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Abstract— We use the method of a priori estimates to obtain effective sufficient solvabil-
ity conditions for systems of nonlinear functional-differential equations with nonlinear bound-
ary conditions of periodic type. The results are in a sense optimal.
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1. STATEMENT OF THE MAIN RESULTS

Let n > 2 be a positive integer, let w > 0 and I = [0,w], and let F' : C(I;R") — L(I;R")
and ¢ : C([; R") — R" be continuous operators. Consider the system of functional-differential

equations
d () = Flu)(t) (1.1)

with the nonlinear boundary condition

u(0) — u(w) = ((u). (1.2)

We assume that F' = (f;)";, where the f;: C(I; R") — L(I; R) are continuous operators.

A solution of Eq. (1.1) is defined as an absolutely continuous vector function v : I — R™ that
satisfies Eq. (1.1) almost everywhere on I, and a solution of problem (1.1), (1.2) is defined as

a solution of Eq. (1.1) satisfying condition (1.2).
In the present paper, we prove existence theorems for problem (1.1), (1.2) on the basis of

theorems of Conti-Opial type obtained in [1] and the method suggested in [2, 3| for the analysis
of periodic problems for systems of linear functional-differential equations.

In the present paper, we use the following notation: N is the set of positive integers; R =
| — 00, 4+00[; Ry = [0,+00[; R™ is the space of column n-vectors = (z;)"; with components
x; € R (i=1,...,n) equipped with the norm

Izl =) lwil;  RU={(x)j, €R": z; € Ry, i=1,...,n};
i=1

if z,y € R", then x <y & y—x € RY; if v = (x;)l-, € R", then |z| = (|a;])l-y; C(I; R™)
is the space of continuous vector functions z : I — R™ with the norm ||z|c = max.c/{||z(¢)|};
ifrx = (x;)", € C(I; R"), then |z|c = (||z:illc)i,; L(I; R™) is the space of integrable vector functions
x: I — R" with the norm |z||, = [; ||lz(s)| ds.

Definition 1.1. We say that a linear operator
¢: C(I; R™) — L(I; R"), m,n € N,
is nonnegative (respectively, nonpositive) if
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U(x)(t) > 0 (respectively, £(z)(t) <0), t € I, for every function z € C(I; R}*). A linear operator
is said to be monotone if it is either nonnegative or nonpositive.

Definition 1.2. We say that a function 6 : I x R, — R’} belongs to the set M if the function
d(t,-) : Ry — R’} is nondecreasing with respect to the second argument almost everywhere on I

and lim, 0o 07" [} [|6(s, 0)||c ds = 0.
Definition 1.3. We say that an operator ¢ : C(I; R") — R" belongs to the set N if
lim, .1 07'¢*(0) = 0, where ¢*(0) = max{[|C(u)[| : [Jullc < o}.
On I, consider the system of linear differential inequalities
V() = go(v)(t)| < R(|v])(t) (1.3)
with the periodic boundary condition

v(0) = v(w). (1.4)

Definition 1.4. We say that (p,q,h) € Q,, if the following conditions are satisfied.

(i) p,q,h: C(I; R") — L(I; R") are nonnegative linear operators.

(ii) For any linear operator gy = (go.i); : C(I; R") — L(I; R") with monotone components
satisfying the condition

p(lD@) <lgo(ly)@)] < a(ly))(t) for tel, yeCLR"), (1.5)
problem (1.3), (1.4) has only the trivial solution.

Theorem 1.1. Suppose that the inequalities

|F(2)(t) — g(,2)(t)] < h(lz])(t) + 0(2, [|z]lc), (1.6)
p(yD(t) < lg(z, [y ()] < a(lyl)(#) (1.7)

hold almost everywhere on I for arbitrary x,y € C(I; R™), where
(g, 1) € Qu, (1.8)

§eMr, CeN,g=(9)",: C(;R") x C(I; R") — L(I;R") is a continuous operator, and the
gi(x,-): C(I;R") — L(I;R) (i = 1,...,n) are linear monotone operators for an arbitrary fized
function x € C(I; R"). Then problem (1.1), (1.2) is solvable.

Now consider the case in which conditions (1.6) and (1.7) acquire the form

|ﬂ@ﬂﬂ—w@ﬂmﬂﬁﬂSE:MJWﬂXﬂ+&@Wﬂb) (t=1,...,n), (1.9)
pillyD @) < lgi(z, [y) ()] < a:([y])(D), (1.10)

def def

where x = (z,;)", € C(I; R"), y € C(I;R), 6 = (6;)1 € My, hpni1 = hni, Topr = 1, and
the h; j,pi,¢; - C(I;R) — L(I;R) (i,j = 1,...,n) are nonnegative linear operators. We define
(1))71

a matrix A; = (a; ;) ;= by the relations

i ==1,  al) =l + laal /4,
ag-li-)l,i+1 = |hip1ipa |l — 1, a'g.,li)-‘rl = hiisall + llgall/4 if 1<i<n-—1,
al) =0 if 2<i<n-1, a)=0 if i+2<j<n,

al) = |lhi;| i 3<j+1<i<n

(1.11)
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