L

—2m-22m-z
Let, moreover, for any A €]0,1[ an arbitrary solution x € A, of the equation
(1.26) 2™ (t) = (1 — \)P(z,z)(t) + \F()(t)
under the conditions (1.2) admit the estimate
(127 I2lgp-: < eo

Then problem (1.1), (1.2) is solvable in the space C"~ ™ (]a, b]).

Theorem 1.3 with gy = ¢ immediately yields

Corollary 1.1. Let the operator P be vy, consistent with boundary condition
(1.2), and

(1.28) |F(2)(t) — ij(x)(t)w(j‘” (@) )] < 0t ||zl gm—)

for x € A, and almost all t € ]a,b], and

(1.29) ImC30)llzs, 0 sps S 5
where n € Day—9m—2,2m—2(]a,b] x RY). Then problem (1.1), (1.2) is solvable in the
space C" =1 (Ja, b]).

Corollary 1.2. Let the operator P be 7y consistent with boundary condition (1.2),
let inequality (1.28) hold for x € C]"~*(Ja, b]) and almost all t € ]a,b], where n(-, 0) €
L3, _9m_29m—2(]a,b]) for any o € RT, and

==

_ 1
(1.30) timsup —n(, o)z, <

o0— 400 m—2,2m—2

Then problem (1.1), (1.2) is solvable in the space C™~ ™ (Ja, b]).
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