ORDINARY DIFFERENTIAL EQUATIONS

On Nonlinear Boundary Value Problems for Two-Dimensional Differential Systems

I. T. Kiguradze and S. V. Mukhigulashvili

Razmadze Mathematical Institute, Georgian Academy of Sciences, Tbilisi, Georgia Received September 1, 2003

1. STATEMENT OF THE MAIN RESULTS

1.1. Statement of the Problems

We study the boundary value problem

$$\frac{du_i}{dt} = f_i(t, u_1, u_2) \qquad (i = 1, 2),$$

$$\varphi_i(u_1(a), u_2(a), u_1(b), u_2(b)) = 0 \qquad (i = 1, 2),$$
(1.1)

$$\varphi_i(u_1(a), u_2(a), u_1(b), u_2(b)) = 0 \qquad (i = 1, 2),$$
(1.2)

where the $f_i:[a,b]\times\mathbb{R}^2\to\mathbb{R}$ (i=1,2) are functions satisfying the local Carathéodory conditions and the $\varphi_i:\mathbb{R}^4\to\mathbb{R}$ (i=1,2) are continuous functions satisfying one of the following two inequalities in \mathbb{R}^4 :

$$(\varphi_1(x_1, x_2, x_3, x_4) - x_1) x_2 - (\varphi_2(x_1, x_2, x_3, x_4) - x_3) x_4 \le \gamma, \tag{1.3}$$

$$(\varphi_1(x_1, x_2, x_3, x_4) - x_1) x_2 - (\varphi_2(x_1, x_2, x_3, x_4) - x_4) x_3 \le \gamma.$$

$$(1.4)$$

Here $\gamma = \text{const} \geq 0$.

We separately consider the case in which $f_i(t, x_1, x_2) \equiv f_i(t, x_{3-i})$ (i = 1, 2) and either

$$\varphi_1(x_1, x_2, x_3, x_4) = x_1 - \mu x_4 + \psi_1(x_2),
\varphi_2(x_1, x_2, x_3, x_4) \equiv x_3 - \mu x_2 - \psi_2(x_4)$$

or

$$\varphi_1(x_1, x_2, x_3, x_4) = x_1 - \mu x_3 + \psi_1(x_2),
\varphi_2(x_1, x_2, x_3, x_4) \equiv x_4 - \mu x_2 - \psi_2(x_3),$$

that is, the case in which system (1.1) has the form

$$\frac{du_1}{dt} = f_1(t, u_2), \qquad \frac{du_2}{dt} = f_2(t, u_1),$$
(1.5)

and the boundary conditions (1.2) have one of the following two forms:

$$u_1(a) = \mu u_2(b) - \psi_1(u_2(a)), \qquad u_1(b) = \mu u_2(a) + \psi_2(u_2(b)),$$
 (1.2₁)

$$u_1(a) = \mu u_1(b) - \psi_1(u_2(a)), \qquad u_2(b) = \mu u_2(a) + \psi_2(u_1(b)),$$
 (1.2₂)

where μ is an arbitrary real number and the $\psi_i: \mathbb{R} \to \mathbb{R}$ (i=1,2) are continuous functions such

$$x\psi_1(x) + y\psi_2(y) \le \gamma \quad \text{for} \quad (x, y) \in \mathbb{R}^2. \tag{1.6}$$

This class of boundary conditions includes, for example, well-known two-point, periodic, and antiperiodic boundary conditions

$$u_1(a) = 0,$$
 $u_1(b) = 0,$ (1.2₃)

$$u_1(a) = 0,$$
 $u_2(b) = 0,$ (1.2₄)

$$u_1(a) = 0,$$
 $u_2(b) = 0,$ $u_1(a) = u_1(b),$ $u_2(a) = u_2(b),$ $u_$

$$u_1(a) = -u_1(b), u_2(a) = -u_2(b).$$
 (1.2₆)

0012-2661/04/4006-0797 © 2004 MAIK "Nauka/Interperiodica"