= ORDINARY DIFFERENTIAL EQUATIONS =

On a Problem with Nonlinear Boundary Conditions for Systems of Functional-Differential Equations

S. V. Mukhigulashvili

State University, Tbilisi, Georgia
Mathematical Institute, Academy of Sciences of the Czech Republic, Brno, Czech Republic
Received April 30, 2008

Abstract— We use the method of a priori estimates to obtain effective sufficient solvability conditions for systems of nonlinear functional-differential equations with nonlinear boundary conditions of periodic type. The results are in a sense optimal.

DOI: 10.1134/S001226610910064

1. STATEMENT OF THE MAIN RESULTS

Let $n \geq 2$ be a positive integer, let $\omega > 0$ and $I = [0, \omega]$, and let $F : C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ and $\zeta : C(I; \mathbb{R}^n) \to \mathbb{R}^n$ be continuous operators. Consider the system of functional-differential equations

$$u'(t) = F(u)(t) \tag{1.1}$$

with the nonlinear boundary condition

$$u(0) - u(\omega) = \zeta(u). \tag{1.2}$$

We assume that $F = (f_i)_{i=1}^n$, where the $f_i: C(I; \mathbb{R}^n) \to L(I; \mathbb{R})$ are continuous operators.

A solution of Eq. (1.1) is defined as an absolutely continuous vector function $v: I \to \mathbb{R}^n$ that satisfies Eq. (1.1) almost everywhere on I, and a solution of problem (1.1), (1.2) is defined as a solution of Eq. (1.1) satisfying condition (1.2).

In the present paper, we prove existence theorems for problem (1.1), (1.2) on the basis of theorems of Conti-Opial type obtained in [1] and the method suggested in [2, 3] for the analysis of periodic problems for systems of linear functional-differential equations.

In the present paper, we use the following notation: N is the set of positive integers; $R =]-\infty, +\infty[$; $R_+ = [0, +\infty[$; R^n is the space of column n-vectors $x = (x_i)_{i=1}^n$ with components $x_i \in R$ (i = 1, ..., n) equipped with the norm

$$||x|| = \sum_{i=1}^{n} |x_i|;$$
 $R_+^n = \{(x_i)_{i=1}^n \in R^n : x_i \in R_+, i = 1, \dots, n\};$

if $x, y \in R^n$, then $x \leq y \Leftrightarrow y - x \in R^n_+$; if $x = (x_i)_{i=1}^n \in R^n$, then $|x| = (|x_i|)_{i=1}^n$; $C(I; R^n)$ is the space of continuous vector functions $x: I \to R^n$ with the norm $||x||_C = \max_{t \in I} \{||x(t)||\}$; if $x = (x_i)_{i=1}^n \in C(I; R^n)$, then $|x|_C = (||x_i||_C)_{i=1}^n$; $L(I; R^n)$ is the space of integrable vector functions $x: I \to R^n$ with the norm $||x||_L = \int_0^\omega ||x(s)|| ds$.

Definition 1.1. We say that a linear operator

$$\ell: C(I; \mathbb{R}^m) \to L(I; \mathbb{R}^n), \qquad m, n \in \mathbb{N},$$

is nonnegative (respectively, nonpositive) if

 $\ell(x)(t) \geq 0$ (respectively, $\ell(x)(t) \leq 0$), $t \in I$, for every function $x \in C(I; \mathbb{R}^m_+)$. A linear operator is said to be *monotone* if it is either nonnegative or nonpositive.

Definition 1.2. We say that a function $\delta: I \times R_+ \to R_+^n$ belongs to the set \mathcal{M}_I if the function $\delta(t,\cdot): R_+ \to R_+^n$ is nondecreasing with respect to the second argument almost everywhere on I and $\lim_{\varrho \to +\infty} \varrho^{-1} \int_0^\omega \|\delta(s,\varrho)\|_C ds = 0$.

Definition 1.3. We say that an operator $\zeta: C(I; \mathbb{R}^n) \to \mathbb{R}^n$ belongs to the set \mathcal{N}_I if $\lim_{\varrho \to +\infty} \varrho^{-1} \zeta^*(\varrho) = 0$, where $\zeta^*(\varrho) = \max\{\|\zeta(u)\| : \|u\|_C \leq \varrho\}$.

On I, consider the system of linear differential inequalities

$$|v'(t) - g_0(v)(t)| \le h(|v|)(t) \tag{1.3}$$

with the periodic boundary condition

$$v(0) = v(\omega). \tag{1.4}$$

Definition 1.4. We say that $(p,q,h) \in Q_{\omega}$ if the following conditions are satisfied.

- (i) $p, q, h: C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ are nonnegative linear operators.
- (ii) For any linear operator $g_0 = (g_{0,i})_{i=1}^n : C(I; \mathbb{R}^n) \to L(I; \mathbb{R}^n)$ with monotone components satisfying the condition

$$p(|y|)(t) \le |g_0(|y|)(t)| \le q(|y|)(t) \quad \text{for} \quad t \in I, \quad y \in C(I; \mathbb{R}^n),$$
 (1.5)

problem (1.3), (1.4) has only the trivial solution.

Theorem 1.1. Suppose that the inequalities

$$|F(x)(t) - g(x,x)(t)| \le h(|x|)(t) + \delta(t, ||x||_C), \tag{1.6}$$

$$p(|y|)(t) \le |g(x,|y|)(t)| \le q(|y|)(t) \tag{1.7}$$

hold almost everywhere on I for arbitrary $x, y \in C(I; \mathbb{R}^n)$, where

$$(p,q,h) \in Q_{\omega},\tag{1.8}$$

 $\delta \in \mathcal{M}_I$, $\zeta \in \mathcal{N}_I$, $g \equiv (g_i)_{i=1}^n$: $C(I;R^n) \times C(I;R^n) \to L(I;R^n)$ is a continuous operator, and the $g_i(x,\cdot)$: $C(I;R^n) \to L(I;R)$ $(i=1,\ldots,n)$ are linear monotone operators for an arbitrary fixed function $x \in C(I;R^n)$. Then problem (1.1), (1.2) is solvable.

Now consider the case in which conditions (1.6) and (1.7) acquire the form

$$|f_i(x)(t) - g_i(x, x_{i+1})(t)| \le \sum_{j=2}^{i+1} h_{i,j}(|x_j|)(t) + \delta_i(t, ||x||_C) \qquad (i = 1, \dots, n),$$
(1.9)

$$p_i(|y|)(t)| \le |g_i(x,|y|)(t)| \le q_i(|y|)(t), \tag{1.10}$$

where $x = (x_i)_{i=1}^n \in C(I; R^n)$, $y \in C(I; R)$, $\delta = (\delta_i)_{i=1}^n \in \mathcal{M}_I$, $h_{n,n+1} \stackrel{\text{def}}{=} h_{n,1}$, $x_{n+1} \stackrel{\text{def}}{=} x_1$, and the $h_{i,j}, p_i, q_i : C(I; R) \to L(I; R)$ (i, j = 1, ..., n) are nonnegative linear operators. We define a matrix $A_1 = (a_{i,j}^{(1)})_{i,j=1}^n$ by the relations

$$a_{1,1}^{(1)} = -1, a_{n,1}^{(1)} = ||h_{n,1}|| + ||q_n||/4,$$

$$a_{i+1,i+1}^{(1)} = ||h_{i+1,i+1}|| - 1, a_{i,i+1}^{(1)} = ||h_{i,i+1}|| + ||q_i||/4 if 1 \le i \le n - 1,$$

$$a_{i,1}^{(1)} = 0 if 2 \le i \le n - 1, a_{i,j}^{(1)} = 0 if i + 2 \le j \le n,$$

$$a_{i,j}^{(1)} = ||h_{i,j}|| if 3 \le j + 1 \le i \le n$$

$$(1.11)$$

DIFFERENTIAL EQUATIONS Vol. 46 No. 1 2010