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Abstract

On the rectangleD = [a, b]×[c, d], the problem on the existence and uniqueness of a nonnegative solution of the characteristic
initial value problem for the equation

∂2u(t, x)

∂t ∂x
= `(u)(t, x)+ q(t, x)

is considered, where ` : C(D;R) → L(D;R) is a linear bounded operator and q ∈ L(D;R+).
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1. Introduction

On the rectangle D, we consider the linear partial functional–differential equation of hyperbolic type

∂2u(t, x)

∂t ∂x
= `(u)(t, x)+ q(t, x), (1.1)

where ` : C(D; R) → L(D; R) is a linear bounded operator and q ∈ L(D; R). By a solution of the equation (1.1) a
function u ∈ C∗(D; R)1 is understood satisfying the equality (1.1) almost everywhere on the set D.

Various initial value problems for the equation (1.1) are studied in the literature (see, e.g., [2,5,11,12] and references
therein). We will consider the so-called characteristic initial value problem. In this case, the values of the solution u
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1 For definition of the set C∗(D;R) see Section 2.

0895-7177/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2007.07.003

http://www.elsevier.com/locate/mcm
mailto:bacho@math.muni.cz
mailto:mukhig@ipm.cz
mailto:sremr@ipm.cz
http://dx.doi.org/10.1016/j.mcm.2007.07.003


A. Lomtatidze et al. / Mathematical and Computer Modelling 47 (2008) 1292–1313 1293

of (1.1) are prescribed on both characteristics t = a and x = c, i.e., the initial conditions are

u(t, c) = ϕ(t) for t ∈ [a, b], (1.2)

u(a, x) = ψ(x) for x ∈ [c, d], (1.3)

where ϕ : [a, b] → R and ψ : [c, d] → R are absolutely continuous functions such that ϕ(a) = ψ(c).
In this paper, we suggest a new approach to the problem considered which allows us to establish results

guaranteeing that the problem (1.1)–(1.3) has a unique solution and this solution is nonnegative whenever the function
q is nonnegative and the functions ϕ,ψ are nonnegative and nondecreasing. In other words, we will give some efficient
conditions for the operator ` ∈ L(D) under which every solution of the problem

∂2u(t, x)

∂t ∂x
≥ `(u)(t, x), (1.4)

u(a, c) ≥ 0, (1.5)

∂u(t, c)

∂t
≥ 0 for almost all t ∈ [a, b], (1.6)

∂u(a, x)

∂x
≥ 0 for almost all x ∈ [c, d] (1.7)

is nonnegative. Recall here that by a solution of the problem (1.4)–(1.7) we understand a function u ∈ C∗(D; R)
satisfying the inequality (1.4) almost everywhere on the set D and verifying also the conditions (1.5)–(1.7). The
results obtained in this paper will be further used in the study of the question on the unique solvability of the problem
(1.1)–(1.3).

Note also that some analogous results for the first and the second order “ordinary” functional–differential equations
are established in [4,7], respectively.

To simplify the formulation of the main results we introduce the following definition.

Definition 1.1. We will say that an operator ` ∈ L(D) belongs to the set Sac(D) if every solution of the problem
(1.4)–(1.7) is nonnegative.

It is proved in [8] (see also [9]) that the problems (1.1)–(1.3) have the so-called Fredholm property, i.e., the
following theorem is true.

Theorem 1.2. The problem (1.1)–(1.3) has a unique solution if and only if the corresponding homogeneous problem

∂2u(t, x)

∂t ∂x
= `(u)(t, x), (1.10)

u(t, c) = 0 for t ∈ [a, b], (1.20)

u(a, x) = 0 for x ∈ [c, d] (1.30)

has only the trivial solution.

Remark 1.1. Let ` ∈ Sac(D). Then it is clear that the homogeneous problem (1.10)–(1.30) has only the trivial
solution. Therefore, the problem (1.1)–(1.3) is uniquely solvable for every q, ϕ, and ψ . Moreover, if the function q is
nonnegative and the functions ϕ, ψ are nonnegative and nondecreasing then the solution of the problem (1.1)–(1.3) is
nonnegative.

2. Notations and definitions

The following notations and definitions are used throughout the paper.
R is the set of all real numbers, R+ = [0,+∞[.
N is the set of all natural numbers.
If x ∈ R then

[x]+ =
|x | + x

2
, [x]− =

|x | − x

2
.
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D = [a, b] × [c, d], where −∞ < a < b < +∞ and −∞ < c < d < +∞.
C(D; R) is the Banach space of continuous functions u : D → R equipped with the norm

‖u‖C = max{|u(t, x)| : (t, x) ∈ D}.

C(D; A) = {u ∈ C(D; R) : u(t, x) ∈ A for (t, x) ∈ D}, where A ⊆ R.
L(D; R) is the Banach space of Lebesgue integrable functions p : D → R equipped with the norm

‖p‖L =

∫∫
D

|p(t, x)|dtdx .

In what follows, the equalities and inequalities with integrable functions are understood to hold almost everywhere.
L(D; A) = {p ∈ L(D; R) : p(t, x) ∈ A for almost all (t, x) ∈ D}, where A ⊆ R.
L(D) is the set of linear bounded operators ` : C(D; R) → L(D; R).
C̃([α, β]; A), where A ⊆ R, is the set of absolutely continuous functions u : [α, β] → A.
C∗(D; A), where A ⊆ R, is the set of functions v : D → A admitting the representation

v(t, x) = v1(t)+ v2(x)+

∫ t

a

∫ x

c
h(s, η)dηds for (t, x) ∈ D,

where v1 ∈ C̃([a, b]; R), v2 ∈ C̃([c, d]; R), and h ∈ L(D; R).
C∗

loc([a, b[×[c, d[; A), where A ⊆ R, is the set of function u ∈ C(D; A) such that u ∈ C∗([a, b0]× [c, d0]; A) for
every b0 ∈]a, b[ and d0 ∈]c, d[.

Remark 2.1. It can be verified (see, e.g., [2,3,10]) that v ∈ C∗(D; R) if and only if the function v satisfies the
following conditions:

1. v(·, x) ∈ C̃([a, b],R) for every x ∈ [c, d], v(a, ·) ∈ C̃([c, d],R);
2. vt (t, ·) ∈ C̃([c, d],R) for almost all t ∈ [a, b];
3. vt x ∈ L(D; R).

Using Fubini’s theorem, it is clear that the order of the integration can be changed in the integral representation of the
function v ∈ C∗(D; R) and thus the conditions 1–3 stated above can be replaced by the symmetric ones:

1
′

. v(·, c) ∈ C̃([a, b],R), v(t, ·) ∈ C̃([c, d],R) for every t ∈ [a, b];
2

′

. vx (·, x) ∈ C̃([a, b],R) for almost all x ∈ [c, d];
3

′

. vxt ∈ L(D; R).

Remark 2.2. Note also that the set C∗(D; R) coincides with the class of functions of two variables, which are
absolutely continuous on D in Carathéodory’s sense (see e.g., [1,3,6,11]).

Definition 2.1. An operator ` ∈ L(D) is said to be nondecreasing if it maps the set C(D; R+) into the set L(D; R+).
The set of nondecreasing operators we denote by P(D). We say that an operator ` ∈ L(D) is nonincreasing if
−` ∈ P(D).

Definition 2.2. An operator ` ∈ L(D) is called an (a, c)-Volterra operator if, for arbitrary rectangle [a, t0]×[c, x0] ⊆

D and function v ∈ C(D; R) such that

v(t, x) = 0 for (t, x) ∈ [a, t0] × [c, x0],

the relation

`(v)(t, x) = 0 for almost all (t, x) ∈ [a, t0] × [c, x0]

holds.
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3. Main results

In this section, we establish efficient conditions for the validity of the inclusion ` ∈ Sac(D). Theorems formulated
below can be referred to as theorems on functional–differential inequalities. One can say also that ` ∈ Sac(D) if and
only if some kind of maximum principle holds for the problem (1.1)–(1.3).

Theorem 3.1. Let ` ∈ P(D). Then ` ∈ Sac(D) if and only if there exists a function γ ∈ C∗(D; ]0,+∞[) such that

∂2γ (t, x)

∂t ∂x
≥ `(γ )(t, x) for (t, x) ∈ D (3.1)

and either

∂γ (t, c)

∂t
≥ 0 for t ∈ [a, b] (3.2)

or

∂γ (a, x)

∂x
≥ 0 for x ∈ [c, d]. (3.3)

Choosing suitable functions γ in Theorem 3.1, we can derive several sufficient conditions under which the inclusion
` ∈ Sac(D) is true.

Corollary 3.2. If ` ∈ P(D) then each of the following statements guarantees the inclusion ` ∈ Sac(D):
(a) there exist k,m ∈ N and α ∈]0, 1[ such that m > k and

ρm(t, x) ≤ αρk(t, x) for (t, x) ∈ D, (3.4)

where

ρ1 ≡ 1, ρi+1 ≡ θ(ρi ) for i ∈ N, (3.5)

and

θ(v)(t, x)
def
=

∫ t

a

∫ x

c
`(v)(s, η)dηds for (t, x) ∈ D; (3.6)

(b) there exists ` ∈ P(D) such that∫ b

a

∫ d

c
`(1)(s, η) exp

(∫ b

s

∫ d

η

`(1)(ξ1, ξ2)dξ2dξ1

)
dηds < 1 (3.7)

and the inequality

`(θ(v))(t, x)− `(1)(t, x)θ(v)(t, x) ≤ `(v)(t, x) for (t, x) ∈ D (3.8)

holds on the set {v ∈ C(D; R+) : v(·, c) ≡ 0, v(a, ·) ≡ 0}, where θ is defined by (3.6).

Remark 3.1. The assumption α ∈]0, 1[ in Corollary 3.2(a) cannot be replaced by the assumption α ∈]0, 1] (see
Example 6.1).

Remark 3.2. It follows from Corollary 3.2(a) (for k = 1 and m = 2) that ` ∈ Sac(D) provided that ` ∈ P(D) and∫ b

a

∫ d

c
`(1)(s, η)dηds < 1.

Proposition 3.3. Let ` ∈ P(D) be such that∫ b

a

∫ d

c
`(1)(s, η)dηds = 1. (3.9)

Then ` ∈ Sac(D) if and only if the homogeneous problem (1.10)–(1.30) has only the trivial solution.
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Proposition 3.4. Let ` ∈ P(D) be an (a, c)-Volterra operator. Then ` ∈ Sac(D).

Theorem 3.5. Let −` ∈ P(D), ` be an (a, c)-Volterra operator, and let there exists a function γ ∈

C∗

loc([a, b[×[c, d[; R+) satisfying

∂2γ (t, x)

∂t ∂x
≤ `(γ )(t, x) for (t, x) ∈ D, (3.10)

γ (t, x) > 0 for (t, x) ∈ [a, b[×[c, d[, (3.11)

∂γ (t, c)

∂t
≤ 0 for t ∈ [a, b[, (3.12)

and

∂γ (a, x)

∂x
≤ 0 for x ∈ [c, d[. (3.13)

Then the operator ` belongs to the set Sac(D).

Remark 3.3. The assumption (3.11) in Theorem 3.5 is essential and cannot be omitted. Indeed, if there exists a
function γ ∈ C∗

loc([a, b[×[c, d[; R+) such that the conditions (3.10), (3.12) and (3.13) hold and γ (t0, x0) = 0 for
some (t0, x0) ∈]a, b[×]c, d[, then it can happen that ` 6∈ Sac(D) (see Example 6.2).

Corollary 3.6. Let −` ∈ P(D), ` be an (a, c)-Volterra operator, and∫ b

a

∫ d

c
|`(1)(s, η)|dηds ≤ 1. (3.14)

Then ` ∈ Sac(D).

Remark 3.4. The inequality (3.14) in Corollary 3.6 cannot be replaced by the inequality∫ b

a

∫ d

c
|`(1)(s, η)|dηds ≤ 1 + ε, (3.15)

no matter how small ε > 0 would be (see Example 6.2).

Theorem 3.7. Let ` = `0 − `1, where `0, `1 ∈ P(D) and `1 is an (a, c)-Volterra operator. If

`0 ∈ Sac(D), −`1 ∈ Sac(D) (3.16)

then the operator ` belongs to the set Sac(D).

Remark 3.5. The assumption (3.16) in Theorem 3.7 cannot be replaced neither by the assumption

(1 − ε)`0 ∈ Sac(D), −`1 ∈ Sac(D)

nor by the assumption

`0 ∈ Sac(D), −(1 − ε)`1 ∈ Sac(D),

no matter how small ε > 0 would be (see Examples 6.3 and 6.4).

Remark 3.6. It is proved in [9] that if a nonincreasing operator belongs to the set Sac(D) then it is necessarily an
(a, c)-Volterra operator. Therefore, in Theorems 3.5 and 3.7, the assumptions on the operators ` and `1, respectively,
to be (a, c)-Volterra ones are necessary.
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4. Proofs of the main results

To prove the statements formulated in Section 3 we will need the following lemmas.

Lemma 4.1. Let v ∈ C∗(D; R) and a ≤ t1 ≤ t2 ≤ b, c ≤ x1 ≤ x2 ≤ d. Then

v(t2, x2)− v(t1, x1) =

∫ t2

t1

∂v(s, c)

∂s
ds +

∫ x2

x1

∂v(a, η)

∂η
dη

+

∫ t1

a

∫ x2

x1

∂2v(s, η)

∂s ∂η
dηds +

∫ t2

t1

∫ x2

c

∂2v(s, η)

∂s ∂η
dηds

=

∫ t2

t1

∂v(s, c)

∂s
ds +

∫ x2

x1

∂v(a, η)

∂η
dη

+

∫ t2

a

∫ x2

x1

∂2v(s, η)

∂s ∂η
dηds +

∫ t2

t1

∫ x1

c

∂2v(s, η)

∂s ∂η
dηds. (4.1)

Proof. Since v ∈ C∗(D; R), the function v admits the representation

v(t, x) = v(a, c)+

∫ t

a

∂v(s, c)

∂s
ds +

∫ x

c

∂v(a, η)

∂η
dη +

∫ t

a

∫ x

c

∂2v(s, η)

∂s ∂η
dηds

for (t, x) ∈ D. Therefore,

v(t2, x2)− v(t1, x2) =

∫ t2

t1

∂v(s, c)

∂s
ds +

∫ t2

t1

∫ x2

c

∂2v(s, η)

∂s ∂η
dηds.

On the other hand,

v(t1, x2)− v(t1, x1) =

∫ x2

x1

∂v(a, η)

∂η
dη +

∫ t1

a

∫ x2

x1

∂2v(s, η)

∂s ∂η
dηds.

Consequently, the first equality in (4.1) holds. The second equality in (4.1) can be proved analogously. �

Lemma 4.2. Let (t0, x0) ∈ D, −` ∈ P(D), ` be an (a, c)-Volterra operator, and let u be a solution of the problem
(1.4)–(1.7) satisfying

u(t0, x0) < 0. (4.2)

Then

max{u(t, x) : (t, x) ∈ [a, t0] × [c, x0]} > 0. (4.3)

Proof. Obviously, t0 6= a and x0 6= c. Assume that, on the contrary, (4.3) is not true. Then

u(t, x) ≤ 0 for (t, x) ∈ D0,

where D0 = [a, t0] × [c, x0]. Since ` is an (a, c)-Volterra operator and −` ∈ P(D), it follows from (1.4) that

ut x (t, x) ≥ `(u)(t, x) ≥ 0 for (t, x) ∈ D0.

Consequently, according to (1.5)–(1.7) and Lemma 4.1, we get

u(t0, x0) ≥ u(a, c) ≥ 0,

which contradicts (4.2). �

Lemma 4.3. Let ` ∈ P(D). Then ` ∈ Sac(D) if and only if the problem

∂2v(t, x)

∂t ∂x
≤ `(v)(t, x), (4.4)

v(t, c) = 0 for t ∈ [a, b], v(a, x) = 0 for x ∈ [c, d] (4.5)
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has no nontrivial nonnegative solution.2

Proof. If ` ∈ Sac(D), then it is clear that the problem (4.4), (4.5) has no nontrivial nonnegative solution.
Now suppose that the problem (4.4), (4.5) has no nontrivial nonnegative solution and let u be a solution of the

problem (1.4)–(1.7). We will show that the function u is nonnegative. Put

α(t, x) =

∫ t

a

∫ x

c
`([u]−)(s, η)dηds for (t, x) ∈ D.

It is clear that α ∈ C∗(D; R),

αt x (t, x) = `([u]−)(t, x) for (t, x) ∈ D, (4.6)

α(t, c) = 0 for t ∈ [a, b], α(a, x) = 0 for x ∈ [c, d], (4.7)

and

α(t, x) ≥ 0 for (t, x) ∈ D.

By virtue of (1.4), (1.6), (1.7), (4.6), (4.7), and the assumption ` ∈ P(D), we get

wt x (t, x) ≥ `(u + [u]−)(t, x) = `([u]+)(t, x) ≥ 0 for (t, x) ∈ D,
wt (t, c) ≥ 0 for t ∈ [a, b], wx (a, x) ≥ 0 for x ∈ [c, d],

where

w(t, x) = u(t, x)+ α(t, x) for (t, x) ∈ D.

Consequently, in view of (1.5), Lemma 4.1 yields

w(t, x) ≥ w(a, c) ≥ 0 for (t, x) ∈ D

and thus

[u(t, x)]− ≤ α(t, x) for (t, x) ∈ D (4.8)

because the function α is nonnegative. Now, from (4.6) we get

αt x (t, x) ≤ `(α)(t, x) for (t, x) ∈ D.

We have proved that α is a nonnegative solution of the problem (4.4), (4.5). Therefore, α ≡ 0 and the condition (4.8)
yields u(t, x) ≥ 0 for (t, x) ∈ D. Hence ` ∈ Sac(D). �

Lemma 4.4. Let f ∈ L (D; R+) be such that∫ b

a

∫ d

c
f (s, η)dηds ≤ 1. (4.9)

Then there exists (b0, d0) ∈]a, b]×]c, d] such that∫ t

a

∫ x

c
f (s, η)dηds < 1 for (t, x) ∈ D0, (t, x) 6= (b0, d0), (4.10)

and

f (t, x) = 0 for (t, x) ∈ D \D0, (4.11)

where D0 = [a, b0] × [c, d0].

2 Recall here that by a solution of the problems (4.4), (4.5) a function v ∈ C∗(D;R) is understood satisfying the inequality (4.4) almost
everywhere on the set D and verifying also the conditions (4.5).
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Proof. If the inequality (4.9) is strict, then the assertion of lemma holds for b0 = b and d0 = d. Therefore, suppose
that ∫ b

a

∫ d

c
f (s, η)dηds = 1. (4.12)

Put

d0 = min
{

x ∈ [c, d] :

∫ b

a

∫ x

c
f (s, η)dηds = 1

}
.

It is clear that d0 > c and∫ b

a

∫ d0

c
f (s, η)dηds = 1,

∫ b

a

∫ x

c
f (s, η)dηds < 1 for x ∈ [c, d0[.

Further, we put

b0 = min
{

t ∈ [a, b] :

∫ t

a

∫ d0

c
f (s, η)dηds = 1

}
.

Obviously, b0 > a and∫ b0

a

∫ d0

c
f (s, η)dηds = 1,

∫ t

a

∫ d0

c
f (s, η)dηds < 1 for t ∈ [a, b0[.

Let D0 = [a, b0] × [c, d0]. It is easy to verify that the condition (4.10) holds and∫∫
D\D0

f (t, x)dtdx = 0.

Hence (4.11) is also satisfied because the function f is supposed to be nonnegative. �

Now we are in a position to prove the main results given in Section 3.

Proof of Theorem 3.1. First suppose that there exists γ ∈ C∗(D; ]0,+∞[) satisfying the conditions (3.1) and (3.2)
(resp. (3.1) and (3.3)). Let u be a solution of the problems (1.4)–(1.7). We will show that the function u is nonnegative.
Put

A = {λ ∈ R+ : λγ (t, x)+ u(t, x) ≥ 0 for (t, x) ∈ D}. (4.13)

Since γ is a positive function, we have A 6= ∅. Let

λ0 = inf A. (4.14)

Now we put

w(t, x) = λ0γ (t, x)+ u(t, x) for (t, x) ∈ D. (4.15)

It is clear that λ0 ≥ 0, w ∈ C∗(D; R), and

w(t, x) ≥ 0 for (t, x) ∈ D. (4.16)

Therefore, by virtue of (1.4), (3.1), and the assumption ` ∈ P(D), we get

wt x (t, x) ≥ `(w)(t, x) ≥ 0 for (t, x) ∈ D. (4.17)

Assume that

λ0 > 0. (4.18)

Then, it follows from (1.5)–(1.7), (3.2) (resp. (3.3)), and (4.18) that

w(a, x) > 0 for x ∈ [c, d], wt (t, c) ≥ 0 for t ∈ [a, b]

(resp. w(t, c) > 0 for t ∈ [a, b], wx (a, x) ≥ 0 for x ∈ [c, d]).
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Hence, in view of (4.17), Lemma 4.1 yields

w(t, x) ≥ w(a, x) > 0 for (t, x) ∈ D
(resp. w(t, x) ≥ w(t, c) > 0 for (t, x) ∈ D).

Consequently, there exists ε ∈]0, λ0] such that

w(t, x) ≥ εγ (t, x) for (t, x) ∈ D,

i.e.,

(λ0 − ε)γ (t, x)+ u(t, x) ≥ 0 for (t, x) ∈ D.

Hence, by virtue of (4.13), we get λ0 − ε ∈ A, which contradicts (4.14).
The contradiction obtained proves that λ0 = 0. Consequently, (4.15) and (4.16) yield

u(t, x) = w(t, x) ≥ 0 for (t, x) ∈ D

and thus ` ∈ Sac(D).
Now suppose that ` ∈ Sac(D). Then, according to Remark 1.1, the problem

∂2γ (t, x)

∂t ∂x
= `(γ )(t, x), (4.19)

γ (t, c) = 1 for t ∈ [a, b], γ (a, x) = 1 for x ∈ [c, d] (4.20)

has a unique solution γ and

γ (t, x) ≥ 0 for (t, x) ∈ D.

By virtue of the assumption ` ∈ P(D), the equation (4.19) implies

γt x (t, x) ≥ 0 for (t, x) ∈ D.

Therefore, by virtue of (4.20) and Lemma 4.1, we get

γ (t, x) ≥ γ (a, c) = 1 for (t, x) ∈ D.

Consequently, γ ∈ C∗(D; ]0,+∞[) and it satisfies the inequalities (3.1)–(3.3). �

Proof of Corollary 3.2. (a) It is not difficult to verify that the function

γ (t, x) =

m∑
j=1

ρ j (t, x)− α

k∑
j=1

ρ j (t, x) for (t, x) ∈ D

belongs to the set C∗(D; ]0,+∞[) and satisfies (3.1)–(3.3). Therefore, Theorem 3.1 guarantees ` ∈ Sac(D).
(b) According to (3.7), there exists ε > 0 such that

ε exp
(∫ b

a

∫ d

c
`(1)(s, η)dηds

)
+

∫ b

a

∫ d

c
`(1)(s, η) exp

(∫ b

s

∫ d

η

`(1)(ξ1, ξ2)dξ2dξ1

)
dηds ≤ 1. (4.21)

Put

γ (t, x) = ε exp
(∫ t

a

∫ x

c
`(1)(s, η)dηds

)
+

∫ t

a

∫ x

c
`(1)(s, η) exp

(∫ t

s

∫ x

η

`(1)(ξ1, ξ2)dξ2dξ1

)
dηds for (t, x) ∈ D.

It is not difficult to verify that γ ∈ C∗(D; R+) and, in view of the assumption ` ∈ P(D), we get

γt x (t, x) ≥ `(1)(t, x)γ (t, x)+ `(1)(t, x) ≥ 0 for (t, x) ∈ D, (4.22)

γ (t, c) = ε for t ∈ [a, b], γ (a, x) = ε for x ∈ [c, d]. (4.23)
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Hence, by virtue of (4.21)–(4.23), Lemma 4.1 yields

0 < γ (a, c) ≤ γ (t, x) ≤ γ (b, d) ≤ 1 for (t, x) ∈ D.

Now from (4.22) we get

γt x (t, x) ≥ `(1)(t, x)γ (t, x)+ `(γ )(t, x) for (t, x) ∈ D,

and thus, by virtue of Theorem 3.1, we find˜̀∈ Sac(D), (4.24)

where˜̀(w)(t, x)
def
= `(1)(t, x)w(t, x)+ `(w)(t, x) for (t, x) ∈ D. (4.25)

According to Lemma 4.3, to prove the corollary it is sufficient to show that the problem (4.4), (4.5) has no nontrivial
nonnegative solution. Let v be a nonnegative solution of the problem (4.4), (4.5). We will show that v ≡ 0. Put

u(t, x) = θ(v)(t, x) for (t, x) ∈ D, (4.26)

where θ is defined by (3.6). Obviously,

ut x (t, x) = `(v)(t, x) ≥ vt x (t, x) for (t, x) ∈ D,
u(t, c) = 0 for t ∈ [a, b], u(a, x) = 0 for x ∈ [c, d]. (4.27)

Consequently, in view of (4.5), Lemma 4.1 yields

u(t, x) ≥ v(t, x) ≥ 0 for (t, x) ∈ D. (4.28)

On the other hand, by virtue of (3.8), (4.25)–(4.28), and the assumptions `, ` ∈ P(D), we get

ut x (t, x) = `(v)(t, x) ≤ `(1)(t, x)u(t, x)+ `(u)(t, x)− `(1)(t, x)u(t, x)

= `(1)(t, x)u(t, x)+ ` (θ(v)) (t, x)− `(1)(t, x)θ(v)(t, x)

≤ `(1)(t, x)u(t, x)+ `(v)(t, x) ≤ `(1)(t, x)u(t, x)+ `(u)(t, x)

= ˜̀(u)(t, x) for (t, x) ∈ D.

Now, by (4.24), (4.27), (4.28), and Lemma 4.3, we obtain u ≡ 0. Consequently, (4.28) implies v ≡ 0, i.e., the problem
(4.4), (4.5) has no nontrivial nonnegative solution. �

Proof of Proposition 3.3. Suppose that (3.9) holds and the homogeneous problem (1.10)–(1.30) has only the trivial
solution. We will show that ` ∈ Sac(D). According to Theorem 1.2, the problem (4.19), (4.20) has a unique solution
γ . Put

γ0 = min{γ (t, x) : (t, x) ∈ D} (4.29)

and choose (t0, x0) ∈ D such that γ (t0, x0) = γ0.
Assume that

γ0 ≤ 0. (4.30)

Then, in view of (4.20), Lemma 4.1 yields

γ (t0, x0) = 1 +

∫ t0

a

∫ x0

c
`(γ )(s, η)dηds.

Therefore, on account of (3.9), (4.29), (4.30), and the assumption ` ∈ P(D), we get

γ0 ≥ 1 + γ0

∫ b

a

∫ d

c
`(1)(s, η)dηds = 1 + γ0,

a contradiction.
The contradiction obtained proves that γ0 > 0. Consequently, Theorem 3.1 guarantees the inclusion ` ∈ Sac(D).
The converse implication is trivial. �
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Proof of Proposition 3.4. It is not difficult to verify that the assumptions of Corollary 3.2(b) are satisfied with ` ≡ 0
because the operator ` is supposed to be an (a, c)-Volterra one. �

Proof of Theorem 3.5. Let u be a solution of the problem (1.4)–(1.7). We will show that the function u is nonnegative.
Assume that, on the contrary,

min{u(t, x) : (t, x) ∈ D} < 0. (4.31)

Then there exists (t0, x0) ∈]a, b[×]c, d[ such that

u(t0, x0) < 0. (4.32)

Put D0 = [a, t0] × [c, x0] and

A = {λ ∈ R+ : λγ (t, x)− u(t, x) ≥ 0 for (t, x) ∈ D0}. (4.33)

Since the function γ is positive on D0, we have A 6= ∅. Let

λ0 = inf A. (4.34)

Now we put

w(t, x) = λ0γ (t, x)− u(t, x) for (t, x) ∈ D. (4.35)

It is clear that w ∈ C∗(D0; R) and

w(t, x) ≥ 0 for (t, x) ∈ D0. (4.36)

Moreover, according to (4.32)–(4.34) and Lemma 4.2, we get

λ0 > 0. (4.37)

From (1.4), (3.10), (4.35) and (4.37) we obtain

wt x (t, x) ≤ `(w)(t, x) for (t, x) ∈ D.

Since ` is an (a, c)-Volterra operator, −` ∈ P(D), and (4.36) holds, the last inequality implies

wt x (t, x) ≤ 0 for (t, x) ∈ D0. (4.38)

Further, from (1.6), (1.7), (3.12), (3.13), (4.35) and (4.37) we get

wt (t, c) ≤ 0 for t ∈ [a, t0], wx (a, x) ≤ 0 for x ∈ [c, x0]. (4.39)

Hence, by virtue of (4.32), Lemma 4.1 yields

w(t, x) ≥ w(t0, x0) > 0 for (t, x) ∈ D0.

Consequently, there exists ε ∈]0, λ0] such that

w(t, x) ≥ εγ (t, x) for (t, x) ∈ D0,

i.e.,

(λ0 − ε)γ (t, x)− u(t, x) ≥ 0 for (t, x) ∈ D0.

Hence, in view of (4.33), we get λ0 − ε ∈ A, which contradicts (4.34). �

Proof of Corollary 3.6. According to Lemma 4.4, there exists a point (b0, d0) ∈]a, b]×]c, d] such that∫ t

a

∫ x

c
|`(1)(s, η)|dηds < 1 for (t, x) ∈ D0, (t, x) 6= (b0, d0),

and

`(1)(t, x) = 0 for (t, x) ∈ D \D0, (4.40)
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where D0 = [a, b0] × [c, d0]. Put

γ (t, x) = 1 −

∫ t

a

∫ x

c
|`(1)(s, η)|dηds for (t, x) ∈ D0.

Since ` is a nonincreasing (a, c)-Volterra operator, by Theorem 3.5 we get

`0 ∈ Sac(D0), (4.41)

where `0 is the restriction of ` to the space C(D0; R).
Now let u be a solution of the problem (1.4)–(1.7). We will show that the function u is nonnegative. In view of

(4.41), we find

u(t, x) ≥ 0 for (t, x) ∈ D0. (4.42)

On the other hand, the assumption −` ∈ P(D) guarantees that the relations

`(1)(t, x)max{u(s, η) : (s, η) ∈ D} ≤ `(u)(t, x) ≤ `(1)(t, x)min{u(s, η) : (s, η) ∈ D}

hold for (t, x) ∈ D and thus, by virtue of (4.40), we get

`(u)(t, x) = 0 for (t, x) ∈ D \D0.

Consequently, (1.4) implies

ut x (t, x) ≥ 0 for (t, x) ∈ D \D0. (4.43)

Let (t0, x0) ∈ D \D0 be an arbitrary point. Put

t1 = min{t0, b0}, x1 = min{x0, d0},

and

D∗
= [a, t0] × [c, x0] \ [a, t1] × [c, x1].

Clearly, (t1, x1) ∈ D0 and D∗
⊆ D \D0. Then, in view of (1.6), (1.7), (4.42), (4.43), and Lemma 4.1, we get

u(t0, x0) = u(t1, x1)+

∫ t0

t1

∂u(s, c)

∂s
ds +

∫ x0

x1

u(a, η)

dη
dη +

∫∫
D∗

∂2u(s, η)

∂s ∂η
dsdη ≥ 0.

Therefore, we have proved that u(t, x) ≥ u(t1, x1) for (t, x) ∈ D \ D0, which together with (4.42) ensure that the
function u is nonnegative on the set D. Consequently, ` ∈ Sac(D). �

Proof of Theorem 3.7. Let u be a solution of the problem (1.4)–(1.7). We will show that the function u is nonnegative.
According to the inclusion −`1 ∈ Sac(D) and Remark 1.1, the problem

∂2w(t, x)

∂t ∂x
= −`1(w)(t, x)− `0([u]−)(t, x), (4.44)

w(t, c) = 0 for t ∈ [a, b], w(a, x) = 0 for x ∈ [c, d] (4.45)

has a unique solution w and

w(t, x) ≤ 0 for (t, x) ∈ D. (4.46)

In view of (1.4)–(1.7), (4.44), (4.45), and the assumption `0 ∈ P(D) we get

∂2

∂t ∂x
(u(t, x)− w(t, x)) ≥ −`1(u − w)(t, x)+ `0([u]+)(t, x) ≥ −`1(u − w)(t, x) for (t, x) ∈ D,

∂

∂t
(u(t, c)− w(t, c)) ≥ 0 for t ∈ [a, b],

∂

∂x
(u(a, x)− w(a, x)) ≥ 0 for x ∈ [c, d],
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and

u(a, c)− w(a, c) ≥ 0.

Consequently, the inclusion −`1 ∈ Sac(D) yields

u(t, x) ≥ w(t, x) for (t, x) ∈ D. (4.47)

Now, (4.46) and (4.47) imply

−[u(t, x)]− ≥ w(t, x) for (t, x) ∈ D. (4.48)

On the other hand, by virtue of (4.44), (4.46), (4.48), and the assumptions `0, `1 ∈ P(D), we obtain

wt x (t, x) ≥ `0(w)(t, x)− `1(w)(t, x) ≥ `0(w)(t, x) for (t, x) ∈ D.

Hence, the inclusion `0 ∈ Sac(D), on account of (4.45), implies

w(t, x) ≥ 0 for (t, x) ∈ D,

which, together with (4.47), guarantees u(t, x) ≥ 0 for (t, x) ∈ D. �

5. Operators with deviating arguments

In this section, we will establish the corollaries of the main results for the operators with deviating arguments, i.e.,
for the cases when the operator ` is given by one of the following formulae:

`(v)(t, x)
def
= p(t, x)v(τ0(t, x), µ0(t, x)) for (t, x) ∈ D, (5.1)

`(v)(t, x)
def
= −g(t, x)v(τ1(t, x), µ1(t, x)) for (t, x) ∈ D, (5.2)

`(v)(t, x)
def
= p(t, x)v(τ0(t, x), µ0(t, x))− g(t, x)v(τ1(t, x), µ1(t, x)) for (t, x) ∈ D. (5.3)

Here we suppose that p, g ∈ L(D,R+) and τi : D → [a, b], µi : D → [c, d] are measurable functions (i = 0, 1).
Throughout this section, the following notations will be used:

τ ∗

0 = ess sup{τ0(t, x) : (t, x) ∈ D}, µ∗

0 = ess sup{µ0(t, x) : (t, x) ∈ D}.

We first formulate all the statements, the proofs are given later.

Theorem 5.1. Let at least one of the following items be fulfilled:

(a) there exists α ∈]0, 1[ such that∫ t

a

∫ x

c
p(s, η)

(∫ τ0(s,η)

a

∫ µ0(s,η)

c
p(ξ1, ξ2)dξ2dξ1

)
dηds ≤ α

∫ t

a

∫ x

c
p(s, η)dηds for (t, x) ∈ D; (5.4)

(b) ∫ b

a

∫ d

c
p(s, η)( f1(s, η, µ0(s, η))+ f2(s, η, s)) exp

(∫ b

s

∫ d

η

p(ξ1, ξ2)dξ2dξ1

)
dηds < 1, (5.5)

where

f1(t, x, y)
def
=

1
2
(1 + sgn(τ0(t, x)− t))

∫ τ0(t,x)

t

∫ y

c
p(s, η)dηds, for (t, x) ∈ D, y ∈ [c, d] (5.6)

and

f2(t, x, y)
def
=

1
2
(1 + sgn(µ0(t, x)− x))

∫ t

a

∫ µ0(t,x)

x
p(s, η)dηds for (t, x) ∈ D, y ∈ [a, b]; (5.7)
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(c) ∫ b

a

∫ d

c
p(s, η)( f1(s, η, η)+ f2(s, η, τ0(s, η))) exp

(∫ b

s

∫ d

η

p(ξ1, ξ2)dξ2dξ1

)
dηds < 1, (5.8)

where the functions f1 and f2 are defined by (5.6) and (5.7), respectively.

Then the operator ` given by (5.1) belongs to the set Sac(D).

Remark 5.1. The assumption α ∈]0, 1[ in Theorem 5.1(a) cannot be replaced by the assumption α ∈]0, 1] (see
Example 6.1).

Theorem 5.2. Let one of the following items be fulfilled:

(a) ∫ τ∗

0

a

∫ µ∗

0

c
p(s, η)dηds < 1; (5.9)

(b) ∫ τ∗

0

a

∫ µ∗

0

c
p(s, η)dηds > 1 (5.10)

and

ess sup

{∫ τ0(t,x)

t

∫ x

c
p(s, η)dηds +

∫ τ0(t,x)

a

∫ µ0(t,x)

x
p(s, η)dηds : (t, x) ∈ D

}
< ω∗, (5.11)

where

ω∗
= sup

 1
y

ln

y +
y

exp
(

y
∫ τ∗

0
a

∫ µ∗

0
c p(s, η)dηds

)
− 1

 : y > 0

 . (5.12)

Then the operator ` given by (5.1) belongs to the set Sac(D).

The following statement can be regarded as a supplement of the previous one.

Theorem 5.3. Let∫ τ∗

0

a

∫ µ∗

0

c
p(s, η)dηds = 1. (5.13)

Then the operator ` given by (5.1) belongs to the set Sac(D) if and only if∫ τ∗

0

a

∫ µ∗

0

c
p(s, η)

(∫ τ0(s,η)

a

∫ µ0(s,η)

c
p(ξ1, ξ2)dξ2dξ1

)
dηds 6= 1. (5.14)

Theorems 5.1–5.3 contain some integral conditions for the operator ` defined by (5.1) to belong to the set Sac(D).
The following theorem gives a different kind of conditions, the so-called point conditions.

Theorem 5.4. Let the function p be essentially bounded and

ess sup{p(t, x)(τ0(t, x)− a)(µ0(t, x)− c) : (t, x) ∈ D} < 1. (5.15)

Then the operator ` given by (5.1) belongs to the set Sac(D).

Remark 5.2. The strict inequality (5.15) in the previous theorem cannot be replaced by the nonstrict one (see
Example 6.5).
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Theorem 5.5. Let

g(t, x)(τ1(t, x)− t) ≤ 0 for (t, x) ∈ D, (5.16)

g(t, x)(µ1(t, x)− x) ≤ 0 for (t, x) ∈ D, (5.17)

and ∫ b

a

∫ d

c
g(s, η)dηds ≤ 1. (5.18)

Then the operator ` given by (5.2) belongs to the set Sac(D).

Remark 5.3. The constant 1 on the right-hand side of the inequality (5.18) cannot be replaced by the constant 1 + ε,
no matter how small ε > 0 would be (see Example 6.2).

Theorem 5.6. Let the conditions (5.16) and (5.17) be satisfied and let

ess sup{g(t, x)γ (τ1(t, x), µ1(t, x)) : (t, x) ∈ D} ≤ 1, (5.19)

where

γ (t, x) = (b − a)(d − c)− (t − a)(x − c) for (t, x) ∈ D. (5.20)

Then the operator ` given by (5.2) belongs to the set Sac(D).

Remark 5.4. The inequality (5.19) in the previous theorem cannot be replaced by the inequality

ess sup{g(t, x)γ (τ1(t, x), µ1(t, x)) : (t, x) ∈ D} ≤ 1 + ε,

no matter how small ε > 0 would be (see Example 6.6).

Theorem 5.7. Let the functions p, τ0, µ0 satisfy one of the items (a)–(c) in Theorem 5.1 or the assumptions of
Theorems 5.2 or Theorem 5.4 or the conditions (5.13), (5.14), whereas the functions g, τ1, µ1 satisfy the conditions
(5.16), (5.17), and either the inequality (5.18) or (5.19) is fulfilled. Then the operator ` given by (5.3) belongs to the
set Sac(D).

Proof of Theorem 5.1. Let the operator ` be defined by (5.1). Obviously, ` ∈ P(D).
(a) According to (5.4), we have

ρ3(t, x) ≤ αρ2(t, x) for (t, x) ∈ D,

where ρ2 and ρ3 are given by (3.5). Therefore, the assumptions of Corollary 3.2(a) are satisfied.
(b) For (t, x) ∈ D and v ∈ C (D; R), we put

`(v)(t, x)
def
= = p(t, x)

[
1
2
(1 + sgn(τ0(t, x)− t))

∫ τ0(t,x)

t

∫ µ0(t,x)

c
p(s, η)v(τ0(s, η), µ0(s, η))dηds

+
1
2
(1 + sgn(µ0(t, x)− x))

∫ t

a

∫ µ0(t,x)

x
p(s, η)v(τ0(s, η), µ0(s, η))dηds

]
.

It is clear that ` ∈ P(D) and

`(θ(v))(t, x)− `(1)(t, x)θ(v)(t, x) = p(t, x)
∫ τ0(t,x)

a

∫ µ0(t,x)

c
p(s, η)v(τ0(s, η), µ0(s, η))dηds

− p(t, x)
∫ t

a

∫ x

c
p(s, η)v(τ0(s, η), µ0(s, η))dηds

= p(t, x)

[∫ τ0(t,x)

t

∫ µ0(t,x)

c
p(s, η)v(τ0(s, η), µ0(s, η))dηds
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+

∫ t

a

∫ µ0(t,x)

x
p(s, η)v(τ0(s, η), µ0(s, η))dηds

]
≤ `(v)(t, x) for (t, x) ∈ D, v ∈ C(D; R+),

where θ is given by (3.6). On the other hand, by virtue of (5.5), the inequality (3.7) holds. Hence, the assumptions of
Corollary 3.2(b) are satisfied.

(c) The proof is analogous to the previous case but the operator ` is defined by

`(v)(t, x)
def
= = p(t, x)

[
1
2
(1 + sgn(τ0(t, x)− t))

∫ τ0(t,x)

t

∫ x

c
p(s, η)v(τ0(s, η), µ0(s, η))dηds

+
1
2
(1 + sgn(µ0(t, x)− x))

∫ τ0(t,x)

a

∫ µ0(t,x)

x
p(s, η)v(τ0(s, η), µ0(s, η))dηds

]
for (t, x) ∈ D and v ∈ C(D; R). �

Proof of Theorem 5.2. Let the operator ` be defined by (5.1). Obviously, ` ∈ P(D).
First suppose that (5.9) holds. Let

`∗(v)(t, x)
def
= p(t, x)v(τ0(t, x), µ0(t, x)) for (t, x) ∈ D∗, v ∈ C(D∗

; R), (5.21)

where D∗
= [a, τ ∗

0 ] × [c, µ∗

0]. In other words, `∗ is the restriction of ` to the space C (D∗,R). According to (5.9) and
Remark 3.2, it is clear that `∗ ∈ Sac(D∗). However, by Lemma 4.1, it can be easily verified that ` ∈ Sac(D), as well.

Now suppose that (5.10) and (5.11) are satisfied, where the number ω∗ is given by (5.12). Then there exist y0 > 0
and ε ∈ [0, 1[ such that∫ τ0(t,x)

t

∫ x

c
p(s, η)dηds +

∫ τ0(t,x)

a

∫ µ0(t,x)

x
p(s, η)dηds

≤
1
y0

ln

y0 +
y0ε

exp
(

y0
∫ τ∗

0
a

∫ µ∗

0
c p(s, η)dηds

)
− ε

 for (t, x) ∈ D.

Consequently, the inequality∫ τ0(t,x)

a

∫ µ0(t,x)

c
p(s, η)dηds −

∫ t

a

∫ x

c
p(s, η)dηds ≤

1
y0

ln

 y0 exp
(

y0
∫ τ0(t,x)

a

∫ µ0(t,x)
c p(s, η)dηds

)
exp

(
y0
∫ τ0(t,x)

a

∫ µ0(t,x)
c p(s, η)dηds

)
− ε


(5.22)

holds for (t, x) ∈ D. Put

γ (t, x) = exp
(

y0

∫ t

a

∫ x

c
p(s, η)dηds

)
− ε for (t, x) ∈ D.

Obviously, γ ∈ C∗(D; ]0,+∞[) and, in view of (5.22), γ satisfies the inequalities (3.1)–(3.3). Therefore, by virtue
of Theorem 3.1, we get ` ∈ Sac(D). �

To prove Theorem 5.3 we need the following lemma.

Lemma 5.8. Let D∗
= [a, τ ∗

0 ] × [c, µ∗

0], p ∈ L(D∗
; R+) be such that (5.13) holds, and let u ∈ C∗(D∗

; R) be a
function satisfying

ut x (t, x) = p(t, x)u(τ0(t, x), µ0(t, x)) for (t, x) ∈ D∗, (5.23)

u(t, c) = 0 for t ∈ [a, τ ∗

0 ], u(a, x) = 0 for x ∈ [c, µ∗

0]. (5.24)

Then the function u does not change its sign.
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Proof. Assume that, on the contrary, u changes its sign. Put

M = max{u(t, x) : (t, x) ∈ D∗
}, m = − min{u(t, x) : (t, x) ∈ D∗

}, (5.25)

and choose (tM , xM ), (tm, xm) ∈ D∗ such that

u(tM , xM ) = M, u(tm, xm) = −m. (5.26)

Obviously,

M > 0, m > 0, (5.27)

and without loss of generality we can assume that tm ≤ tM . It is also clear that either

xm < xM (5.28)

or

xm ≥ xM . (5.29)

First suppose that (5.28) holds. According to (5.23) and (5.24), Lemma 4.1 yields

u(tM , xM )− u(tm, xm) =

∫ tm

a

∫ xM

xm

p(s, η)u(τ0(s, η), µ0(s, η))dηds

+

∫ tM

tm

∫ xM

c
p(s, η)u(τ0(s, η), µ0(s, η))dηds.

Hence, in view of (5.25)–(5.27), we get

M + m ≤ M
∫ tm

a

∫ xM

xm

p(s, η)dηds + M
∫ tM

tm

∫ xM

c
p(s, η)dηds ≤ M

∫ τ∗

0

a

∫ µ∗

0

c
p(s, η)dηds,

which, on account of (5.13), contradicts (5.27).
Now suppose that (5.29) is satisfied. According to (5.23) and (5.24), Lemma 4.1 implies

u(tM , xM )− u(tm, xM ) =

∫ tM

tm

∫ xM

c
p(s, η)u(τ0(s, η), µ0(s, η))dηds,

u(tm, xm)− u(tm, xM ) =

∫ tm

a

∫ xm

xM

p(s, η)u(τ0(s, η), µ0(s, η))dηds.

Hence, in view of (5.25)–(5.27), we get

M − u(tm, xM ) ≤ M
∫ tM

tm

∫ xM

c
p(s, η)dηds,

u(tm, xM )+ m ≤ m
∫ tm

a

∫ xm

xM

p(s, η)dηds.

Therefore

M + m ≤ max{M,m}

(∫ tm

a

∫ xm

xM

p(s, η)dηds +

∫ tM

tm

∫ xM

c
p(s, η)dηds

)
≤ max{M,m}

∫ τ∗

0

a

∫ µ∗

0

c
p(s, η)dηds,

which, on account of (5.13), contradicts (5.27). �

Proof of Theorem 5.3. Let D∗
= [a, τ ∗

0 ] × [c, µ∗

0] and the operator ` ∈ L(D) be defined by (5.1). Let, moreover, `∗

be the restriction of ` to the space C(D∗,R), i.e., `∗ is given by (5.21). Since

(τ0(t, x), µ0(t, x)) ∈ D∗ for almost all (t, x) ∈ D,
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it is easy to verify that ` ∈ Sac(D) if and only if `∗ ∈ Sac(D∗). However, according to Proposition 3.3, `∗ ∈ Sac(D∗) if
and only if the homogeneous problem (5.23), (5.24) has only the trivial solution. Consequently, to prove Theorem 5.3
it is sufficient to show that the problem (5.23), (5.24) has only the trivial solution if and only if the condition (5.14) is
satisfied.

Let u be a solution of the problems (5.23), (5.24). By virtue of Lemma 5.8, we can assume that

u(t, x) ≥ 0 for (t, x) ∈ D∗. (5.30)

Put

f (t, x) =

∫ t

a

∫ x

c
p(s, η)dηds for (t, x) ∈ D∗.

Since u satisfies (5.23) and (5.24), Lemma 4.1 yields

u(τ ∗

0 , µ
∗

0)− u(t, x) =

∫ τ∗

0

a

∫ µ∗

0

x
p(s, η)u(τ0(s, η), µ0(s, η))dηds

+

∫ τ∗

0

t

∫ x

c
p(s, η)u(τ0(s, η), µ0(s, η))dηds for (t, x) ∈ D∗.

Therefore, in view of (5.30), we get

u(t, x) ≤ u(τ ∗

0 , µ
∗

0) for (t, x) ∈ D∗ (5.31)

and

u(τ ∗

0 , µ
∗

0)− u(t, x) ≤ u(τ ∗

0 , µ
∗

0)

(∫ τ∗

0

a

∫ µ∗

0

x
p(s, η)dηds +

∫ τ∗

0

t

∫ x

c
p(s, η)dηds

)
= u(τ ∗

0 , µ
∗

0)( f (τ ∗

0 , µ
∗

0)− f (t, x)) for (t, x) ∈ D∗. (5.32)

From (5.13) and (5.32) we obtain

u(τ ∗

0 , µ
∗

0) f (t, x) ≤ u(τ ∗

0 , µ
∗

0)( f (τ ∗

0 , µ
∗

0)− 1)+ u(t, x) = u(t, x) for (t, x) ∈ D∗. (5.33)

On the other hand, on account of (5.23), (5.24) and (5.31), we get

u(t, x) =

∫ t

a

∫ x

c
p(s, η)u(τ0(s, η), µ0(s, η))dηds ≤ u(τ ∗

0 , µ
∗

0) f (t, x) for (t, x) ∈ D∗. (5.34)

Now, it follows from (5.33) and (5.34) that

u(t, x) = u(τ ∗

0 , µ
∗

0)

∫ t

a

∫ x

c
p(s, η)dηds for (t, x) ∈ D∗. (5.35)

Finally, on account of the relation (5.35), we obtain

u(t, x) =

∫ t

a

∫ x

c
p(s, η)u(τ0(s, η), µ0(s, η))dηds

=

∫ t

a

∫ x

c
p(s, η)

(
u(τ ∗

0 , µ
∗

0)

∫ τ0(s,η)

a

∫ µ0(s,η)

c
p(ξ1, ξ2)dξ2dξ1

)
dηds

for (t, x) ∈ D∗ and thus,

u(τ ∗

0 , µ
∗

0)

[
1 −

∫ τ∗

0

a

∫ µ∗

0

c
p(s, η)

(∫ τ0(s,η)

a

∫ µ0(s,η)

c
p(ξ1, ξ2)dξ2dξ1

)
dηds

]
= 0. (5.36)

We have proved that every solution u of the problems (5.23), (5.24) admits the representation (5.35) and, moreover,
u(τ ∗

0 , µ
∗

0) satisfies (5.36). Therefore, if (5.14) holds, then the problems (5.23), (5.24) have only the trivial solution.



1310 A. Lomtatidze et al. / Mathematical and Computer Modelling 47 (2008) 1292–1313

It remains to show that if (5.14) is not satisfied, i.e.,∫ τ∗

0

a

∫ µ∗

0

c
p(s, η) f (τ0(s, η), µ0(s, η))dηds = 1, (5.37)

then the problem (5.23), (5.24) has a nontrivial solution. Indeed, since

f (τ0(t, x), µ0(t, x)) ≤ f (τ ∗

0 , µ
∗

0) for (t, x) ∈ D∗,

in view of (5.13) and (5.37), we get

0 ≤

∫ t

a

∫ x

c
p(s, η)( f (τ ∗

0 , µ
∗

0)− f (τ0(s, η), µ0(s, η)))dηds

≤

∫ τ∗

0

a

∫ µ∗

0

c
p(s, η)( f (τ ∗

0 , µ
∗

0)− f (τ0(s, η), µ0(s, η)))dηds

= 1 −

∫ τ∗

0

a

∫ µ∗

0

c
p(s, η) f (τ0(s, η), µ0(s, η))dηds = 0 for (t, x) ∈ D∗.

Consequently,∫ t

a

∫ x

c
p(s, η)( f (τ ∗

0 , µ
∗

0)− f (τ0(s, η), µ0(s, η)))dηds = 0 for (t, x) ∈ D∗,

i.e.,

f (t, x) =

∫ t

a

∫ x

c
p(s, η) f (τ0(s, η), µ0(s, η))dηds for (t, x) ∈ D∗.

Thus f is a nontrivial solution of the problem (5.23), (5.24). �

Proof of Theorem 5.4. Let the operator ` be defined by (5.1). Obviously, ` ∈ P(D).
According to (5.15), there exists ε > 0 such that

p(t, x)((τ0(t, x)− a)(µ0(t, x)− c)+ ε) ≤ 1 for (t, x) ∈ D. (5.38)

Put

γ (t, x) = (t − a)(x − c)+ ε for (t, x) ∈ D.

Obviously, γ ∈ C∗(D; ]0,+∞[) and, in view of (5.38), γ satisfies the inequalities (3.1)–(3.3). Therefore, by virtue
of Theorem 3.1, we get ` ∈ Sac(D). �

Proof of Theorem 5.5. Let the operator ` be defined by (5.2). It is clear that, in view of the assumptions (5.16)
and (5.17), the operator ` is an (a, c)-Volterra one. Therefore, the validity of the theorem follows immediately from
Corollary 3.6. �

Proof of Theorem 5.6. Let the operator ` be defined by (5.2). It is clear that, in view of the assumptions (5.16)
and (5.17), the operator ` is an (a, c)-Volterra one. Moreover, by virtue of the assumption (5.19), the function γ
given by (5.20) satisfies the inequalities (3.10)–(3.13). Hence, Theorem 3.5 guarantees the validity of the inclusion
` ∈ Sac(D). �

Proof of Theorem 5.7. The validity of theorem follows from Theorems 3.7 and 5.1–5.6. �

6. Counter-examples

In this section, we present the counter-examples showing that the results obtained are unimprovable in a certain
sense.
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Example 6.1. Let the operator ` be defined by (5.1), where τ0 ≡ b, µ0 ≡ d, and p ∈ L(D; R+) is such that∫ b

a

∫ d

c
p(s, η)dηds = 1.

Obviously, ` ∈ P(D) and, for any m > k (m, k ∈ N), the condition (3.4) holds with α = 1, where the functions ρi
(i ∈ N) are defined by (3.5) and (3.6). Moreover, the condition (5.4) is satisfied with α = 1.

On the other hand, the function

u(t, x) =

∫ t

a

∫ x

c
p(s, η)dηds for (t, x) ∈ D

is a nontrivial solution of the problem (1.10)–(1.30). Therefore, by virtue of Remark 1.1, we find ` 6∈ Sac(D).

Example 6.2. Let (t0, x0) ∈]a, b[×]c, d[ and ε > 0. Put D1 = [t0, b] × [x0, d],

τ1(t, x) =

{
a for (t, x) ∈ D \D1
t0 for (t, x) ∈ D1,

and

µ1(t, x) =

{
c for (t, x) ∈ D \D1
x0 for (t, x) ∈ D1.

Let the operator ` be defined by (5.2), where g ∈ L(D; R+) is such that∫ t0

a

∫ x0

c
g(s, η)dηds =

ε

1 + ε
,

∫ b

t0

∫ d

x0

g(s, η)dηds = 1 +
ε2

1 + ε
,

g(t, x) = 0 for (t, x) ∈ [a, t0] × [x0, d] ∪ [t0, b] × [c, x0].

Obviously, ` is an (a, c)-Volterra operator and the condition (3.15) holds. Further, it is not difficult to verify that the
function γ ∈ C∗(D; R+), defined by

γ (t, x) =


ε

1 + ε
−

∫ t

a

∫ x

c
g(s, η)dηds for (t, x) ∈ D \D1

0 for (t, x) ∈ D1,

satisfies the conditions (3.10), (3.12), (3.13), and γ (t0, x0) = 0.
On the other hand, the function

u(t, x) =


1 −

∫ t

a

∫ x

c
g(s, η)dηds for (t, x) ∈ D \D1(

1 −
ε

1 + ε

)(
1 −

∫ t

t0

∫ x

x0

g(s, η)dηds

)
for (t, x) ∈ D1

is a solution of the problem (1.4)–(1.7) with u(b, d) = −
ε2

(1+ε)2
< 0, and thus ` 6∈ Sac(D).

Example 6.3. Let ε ∈]0, 1[ and let p, g ∈ L(D; R+) be such that∫ b

a

∫ d

c
p(s, η)dηds = 1 + ε,

∫ b

a

∫ d

c
g(s, η)dηds < 1. (6.1)

Let ` = `0 − `1, where

`0(v)(t, x)
def
= p(t, x)v(b, d), `1(v)(t, x)

def
= g(t, x)v(a, c). (6.2)

According to Remark 3.2 and Corollary 3.6, we find

(1 − ε)`0 ∈ Sac(D), −`1 ∈ Sac(D).
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Note also that the homogeneous problem (1.10)–(1.30) has only the trivial solution. Indeed, if u0 is a solution of the
problem (1.10)–(1.30) then Lemma 4.1 yields

u0(b, d)− u0(a, c) = u0(b, d)
∫ b

a

∫ d

c
p(s, η)dηds − u0(a, c)

∫ b

a

∫ d

c
g(s, η)dηds. (6.3)

Consequently, in view of (1.20) and (6.1), we get u0(b, d) = 0. Now, (1.10) implies ∂2

∂t ∂x u0(t, x) = 0 for (t, x) ∈ D
and thus, u0 ≡ 0. Therefore, the problem (1.10), (1.2), (1.3) with ϕ ≡ 1 and ψ ≡ 1 has a unique solution u.

On the other hand, by virtue of (6.1), Lemma 4.1 yields

u(b, d)− u(a, c) = (1 + ε)u(b, d)− u(a, c)
∫ b

a

∫ d

c
g(s, η)dηds,

i.e.,

εu(b, d) =

∫ b

a

∫ d

c
g(s, η)dηds − 1.

Hence, u is a solution of the problem (1.4)–(1.7) with u(b, d) < 0, and thus ` 6∈ Sac(D).

Example 6.4. Let ε ∈]0, 1[ and let p, g ∈ L(D; R+) be such that∫ b

a

∫ d

c
p(s, η)dηds < 1,

∫ b

a

∫ d

c
g(s, η)dηds = 1 + ε. (6.4)

Let ` = `0 − `1, where `0 and `1 are defined by (6.2). According to Remark 3.2 and Corollary 3.6, we find

`0 ∈ Sac(D), −(1 − ε)`1 ∈ Sac(D).

Note also that the homogeneous problem (1.10)–(1.30) has only the trivial solution. Indeed, if u0 is a solution of the
problem (1.10)–(1.30) then Lemma 4.1 yields (6.3). Consequently, in view of (1.20) and (6.4), we get u0(b, d) = 0.
Now, (1.10) implies ∂2

∂t ∂x u0(t, x) = 0 for (t, x) ∈ D and thus, u0 ≡ 0. Therefore, the problem (1.10), (1.2), (1.3)
with ϕ ≡ 1 and ψ ≡ 1 has a unique solution u.

On the other hand, by virtue of (6.4), Lemma 4.1 yields

u(b, d)− u(a, c) = u(b, d)
∫ b

a

∫ d

c
p(s, η)dηds − (1 + ε)u(a, c),

i.e.,

u(b, d)

(
1 −

∫ b

a

∫ d

c
p(s, η)dηds

)
= −ε.

Hence, u is a solution of the problem (1.4)–(1.7) with u(b, d) < 0, and thus ` 6∈ Sac(D).

Example 6.5. Let the operator ` be defined by (5.1), where τ0 ≡ b, µ0 ≡ d, and p ≡ [(b − a)(d − c)]−1. It is clear
that

ess sup{p(t, x)(τ0(t, x)− a)(µ0(t, x)− c) : (t, x) ∈ D} = 1.

However, the function

u(t, x) = (t − a)(x − c) for (t, x) ∈ D

is a nontrivial solution of the problem (1.10)–(1.30) and thus ` 6∈ Sac(D).

Example 6.6. Let ε > 0 and let the operator ` be defined by (5.2), where τ1 ≡ a, µ1 ≡ c, and g ≡ (1 + ε)[(b −

a)(d − c)]−1. It is clear that the conditions (5.16) and (5.17) are satisfied, and

ess sup{g(t, x)[(b − a)(d − c)− (τ1(t, x)− a)(µ1(t, x)− c)] : (t, x) ∈ D} = 1 + ε.
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On the other hand, the function

u(t, x) = (b − a)(d − c)− (1 + ε)(t − a)(x − c) for (t, x) ∈ D

is a solution of the problem (1.10), (1.2), (1.3) with ψ ≡ (b − a)(d − c) and ϕ ≡ (b − a)(d − c). Since
u(b, d) = −ε(b − a)(d − c) < 0 we get ` 6∈ Sac(D).
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