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Abstract

We argue that Spontaneous Lorentz Invariance Violation (SLIV)
could provide a dynamical approach to the Yang-Mills and tensor field
gravity type theories with gluons and gravitons appearing as massless
Goldstone and pseudo-Goldstone modes. The present thesis being
related to this study is consisted of the several parts.

The first part includes the brief overview of the idea of SLIV which
concerns a possible experimental motivation for Lorentz violation in
general, from one hand, and theoretical argumentation providing the
better understanding of the masslessness of gauge fields in Abelian
quantum field theories, from the other.

The second chapter contains the analysis of non-Abelian case. The
SLIV realized through a nonlinear vector field constraint of the type
Tr(AµA

µ) = ±M2 (M is the proposed scale for Lorentz violation)
is shown to generate massless vector Goldstone bosons, gauging the
starting global internal symmetries in arbitrary relativistically invariant
vector field theories. Actually, allowing the parameters in the La-
grangian to be adjusted so as to be consistent with this constraint, the



theory turns out to correspond to the gauged Yang-Mills theory, while
the massless vector field appear as the Goldstone and pseudo-Goldstone
vector bosons caused by SLIV. The theory looks essentially nonlinear
and contains particular Lorentz (and CPT ) violating couplings when
expressed in terms of pure Goldstone vector modes. However, the model
does not lead to physical Lorentz violation due to the simultaneously
generated gauge invariance. The result are checked for some tree level
processes.

The third chapter is basically related to the gravity case. In essence,
the tensor field gravity theory, that mimics the linearized general
relativity in Minkowski space-time, has been studied in which SLIV is
realized through a nonlinear tensor field constraint H2

µν = ±M 2. We
show that such a SLIV pattern, due to which the true vacuum in the
theory is chosen, induces massless tensor Goldstone modes some of
which can naturally be associated with the physical graviton. Again
as in the vector field case, this theory looks essentially nonlinear and
contains a variety of Lorentz and CPT violating couplings. Nonetheless,
all SLIV effects turn out to be strictly cancelled in all the lowest order
processes considered, provided that the tensor field gravity theory is
properly extended to general relativity (GR).

So, as we generally argue, the measurable effects of SLIV, induced
by elementary vector or tensor fields, are related to the accompanying
gauge symmetry breaking rather than to spontaneous Lorentz violation.
The latter appears by itself to be physically unobservable, only resulting
in a noncovariant gauge choice in an otherwise gauge invariant and
Lorentz invariant theory. However, while Goldstonic vector and tensor
field theories with exact local invariance are physically indistinguishable
from conventional gauge theories, there might appear some principal
distinctions if this local symmetry were slightly broken at very small
distances in a way that could eventually allow one to differentiate
between them observationally.

The fourth chapter summarizes the results established in the previous
parts.

And finally thesis has a useful appendix including the details which
are not presented in the main parts. These detail may help readers who
want to carry out their own calculations in the Yang-Mills or Tensor
Field Gravity type theories with the kinetic terms being different from
the ordinary one.
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Chapter 1

Brief Overview

Since 1905 the ideas of special relativity have been used not only as the fundamental theo-

retical principle, as it is taken presently in conventional Particle Physics and Quantum Field

Theory, but almost in every aspect of our daily life. One could even state that the Lorentz

Invariance is almost axiomatic postulate which the most of people believe in. Nevertheless,

one could not declare so far, that Lorentz invariance is absolutely proven principle - instead,

only following statement seems to be correct that according to experimental data we are

tend to assume that Lorentz Invariance had been carrying with some known precision. In

this chapter some motivation for the Spontaneous Lorentz Invariance Violation (SLIV) will

be presented.
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CHAPTER 1. BRIEF OVERVIEW

1.1 The motivation for SLIV

In the last decades there was an utterable interest in the breakdown of the Lorentz invariance,

as a phenomenological possibility in the context of various quantum field theories as well as

modified gravity and string theories1.

It is an extremely challenging idea, that SLIV could provide a dynamical approach to

quantum electrodynamics2, gravity3 and Yang-Mills4 theories with photon, graviton and

non-Abelian gauge fields appearing as massless Nambu-Goldstone (NG) bosons5. This idea

has recently gained new impetus in the gravity sector - as for composite gravitons6, in the

case when gravitons identified with the NG modes of the symmetric two-index tensor field

in the theory preserving a diffeomorphism (diff) invariance, apart from some non-invariant

potential inducing spontaneous Lorentz violation7.

Let us note at the same time that the experimental motivation for an explicit Lorentz

violation is still very contradictory. For example one can find the publication8 where the

AGASA (Akeno Giant Air Shower Array) experimental group claims that for 14 years of

operation they had observed 1000 ultra-high energy cosmic rays (UHECRs) above 1019eV

including eleven events above 1020eV which is potentially in a conflict with the Greisen-

Zatsepin-Kuzmin cut-off 9. As could be expected, such an utterance produced a long cascade

of a papers which was in an effort to produce a model without the cutoff. Nowadays it seems

that the several events above GZK-cutoff that AGASA registered might be a consequence of

1Arkani-Hamed et al. (2004, 2007); Jacobson et al. (2006); Gripaios (2004); Jacobson et al. (2005); Kraus

and Tomboulis (2002); Coleman and Glashow (1999)
2Bjorken (1963); Bialynicki-Birula (1963); Guralnik (1964)
3Atkatz (1978); Eguchi and Freund (1976); Ohanian (1969); Phillips (1966)
4Suzuki (1988); Terazawa et al. (1977)
5Nambu and Jona-Lasinio (1961)
6Berezhiani and Kancheli (2008)
7Kostelecky and Potting (2009); Carroll et al. (2009)
8Shinozaki and Teshima (2004); Shinozaki (2006)
9Greisen (1966); Zatsepin and Kuzmin (1966)
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1.1. THE MOTIVATION FOR SLIV

overestimating the primary energy in the surface array10.

The work have been published recently claiming the violation of Lorentz invariance in

high energy ions11 however one could find the ’contra-article’, suggesting a mistake based on

miscalculations in Doppler effect12.

Typically, analyzing any experiment with a given precision one always can take an ordi-

nary theory and introduce some Lorentz violating terms in it. This has led to a great deal

of theoretical speculation. For almost each Lorentz violating theoretical model one could

tune the breakdown parameter to avoid the conflict with the experiment. So, it is extremely

hard to choose the particular way to break Lorentz invariance in case of guidance only with

experimental criteria.

However, luckily, we have some profound theoretical argumentation as well. As is well

known, almost all the observed internal symmetries are more or less broken. Actually, our

experience in particle physics gives us the knowledge that all the symmetries, apart from

color and the electric charge, are broken in some extent. At the same time we know that

at the early stage of particle physics the people tried to break the internal symmetry by

introducing some additional breaking terms directly into the Lagrangian, just what some are

often doing now with respect to Lorentz invariance. However, we have learned since then

that the more acceptable (if not the only) way of the symmetry breaking is its spontaneous

breakdown unless one does want to be under risk to completely lose control on the theory

considered.

This is somehow surprising that Nature prefers to create the completely symmetric phase

on a high energy scale and only afterwards spontaneously breaks it (on a relatively low one).

The ideas of spontaneously breakdown symmetry have been introduced in the condensed

matter physics. It turns out that the idea is general and has fundamental meaning for the

10Capdevielle et al. (2009)
11Devasia (2010)
12Saathoff et al. (2011)
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CHAPTER 1. BRIEF OVERVIEW

wide areas of applications culminating in the famous Goldstone theorem13. Despite the no-

ticeable beauty and success of the this theorem the only known Goldstone boson that so far

was found in particle physics is Nambu-Jona-Lasinio pion14.

Nonetheless, it seems to be extremely interesting to consider all genuinely massless par-

ticles, like as photons or gravitons, as a Goldstonic particles that was argued a long ago

(Bjorken, 2001). We briefly recall some of generic ingredients of this approach based on the

four-fermion (current × current) interaction, where the Goldstonic gauge field may appear as

a composite fermion-antifermion state. Unfortunately, owing to the lack of an initial gauge

invariance in such models and the composite nature of the NG modes that appear, it is hard

to explicitly demonstrate that these modes really form together a massless vector boson as

a gauge field candidate. Actually, one must make a precise tuning of parameters in order

to achieve the massless photon case. Rather, there are in general three separate massless

NG modes, two of which may mimic the transverse photon polarizations, while the third one

must be appropriately suppressed. In this connection, the more instructive laboratory for

SLIV consideration proves to be some simple class of the QED type models15 having from the

outset a gauge invariant form whereas the spontaneous Lorentz violation is realized through

the non-linear dynamical constraint that we are considering in the next section.

13Goldstone (1961); Goldstone et al. (1962)
14Nambu and Jona-Lasinio (1961)
15Nambu (1968); Chkareuli et al. (2004)
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1.2. SLIV IN QED

1.2 SLIV in QED

Now we have some rules of game or general principles. Actually in order to build the good

theory in the symmetry-broken phase one has to use spontaneous Lorentz violation (rather

than the direct one) and, besides, the initial gauge invariance is required. These instructions

might seemed to be too general. However it is easy to build the theoretical constructions

which would work indeed. All required ingredients are: the lagrangian of QED (just one

neutral vector connected one fermion field by an ordinary coupling) and several additional

polynomial terms of the vector field. Such a theory being first considered in the 60-ies in

(Nambu, 1968) and in more detail relatively recently in (Chkareuli et al., 2004). The model is

particularly interesting because of its ability to generate, on its own, the non-linear constraint

for the vector field. The corresponding Lagrangian is

L = −1

4
FµνF

µν +
µ2

2
Aµ

2 − λ2

4

(
Aµ

2
)
2 + ψ̄(iγ∂ −m)ψ − eAµψ̄γ

µψ (1.1)

The free part of the Lagrangian is taken in the standard form such that Lorentz condition

∂µA
µ(x) = 0 automatically follows from the equation for the vector field Aµ when the self-

interaction λA4 term is absent in the Lagrangian. However, this term has to be added to

implement the spontaneous breakdown of Lorentz symmetry SO(1, 3) down to the SO(3) or

SO(1, 2) for µ2 > 0 and µ2 < 0 , respectively.

The equations of motion directly lead then to the constraint for the vector field (in case

λ ̸= 0):

A2 =
µ2

λ
. (1.2)

provided that the spin-1 or Lorentz condition is still required for vector field to be fulfilled

The similar models, while in other connection, have been also considered in the past16.

By the using this nonlinear condition put on the vector field it is possible to express the entire

16Kostelecky and Lehnert (2001); Kostelecky and Samuel (1989); Righi and Venturi (1981, 1982); Nambu

(1968),
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CHAPTER 1. BRIEF OVERVIEW

Lagrangian in terms of Goldstonic modes that eventually leads the a construction, termed as

a σ model for a QED in analogy with the non-linear σ model for pions. The model contains

only two independent (and approximately transverse) vector Goldstone boson modes identi-

fied with the physical photon, and in the limitM → ∞ is indistinguishable from conventional

QED taken in the axial gauge.

Note that this correspondence with pion σ model may be somewhat suggestive, in view

of the fact that pions are the only presently known Goldstones and their theory, chiral dy-

namics, is given by the non-linearly realized chiral SU(2)× SU(2) symmetry rather than by

an ordinary linear model. The point is, however, that, in sharp contrast to the pion model,

the non-linear QED theory, due to the starting gauge invariance involved, ensures that all

the physical Lorentz violating effects are proved to be non-observable: the SLIV condition

(1.2) is simply reduced to a possible gauge choice for the vector field Amu, while the S-matrix

remains unaltered under such a gauge convention. Really, this non-linear QED contains a

plethora of particular Lorentz and CPT violating couplings when expressed in terms of the

pure Goldstonic photon modes. However, contributions of these couplings to all physical

processes involved are proved to be strictly cancelled, as was explicitly demonstrated in the

tree approximation (Nambu, 1968). Some time ago, this result was extended to the one-loop

approximation and for both time-like (n2 > 0) and space-like (n2 < 0) Lorentz violation

Azatov and Chkareuli (2006). All the contributions to the photon-photon, photon-fermion

and fermion-fermion interactions violating physical Lorentz invariance were shown to exactly

cancel among themselves. This means that the constraint (1.2), having been treated as a non-

linear gauge choice at the tree (classical) level, remains as a gauge condition when quantum

effects are taken into account as well. So, in accordance with Nambus original conjecture,

one can conclude that physical Lorentz invariance is left intact at least in the one-loop ap-

proximation, provided that we consider the standard gauge invariant QED Lagrangian (1.1)

taken in flat Minkowski spacetime. Later this result was also confirmed for the spontaneously

6



1.2. SLIV IN QED

broken massive QED as well (Chkareuli and Kepuladze, 2007). Some interesting aspects of

SLIV in nonlinear QED were considered in (Alfaro and Urrutia, 2010).

7



CHAPTER 1. BRIEF OVERVIEW

1.3 Specific aims of our study

Such a successful application of SLIV to Abelian theories with emergent massless photons

appearing as vector Goldstone modes put the natural question concerning extension of the

SLIV approach considered. Particularly:

Is it possible to expand our consideration to the non-Abelian case?

Should it provide us with some new physics behind?

If the Lorentz Invariance is spontaneously violated for the Yang-Mills types theories will

there be an observable physical effects taking place?

And even more, is it possible to generalize our research and apply our SLIV ansatz to

tensor field gravity type theories?

In the next chapters we will try to answer to the questions listed above, doing it step by

step.

8



Chapter 2

Spontaneously Generated Gluons

The first models realizing the SLIV conjecture were based on the four fermion (current-

current) interaction, where the gauge field appears as a fermion-antifermion pair composite

state (Heisenberg, 1957), in complete analogy with the massless composite scalar field in the

original Nambu-Jona-Lazinio model Nambu and Jona-Lasinio (1961). Unfortunately, owing

to the lack of a starting gauge invariance in such models and the composite nature of the

Goldstone modes which appear, it is hard to explicitly demonstrate that these modes really

form together a massless vector boson as a gauge field candidate. Actually, one must make

a precise tuning of parameters, including a cancelation between terms of different orders in

the 1/N expansion (where N is the number of fermion species involved), in order to achieve

the massless photon case (see, for example, the last paper in (Heisenberg, 1957)). Rather,

there are in general three separate massless Goldstone modes, two of which may mimic the

transverse photon polarizations, while the third one must be appropriately suppressed.

In this connection, a more instructive laboratory for SLIV consideration proves to be

9



CHAPTER 2. SPONTANEOUSLY GENERATED GLUONS

a simple class of QED type models1 having from the outset a gauge invariant form. In

these models the spontaneous Lorentz violation is realized through the nonlinear dynamical

constraint AµA
µ = nνn

νM2 (where nν is a properly oriented unit Lorentz vector, nνn
ν =

±1, while M is the proposed SLIV scale) imposed on the starting vector field Aµ, in much

the same way as it occurs for the corresponding scalar field in the nonlinear σ-model for

pions Weinberg. Note that a correspondence with the nonlinear σ-model for pions may be

somewhat suggestive, in view of the fact that pions are the only presently known Goldstones

and their theory, chiral dynamics Weinberg, is given by the nonlinearly realized chiral SU(2)×

SU(2) symmetry rather than by an ordinary linear σ-model. The above constraint means

in essence that the vector field Aµ develops some constant background value < Aµ(x) >

= nµM and the Lorentz symmetry SO(1, 3) formally breaks down to SO(3) or SO(1, 2)

depending on the time-like (nνn
ν > 0) or space-like (nνn

ν < 0) nature of SLIV. This allows

one to explicitly demonstrate that gauge theories, both Abelian and non-Abelian, can be

interpreted as spontaneously broken theories, although the physical Lorentz invariance still

remains intact.

However, the question naturally arises of whether a gauge symmetry is necessary to

start with. If so, this would in some sense depreciate the latter approach as compared with

those of the original composite models Heisenberg (1957), where a gauge symmetry was

hoped to be derived (while this has not yet been achieved). Remarkably, as we will see, it

happens that one does not need to specially postulate the starting gauge invariance, when

considering the nonlinear σ-model type spontaneous Lorentz violation in the framework of an

arbitrary relativistically invariant Lagrangian for elementary vector and matter fields, which

are proposed only to possess some global internal symmetry. In the present article we start

by a priori only assuming a global symmetry but no gauge invariance, taking all the terms

1?Nambu and Jona-Lasinio (1961); Katori et al. (2006); Bluhm and Kostelecky (2005); Azatov and

Chkareuli (2006); Chkareuli and Kepuladze (2007); Chkareuli and Jejelava (2008)
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in the Lagrangian allowed by Lorentz invariance. With such a Lagrangian, the vector field

Aµ typically develops a non-zero vacuum expectation value,

< Aµ(x) >= nµM. (2.1)

In the limit analogous to the approximation of the linear σ-model by the nonlinear σ-model,

we get the nonlinear constraint:2

A2 = n2M2 (A2 ≡ AµA
µ, n2 ≡ nνn

ν). (2.2)

The chapter mostly rely on my publications (Chkareuli et al., 2008; Chkareuli and Je-

jelava, 2008). In this chapter is simply postulated that the existence of the constraint (2.2) is

to be upheld by adjusting the parameters of the Lagrangian. It is shown that the SLIV con-

jecture, which is related to the condensation of a generic vector field or vector field multiplet,

happens by itself to be powerful enough to impose gauge invariance, provided that I allow

the corresponding Lagrangian density to be adjusted to ensure self-consistency without losing

too many degrees of freedom. Due to the Lorentz violation, this theory acquires on its own

a gauge-type invariance, which gauges the starting global symmetry of the interacting vector

2As it is mentioned already, some way to appreciate a possible origin for the supplementary condition (2.2)

might be by the inclusion of a “standard” quartic vector field potential U(Aµ) = −m2
A
2
A2 + λA

4
(A2)2 in the

vector field Lagrangian, as can be motivated to some extent (Colladay and Kostelecky, 1998) from superstring

theory. This potential inevitably causes the spontaneous violation of Lorentz symmetry in a conventional

way, much as an internal symmetry violation is caused in a linear σ model for pions (Weinberg). As a result,

one has a massive “Higgs” mode (with mass
√
2mA) together with massless Goldstone modes associated with

the photon. Furthermore, just as in the pion model, one can go from the linear model for the SLIV to the

non-linear one by taking the limit λA → ∞, m2
A → ∞ (while keeping the ratio m2

A/λA to be finite). This

immediately leads to the constraint (2.2) for the vector potential Aµ with n2M2 = m2
A/λA, as appears from

the validity of its equation of motion. Another motivation for the nonlinear vector field constraint (2.2) might

be an attempt to avoid an infinite self-energy for the electron in classical electrodynamics, as was originally

suggested by Dirac (Dirac, 1951) and extended later to various vector field theory cases (Righi and Venturi,

1977).

11



CHAPTER 2. SPONTANEOUSLY GENERATED GLUONS

and matter fields involved. In essence, the gauge invariance (with a proper gauge-fixing term)

appears as a necessary condition for these vector fields not to be superfluously restricted in

degrees of freedom. In fact the crucial equations (2.4) and (2.17) below express the relations

needed to reduce the number of independent equations among the equations of motion and

the constraint (2.2). But notice that it is not assumed gauge invariance to derive equations

(2.4) and (2.17); The philosophy is to derive gauge invariance not to put it in. Due to the

constraint (2.2), the true vacuum in a theory is chosen by the Lorentz violation, SLIV. The

self-consistency problem to which we adjusted the couplings in the Lagrangian might have

been avoided by using a Lagrange multiplier associated with the constraint (2.2). However

it is rather the philosophy of the present article to look for consistency of the equations of

motion and the constraint, without introducing such a Lagrange multiplier.

The next Sec. 2.1 consider the global Abelian symmetry case, which eventually appears

as ordinary QED taken in a nonlinear gauge. While such a model for QED was considered

before on its own3, here is used the pure SLIV conjecture. Then in Sec. 2.2 the consideration

is generalized to the global non-Abelian internal symmetry case and come to a conventional

Yang-Mills theory with that symmetry automatically gauged. Specifically, we will see that in

a theory with a symmetry group G having D generators not only the pure Lorentz symmetry

SO(1, 3), but the larger accidental symmetry SO(D, 3D) of the Lorentz violating vector field

constraint also happens to be spontaneously broken. As a result, although the pure Lorentz

violation still generates only one true Goldstone vector boson, the accompanying pseudo-

Goldstone vector bosons related to the SO(D, 3D) breaking also come into play properly

completing the whole gauge field multiplet of the internal symmetry group taken. Remark-

ably, they appear to be strictly massless as well, being protected by the simultaneously

generated non-Abelian gauge invariance. When expressed in terms of the pure Goldstone

3(Nambu and Jona-Lasinio, 1961; Katori et al., 2006; Bluhm and Kostelecky, 2005; Azatov and Chkareuli,

2006; Chkareuli and Kepuladze, 2007; Chkareuli and Jejelava, 2008)
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vector modes these theories, both Abelian and non-Abelian, look essentially nonlinear and

contain Lorentz and CPT violating couplings. However, due to cancellations, they appear to

be physically indistinguishable from the conventional QED and Yang-Mills theories. On the

other hand, their generic, SLIV induced, gauge invariance could of course be broken by some

high-order operators, stemming from very short gravity-influenced distances that would lead

to the physical Lorentz violation. This and some other of the conclusions are discussed in

the final part.
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CHAPTER 2. SPONTANEOUSLY GENERATED GLUONS

2.1 Abelian theory

Suppose first that there is only one vector field Aµ and one complex matter field ψ, a charged

fermion or scalar, in a theory given by a general Lorentz invariant Lagrangian L(A,ψ) with

the corresponding global U(1) charge symmetry imposed. Before proceeding further, note

first that, while a conventional variation principle requires the equation of motion

∂L

∂Aµ
− ∂ν

∂L

∂(∂νAµ)
= 0 (2.3)

to be satisfied, the vector field Aµ, both massive and massless, still contains one superfluous

component which is usually eliminated by imposing some supplementary condition. This is

typically imposed by taking the 4-divergence of the Euler equation (2.3). Such a condition

for the massive QED case (with the gauge invariant FµνF
µν form for the vector field kinetic

term) is known to be the spin-1 or Lorentz condition ∂µA
µ = 0, while for the conventional

massless QED many other conditions (gauges) may alternatively be taken.

Let us now subject the vector field Aµ(x) in a general Lagrangian L(Aµ, ψ) to the SLIV

constraint (2.2), which presumably chooses the true vacuum in a theory. Once the SLIV

constraint is imposed, any extra supplementary condition is no longer possible, since this

would superfluously restrict the number of degrees of freedom for the vector field which

is inadmissible. In fact a further reduction in the number of independent Aµ components

would make it impossible to set the required initial conditions in the appropriate Cauchy

problem and, in quantum theory, to choose self-consistent equal-time commutation relations4

(Ogievetsky and Polubarinov, 1965). It is also well-known Weinberg that there is no way to

construct a massless field Aµ, which transforms properly as a 4-vector, as a linear combination

4For example the need for more than two degrees of freedom is well-known for a massive vector field and

for quantum electrodynamics. In the massive vector field case there are three physical spin-1 states to be

described by the Aµ, whereas for QED, apart from the two physical (transverse) photon spin states, one

formally needs one more component in the Aµ (A0 or A3) as the Lagrange multiplier to get the Gauss law.

So, in both cases only one component in the Aµ may be eliminated.

14



2.1. ABELIAN THEORY

of creation and annihilation operators for helicity ±1 states.

Under this assumption of not getting too many constraints5, it is possible to derive gauge

invariance. Since the 4-divergence of the vector field Euler equation (2.3) should be zero if

the equations of motion are used, it means that this divergence must be expressible as a sum

over the equations of motion multiplied by appropriate quantities. This implies that, without

using the equations of motion but still using the constraint (2.2), we have an identity for the

vector and matter (fermion field, for definiteness) fields of the following type:

∂µ

(
∂L

∂Aµ
− ∂ν

∂L

∂(∂νAµ)

)
≡

(
∂L

∂Aµ
− ∂ν

∂L

∂(∂νAµ)

)
(c)Aµ +

+

(
∂L

∂ψ
− ∂ν

∂L

∂(∂νψ)

)
(it)ψ + (2.4)

+ψ(−it)
(
∂L

∂ψ
− ∂ν

∂L

∂(∂νψ)

)
.

Here the coefficients c and t of the Eulerians on the right-hand side (which vanish by them-

selves when the equations of motion are fulfilled) are some dimensionless constants whose

particular values are conditioned by the starting Lagrangian L(Aµ, ψ) taken, for simplicity,

with renormalisable coupling constants. This identity (2.4) implies the invariance of L under

the vector and fermion field local transformations whose infinitesimal form is given by6

δAµ = ∂µω + cωAµ, δψ = itωψ (2.5)

where ω(x) is an arbitrary function, only being restricted by the requirement to conform

with the nonlinear constraint (2.2). Conversely, the identity (2.4) in its turn follows from

the invariance of the Lagrangian L under the transformations (2.5). Both direct and con-

5The fact that there is a threat of too many supplementary conditions (an inconsistency) is because we

have chosen not to put a Lagrange multiplier term for the constraint (2.2) into Eq. (2.3). Had we explicitly

introduced such a Lagrange multiplier term, F (x)(A2−n2M2), into the Lagrangian L, the equation of motion

for the vector field Aµ would have changed, so that the 4-divergence of this equation would now determine

the Lagrange multiplier function F (x) rather than satisfy the identity (2.4) appearing below.
6Actually, one can confirm this proposition by expanding the action with the transformed Lagrangian

density
∫
d4xL(A′, ψ′) in terms of functional derivatives and then using the identity equation (2.4).
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CHAPTER 2. SPONTANEOUSLY GENERATED GLUONS

verse assertions are in fact particular cases of Noether’s second theorem (Noether, 1918).

Apart from this invariance, one has now to confirm that the transformations (2.5) in fact

form an Abelian symmetry group. Constructing the corresponding Lie bracket operation

(δ1δ2 − δ2δ1) for two successive vector field variations one could find that, while the fermion

transformation in (2.5) is an ordinary Abelian local one with zero Lie bracket, for the vector

field transformations there appears a non-zero result

(δ1δ2 − δ2δ1)Aµ = c(ω1∂µω2 − ω2∂µω1) (2.6)

unless the coefficient c = 0. Note also that for non-zero c the variation of Aµ given by (2.6)

is an essentially arbitrary vector function. Such a freely varying Aµ is only consistent with

a trivial Lagrangian (i.e. L = const). Thus, in order to have a non-trivial Lagrangian, it is

necessary to have c = 0 and the theory then possesses an Abelian local symmetry7.

Thus one could figure out how the choice of a true vacuum conditioned by the SLIV

constraint (2.2) enforces the modification of the Lagrangian L, so as to convert the starting

global U(1) charge symmetry into a local one (2.5). Otherwise, the theory would super-

fluously restrict the number of degrees of freedom for the vector field and that would be

inadmissible. This SLIV induced local Abelian symmetry (2.5) now allows the Lagrangian L

to be determined in full. For a minimal theory with renormalisable coupling constants, it is

in fact the conventional QED Lagrangian which we eventually come to:

L(Aµ, ψ) = −1

4
FµνF

µν + ψ(iγ∂ −m)ψ − eAµψγ
µψ (2.7)

with the SLIV constraint A2 = n2M2 imposed on the vector field Aµ. In the derivation

made, we were only allowed to use gauge transformations consistent with the constraint (2.2)

which now plays the role of a gauge-fixing term for the resulting gauge invariant theory8

7In Sec. 2.2 will be shown that non-zero c-type coefficients appear in the non-Abelian internal symmetry

case, resulting eventually in a Yang-Mills gauge invariant theory.
8As indicated in refs. ?Dirac (1951), the SLIV constraint equation for the corresponding finite gauge
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2.1. ABELIAN THEORY

(2.7). Note that a quartic potential U(Aµ) of the type discussed in footnote 1 would give

vanishing contributions on both sides of Eq. (2.4), when the nonlinear constraint (2.2) with

the SLIV scale M2 given in the footnote is imposed. Furthermore the contribution of such a

potential to the Lagrangian (2.7) would then reduce to an inessential constant.

One can rewrite the Lagrangian L(Aµ, ψ) in terms of the physical photons now identified

as being the SLIV generated vector Goldstone bosons. For this purpose let us take the

following handy parameterization for the vector potential Aµ in the Lagrangian L:

Aµ = aµ +
nµ
n2

(n ·A) (n ·A ≡ nνA
ν) (2.8)

where aµ is the pure Goldstonic mode satisfying

n · a = 0, (n · a ≡ nνa
ν) (2.9)

while the effective “Higgs” mode (or the Aµ component in the vacuum direction) is given

by the scalar product n · A. Substituting this parameterization (2.8) into the vector field

constraint (2.2), one comes to the equation for n ·A:

n ·A = (M2 − n2a2)
1
2 =M − n2a2

2M
+O(1/M2) (2.10)

where a2 = aµa
µ and taking, for definiteness, the positive sign for the square root and

expanding it in powers of a2/M2. Putting then the parametrization (2.8) with the SLIV

constraint (2.10) into our basic gauge invariant Lagrangian (2.7), one comes to the truly

Goldstonic model for QED. This model might seem unacceptable since it contains, among

other terms, the inappropriately large Lorentz violating fermion bilinear eMψ(γ · n/n2)ψ,

which appears when the expansion (2.10) is applied to the fermion current interaction term

in the Lagrangian L (2.7). However, due to local invariance of the Lagrangian (2.7), this term

function ω(x), (Aµ + ∂µω)(A
µ + ∂µω) = n2M2, appears to be mathematically equivalent to the classical

Hamilton-Jacobi equation of motion for a charged particle. Thus, this equation should have a solution for

some class of gauge functions ω(x), inasmuch as there is a solution to the classical problem.
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CHAPTER 2. SPONTANEOUSLY GENERATED GLUONS

can be gauged away by making an appropriate redefinition of the fermion field according to

ψ → eieM(x·n/n2)ψ (2.11)

through which the eMψ(γ ·n/n2)ψ term is exactly canceled by an analogous term stemming

from the fermion kinetic term. So, one eventually arrives at the essentially nonlinear SLIV

Lagrangian for the Goldstonic aµ field of the type (taken to first order in a2/M2)

L(aµ, ψ) = −1

4
fµνf

µν − 1

2
δ(n · a)2 − 1

4
fµνh

µν n
2a2

M
+ (2.12)

+ψ(iγ∂ +m)ψ − eaµψγ
µψ +

en2a2

2M
ψ(γ · n)ψ.

We have denoted its field strength tensor by fµν = ∂µaν − ∂νaµ, while hµν = nµ∂ν − nν∂µ

is a new SLIV oriented differential tensor acting on the infinite series in a2 coming from

the expansion of the effective “Higgs” mode (3.14), from which we have only included the

first order term −n2a2/2M throughout the Lagrangian L(aµ, ψ). One has also explicitly

introduced the orthogonality condition n · a = 0 into the Lagrangian through the second

term, which can be treated as the gauge fixing term (taking the limit δ → ∞). Furthermore

we have retained the notation ψ for the redefined fermion field.

This nonlinear QED model was first studied on its own by Nambu long ago (?). As

one can see, the model contains the massless vector Goldstone boson modes (keeping the

massive “Higgs” mode frozen), and in the limitM → ∞ is indistinguishable from conventional

QED taken in the general axial (temporal or pure axial) gauge. So, for this part of the

Lagrangian L(aµ, ψ) given by the zero-order terms in 1/M , the spontaneous Lorentz violation

simply corresponds to a non-covariant gauge choice in an otherwise gauge invariant (and

Lorentz invariant) theory. Remarkably, also all the other (first and higher order in 1/M)

terms in L(aµ, ψ) (2.12), though being by themselves Lorentz and CPT violating ones,

appear not to cause physical SLIV effects due to strict cancellations in the physical processes

involved. So, the non-linear constraint (2.2) applied to the standard QED Lagrangian (2.7)
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2.1. ABELIAN THEORY

appears in fact to be a possible gauge choice, while the S-matrix remains unaltered under

such a gauge convention. This conclusion was first confirmed at the tree level (?) and

recently extended to the one-loop approximation (Azatov and Chkareuli, 2006). All the one-

loop contributions to the photon-photon, photon-fermion and fermion-fermion interactions

violating Lorentz invariance were shown to be exactly canceled with each other, in the manner

observed earlier for the simplest tree-order diagrams. This suggests that the vector field

constraint A2 = n2M2, having been treated as a nonlinear gauge choice at the tree (classical)

level, remains as just a gauge condition when quantum effects are taken into account as well.

To resume let’s recall the steps made in the derivation above. We started with the most

general Lorentz invariant Lagrangian L(Aµ, ψ), proposing only a global internal U(1) sym-

metry for the charged matter fields involved. The requirement for the vector field equations

of motion to be compatible with the true vacuum chosen by the SLIV (2.2) led us to the

necessity for the identity (2.4) to be satisfied by the Lagrangian L. According to Noether’s

second theorem Noether (1918), this identity implies the invariance of the Lagrangian L un-

der the U(1) charge gauge transformations of all the interacting fields. And, finally, this

local symmetry allows us to completely establish the underlying theory, which appears to be

standard QED (2.7) taken in the nonlinear gauge (2.2) or the nonlinear σ model-type QED

in a general axial gauge - both preserving physical Lorentz invariance.
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CHAPTER 2. SPONTANEOUSLY GENERATED GLUONS

2.2 Non-Abelian theory

Now the discussion is extended to the non-Abelian global internal symmetry case for a gen-

eral Lorentz invariant Lagrangian L(Aµ,ψ) for the vector and matter fields involved. This

symmetry is given by a general group G with D generators tα

[tα, tβ] = icαβγtγ , T r(tαtβ) = δαβ (α, β, γ = 0, 1, ..., D − 1) (2.13)

where cαβγ are the structure constants of G. The corresponding vector fields, which trans-

form according to the adjoint representation of G, are given in the matrix form Aµ = Aα
µtα.

The matter fields (fermions or scalars) are, for definiteness, taken in the fundamental repre-

sentation column ψσ (σ = 0, 1, ..., d − 1) of G. Let us again, as in the above Abelian case,

subject the vector field multiplet Aα
µ(x) to a SLIV constraint of the form

Tr(AµA
µ) = n2M2, n2 ≡ nα

µn
µ,α = ±1, (2.14)

that presumably chooses the true vacuum in a theory. Here, as usual, we sum over repeated

indices. This covariant constraint is not only the simplest one, but the only possible SLIV

condition which could be written for the vector field multiplet Aα
µ and not be superfluously

restricted (see discussion below).

Although here is only proposed the SO(1, 3)×G invariance of the Lagrangian L(Aµ,ψ),

the chosen SLIV constraint (2.14) in fact possesses a much higher accidental symmetry

SO(D, 3D) determined by the dimensionality D of the G adjoint representation to which
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2.2. NON-ABELIAN THEORY

the vector fields Aα
µ belong9. This symmetry is indeed spontaneously broken at a scale M

< Aα
µ(x) > = nα

µM (2.15)

with the vacuum direction given now by the ‘unit’ rectangular matrix nα
µ describing simulta-

neously both of the generalized SLIV cases, time-like (SO(D, 3D)→ SO(D−1, 3D)) or space-

like (SO(D, 3D)→ SO(D, 3D−1)) respectively, depending on the sign of n2 ≡ nα
µn

µ,α = ±1.

This matrix has in fact only one non-zero element for both cases, subject to the appropriate

SO(D, 3D) rotation. They are, specifically, n0
0 or n0

3 provided that the vacuum expecta-

tion value (2.15) is developed along the α = 0 direction in the internal space and along the

µ = 0 or µ = 3 direction respectively in the ordinary four-dimensional one. As we shall soon

see, in response to each of these two breakings, side by side with one true vector Goldstone

boson corresponding to the spontaneous violation of the actual SO(1, 3) ⊗ G symmetry of

the Lagrangian L, D− 1 vector pseudo-Goldstone bosons (PGB) related to a breaking of the

accidental SO(D, 3D) symmetry of the constraint (2.14) per se are also produced10. Remark-

ably, in contrast to the familiar scalar PGB case Weinberg, the vector PGBs remain strictly

massless being protected by the simultaneously generated non-Abelian gauge invariance. To-

gether with the above true vector Goldstone boson, they just complete the whole gauge field

9Actually, in the same way as in the Abelian case1, such a SLIV constraint (2.14) might be related to the

minimisation of some SO(D, 3D) invariant vector field potential U(Aµ) = −m2
A
2
Tr(AµA

µ)+ λA
4
[Tr(AµA

µ)]2

followed by taking the limit m2
A → ∞, λA → ∞ (while keeping the ratio m2

A/λA finite). Notably, the inclusion

into this potential of another possible, while less symmetrical, four-linear self-interaction term of the type

(λ′
A/4)Tr(AµA

µAνA
ν) would lead, as one can easily confirm, to an unacceptably large number (4D) of

vector field constraints at the potential minimum.
10Note that in total there appear 4D − 1 pseudo-Goldstone modes, complying with the number of broken

generators of SO(D, 3D), both for time-like and space-like SLIV. From these 4D−1 pseudo-Goldstone modes,

3D modes correspond to the D three component vector states as will be shown below, while the remaining

D − 1 modes are scalar states which will be excluded from the theory. In fact D − r actual scalar Goldstone

bosons (where r is the rank of the group G), arising from the spontaneous violation of G, are contained among

these excluded scalar states.
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CHAPTER 2. SPONTANEOUSLY GENERATED GLUONS

multiplet of the internal symmetry group G.

Let us now turn to the possible supplementary conditions which can be imposed on the

vector fields in a general Lagrangian L(Aµ,ψ), in order to finally establish its form. While

generally D supplementary conditions may be imposed on the vector field multiplet Aα
µ, one

of them in the case considered is in fact the SLIV constraint (2.14). One might think that

the other conditions would appear by taking 4-divergences of the equations of motion

∂L
∂Aα

µ

− ∂ν
∂L

∂(∂νA
α
µ)

= 0, (2.16)

which are determined by a variation of the Lagrangian L. The point is, however, that due

to the G symmetry this operation would lead, on equal terms, to D independent conditions

thus giving in total, together with the basic SLIV constraint (2.14), D+1 constraints for the

vector field multiplet Aα
µ which is inadmissible. Therefore, as in the above Abelian case, the

4-divergences of the Euler equations (2.16) should not produce supplementary conditions at

all once the SLIV occurs. This means again that such 4-divergences should be arranged to

vanish (though still keeping the global G symmetry) either identically or as a result of the

equations of motion for vector and matter fields (fermion fields for definiteness) thus implying

that, in the absence of these equations, there must hold a general identity of the type

∂µ

(
∂L
∂Aα

µ

− ∂ν
∂L

∂(∂νA
α
µ)

)
≡

(
∂L
∂Aβ

µ

− ∂ν
∂L

∂(∂νA
β
µ)

)
CαβγA

γ
µ +

+

(
∂L
∂ψ

− ∂ν
∂L

∂(∂νψ)

)
(iTα)ψ + (2.17)

+ψ(−iTα)
(
∂L
∂ψ

− ∂ν
∂L

∂(∂νψ)

)
.

The coefficients Cαβγ and Tα of the Eulerians on the right-hand side of the identity (2.17)

can readily be identified with the structure constants cαβγ and generators tα (2.13) of the

group G. This follows because the right hand side of the identity (2.17) must transform in

the same way as the left hand side, which transforms as the adjoint representation of G.

Note that these coefficients consist of dimensionless constants corresponding to the starting
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2.2. NON-ABELIAN THEORY

‘minimal’ Lagrangian L(Aµ,ψ) which is taken, for simplicity, with renormalisable coupling

constants. According to Noether’s second theorem Noether (1918), the identity (2.17) again

means the invariance of L under the vector and fermion field local transformations having

the infinitesimal form

δAα
µ = ∂µω

α + Cαβγω
βAγ

µ, δψ = iTαω
αψ (2.18)

where ωα(x) are arbitrary functions only being restricted, again as in the above Abelian case,

by the requirement to conform with the corresponding nonlinear constraint (2.14).

Note that the existence of the starting global G symmetry in the theory is important for

our consideration, since without such a symmetry the basic identity (2.17) would be written

with arbitrary coefficients Cαβγ and Tα. Then this basic identity may be required for only

some particular vector field Aα0
µ rather than for the entire set Aα

µ. This would eventually

lead to the previous pure Abelian theory case just for this Aα0
µ component leaving aside all

the other ones. Just the existence of the starting global symmetry G ensures a non-Abelian

group-theoretical solution for the local transformations (2.18) in the theory.

So, we have shown that in the non-Abelian internal symmetry case, as well as in the

Abelian case, the imposition of the SLIV constraint (2.14) converts the starting global sym-

metry G into the local one Gloc. Otherwise, the theory would superfluously restrict the

number of degrees of freedom for the vector field multiplet Aα
µ, which would certainly not

be allowed. This SLIV induced local non-Abelian symmetry (2.18) now completely deter-

mines the Lagrangian L, following the standard procedure (see, for example, (Mohapatra)).

For a minimal theory with renormalisable coupling constants, this corresponds in fact to a

conventional Yang-Mills type Lagrangian

L(Aµ, ψ) = −1

4
Tr(F µνF

µν) +ψ(iγ∂ −m)ψ + gψAµγ
µψ (2.19)

(where F µν = ∂µAν − ∂νAµ − ig[Aµ,Aν ] and g stands for the universal coupling constant

in the theory) with the SLIV constraint (2.14) imposed. These constrained gauge fields Aα
µ
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contain, as we directly confirm below, one true Goldstone and D−1 pseudo-Goldstone vector

bosons, corresponding to the spontaneous violation of the accidental SO(D, 3D) symmetry

of the constraint (2.14).

Actually, as in the above Abelian case, after the explicit use of the corresponding SLIV

constraint (2.14), which is so far the only supplementary condition for the vector field mul-

tiplet Aα
µ, one can identify the pure Goldstone field modes aαµ as follows:

Aα
µ = aαµ +

nα
µ

n2
(n ·A), n · a ≡ nα

µa
µ,α = 0. (2.20)

At the same time an effective “Higgs” mode (i.e., the Aα
µ component in the vacuum direction

nα
µ) is given by the product n ·A ≡ nα

µA
µ,α determined by the SLIV constraint

n ·A =
[
M2 − n2a2

] 1
2 =M − n2a2

2M
+O(1/M2). (2.21)

where a2 = aανa
ν,α. As earlier in the Abelian case, we take the positive sign for the square

root and expand it in powers of a2/M2. Note that, apart from the pure vector fields, the

general Goldstonic modes aαµ contain D − 1 scalar fields, aα
′

0 or aα
′

3 (α′ = 1...D − 1), for

the time-like (nα
µ = n00gµ0δ

α0) or space-like (nα
µ = n03gµ3δ

α0) SLIV respectively. They can

be eliminated from the theory if one imposes appropriate supplementary conditions on the

aαµ fields which are still free of constraints. Using their overall orthogonality (2.20) to the

physical vacuum direction nα
µ, one can formulate these supplementary conditions in terms of

a general axial gauge for the entire aαµ multiplet

n · aα ≡ nµa
µ,α = 0, α = 0, 1, ...D − 1. (2.22)

Here nµ is the unit Lorentz vector, analogous to that introduced in the Abelian case, which is

now oriented in Minkowskian space-time so as to be parallel to the vacuum matrix11 nα
µ. As

a result, apart from the “Higgs” mode excluded earlier by the above orthogonality condition

11For such a choice the simple identity nα
µ ≡ n·nα

n2 nµ holds, showing that the rectangular vacuum matrix

nα
µ has the factorized “two-vector” form.
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(2.20), all the other scalar fields are also eliminated, and only the pure vector fields, aαi

(i = 1, 2, 3 ) or aαµ′ (µ′ = 0, 1, 2) for time-like or space-like SLIV respectively, are left in the

theory. Clearly, the components aα=0
i and aα=0

µ′ correspond to the Goldstone boson, for each

type of SLIV respectively, while all the others (for α = 1...D − 1) are vector PGBs.

We now show that these Goldstonic vector fields, denoted generally as aαµ but with the

supplementary conditions (2.22) understood, appear truly massless in the SLIV inspired

gauge invariant Lagrangian L (2.19) subject to the SLIV constraint (2.14). Actually, sub-

stituting the parameterization (2.20) with the SLIV constraint (2.21) into the Lagrangian

(2.19), one is led to a highly nonlinear Yang-Mills theory in terms of the pure Goldstonic

modes aαµ. However, as in the above Abelian case, one should first use the local invari-

ance of the Lagrangian L to gauge away the apparently large Lorentz violating terms, which

appear in the theory in the form of fermion and vector field bilinears. As one can read-

ily see, they stem from the expansion (2.21) when it is applied to the couplings gψAµγ
µψ

and −1
4g

2Tr([Aµ, Aν ]
2) respectively in the Lagrangian (2.19). Analogously to the Abelian

case, we make the appropriate redefinitions of the fermion (ψ) and vector (aµ ≡ aαµtα) field

multiplets:

ψ → U(ω)ψ , aµ → U(ω)aµU(ω)†, U(ω) = eigM(x·nα/n2)tα . (2.23)

Since the phase of the transformation matrix U(ω) is linear in the space-time coordinate, the

following equalities are evidently satisfied:

∂µU(ω) = igMnµU(ω) = igMU(ω)nµ, nµ ≡ nα
µt

α. (2.24)

One can readily confirm that the above-mentioned Lorentz violating terms are thereby can-

celled with the analogous bilinears stemming from their kinetic terms. So, the final La-
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grangian for the Goldstonic Yang-Mills theory takes the form (to first order in (a2/M2)

L(aαµ,ψ) = −1

4
Tr(fµνf

µν)− 1

2
δ(n · aα)2 + 1

4
Tr(fµνh

µν)
n2a2

M
+

+ψ(iγ∂ −m)ψ + gψaµγ
µψ − gn2a2

2M
ψ(γ · n)ψ. (2.25)

Here the tensor fµν is, as usual, fµν = ∂µaν − ∂νaµ − ig[aµ,aν ], while hµν is a new SLIV

oriented tensor of the type

hµν = nµ∂ν − nν∂µ + ig([nµ,aν ]− [nν ,aµ])

acting on the infinite series in a2 coming from the expansion of the effective “Higgs” mode

(2.21), from which we have only included the first order term −n2a2/2M throughout the

Lagrangian L(aαµ, ψ). We have explicitly introduced the (axial) gauge fixing term into the

Lagrangian, corresponding to the supplementary conditions (2.22) imposed. We have also

retained the original notations for the fermion and vector fields after the transformations

(2.23).

The theory we here derived is in essence a generalization of the nonlinear QED model (?)

for the non-Abelian case. As one can see, this theory contains the massless vector Goldstone

and pseudo-Goldstone boson multiplet aαµ gauging the starting global symmetry G and, in

the limitM → ∞, is indistinguishable from conventional Yang-Mills theory taken in a general

axial gauge. So, for this part of the Lagrangian L(aαµ, ψ) given by the zero-order terms in

1/M , the spontaneous Lorentz violation again simply corresponds to a non-covariant gauge

choice in an otherwise gauge invariant (and Lorentz invariant) theory. Furthermore one may

expect that, as in the nonlinear QED model ?, all the first and higher order terms in 1/M in

L (2.25), though being by themselves Lorentz and CPT violating ones, do not cause physical

SLIV effects due to the mutual cancellation of their contributions to the physical processes

involved.
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2.3 The lowest order SLIV processes

Let us now show that simple tree level calculations related to the Lagrangian L(aαµ, ψ) confirm

in essence this proposition. As an illustration, let’s consider SLIV processes in the lowest

order in g and 1/M being the fundamental parameters of the Lagrangian (2.25). They are,

as one can readily see, the vector-fermion and vector-vector elastic scattering going in the

order g/M which we are going to consider in some detail as soon as the Feynman rules in the

Goldstonic Yang-Mills theory are established.

2.3.1 Feynman rules

The corresponding Feynman rules, apart from the ordinary Yang-Mills theory rules for

(i) the vector-fermion vertex

−ig γµ ti, (2.26)

(ii) the vector field propagator (taken in a general axial gauge nµaiµ = 0)

Dij
µν (k) = − iδ

ij

k2

(
gµν −

nµkν + kµnν
n · k

+
n2kµkν
(n · k)2

)
(2.27)

which automatically satisfies the orthogonality condition nµDij
µν(k) = 0 and on-shell transver-

sality kµD
ij
µν(k, k2 = 0) = 0 (the latter means that free vector fields with polarization vector

ϵiµ(k, k
2 = 0) are always appeared transverse kµϵiµ(k) = 0);

(iii) the 3-vector vertex (with vector field 4-momenta k1, k2 and k3; all 4-momenta in

vertexes are taken ingoing throughout)

gcijk[(k1 − k2)γgαβ + (k2 − k3)αgβγ + (k3 − k1)βgαγ ], (2.28)

include the new ones, violating Lorentz and CPT invariance, for

(iv) the contact 2-vector-fermion vertex

i
gn2

M
(γ · nk)τkgµν δij , (2.29)
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(v) another 3-vector vertex

− in
2

M

[
(k1 · ni)k1,αgβγδjk + (k2 · nj)k2,βgαγδki + (k3 · nk)k3,γgαβδij

]
(2.30)

where the second index in the vector field 4-momenta k1, k2 and k3 denotes their Lorentz

components;

(vi) the extra 4-vector vertex (with the vector field 4-momenta k1,2,3,4 and their proper

differences k12 ≡ k1 − k2 etc.)

−n2g

M
[cijpδklgαβgγδ(n

p · k12) + cklpδijgαβgγδ(n
p · k34) +

+cikpδjlgαγgβδ(n
p · k13) + cjlpδikgαγgβδ(n

p · k24) + (2.31)

+cilpδjkgαδgβγ(n
p · k14) + cjkpδilgαδgβγ(n

p · k23)]

where we have not included the terms which might contain contractions of the vacuum matrix

npµ with vector field polarization vectors ϵiµ(k) in the vector-vector scattering amplitude since

these contractions are vanished due to the gauge taken (2.22), np · ϵi = sp(n · ϵi) = 0 (as

follows according to a factorized two-vector form for the matrix npµ (2.4)).

Just the rules (i-vi) are needed to calculate the lowest order processes mentioned in the

above.

2.3.2 Vector boson scattering on fermion

This process is directly related to two SLIV diagrams one of which is given by the contact a2-

fermion vertex (2.29), while another corresponds to the pole diagram with the longitudinal a-

boson exchange between Lorentz violating a3 vertex (2.30) and ordinary a-boson-fermion one

(2.26). Since ingoing and outgoing a-bosons appear transverse (k1 · ϵi(k1) = 0, k2 · ϵj(k2) = 0)

only the third term in this a3 coupling (2.30) contributes to the pole diagram so that one

comes to a simple matrix element iM from both of diagrams

iM = i
gn2

M
ū(p2)τ

l
[
(γ · nl) + i(k · nl)γµkνDµν(k)

]
u(p1)[ϵ(k1) · ϵ(k2)] (2.32)
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where the spinors u(p1,2) and polarization vectors ϵiµ(k1) and ϵjµ(k2) stand for ingoing and

outgoing fermions and a-bosons, respectively, while k is the 4-momentum transfer k = p2 −

p1 = k1 − k2. Upon further simplifications in the square bracket related to the explicit form

of the a boson propagator Dµν(k) (2.27) and matrix niµ (2.4), and using the fermion current

conservation ū(p2)(p̂2− p̂1)u(p1) = 0, one is finally led to the total cancellation of the Lorentz

violating contributions to the a-boson-fermion scattering in the g/M approximation.

Note, however, that such a result may be in some sense expected since from the SLIV

point of view the lowest order a-boson-fermion scattering discussed here is hardly distinct

from the photon-fermion scattering considered in the nonlinear QED case?. Actually, the

fermion current conservation which happens to be crucial for the above cancellation works

in both of cases, whereas the couplings which are peculiar to the Yang-Mills theory have not

yet touched on. In this connection the next example seems to be more instructive.

2.3.3 Vector-vector scattering

The matrix element for this process in the lowest order g/M is given by the contact SLIV

a4 vertex (2.31) and the pole diagrams with the longitudinal a-boson exchange between the

ordinary a3 vertex (2.28) and Lorentz violating a3 one (2.30), and vice versa. There are

six pole diagrams in total describing the elastic a − a scattering in the s- and t-channels,

respectively, including also those with an interchange of identical a-bosons. Remarkably,

the contribution of each of them is exactly canceled with one of six terms appeared in the

contact vertex (2.31). Actually, writing down the matrix element for one of the pole diagrams

with ingoing a-bosons (with momenta k1 and k2) interacting through the vertex (2.28) and

outgoing a-bosons (with momenta k3 and k4) interacting through the vertex (2.30) one has

iM(1)
pole = −ign

2

M
cijpδkl[(k1 − k2)µgαβ + (k2 − k)αgβµ + (k − k1)βgαµ] ·

·Dpq
µν(k)gγδkν(n

q · k)[ϵi,α(k1)ϵj,β(k2)ϵk,γ(k3)ϵl,δ(k4)] (2.33)
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where polarization vectors ϵi,α(k1), ϵ
j,β(k2), ϵ

k,γ(k3) and ϵ
l,δ(k4) belong, respectively, to ingo-

ing and outgoing a-bosons, while k = −(k1+k2) = k3+k4 according to the momentum running

in the diagrams taken above. Again, as in the previous case of vector-fermion scattering, due

to the fact that outgoing a-bosons appear transverse (k3 · ϵk(k3) = 0 and k4 · ϵl(k4) = 0),

only the third term in the Lorentz violating a3 coupling (2.30) contributes to this pole di-

agram. After evident simplifications related to the a-boson propagator Dµν(k) (2.27) and

matrix niµ (2.4) one comes to the expression which is exactly cancelled with the first term

in the contact SLIV vertex (2.31) when it is properly contracted with a-boson polarization

vectors. Likewise, other terms in this vertex provide the further one-to-one cancellation with

the remaining pole matrix elements iM(2−6)
pole . So, again, the Lorentz violating contribution

to the vector-vector scattering is absent in Goldstonic Yang-Mills theory in the lowest g/M

approximation.

2.3.4 Other processes

Many other tree level Lorentz violating processes, related to a bosons and fermions, appear in

higher orders in the basic SLIV parameter 1/M . They come from the subsequent expansion

of the effective Higgs mode (2.21) in the Lagrangian (2.25). Again, their amplitudes are es-

sentially determined by an interrelation between the longitudinal a-boson exchange diagrams

and the corresponding contact a-boson interaction diagrams which appear to cancel each

other thus eliminating physical Lorentz violation in theory.

Most likely, the same conclusion can be derived for SLIV loop contributions as well.

Actually, as in the massless QED case considered earlier Azatov and Chkareuli (2006), the

corresponding one-loop matrix elements in Goldstonic Yang-Mills theory either vanish by

themselves or amount to the differences between pairs of the similar integrals whose integra-

tion variables are shifted relative to each other by some constants (being in general arbitrary
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functions of external four-momenta of the particles involved) that in the framework of di-

mensional regularization leads to their total cancellation.

So, the Goldstonic vector field theory (2.25) for a non-Abelian charge-carrying matter is

likely to be physically indistinguishable from a conventional Yang-Mills theory.
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Chapter 3

Spontaneously Generated Gravitons

In this chapter is used a similar nonlinear constraint for a symmetric two-index tensor field

H2
µν = n2M2 , n2 ≡ nµνn

µν = ±1 (3.1)

(where nµν is now a properly oriented ‘unit’ Lorentz tensor, whileM is the proposed scale for

Lorentz violation) which fixes its length in a similar way to the vector field case above. Also,

in analogy to the nonlinear QED case (?) with its gauge invariant Lagrangian, we propose

the linearized Einstein-Hilbert kinetic term for the tensor field, which by itself preserves a

diffeomorphism invariance. One will see that such a SLIV pattern (3.1), due to which the

true vacuum in the theory is chosen, induces massless tensor Goldstone modes some of which

can naturally be collected in the physical graviton. The linearized theory we start with

becomes essentially nonlinear, when expressed in terms of the pure Goldstone modes, and

contains a variety of Lorentz (and CPT ) violating couplings. However, all SLIV effects turn

out to be strictly cancelled in physical processes once the tensor field gravity theory (being

considered as the weak-field limit of general relativity (GR)) is properly extended to GR. So,
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this formulation of SLIV seems to amount to the fixing of a gauge for the tensor field in a

special manner making the Lorentz violation only superficial just as in the nonlinear QED

framework (?). From this viewpoint, both conventional QED and GR theories appear to be

generic Goldstonic theories in which some of the gauge degrees of freedom of these fields are

condensed (thus eventually emerging as a non-covariant gauge choice), while their massless

NG modes are collected in photons or gravitons in such a way that the physical Lorentz

invariance is ultimately preserved. However, there might appear some principal distinctions

between conventional and Goldstonic theories if, as we argue later, the underlying local

symmetry were slightly broken at very small distances in a way that could eventually allow

us to differentiate between them in an observational way.

The chapter mostly is founded on my publication (Chkareuli et al., 2011) and is organized

in the following way. In section 3.1 we formulate the model for tensor field gravity and

find massless NG modes some of which are collected in the physical graviton. Then in

section 3.2 we derive general Feynman rules for the basic graviton-graviton and graviton-

matter (scalar) field interactions in the Goldstonic gravity theory. In essence the model

contains two perturbative parameters, the inverse Planck and SLIV mass scales, 1/MP and

1/M, respectively, so that the SLIV interactions are always proportional to some powers of

them. Some lowest order SLIV processes, such as graviton-graviton scattering and graviton

scattering off the massive scalar field, are considered in detail. We show that all these Lorentz

violating effects, taken in the tree approximation, in fact turn out to vanish so that physical

Lorentz invariance is ultimately restored.
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3.1 The Model

According to our philosophy, we propose to consider the tensor field gravity theory which

mimics linearized general relativity in Minkowski space-time. The corresponding Lagrangian

for one real scalar field ϕ (representing all sorts of matter in the model)

L(Hµν , ϕ) = L(H) + L(ϕ) + Lint (3.2)

consists of the tensor field kinetic terms of the form

L(H) =
1

2
∂λH

µν∂λHµν −
1

2
∂λHtr∂

λHtr − ∂λH
λν∂µHµν + ∂νHtr∂

µHµν , (3.3)

(Htr stands for the trace of Hµν , Htr = ηµνHµν) which is invariant under the diff transfor-

mations

δHµν = ∂µξν + ∂νξµ , δxµ = ξµ(x) , (3.4)

together with the free scalar field and interaction terms

L(ϕ) = 1

2

(
∂ρϕ∂

ρϕ−m2ϕ2
)
, Lint =

1

MP
HµνT

µν(ϕ) . (3.5)

Here Tµν(ϕ) is the conventional energy-momentum tensor for a scalar field

Tµν(ϕ) = ∂µϕ∂νϕ− ηµνL(ϕ) , (3.6)

and the coupling constant in Lint is chosen to be the inverse of the Planck mass MP . It

is clear that, in contrast to the tensor field kinetic terms, the other terms in (3.2) are

only approximately invariant under the diff transformations (3.4), as they correspond to

the weak-field limit in GR. Following the nonlinear σ-model for QED (?), we propose the

SLIV condition (3.1) as some tensor field length-fixing constraint which is supposed to be
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substituted into the total Lagrangian L(Hµν , ϕ) prior to the variation of the action. This

eliminates, as will be seen, a massive Higgs mode in the final theory thus leaving only massless

Goldstone modes, some of which are then collected in the physical graviton.

Let us first turn to the spontaneous Lorentz violation itself, which is caused by the

constraint (3.1). This constraint can be written in the more explicit form

H2
µν = H2

00 +H2
i=j + (

√
2Hi ̸=j)

2 − (
√
2H0i)

2 = n2M2 = ± M2 (3.7)

(where the summation over all indices (i, j = 1, 2, 3) is imposed) and means in essence that

the tensor field Hµν develops the vacuum expectation value (vev) configuration

< Hµν(x) > = nµνM (3.8)

determined by the matrix nµν . The initial Lorentz symmetry SO(1, 3) of the Lagrangian

L(Hµν , ϕ) given in (3.2) then formally breaks down at a scale M to one of its subgroups.

If one assumes a ”minimal” vacuum configuration in the SO(1, 3) space with the vev (3.8)

developed on a single Hµν component, there are in fact the following three possibilities

(a) n00 ̸= 0 , SO(1, 3) → SO(3)

(b) ni=j ̸= 0 , SO(1, 3) → SO(1, 2) (3.9)

(c) ni̸=j ̸= 0 , SO(1, 3) → SO(1, 1)

for the positive sign in (3.7), and

(d) n0i ̸= 0 , SO(1, 3) → SO(2) (3.10)

for the negative sign. These breaking channels can be readily derived by counting how many

different eigenvalues the vev matrix n has for each particular case (a-d). Accordingly, there
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are only three Goldstone modes in the cases (a, b) and five modes in the cases (c-d) 1. In

order to associate at least one of the two transverse polarization states of the physical graviton

with these modes, one could have any of the above-mentioned SLIV channels except for the

case (a). Indeed, it is impossible for the graviton to have all vanishing spatial components,

as one needs for the Goldstone modes in case (a). Therefore, no linear combination of the

three Goldstone modes in case (a) could behave like the physical graviton (see more detailed

consideration in Carroll et al. (2009)). Apart from the minimal vev configuration, there are

many others as well. A particular case of interest is that of the traceless vev tensor nµν

nµνη
µν = 0 (3.11)

in terms of which the Goldstonic gravity Lagrangian acquires an especially simple form (see

below). It is clear that the vev in this case can be developed on several Hµν components

simultaneously, which in general may lead to total Lorentz violation with all six Goldstone

modes generated. For simplicity, we will use this form of vacuum configuration in what

follows, while our arguments can be applied to any type of vev tensor nµν .

Aside from the pure Lorentz Goldstone modes, the question of the other components

of the symmetric two-index tensor Hµν naturally arises. Remarkably, they turn out to be

Pseudo Goldstone modes (PGMs) in the theory. Indeed, although we only propose Lorentz

invariance of the Lagrangian L(Hµν , ϕ), the SLIV constraint (3.1) formally possesses the

much higher accidental symmetry SO(7, 3) of the constrained bilinear form (3.7), which

manifests itself when considering the Hµν components as the ”vector” ones under SO(7, 3).

1Indeed, the vev matrices in the cases (a, b) look, respectively, as n(a) = diag(1, 0, 0, 0) and n(b) =

diag(0, 1, 0, 0), while in the cases (c-d) these matrices, taken in the diagonal bases, have the forms n(c) =

diag(0, 1,−1, 0) and n(d) = diag(1,−1, 0, 0), respectively (for certainty, we fixed i = j = 1 in the case (b),

i = 1 and j = 2 in the case (c), and i = 1 in the case (d)). The groups of invariance of these vev matrices

are just the surviving Lorentz subgroups indicated on the right-handed sides in (3.9) and (3.10). The broken

Lorentz generators determine then the numbers of Goldstone modes mentioned above.
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This symmetry is in fact spontaneously broken, side by side with Lorentz symmetry, at the

scaleM. Assuming again a minimal vacuum configuration in the SO(7, 3) space, with the vev

(3.8) developed on a single Hµν component, we have either time-like (SO(7, 3) → SO(6, 3))

or space-like (SO(7, 3) → SO(7, 2)) violations of the accidental symmetry depending on the

sign of n2 = ±1 in (3.7). According to the number of broken SO(7, 3) generators, just nine

massless NG modes appear in both cases. Together with an effective Higgs component, on

which the vev is developed, they complete the whole ten-component symmetric tensor field

Hµν of the basic Lorentz group. Some of them are true Goldstone modes of the spontaneous

Lorentz violation, others are PGMs since, as was mentioned, an accidental SO(7, 3) symmetry

is not shared by the whole Lagrangian L(Hµν , ϕ) given in (3.2). Notably, in contrast to the

scalar PGM case Weinberg, they remain strictly massless being protected by the starting diff

invariance2 which becomes exact when the tensor field gravity Lagrangian (3.2) is properly

extended to GR. Owing to this invariance, some of the Lorentz Goldstone modes and PGMs

can then be gauged away from the theory, as usual.

Now, one can rewrite the Lagrangian L(Hµν , ϕ) in terms of the Goldstone modes ex-

plicitly using the SLIV constraint (3.1). For this purpose, let us take the following handy

parameterization for the tensor field Hµν

Hµν = hµν +
nµν
n2

(n ·H) (n ·H ≡ nµνH
µν) (3.12)

where hµν corresponds to the pure Goldstonic modes 3 satisfying

2For non-minimal vacuum configuration when vevs are developed on several Hµν components, thus leading

to a more substantial breaking of the accidental SO(7, 3) symmetry, some extra PGMs are also generated.

However, they are not protected by a diff invariance and acquire masses of the order of the breaking scale M .
3It should be particularly emphasized that the modes collected in the hµν are in fact the Goldstone modes

of the broken accidental SO(7, 3) symmetry of the constraint (3.1), thus containing the Lorentz Goldstone

modes and PGMs put together.
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n · h = 0 (n · h ≡ nµνh
µν) (3.13)

while the effective “Higgs” mode (or the Hµν component in the vacuum direction) is given

by the scalar product n · H. Substituting this parameterization (3.12) into the tensor field

constraint (3.1), one comes to the equation for n ·H

n ·H = (M2 − n2h2)
1
2 =M − n2h2

2M
+O(1/M2) (3.14)

taking, for definiteness, the positive sign for the square root and expanding it in powers

of h2/M2, h2 ≡ hµνh
µν . Putting then the parameterization (3.12) with the SLIV constraint

(3.14) into the Lagrangian L(Hµν , ϕ) given in (3.2, 3.3, 3.5), one comes to the truly Goldstonic

tensor field gravity Lagrangian L(hµν , ϕ) containing an infinite series in powers of the hµν

modes. For the traceless vev tensor nµν (3.11) it takes, without loss of generality, the especially

simple form

L(hµν , ϕ) =
1

2
∂λh

µν∂λhµν −
1

2
∂λhtr∂

λhtr − ∂λh
λν∂µhµν + ∂νhtr∂

µhµν + (3.15)

+
1

2M
h2
[
−2nµλ∂λ∂

νhµν + n2(n∂∂)htr

]
+

1

8M2
h2
[
−n2∂2 + 2(∂nn∂)

]
h2

+L(ϕ) + M

MP
n2 [nµν∂

µϕ∂νϕ] +
1

MP
hµνT

µν +
1

2MMP
h2 [−nµν∂

µϕ∂νϕ]

written in the O(h2/M2) approximation in which, besides the conventional graviton bilinear

kinetic terms, there are also three- and four-linear interaction terms in powers of hµν in the

Lagrangian. Some of the notations used are collected below

h2 ≡ hµνh
µν , htr ≡ ηµνhµν , (3.16)

n∂∂ ≡ nµν∂
µ∂ν , ∂nn∂ ≡ ∂µnµνn

νλ∂λ .

The bilinear scalar field term
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M

MP
n2 [nµν∂

µϕ∂νϕ] (3.17)

in the third line in the Lagrangian (3.15) merits special notice. This term arises from the

interaction Lagrangian Lint (3.5) after application of the tracelessness condition (3.11) for

the vev tensor nµν . It could significantly affect the dispersion relation for the scalar field ϕ

(and any other sort of matter as well) thus leading to an unacceptably large Lorentz violation

if the SLIV scale M were comparable with the Planck mass MP . However, this term can be

gauged away by an appropriate redefinition (going to new coordinates xµ → xµ + ξµ) of the

scalar field derivative according to

∂µϕ→ ∂µϕ+ ∂ρξ
µ∂ρϕ (3.18)

In fact with the following choice of the parameter function ξµ(x)

ξµ(x) =
M

2MP
n2nµνxν ,

the term (3.17) is cancelled by an analogous term stemming from the scalar field kinetic

term in L(ϕ) given in (3.5) 4. On the other hand, since the diff invariance is an approximate

symmetry of the Lagrangian L(Hµν , ϕ) we started with (3.2), this cancellation will only be

accurate up to the linear order corresponding to the tensor field theory. Indeed, a proper

extension of this theory to GR with its exact diff invariance will ultimately restore the usual

dispersion relation for the scalar (and other matter) fields. Taking this into account, we will

henceforth omit the term (3.17) in L(hµν , ϕ) thus keeping the ”normal” dispersion relation

for the scalar field in what follows.

Together with the Lagrangian one must also specify other supplementary conditions for

the tensor field hµν(appearing eventually as possible gauge fixing terms in the Goldstonic

4In the general case, with the vev tensor nµν having a non-zero trace, this cancellation would also require

the redefinition of the scalar field itself as ϕ→ ϕ(1− nµνη
µν M

MP
)−1/2.
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tensor field gravity) in addition to the basic Goldstonic ”gauge” condition nµνh
µν = 0

given above (3.13). The point is that the spin 1 states are still left in the theory and are

described by some of the components of the new tensor hµν . This is certainly inadmissible

5. Usually, the spin 1 states (and one of the spin 0 states) are excluded by the conventional

Hilbert-Lorentz condition

∂µhµν + q∂νhtr = 0 (3.19)

(q is an arbitrary constant, giving for q = −1/2 the standard harmonic gauge condition).

However, as we have already imposed the constraint (3.13), we can not use the full Hilbert-

Lorentz condition (3.19) eliminating four more degrees of freedom in hµν . Otherwise, we

would have an ”over-gauged” theory with a non-propagating graviton. In fact, the simplest

set of conditions which conform with the Goldstonic condition (3.13) turns out to be

∂ρ(∂µhνρ − ∂νhµρ) = 0 (3.20)

This set excludes only three degrees of freedom 6 in hµν and, besides, it automatically satisfies

the Hilbert-Lorentz spin condition as well. So, with the Lagrangian (3.15) and the supple-

mentary conditions (3.13) and (3.20) lumped together, one eventually comes to a working

model for the Goldstonic tensor field gravity. Generally, from ten components of the sym-

metric two-index tensor hµν four components are excluded by the supplementary conditions

(3.13) and (3.20). For a plane gravitational wave propagating in, say, the z direction another

four components are also eliminated, due to the fact that the above supplementary conditions

still leave freedom in the choice of a coordinate system, xµ → xµ + ξµ(t − z/c), much as it

5Indeed, spin 1 must be necessarily excluded as the sign of the energy for spin 1 is always opposite to that

for spin 2 and 0.
6The solution for a gauge function ξµ(x) satisfying the condition (3.20) can generally be chosen as ξµ =

�−1(∂ρhµρ)+∂µθ, where θ(x) is an arbitrary scalar function, so that only three degrees of freedom in hµν are

actually eliminated.
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takes place in standard GR. Depending on the form of the vev tensor nµν , caused by SLIV,

the two remaining transverse modes of the physical graviton may consist solely of Lorentz

Goldstone modes or of Pseudo Goldstone modes, or include both of them.
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3.2 The Lowest Order SLIV Processes

The Goldstonic gravity Lagrangian (3.15) looks essentially nonlinear and contains a variety of

Lorentz and CPT violating couplings when expressed in terms of the pure tensor Goldstone

modes. However, as we show below, all violation effects turn out to be strictly cancelled in

the lowest order SLIV processes. Such a cancellation in vector-field theories, both Abelian

(?Azatov and Chkareuli, 2006; Chkareuli and Kepuladze, 2007) and non-Abelian (Chkareuli

and Jejelava, 2008), and, therefore, their equivalence to conventional QED and Yang-Mills

theories, allows one to conclude that the nonlinear SLIV constraint in these theories amounts

to a non-covariant gauge choice in an otherwise gauge invariant and Lorentz invariant theory.

It seems that a similar conclusion can be made for tensor field gravity, i.e. the SLIV constraint

(3.1) corresponds to a special gauge choice in a diff and Lorentz invariant theory. This

conclusion certainly works for the diff invariant free tensor field part (3.3) in the starting

Lagrangian L(Hµν , ϕ). On the other hand, its matter field sector (3.5), possessing only an

approximate diff invariance, might lead to an actual Lorentz violation through the deformed

dispersion relations of the matter fields involved. However, as was mentioned above, a proper

extension of the tensor field theory to GR with its exact diff invariance ultimately restores

the dispersion relations for matter fields and, therefore, the SLIV effects vanish. Taking this

into account, we omit the term (3.17) in the Goldstonic gravity Lagrangian L(hµν , ϕ) thus

keeping the ”normal” dispersion relation for the scalar field representing all the matter in our

model.

We are now going to consider the lowest order SLIV processes, after first establishing the

Feynman rules in the Goldstonic gravity theory. We use for simplicity, both in the Lagrangian

L (3.15) and forthcoming calculations, the traceless vev tensor nµν , while our results remain

true for any type of vacuum configuration caused by SLIV.
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3.2.1 Feynman rules

The Feynman rules stemming from the Lagrangian L (3.15) for the pure graviton sector are

as follows:

(i) The first and most important is the graviton propagator which only conforms with the

Lagrangian (3.15) and the gauge conditions (3.13) and (3.20)

−iDµναβ (k) =
1

2k2
(ηβµηαν + ηβνηαµ − ηαβηµν)

− 1

2k4
(ηβνkαkµ + ηανkβkµ + ηβµkαkν + ηαµkβkν) (3.21)

− 1

k2(nkk)
(kαkβnµν + kνkµnαβ) +

1

k2(nkk)2

[
n2 − 2

k2
(knnk)

]
kµkνkαkβ

+
1

k4(nkk)
(nµρk

ρkνkαkβ + nνρk
ρkµkαkβ + nαρk

ρkνkµkβ + nβρk
ρkνkαkµ)

(where (nkk) ≡ nµνk
µkν and (knnk) ≡ kµnµνn

νλkλ). It automatically satisfies the orthog-

onality condition nµνDµναβ (k) = 0 and on-shell transversality kµkνDµναβ(k, k
2 = 0) = 0.

This is consistent with the corresponding polarization tensor ϵµν(k, k
2 = 0) of the free tensor

fields, being symmetric, traceless (ηµνϵµν = 0), transverse (kµϵµν = 0), and also orthogonal

to the vacuum direction, nµνϵµν(k) = 0. Apart from that, the gauge invariance allows us to

write the polarization tensor in the factorized form7 , ϵµν(k) = ϵµ(k)ϵν(k), and to proceed

with the above-mentioned tracelessness and transversality expressed as the simple conditions

ϵµϵ
µ = 0 and kµϵµ = 0 respectively. In the following we will use these simplifications. As

one can see, only the standard terms given by the first bracket in (3.21) contribute when the

propagator is sandwiched between conserved energy-momentum tensors of matter fields, and

the result is always Lorentz invariant.

(ii) Next is the 3-graviton vertex with graviton polarization tensors (and 4-momenta)

given by ϵαα
′
(k1), ϵ

ββ′
(k2) and ϵ

γγ′
(k3)

7Weinberg (1964b,a, 1965); Gross and Jackiw (1968)
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− i

2M
Pαα′

(k1)
(
ηβγηβ

′γ′
+ ηβγ

′
ηβ

′γ
)

− i

2M
P ββ′

(k2)
(
ηαγηα

′γ′
+ ηαγ

′
ηα

′γ
)

(3.22)

− i

2M
P γγ′

(k3)
(
ηβαηβ

′α′
+ ηβα

′
ηβ

′α
)

where the momentum tensor Pµν(k) is

Pµν(k) = −nνρkρk
µ − nµρkρk

ν + ηµνnρσkρkσ . (3.23)

Note that all 4-momenta at the vertices are taken ingoing throughout.

(iii) Finally, the 4-graviton vertex with the graviton polarization tensors (and 4-momenta)

ϵαα
′
(k1), ϵ

ββ′
(k2), ϵ

γγ′
(k3) and ϵδδ

′
(k4)

iQµν

(
ηαβηα

′β′
+ ηαβ

′
ηα

′β
)(

ηγδηγ
′δ′ + ηγδ

′
ηγ

′δ
)
(k1 + k2)

µ(k1 + k2)
ν

+iQµν

(
ηαγηα

′γ′
+ ηαγ

′
ηα

′γ
)(

ηβδηβ
′δ′ + ηβδ

′
ηβ

′δ
)
(k1 + k3)

µ(k1 + k3)
ν (3.24)

+iQµν

(
ηαδηα

′δ′ + ηαδ
′
ηα

′δ
)(

ηγβηγ
′β′

+ ηγβ
′
ηγ

′β
)
(k1 + k4)

µ(k1 + k4)
ν .

Here we have used the self-evident identities for all ingoing momenta (k1 + k2 + k3+ k4 = 0),

such as

(k1 + k2)
µ(k1 + k2)

ν + (k3 + k4)
µ(k3 + k4)

ν = 2(k1 + k2)
µ(k1 + k2)

ν

and so on, and denoted by Qµν the expression

Qµν ≡ − 1

4M2
(−n2ηµν + 2nµρn

ρ
ν) . (3.25)

Coming now to the gravitational interaction of the scalar field, one has two more vertices:

(iv) The standard graviton-scalar-scalar vertex with the graviton polarization tensor ϵαα
′

and the scalar field 4-momenta p1 and p2
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− i

Mp

(
pα1 p

α′
2 + pα2 p

α′
1

)
+

i

Mp
ηαα

′
[(p1p2) +m2] (3.26)

where (p1p2) stands for the scalar product.

(v) The contact graviton-graviton-scalar-scalar interaction caused by SLIV with the

graviton polarization tensors ϵαα
′
and ϵββ

′
and the scalar field 4-momenta p1 and p2

i

MMp

(
gαβgα

′β′
+ gαβ

′
gα

′β
)
(nµνp

µ
1p

ν
2) . (3.27)

Just the rules (i-v) are needed to calculate the lowest order processes mentioned above.

3.2.2 Graviton-graviton scattering

The matrix element for this SLIV process to the lowest order 1/M2 is given by the contact

h4 vertex (3.24) and the pole diagrams with longitudinal graviton exchange between two

Lorentz violating h3 vertices (3.22). There are three pole diagrams in total, describing the

elastic graviton-graviton scattering in the s- and t-channels respectively, and also the diagram

with an interchange of identical gravitons. Remarkably, the contribution of each of them is

exactly cancelled by one of three terms appearing in the contact vertex (3.24). Actually,

for the s-channel pole diagrams with ingoing gravitons with polarizations (and 4-momenta)

ϵ1(k1) and ϵ2(k2) and outgoing gravitons with polarizations (and 4-momenta) ϵ3(k3) and

ϵ4(k4) one has, after some evident simplifications related to the graviton propagator Dµν(k)

(3.21) inside the matrix element

iM(1)
pole = i

1

M2
(ϵ1 · ϵ2)2 (ϵ3 · ϵ4)2 (−n2k2 + 2kµnµνn

νλkλ). (3.28)

Here k = k1 + k2 = −(k3 + k4) is the momentum running in the diagrams listed above,

and all the polarization tensors are properly factorized throughout, ϵµν(k) = ϵµ(k)ϵν(k), as

was mentioned above. We have also used that, since ingoing and outgoing gravitons appear
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transverse (kµa ϵµ(ka) = 0, a = 1, 2, 3, 4), only the third term in the momentum tensors Pµν(ka)

(3.23) in the h3 couplings (3.22) contributes to all pole diagrams. Now, one can readily confirm

that this matrix element is exactly cancelled with the first term in the contact SLIV vertex

(3.24), when it is properly contracted with the graviton polarization vectors. In a similar

manner, two other terms in the contact vertex provide the further one-to-one cancellations

with the remaining two pole matrix elements iM(2,3)
pole . So, the Lorentz violating contribution

to graviton-graviton scattering is absent in Goldstonic gravity theory in the lowest 1/M2

approximation.

3.2.3 Graviton scattering on a massive scalar

This SLIV process appears in the order 1/MMp (in contrast to the conventional 1/M2
p order

graviton-scalar scattering). It is directly related to two diagrams one of which is given by the

contact graviton-graviton-scalar-scalar vertex (3.27), while the other corresponds to the pole

diagram with longitudinal graviton exchange between the Lorentz violating h3 vertex (3.22)

and the ordinary graviton-scalar-scalar vertex (3.26). Again, since ingoing and outgoing

gravitons appear transverse (kµa ϵµ(ka) = 0, a = 1, 2), only the third term in the momentum

tensors Pµν(ka) (3.23) in the h3 coupling (3.22) contributes to this pole diagram. Apart

from that, the most crucial point is that, due to the scalar field energy-momentum tensor

conservation, the terms in the inserted graviton propagator (3.21) other than the standard

ones (first bracket in (3.21)) give a vanishing result. Keeping all this in mind together with

the momenta satisfying k1 + k2 + p1 + p2 = 0 (k1,2 and p1,2 are the graviton and scalar field

4-momenta, respectively), one readily comes to a simple matrix element for the pole diagram

iMpole = − 2i

MMp
ϕ (p2) (ε1 · ε2)2 (nµνpµ1p

ν
2)ϕ (p1) . (3.29)
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This pole term is precisely cancelled by the contact term, iMcon, when the SLIV vertex

(3.27) is properly contracted with the graviton polarization vectors and the scalar boson

wave functions. Again, we may conclude that physical Lorentz invariance is left intact in

graviton scattering on a massive scalar, provided that its dispersion relation is supposed to

be recovered when going from the tensor field Lagrangian L (3.15) to general relativity, as

was argued above.

3.2.4 Scalar-scalar scattering

This process, due to graviton exchange, appears in the order 1/M2
P and again is given by

an ordinary Lorentz invariant amplitude. As was mentioned above, only the standard terms

given by the first bracket in the graviton propagator (3.21) contribute when it is sandwiched

between conserved energy-momentum tensors of matter fields. Actually, as one can easily

confirm, the contraction of any other term in (3.21) depending on the graviton 4-momentum

k = p1 + p2 = −(p3 + p4) with the graviton-scalar-scalar vertex (3.26) gives a zero result.

3.2.5 Other processes

Many other tree level Lorentz violating processes, related to gravitons and scalar fields (mat-

ter fields, in general) appear in higher orders in the basic SLIV parameter 1/M , by iteration

of couplings presented in our basic Lagrangian (3.15) or from a further expansion of the effec-

tive Higgs mode (3.14) inserted into the starting Lagrangian (3.2). Again, their amplitudes

are essentially determined by an interrelation between the longitudinal graviton exchange

diagrams and the corresponding contact multi-graviton interaction diagrams, which appear

to cancel each other, thus eliminating physical Lorentz violation in the theory.

Most likely, the same conclusion could be expected for SLIV loop contributions as well.

Actually, as in the massless QED case considered earlier (Azatov and Chkareuli, 2006), the
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corresponding one-loop matrix elements in the Goldstonic gravity theory could either vanish

by themselves or amount to the differences between pairs of similar integrals whose integration

variables are shifted relative to each other by some constants (being in general arbitrary

functions of the external four-momenta of the particles involved) which, in the framework of

dimensional regularization, could lead to their total cancelation.

So, the Goldstonic tensor field gravity theory is likely to be physically indistinguishable

from conventional general relativity taken in the weak-field limit, provided that the underlying

diff invariance is kept exact. This, as we have seen, requires the tensor field gravity to be

extended to GR, in order not to otherwise have an actual Lorentz violation in the matter

field sector. In this connection, the question arises whether or not the SLIV cancellations

continue to work once the tensor field gravity theory is extended to GR, which introduces

many additional terms in the starting Lagrangian L(Hµν , ϕ) (3.2). Indeed, since all the new

terms are multi-linear inHµν and contain higher orders in 1/MP , the ”old” SLIV cancellations

(considered above) will not be disturbed, while ”new” cancellations will be provided, as one

should expect, by an extended diff invariance. This extended diff invariance follows from the

proper expansion of the metric transformation law in GR

δgµν = ∂µξ
ρgρν + ∂νξ

ρgµρ + ξρ∂ρgµν (3.30)

up to the order in which the extended tensor field theory, given by the modified Lagrangian

Lext(Hµν , ϕ), is considered.
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Chapter 4

Summary and Conclusion

4.1 Result summary for the Yang-Mills theories

The spontaneous Lorentz violation realized through a nonlinear vector field constraint of

the type A2 = M2 (M is the proposed scale for Lorentz violation) is shown to generate

massless vector Goldstone bosons gauging the starting global internal symmetries involved,

both in the Abelian and the non-Abelian symmetry case. The gauge invariance, as we

have seen, directly follows from a general variation principle and Noether’s second theorem

(Noether, 1918), as a necessary condition for these bosons not to be superfluously restricted

in degrees of freedom once the true vacuum in a theory is chosen by the SLIV constraint.

It should be stressed that we can of course only achieve this derivation of gauge invariance

by allowing all the coupling constants in the Lagrangian density to be determined from the

requirement of avoiding any extra restriction imposed on the vector field(s) in addition to

the SLIV constraint. Actually, this derivation excludes “wrong” couplings in the vector field

Lagrangian, which would otherwise distort the final Lorentz symmetry broken phase with
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unphysical extra states including ghost-like ones. Note that this procedure might, in some

sense, be inspired by string theory where the coupling constants are just vacuum expectation

values of the dilaton and moduli fields1. So, the adjustment of coupling constants in the

Lagrangian would mean, in essence, a certain choice for the vacuum configurations of these

fields, which are thus correlated with the SLIV. Another important point for this gauge

symmetry derivation is that we followed our philosophy of imposing the SLIV constraints,

(2.2) and (2.14) respectively, without adding a Lagrange multiplier term, as one might have

imagined should come with these constraints. Had we done so the equations of motion would

have changed and the Lagrange multiplier might have picked up the inconsistency, which

we required to be solved in the Abelian case by Eq. (2.4) and in the non-Abelian case by

Eq. (2.17).

In the Abelian case a massless vector Goldstone boson appears, which is naturally associ-

ated with the photon. In the non-Abelian case it was shown that the pure Lorentz violation

still generates just one genuine Goldstone vector boson. However the SLIV constraint (2.14)

manifests a larger accidental SO(D, 3D) symmetry, which is not shared by the Lagrangian L.

The spontaneous violation of this SO(D, 3D) symmetry generates D − 1 pseudo-Goldstone

vector bosons which, together with the genuine Goldstone vector boson, complete the whole

gauge field multiplet of the internal symmetry group G. Remarkably, these vector bosons

all appear to be strictly massless, as they are protected by the simultaneously generated

non-Abelian gauge invariance. These theories, both Abelian and non-Abelian, though being

essentially nonlinear, appear to be physically indistinguishable from the conventional QED

and Yang-Mills theories due to their generic, SLIV enforced, gauge invariance. One could ac-

tually see that just this gauge invariance ensures that our theories do not have unreasonably

large (proportional to the SLIV scale M ) Lorentz violation in the fermion and vector field

interaction terms. It appears also to ensure that all the physical Lorentz violating effects,

1Green et al. (b,a)
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even those suppressed by this SLIV scale, are non-observable.

In this connection, the only way for physical Lorentz violation then to appear would

be if the above gauge invariance is somehow broken at very small distances. One could

imagine how such a breaking might occur. Only gauge invariant theories provide, as we

have learned, the needed number of degrees of freedom for the interacting vector fields once

the SLIV occurs. Note that a superfluous restriction on a vector (or any other) field would

make it impossible to set the required initial conditions in the appropriate Cauchy problem

and, in quantum theory, to choose self-consistent equal-time commutation relations2. One

could expect, however, that gravity could in general hinder the setting of the required initial

conditions at extra-small distances. Eventually this would manifest itself in the violation of

the above gauge invariance in a theory through some high-order operators stemming from

the gravity-influenced area, which could lead to physical Lorentz violation. We may return

to this interesting possibility elsewhere.

2Ogievetsky and Polubarinov (1965)
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4.2 Result Summary for the Tensor Field Gravity

The spontaneous Lorentz violation have been considered, appearing through the length-

fixing tensor field constraint H2
µν = ±M2 (M is the proposed scale for Lorentz violation),

in the tensor field gravity theory which mimics general relativity in Minkowski space-time.

We have shown that such a SLIV pattern, due to which the true vacuum in the theory is

chosen, induces massless tensor Goldstone modes some of which can naturally be associated

with the physical graviton. This theory looks essentially nonlinear and contains a variety of

Lorentz and CPT violating couplings, when expressed in terms of the pure tensor Goldstone

modes. Nonetheless, all the SLIV effects turn out to be strictly cancelled in the lowest order

graviton-graviton scattering, due to the diff invariance of the free tensor field Lagrangian

(3.3) we started with. At the same time, actual Lorentz violation may appear in the matter

field interaction sector (3.5), which only possesses an approximate diff invariance, through

deformed dispersion relations of the matter fields involved. However, a proper extension of

the tensor field theory to GR, with its exact diff invariance, ultimately restores the normal

dispersion relations for matter fields and, therefore, the SLIV effects vanish. So, as we

generally argue, the measurable effects of SLIV, induced by elementary vector or tensor fields,

can be related to the accompanying gauge symmetry breaking rather than to spontaneous

Lorentz violation. The latter appears by itself to be physically unobservable and only results

in a non-covariant gauge choice in an otherwise gauge invariant and Lorentz invariant theory.

From this standpoint, the only way for physical Lorentz violation to appear would be if

the above local invariance is slightly broken at very small distances. This is in fact a place

where the Goldstonic vector and tensor field theories drastically differ from conventional

QED, Yang-Mills and GR theories. Actually, such a local symmetry breaking could lead

in the former case to deformed dispersion relations for all the matter fields involved. This

effect typically appears proportional to some power of the ratio M
MP

(just as we have seen
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above for the scalar field in our model, see (3.17)), though being properly suppressed by tiny

gauge non-invariance. Remarkably, the higher the SLIV scale M becomes the larger becomes

the actual Lorentz violation which, for some value of the scale M , may become physically

observable even at low energies. Another basic distinction of Goldstonic theories with non-

exact gauge invariance is the emergence of a mass for the graviton and other gauge fields

(namely, for the non-Abelian ones, see3), if they are composed from Pseudo Goldstone modes

rather than from pure Goldstone ones. Indeed, these PGMs are no longer protected by gauge

invariance and may properly acquire tiny masses, which still do not contradict experiment.

This may lead to a massive gravity theory where the graviton mass emerges dynamically, thus

avoiding the notorious discontinuity problem4. So, while Goldstonic theories with exact local

invariance are physically indistinguishable from conventional gauge theories, there are some

principal distinctions when this local symmetry is slightly broken which could eventually

allow us to differentiate between the two types of theory in an observational way.

One could imagine how such a local symmetry breaking might occur. As was earlier

argued5, only local invariant theories provide the needed number of degrees of freedom for

interacting gauge fields once SLIV occurs. Note that a superfluous restriction put on vector or

tensor fields would make it impossible to set the required initial conditions in the appropriate

Cauchy problem and, in quantum theory, to choose self-consistent equal-time commutation

relations6. One could expect, however, that quantum gravity could in general hinder the

setting of the required initial conditions at extra-small distances. Eventually, this would

manifest itself in violation of the above local invariance in a theory through some high-order

operators stemming from the quantum gravity influenced area, which could lead to physical

Lorentz violation. This attractive point seems to deserve further consideration.

3Chkareuli and Jejelava (2008)
4van Dam and Veltman (1970)
5Chkareuli et al. (2008)
6Ogievetsky and Polubarinov (1965)
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Chapter 5

Appendix A

To calculating the graviton propagator it was necessary to gather more than thirteen hundred

terms of the different type. In theory in case of motivation and lots of free time it was possible

to perform all calculations by hand, However it is also possible to choose faster and trustable

way. One could use particular gear, the special computing machine which is commonly known

as Personal Computer.

Nevertheless, considering current case , we had to make sure of all calculations twice (both

by hand and by computing) For verification reasons of the code correctness’s.

This script listed below had been written in a way providing the ability to manipulate 4-tesor

and 4-vectors. Current version of script contains the part for complicate tensor expression

analyzes. We are reporting the source code (originally written for the Wolfram Mathematica

7.0) directly extracted from nb file format to tex.

*)*)*)

MetricTensorRule :={ (*MetricTensorRule :={ (*MetricTensorRule :={ (*
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Here is the rule for the contracting the metric tensor with itself, vectors and tensors(with

two indexes).

(Although all used tensors are symmetric, it is easy to modify main code to generalize the

ability of the program). .*)

(*gµρg
ρν*)(*gµρg
ρν*)(*gµρg
ρν*)

(*gµρg
νρ → gµ

ν*)MTD[µ , ρ ]MTU[ν , ρ ]->MTM[µ, ν],(*gµρg
νρ → gµ

ν*)MTD[µ , ρ ]MTU[ν , ρ ]->MTM[µ, ν],(*gµρg
νρ → gµ

ν*)MTD[µ , ρ ]MTU[ν , ρ ]->MTM[µ, ν],

(*gµρg
ρν → gµ

ν*)MTD[µ , ρ ]MTU[ρ , ν ]->MTM[µ, ν],(*gµρg
ρν → gµ

ν*)MTD[µ , ρ ]MTU[ρ , ν ]->MTM[µ, ν],(*gµρg
ρν → gµ

ν*)MTD[µ , ρ ]MTU[ρ , ν ]->MTM[µ, ν],

(*gρµg
ρν → gµ

ν*)MTD[ρ , µ ]MTU[ρ , ν ]->MTM[µ, ν],(*gρµg
ρν → gµ

ν*)MTD[ρ , µ ]MTU[ρ , ν ]->MTM[µ, ν],(*gρµg
ρν → gµ

ν*)MTD[ρ , µ ]MTU[ρ , ν ]->MTM[µ, ν],

(*gρµg
νρ → gµ

ν*)MTD[ρ , µ ]MTU[ν , ρ ]->MTM[µ, ν],(*gρµg
νρ → gµ

ν*)MTD[ρ , µ ]MTU[ν , ρ ]->MTM[µ, ν],(*gρµg
νρ → gµ

ν*)MTD[ρ , µ ]MTU[ν , ρ ]->MTM[µ, ν],

(*gµν*)(*gµν*)(*gµν*)

(*gµρk
ρ → kµ*)MTD[µ , ρ ]VU[k , ρ ]->VD[k, µ],(*gµρk
ρ → kµ*)MTD[µ , ρ ]VU[k , ρ ]->VD[k, µ],(*gµρk
ρ → kµ*)MTD[µ , ρ ]VU[k , ρ ]->VD[k, µ],

(*gρµk
ρ → kµ*)MTD[ρ , µ ]VU[k , ρ ]->VD[k, µ],(*gρµk
ρ → kµ*)MTD[ρ , µ ]VU[k , ρ ]->VD[k, µ],(*gρµk
ρ → kµ*)MTD[ρ , µ ]VU[k , ρ ]->VD[k, µ],

(*gµρδν
ρ → gµν*)MTD[µ , ρ ]MTM[ν , ρ ]->MTD[µ, ν],(*gµρδν
ρ → gµν*)MTD[µ , ρ ]MTM[ν , ρ ]->MTD[µ, ν],(*gµρδν
ρ → gµν*)MTD[µ , ρ ]MTM[ν , ρ ]->MTD[µ, ν],

(*gρµδν
ρ → gµν*)MTD[ρ , µ ]MTM[ν , ρ ]->MTD[µ, ν],(*gρµδν
ρ → gµν*)MTD[ρ , µ ]MTM[ν , ρ ]->MTD[µ, ν],(*gρµδν
ρ → gµν*)MTD[ρ , µ ]MTM[ν , ρ ]->MTD[µ, ν],

(*gµρn
νρ → nµ

ν*)MTD[µ , ρ ]TU[n , ν , ρ ]->TM[n, µ, ν],(*gµρn
νρ → nµ

ν*)MTD[µ , ρ ]TU[n , ν , ρ ]->TM[n, µ, ν],(*gµρn
νρ → nµ

ν*)MTD[µ , ρ ]TU[n , ν , ρ ]->TM[n, µ, ν],

(*gρµn
νρ → nµ

ν*)MTD[ρ , µ ]TU[n , ν , ρ ]->TM[n, µ, ν],(*gρµn
νρ → nµ

ν*)MTD[ρ , µ ]TU[n , ν , ρ ]->TM[n, µ, ν],(*gρµn
νρ → nµ

ν*)MTD[ρ , µ ]TU[n , ν , ρ ]->TM[n, µ, ν],

(*gµρn
ρν → nµ

ν*)MTD[µ , ρ ]TU[n , ρ , ν ]->TM[n, µ, ν],(*gµρn
ρν → nµ

ν*)MTD[µ , ρ ]TU[n , ρ , ν ]->TM[n, µ, ν],(*gµρn
ρν → nµ

ν*)MTD[µ , ρ ]TU[n , ρ , ν ]->TM[n, µ, ν],

(*gρµn
ρν → nµ

ν*)MTD[ρ , µ ]TU[n , ρ , ν ]->TM[n, µ, ν],(*gρµn
ρν → nµ

ν*)MTD[ρ , µ ]TU[n , ρ , ν ]->TM[n, µ, ν],(*gρµn
ρν → nµ

ν*)MTD[ρ , µ ]TU[n , ρ , ν ]->TM[n, µ, ν],
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(*gµρnν
ρ → nµν*)MTD[µ , ρ ]TM[n , ν , ρ ]->TD[n, µ, ν],(*gµρnν
ρ → nµν*)MTD[µ , ρ ]TM[n , ν , ρ ]->TD[n, µ, ν],(*gµρnν
ρ → nµν*)MTD[µ , ρ ]TM[n , ν , ρ ]->TD[n, µ, ν],

(*gρµnν
ρ → nµν*)MTD[ρ , µ ]TM[n , ν , ρ ]->TD[n, µ, ν],(*gρµnν
ρ → nµν*)MTD[ρ , µ ]TM[n , ν , ρ ]->TD[n, µ, ν],(*gρµnν
ρ → nµν*)MTD[ρ , µ ]TM[n , ν , ρ ]->TD[n, µ, ν],

(*gµν*)(*gµν*)(*gµν*)

(*gµρkρ → kµ*)MTU[µ , ρ ]VD[k , ρ ]->VU[k, µ],(*gµρkρ → kµ*)MTU[µ , ρ ]VD[k , ρ ]->VU[k, µ],(*gµρkρ → kµ*)MTU[µ , ρ ]VD[k , ρ ]->VU[k, µ],

(*gρµkρ → kµ*)MTU[ρ , µ ]VD[k , ρ ]->VU[k, µ],(*gρµkρ → kµ*)MTU[ρ , µ ]VD[k , ρ ]->VU[k, µ],(*gρµkρ → kµ*)MTU[ρ , µ ]VD[k , ρ ]->VU[k, µ],

(*gµρδρ
ν → gµν*)MTU[µ , ρ ]MTM[ρ , ν ]->MTU[µ, ν],(*gµρδρ
ν → gµν*)MTU[µ , ρ ]MTM[ρ , ν ]->MTU[µ, ν],(*gµρδρ
ν → gµν*)MTU[µ , ρ ]MTM[ρ , ν ]->MTU[µ, ν],

(*gρµδρ
ν → gµν*)MTU[ρ , µ ]MTM[ρ , µ ]->MTU[µ, ν],(*gρµδρ
ν → gµν*)MTU[ρ , µ ]MTM[ρ , µ ]->MTU[µ, ν],(*gρµδρ
ν → gµν*)MTU[ρ , µ ]MTM[ρ , µ ]->MTU[µ, ν],

(*gµρnνρ → nν
µ*)MTU[µ , ρ ]TD[n , ν , ρ ]->TM[n, ν, µ],(*gµρnνρ → nν
µ*)MTU[µ , ρ ]TD[n , ν , ρ ]->TM[n, ν, µ],(*gµρnνρ → nν
µ*)MTU[µ , ρ ]TD[n , ν , ρ ]->TM[n, ν, µ],

(*gρµnνρ → nν
µ*)MTU[ρ , µ ]TD[n , ν , ρ ]->TM[n, ν, µ],(*gρµnνρ → nν
µ*)MTU[ρ , µ ]TD[n , ν , ρ ]->TM[n, ν, µ],(*gρµnνρ → nν
µ*)MTU[ρ , µ ]TD[n , ν , ρ ]->TM[n, ν, µ],

(*gµρnρν → nν
µ*)MTU[µ , ρ ]TD[n , ρ , ν ]->TM[n, ν, µ],(*gµρnρν → nν
µ*)MTU[µ , ρ ]TD[n , ρ , ν ]->TM[n, ν, µ],(*gµρnρν → nν
µ*)MTU[µ , ρ ]TD[n , ρ , ν ]->TM[n, ν, µ],

(*gρµnρν → nν
µ*)MTU[ρ , µ ]TD[n , ρ , ν ]->TM[n, ν, µ],(*gρµnρν → nν
µ*)MTU[ρ , µ ]TD[n , ρ , ν ]->TM[n, ν, µ],(*gρµnρν → nν
µ*)MTU[ρ , µ ]TD[n , ρ , ν ]->TM[n, ν, µ],

(*gµρnρ
ν → nµν*)MTU[µ , ρ ]TM[n , ρ , ν ]->TU[n, µ, ν],(*gµρnρ
ν → nµν*)MTU[µ , ρ ]TM[n , ρ , ν ]->TU[n, µ, ν],(*gµρnρ
ν → nµν*)MTU[µ , ρ ]TM[n , ρ , ν ]->TU[n, µ, ν],

(*gρµnρ
ν → nµν*)MTU[ρ , µ ]TM[n , ρ , ν ]->TU[n, µ, ν],(*gρµnρ
ν → nµν*)MTU[ρ , µ ]TM[n , ρ , ν ]->TU[n, µ, ν],(*gρµnρ
ν → nµν*)MTU[ρ , µ ]TM[n , ρ , ν ]->TU[n, µ, ν],

(*δµ
ν*)(*δµ
ν*)(*δµ
ν*)

(*δρ
µkρ → kµ*)MTM[ρ , µ ]VU[k , ρ ]->VU[k, µ],(*δρ
µkρ → kµ*)MTM[ρ , µ ]VU[k , ρ ]->VU[k, µ],(*δρ
µkρ → kµ*)MTM[ρ , µ ]VU[k , ρ ]->VU[k, µ],
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(*δµ
ρkρ → kµ*)MTM[µ , ρ ]VD[k , ρ ]->VD[k, µ],(*δµ
ρkρ → kµ*)MTM[µ , ρ ]VD[k , ρ ]->VD[k, µ],(*δµ
ρkρ → kµ*)MTM[µ , ρ ]VD[k , ρ ]->VD[k, µ],

(*δµ
ρgρν → gµν*)MTM[µ , ρ ]MTD[ρ , ν ]->MTD[µ, ν],(*δµ
ρgρν → gµν*)MTM[µ , ρ ]MTD[ρ , ν ]->MTD[µ, ν],(*δµ
ρgρν → gµν*)MTM[µ , ρ ]MTD[ρ , ν ]->MTD[µ, ν],

(*δµ
ρgνρ → gνµ*)MTM[µ , ρ ]MTD[ν , ρ ]->MTD[ν, µ],(*δµ
ρgνρ → gνµ*)MTM[µ , ρ ]MTD[ν , ρ ]->MTD[ν, µ],(*δµ
ρgνρ → gνµ*)MTM[µ , ρ ]MTD[ν , ρ ]->MTD[ν, µ],

(*δρ
µgρν → gµν*)MTM[ρ , µ ]MTU[ρ , ν ]->MTU[µ, ν],(*δρ
µgρν → gµν*)MTM[ρ , µ ]MTU[ρ , ν ]->MTU[µ, ν],(*δρ
µgρν → gµν*)MTM[ρ , µ ]MTU[ρ , ν ]->MTU[µ, ν],

(*δρ
µgνρ → gνµ*)MTM[ρ , µ ]MTU[ν , ρ ]->MTU[ν, µ],(*δρ
µgνρ → gνµ*)MTM[ρ , µ ]MTU[ν , ρ ]->MTU[ν, µ],(*δρ
µgνρ → gνµ*)MTM[ρ , µ ]MTU[ν , ρ ]->MTU[ν, µ],

(*δµ
ρδρ

ν → δµ
ν*)MTM[µ , ρ ]MTM[ρ , ν ] → MTM[µ, ν],(*δµ

ρδρ
ν → δµ

ν*)MTM[µ , ρ ]MTM[ρ , ν ] → MTM[µ, ν],(*δµ
ρδρ

ν → δµ
ν*)MTM[µ , ρ ]MTM[ρ , ν ] → MTM[µ, ν],

(*δν
ρδρ

µ → δν
µ*)MTM[ν , ρ ]MTM[ρ , µ ] → MTM[ν, µ],(*δν

ρδρ
µ → δν

µ*)MTM[ν , ρ ]MTM[ρ , µ ] → MTM[ν, µ],(*δν
ρδρ

µ → δν
µ*)MTM[ν , ρ ]MTM[ρ , µ ] → MTM[ν, µ],

(*δµ
ρnρν → nµν*)MTM[µ , ρ ]TD[n , ρ , ν ] → TD[n, µ, ν],(*δµ
ρnρν → nµν*)MTM[µ , ρ ]TD[n , ρ , ν ] → TD[n, µ, ν],(*δµ
ρnρν → nµν*)MTM[µ , ρ ]TD[n , ρ , ν ] → TD[n, µ, ν],

(*δµ
ρnνρ → nνµ*)MTM[µ , ρ ]TD[n , ν , ρ ] → TD[n, ν, µ],(*δµ
ρnνρ → nνµ*)MTM[µ , ρ ]TD[n , ν , ρ ] → TD[n, ν, µ],(*δµ
ρnνρ → nνµ*)MTM[µ , ρ ]TD[n , ν , ρ ] → TD[n, ν, µ],

(*δρ
µnρν → nµν*)MTM[ρ , µ ]TU[n , ρ , ν ] → TU[n, µ, ν],(*δρ
µnρν → nµν*)MTM[ρ , µ ]TU[n , ρ , ν ] → TU[n, µ, ν],(*δρ
µnρν → nµν*)MTM[ρ , µ ]TU[n , ρ , ν ] → TU[n, µ, ν],

(*δρ
µnνρ → nνµ*)MTM[ρ , µ ]TU[n , ν , ρ ] → TU[n, ν, µ],(*δρ
µnνρ → nνµ*)MTM[ρ , µ ]TU[n , ν , ρ ] → TU[n, ν, µ],(*δρ
µnνρ → nνµ*)MTM[ρ , µ ]TU[n , ν , ρ ] → TU[n, ν, µ],

(*δρ
µnν

ρ → nν
µ*)MTM[ρ , µ ]TM[n , ν , ρ ] → TM[n, ν, µ],(*δρ

µnν
ρ → nν

µ*)MTM[ρ , µ ]TM[n , ν , ρ ] → TM[n, ν, µ],(*δρ
µnν

ρ → nν
µ*)MTM[ρ , µ ]TM[n , ν , ρ ] → TM[n, ν, µ],

(*δµ
ρnρ

ν → nµ
ν*)MTM[µ , ρ ]TM[n , ρ , ν ] → TM[n, µ, ν],(*δµ

ρnρ
ν → nµ

ν*)MTM[µ , ρ ]TM[n , ρ , ν ] → TM[n, µ, ν],(*δµ
ρnρ

ν → nµ
ν*)MTM[µ , ρ ]TM[n , ρ , ν ] → TM[n, µ, ν],

(*nρ
τnτ

ρ →< nn > *)TM[n , τ , ρ ]TM[n , ρ , τ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)(*nρ
τnτ

ρ →< nn > *)TM[n , τ , ρ ]TM[n , ρ , τ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)(*nρ
τnτ

ρ →< nn > *)TM[n , τ , ρ ]TM[n , ρ , τ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)

(*nρτn
τρ →< nn > *)TD[n , ρ , τ ]TU[n , τ , ρ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)(*nρτn
τρ →< nn > *)TD[n , ρ , τ ]TU[n , τ , ρ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)(*nρτn
τρ →< nn > *)TD[n , ρ , τ ]TU[n , τ , ρ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)
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(*nρτn
ρτ →< nn > *)TD[n , ρ , τ ]TU[n , ρ , τ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)(*nρτn
ρτ →< nn > *)TD[n , ρ , τ ]TU[n , ρ , τ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)(*nρτn
ρτ →< nn > *)TD[n , ρ , τ ]TU[n , ρ , τ ]->AngleBracket[n, n], (*Pleasechecktwice!!!*)

(*nµρn
νρ →< nµn

ν > *)TD[n , µ , ρ ]TU[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nµρn
νρ →< nµn

ν > *)TD[n , µ , ρ ]TU[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nµρn
νρ →< nµn

ν > *)TD[n , µ , ρ ]TU[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],

(*nµρn
ρν →< nµn

ν > *)TD[n , µ , ρ ]TU[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nµρn
ρν →< nµn

ν > *)TD[n , µ , ρ ]TU[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nµρn
ρν →< nµn

ν > *)TD[n , µ , ρ ]TU[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],

(*nρµn
νρ →< nµn

ν > *)TD[n , ρ , µ ]TU[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nρµn
νρ →< nµn

ν > *)TD[n , ρ , µ ]TU[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nρµn
νρ →< nµn

ν > *)TD[n , ρ , µ ]TU[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],

(*nρµn
ρν →< nµn

ν > *)TD[n , ρ , µ ]TU[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nρµn
ρν →< nµn

ν > *)TD[n , ρ , µ ]TU[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nρµn
ρν →< nµn

ν > *)TD[n , ρ , µ ]TU[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],

(*nµ
ρnρ

ν →< nµn
ν > *)TM[n , µ , ρ ]TM[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nµ

ρnρ
ν →< nµn

ν > *)TM[n , µ , ρ ]TM[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],(*nµ
ρnρ

ν →< nµn
ν > *)TM[n , µ , ρ ]TM[n , ρ , ν ]->AngleBracket[Subscript[n, µ]Superscript[n, ν]],

(*nµρnν
ρ →< nµnν > *)TD[n , µ , ρ ]TM[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Subscript[n, ν]],(*nµρnν
ρ →< nµnν > *)TD[n , µ , ρ ]TM[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Subscript[n, ν]],(*nµρnν
ρ →< nµnν > *)TD[n , µ , ρ ]TM[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Subscript[n, ν]],

(*nρµnν
ρ →< nµnν > *)TD[n , ρ , µ ]TM[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Subscript[n, ν]],(*nρµnν
ρ →< nµnν > *)TD[n , ρ , µ ]TM[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Subscript[n, ν]],(*nρµnν
ρ →< nµnν > *)TD[n , ρ , µ ]TM[n , ν , ρ ]->AngleBracket[Subscript[n, µ]Subscript[n, ν]],

(*nµρnρ
ν →< nµnν > *)TU[n , µ , ρ ]TM[n , ρ , ν ]->AngleBracket[Superscript[n, µ]Superscript[n, ν]],(*nµρnρ
ν →< nµnν > *)TU[n , µ , ρ ]TM[n , ρ , ν ]->AngleBracket[Superscript[n, µ]Superscript[n, ν]],(*nµρnρ
ν →< nµnν > *)TU[n , µ , ρ ]TM[n , ρ , ν ]->AngleBracket[Superscript[n, µ]Superscript[n, ν]],

(*nρµnρ
ν →< nµnν > *)TU[n , ρ , µ ]TM[n , ρ , ν ]->AngleBracket[Superscript[n, µ]Superscript[n, ν]](*nρµnρ
ν →< nµnν > *)TU[n , ρ , µ ]TM[n , ρ , ν ]->AngleBracket[Superscript[n, µ]Superscript[n, ν]](*nρµnρ
ν →< nµnν > *)TU[n , ρ , µ ]TM[n , ρ , ν ]->AngleBracket[Superscript[n, µ]Superscript[n, ν]]

}}}

FullScalarProductRule:={(*Contract Tensor to itself*)FullScalarProductRule:={(*Contract Tensor to itself*)FullScalarProductRule:={(*Contract Tensor to itself*)

(*δρ
ρ → 4*)MTM[ρ , ρ ] → 4,(*δρ
ρ → 4*)MTM[ρ , ρ ] → 4,(*δρ
ρ → 4*)MTM[ρ , ρ ] → 4,

(*kρk
ρ → k2*)VD[k , ρ ]VU[k , ρ ] → k2,(*kρk
ρ → k2*)VD[k , ρ ]VU[k , ρ ] → k2,(*kρk
ρ → k2*)VD[k , ρ ]VU[k , ρ ] → k2,

(*qρk
ρ →< qk > *)VD[q , ρ ]VU[k , ρ ] → AngleBracket[qk],(*qρk
ρ →< qk > *)VD[q , ρ ]VU[k , ρ ] → AngleBracket[qk],(*qρk
ρ →< qk > *)VD[q , ρ ]VU[k , ρ ] → AngleBracket[qk],

(*kρq
ρ →< kq > *)VD[k , ρ ]VU[k , ρ ] → AngleBracket[qk],(*kρq
ρ →< kq > *)VD[k , ρ ]VU[k , ρ ] → AngleBracket[qk],(*kρq
ρ →< kq > *)VD[k , ρ ]VU[k , ρ ] → AngleBracket[qk],

(*nρ
ρ →< n > *)TM[n , ρ , ρ ] → AngleBracket[n],(*nρ
ρ →< n > *)TM[n , ρ , ρ ] → AngleBracket[n],(*nρ
ρ →< n > *)TM[n , ρ , ρ ] → AngleBracket[n],
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(* < n >→ 0*)(*AngleBracket[n] → 0, *)(* < n >→ 0*)(*AngleBracket[n] → 0, *)(* < n >→ 0*)(*AngleBracket[n] → 0, *)

(*nτρq
ρkτ →< nqk > *)TD[n , τ , ρ ]VU[q , ρ ]VU[k , τ ]->AngleBracket[n, qk],(*nτρq
ρkτ →< nqk > *)TD[n , τ , ρ ]VU[q , ρ ]VU[k , τ ]->AngleBracket[n, qk],(*nτρq
ρkτ →< nqk > *)TD[n , τ , ρ ]VU[q , ρ ]VU[k , τ ]->AngleBracket[n, qk],

(*nτρq
τkρ →< nqk > *)TD[n , τ , ρ ]VU[q , τ ]VU[k , ρ ]->AngleBracket[n, qk],(*nτρq
τkρ →< nqk > *)TD[n , τ , ρ ]VU[q , τ ]VU[k , ρ ]->AngleBracket[n, qk],(*nτρq
τkρ →< nqk > *)TD[n , τ , ρ ]VU[q , τ ]VU[k , ρ ]->AngleBracket[n, qk],

(*nτρqρkτ →< nqk > *)TU[n , τ , ρ ]VD[q , ρ ]VD[k , τ ]->AngleBracket[n, qk],(*nτρqρkτ →< nqk > *)TU[n , τ , ρ ]VD[q , ρ ]VD[k , τ ]->AngleBracket[n, qk],(*nτρqρkτ →< nqk > *)TU[n , τ , ρ ]VD[q , ρ ]VD[k , τ ]->AngleBracket[n, qk],

(*nτρqτkρ →< nqk > *)TU[n , τ , ρ ]VD[q , τ ]VD[k , ρ ]->AngleBracket[n, qk],(*nτρqτkρ →< nqk > *)TU[n , τ , ρ ]VD[q , τ ]VD[k , ρ ]->AngleBracket[n, qk],(*nτρqτkρ →< nqk > *)TU[n , τ , ρ ]VD[q , τ ]VD[k , ρ ]->AngleBracket[n, qk],

(*nτ
ρqρk

τ →< nqk > *)TD[n , τ , ρ ]VD[q , ρ ]VU[k , τ ]->AngleBracket[n, qk],(*nτ
ρqρk

τ →< nqk > *)TD[n , τ , ρ ]VD[q , ρ ]VU[k , τ ]->AngleBracket[n, qk],(*nτ
ρqρk

τ →< nqk > *)TD[n , τ , ρ ]VD[q , ρ ]VU[k , τ ]->AngleBracket[n, qk],

(*nτ
ρqρk

τ →< nqk > *)TD[n , τ , ρ ]VD[q , ρ ]VU[k , τ ]->AngleBracket[n, qk](*nτ
ρqρk

τ →< nqk > *)TD[n , τ , ρ ]VD[q , ρ ]VU[k , τ ]->AngleBracket[n, qk](*nτ
ρqρk

τ →< nqk > *)TD[n , τ , ρ ]VD[q , ρ ]VU[k , τ ]->AngleBracket[n, qk]

}}}

PartialScalarProductRule:={PartialScalarProductRule:={PartialScalarProductRule:={

(*nµρk
ρ →< nµ, k > *)TD[n , µ , ρ ]VU[k , ρ ]->AngleBracket[VD[n, µ], k],(*nµρk
ρ →< nµ, k > *)TD[n , µ , ρ ]VU[k , ρ ]->AngleBracket[VD[n, µ], k],(*nµρk
ρ →< nµ, k > *)TD[n , µ , ρ ]VU[k , ρ ]->AngleBracket[VD[n, µ], k],

(*nρµk
ρ →< nµ, k > *)TD[n , ρ , µ ]VU[k , ρ ]->AngleBracket[VD[n, µ], k],(*nρµk
ρ →< nµ, k > *)TD[n , ρ , µ ]VU[k , ρ ]->AngleBracket[VD[n, µ], k],(*nρµk
ρ →< nµ, k > *)TD[n , ρ , µ ]VU[k , ρ ]->AngleBracket[VD[n, µ], k],

(*nµρkρ →< nµ, k > *)TU[n , µ , ρ ]VD[k , ρ ]->AngleBracket[VU[n, µ], k],(*nµρkρ →< nµ, k > *)TU[n , µ , ρ ]VD[k , ρ ]->AngleBracket[VU[n, µ], k],(*nµρkρ →< nµ, k > *)TU[n , µ , ρ ]VD[k , ρ ]->AngleBracket[VU[n, µ], k],

(*nρµkρ →< nµ, k > *)TU[n , ρ , µ ]VD[k , ρ ]->AngleBracket[VU[n, µ], k],(*nρµkρ →< nµ, k > *)TU[n , ρ , µ ]VD[k , ρ ]->AngleBracket[VU[n, µ], k],(*nρµkρ →< nµ, k > *)TU[n , ρ , µ ]VD[k , ρ ]->AngleBracket[VU[n, µ], k],

(*nµ
ρkρ →< nµ, k > *)TM[n , µ , ρ ]VD[k , ρ ]->AngleBracket[VD[n, µ], k],(*nµ
ρkρ →< nµ, k > *)TM[n , µ , ρ ]VD[k , ρ ]->AngleBracket[VD[n, µ], k],(*nµ
ρkρ →< nµ, k > *)TM[n , µ , ρ ]VD[k , ρ ]->AngleBracket[VD[n, µ], k],

(*nρ
µkρ →< nµ, k > *)TM[n , ρ , µ ]VU[k , ρ ]->AngleBracket[VU[n, µ], k],(*nρ
µkρ →< nµ, k > *)TM[n , ρ , µ ]VU[k , ρ ]->AngleBracket[VU[n, µ], k],(*nρ
µkρ →< nµ, k > *)TM[n , ρ , µ ]VU[k , ρ ]->AngleBracket[VU[n, µ], k],

(* < nρ, q >< mρ, k >→< q, n,m, k > *)(* < nρ, q >< mρ, k >→< q, n,m, k > *)(* < nρ, q >< mρ, k >→< q, n,m, k > *)
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AngleBracket[VU[n , ρ ], q ]AngleBracket[VD[m , ρ ], k ]->AngleBracket[q, n,m, k],AngleBracket[VU[n , ρ ], q ]AngleBracket[VD[m , ρ ], k ]->AngleBracket[q, n,m, k],AngleBracket[VU[n , ρ ], q ]AngleBracket[VD[m , ρ ], k ]->AngleBracket[q, n,m, k],

(* < nρ, q >< mρ, k >→< q, n,m, k > *)(* < nρ, q >< mρ, k >→< q, n,m, k > *)(* < nρ, q >< mρ, k >→< q, n,m, k > *)

AngleBracket[VD[n , ρ ], q ]AngleBracket[VU[m , ρ ], k ]->AngleBracket[q, n,m, k],AngleBracket[VD[n , ρ ], q ]AngleBracket[VU[m , ρ ], k ]->AngleBracket[q, n,m, k],AngleBracket[VD[n , ρ ], q ]AngleBracket[VU[m , ρ ], k ]->AngleBracket[q, n,m, k],

(* Complicate scalar production *)(* Complicate scalar production *)(* Complicate scalar production *)

(*begin*)(*begin*)(*begin*)

(* < nµnρ > kρ →< nµ, n, k > *)(* < nµnρ > kρ →< nµ, n, k > *)(* < nµnρ > kρ →< nµ, n, k > *)

AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]VD[k , ρ ] → AngleBracket[VU[n, µ], n, k],AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]VD[k , ρ ] → AngleBracket[VU[n, µ], n, k],AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]VD[k , ρ ] → AngleBracket[VU[n, µ], n, k],

(* < nµn
ρ > kρ →< nµ, n, k > *)(* < nµn
ρ > kρ →< nµ, n, k > *)(* < nµn
ρ > kρ →< nµ, n, k > *)

AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]VD[k , ρ ] → AngleBracket[VD[n, µ], n, k],AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]VD[k , ρ ] → AngleBracket[VD[n, µ], n, k],AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]VD[k , ρ ] → AngleBracket[VD[n, µ], n, k],

(* < nµnρ > kρ →< nµ, n, k > *)(* < nµnρ > kρ →< nµ, n, k > *)(* < nµnρ > kρ →< nµ, n, k > *)

AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]VU[k , ρ ] → AngleBracket[VD[n, µ], n, k],AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]VU[k , ρ ] → AngleBracket[VD[n, µ], n, k],AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]VU[k , ρ ] → AngleBracket[VD[n, µ], n, k],

(* < nµnρ > kρ →< nµ, n, k > *)(* < nµnρ > kρ →< nµ, n, k > *)(* < nµnρ > kρ →< nµ, n, k > *)

AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]VU[k , ρ ] → AngleBracket[VU[n, µ], n, k],AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]VU[k , ρ ] → AngleBracket[VU[n, µ], n, k],AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]VU[k , ρ ] → AngleBracket[VU[n, µ], n, k],

(*mµρ < nρk >→< mµ, n, k > *)(*mµρ < nρk >→< mµ, n, k > *)(*mµρ < nρk >→< mµ, n, k > *)

TU[m , µ , ρ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],TU[m , µ , ρ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],TU[m , µ , ρ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],

(*mρµ < nρk >→< mµ, n, k > *)(*mρµ < nρk >→< mµ, n, k > *)(*mρµ < nρk >→< mµ, n, k > *)

TU[m , ρ , µ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],TU[m , ρ , µ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],TU[m , ρ , µ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],
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(*mµρ < nρk >→< mµ, n, k > *)(*mµρ < nρk >→< mµ, n, k > *)(*mµρ < nρk >→< mµ, n, k > *)

TD[m , µ , ρ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],TD[m , µ , ρ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],TD[m , µ , ρ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],

(*mρµ < nρk >→< mµ, n, k > *)(*mρµ < nρk >→< mµ, n, k > *)(*mρµ < nρk >→< mµ, n, k > *)

TD[m , ρ , µ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],TD[m , ρ , µ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],TD[m , ρ , µ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],

(*mµ
ρ < nρk >→< mµ, n, k > *)(*mµ
ρ < nρk >→< mµ, n, k > *)(*mµ
ρ < nρk >→< mµ, n, k > *)

TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], k ]->AngleBracket[VD[m,µ], n, k],

(*mρ
µ < nρk >→< mµ, n, k > *)(*mρ
µ < nρk >→< mµ, n, k > *)(*mρ
µ < nρk >→< mµ, n, k > *)

TM[m , ρ , µ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],TM[m , ρ , µ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],TM[m , ρ , µ ]AngleBracket[VU[n , ρ ], k ]->AngleBracket[VU[m,µ], n, k],

(* < mρ, n, k > qρ →< q,m, n, k > *)(* < mρ, n, k > qρ →< q,m, n, k > *)(* < mρ, n, k > qρ →< q,m, n, k > *)

AngleBracket[VU[m , ρ ], n , k ]VD[q , ρ ] → AngleBracket[q,m, n, k],AngleBracket[VU[m , ρ ], n , k ]VD[q , ρ ] → AngleBracket[q,m, n, k],AngleBracket[VU[m , ρ ], n , k ]VD[q , ρ ] → AngleBracket[q,m, n, k],

(* < mρ, n, k > qρ →< q,m, n, k > *)(* < mρ, n, k > qρ →< q,m, n, k > *)(* < mρ, n, k > qρ →< q,m, n, k > *)

AngleBracket[VD[m , ρ ], n , k ]VU[q , ρ ] → AngleBracket[q,m, n, k]AngleBracket[VD[m , ρ ], n , k ]VU[q , ρ ] → AngleBracket[q,m, n, k]AngleBracket[VD[m , ρ ], n , k ]VU[q , ρ ] → AngleBracket[q,m, n, k]

(*end*)(*end*)(*end*)

}}}

ComplicateScalarProductRule:={ComplicateScalarProductRule:={ComplicateScalarProductRule:={

(* < mρ, n, k >< lρ, q >→< q, l,m, n, k > *)(* < mρ, n, k >< lρ, q >→< q, l,m, n, k > *)(* < mρ, n, k >< lρ, q >→< q, l,m, n, k > *)

AngleBracket[VU[m , ρ ], n , k ]AngleBracket[VD[l , ρ ], q ] → AngleBracket[q, l,m, n, k],AngleBracket[VU[m , ρ ], n , k ]AngleBracket[VD[l , ρ ], q ] → AngleBracket[q, l,m, n, k],AngleBracket[VU[m , ρ ], n , k ]AngleBracket[VD[l , ρ ], q ] → AngleBracket[q, l,m, n, k],

(* < mρ, n, k >< lρ, q >→< q, l,m, n, k > *)(* < mρ, n, k >< lρ, q >→< q, l,m, n, k > *)(* < mρ, n, k >< lρ, q >→< q, l,m, n, k > *)

AngleBracket[VD[m , ρ ], n , k ]AngleBracket[VU[l , ρ ], q ] → AngleBracket[q, l,m, n, k],AngleBracket[VD[m , ρ ], n , k ]AngleBracket[VU[l , ρ ], q ] → AngleBracket[q, l,m, n, k],AngleBracket[VD[m , ρ ], n , k ]AngleBracket[VU[l , ρ ], q ] → AngleBracket[q, l,m, n, k],

(* < mρ, t, n, k >< lρ, k >→ k2 < q, l,m, t, n, k > *)(* < mρ, t, n, k >< lρ, k >→ k2 < q, l,m, t, n, k > *)(* < mρ, t, n, k >< lρ, k >→ k2 < q, l,m, t, n, k > *)

AngleBracket[VU[m , ρ ], t ,n , k ]AngleBracket[VD[l , ρ ], k ] → k2,AngleBracket[VU[m , ρ ], t , n , k ]AngleBracket[VD[l , ρ ], k ] → k2,AngleBracket[VU[m , ρ ], t , n , k ]AngleBracket[VD[l , ρ ], k ] → k2,
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(*(*(*

< mρ, t, n, k >< lρ, k >→ k2 < q, l,m, t, n, k > *)< mρ, t, n, k >< lρ, k >→ k2 < q, l,m, t, n, k > *)< mρ, t, n, k >< lρ, k >→ k2 < q, l,m, t, n, k > *)

AngleBracket[VD[m , ρ ], t , n , k ]AngleBracket[VU[l , ρ ], k ] → k2,AngleBracket[VD[m , ρ ], t , n , k ]AngleBracket[VU[l , ρ ], k ] → k2,AngleBracket[VD[m , ρ ], t , n , k ]AngleBracket[VU[l , ρ ], k ] → k2,

(* < nµnρ >< mρq >→< nµ, n,m, k > *)(* < nµnρ >< mρq >→< nµ, n,m, k > *)(* < nµnρ >< mρq >→< nµ, n,m, k > *)

AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[m , ρ ], q ] →AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[m , ρ ], q ] →AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[m , ρ ], q ] →

AngleBracket[VU[n, µ], n,m, q],AngleBracket[VU[n, µ], n,m, q],AngleBracket[VU[n, µ], n,m, q],

(* < nµn
ρ >< mρq >→< nµ, n,m, k > *)(* < nµn
ρ >< mρq >→< nµ, n,m, k > *)(* < nµn
ρ >< mρq >→< nµ, n,m, k > *)

AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[m , ρ ], q ] →AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[m , ρ ], q ] →AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[m , ρ ], q ] →

AngleBracket[VD[n, µ], n,m, q],AngleBracket[VD[n, µ], n,m, q],AngleBracket[VD[n, µ], n,m, q],

(* < nµnρ >< mρq >→< nµ, n,m, k > *)(* < nµnρ >< mρq >→< nµ, n,m, k > *)(* < nµnρ >< mρq >→< nµ, n,m, k > *)

AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[m , ρ ], q ] →AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[m , ρ ], q ] →AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[m , ρ ], q ] →

AngleBracket[VD[n, µ], n,m, q],AngleBracket[VD[n, µ], n,m, q],AngleBracket[VD[n, µ], n,m, q],

(* < nµnρ >< mρq >→< nµ, n,m, k > *)(* < nµnρ >< mρq >→< nµ, n,m, k > *)(* < nµnρ >< mρq >→< nµ, n,m, k > *)

AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[m , ρ ], q ] →AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[m , ρ ], q ] →AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[m , ρ ], q ] →

AngleBracket[VU[n, µ], n,m, q],AngleBracket[VU[n, µ], n,m, q],AngleBracket[VU[n, µ], n,m, q],

(* < nρ, n, nρ >→< n, n, n > *)AngleBracket[VU[n , ρ ], n ,VD[m , ρ ]]->AngleBracket[n, n, n],(* < nρ, n, nρ >→< n, n, n > *)AngleBracket[VU[n , ρ ],n ,VD[m , ρ ]]->AngleBracket[n, n, n],(* < nρ, n, nρ >→< n, n, n > *)AngleBracket[VU[n , ρ ], n ,VD[m , ρ ]]->AngleBracket[n, n, n],

(* < nρ, n, n
ρ >→< n, n, n > *)AngleBracket[VD[n , ρ ], n ,VU[m , ρ ]]->AngleBracket[n, n, n],(* < nρ, n, n
ρ >→< n, n, n > *)AngleBracket[VD[n , ρ ], n ,VU[m , ρ ]]->AngleBracket[n, n, n],(* < nρ, n, n
ρ >→< n, n, n > *)AngleBracket[VD[n , ρ ], n ,VU[m , ρ ]]->AngleBracket[n, n, n],

(* < nµnρ > mρν →< nµ, n,mν > *)(* < nµnρ > mρν →< nµ, n,mν > *)(* < nµnρ > mρν →< nµ, n,mν > *)

AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TD[m , ρ , ν ]->AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TD[m , ρ , ν ]->AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TD[m , ρ , ν ]->

AngleBracket[VU[n, µ], n,VD[m, ν]],AngleBracket[VU[n, µ], n,VD[m, ν]],AngleBracket[VU[n, µ], n,VD[m, ν]],
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(* < nµnρ > mνρ →< nµ, n,mν > *)(* < nµnρ > mνρ →< nµ, n,mν > *)(* < nµnρ > mνρ →< nµ, n,mν > *)

AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TD[m , ν , ρ ]->AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TD[m , ν , ρ ]->AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TD[m , ν , ρ ]->

AngleBracket[VU[n, µ], n,VD[m, ν]],AngleBracket[VU[n, µ], n,VD[m, ν]],AngleBracket[VU[n, µ], n,VD[m, ν]],

(* < nµnρ > mρ
ν →< nµ, n,mν > *)(* < nµnρ > mρ
ν →< nµ, n,mν > *)(* < nµnρ > mρ
ν →< nµ, n,mν > *)

AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TM[m , ρ , ν ]->AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TM[m , ρ , ν ]->AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]TM[m , ρ , ν ]->

AngleBracket[VU[n, µ], n,VU[m, ν]],AngleBracket[VU[n, µ], n,VU[m, ν]],AngleBracket[VU[n, µ], n,VU[m, ν]],

(* < nµnρ > mρν →< nµ, n,m
ν > *)(* < nµnρ > mρν →< nµ, n,m
ν > *)(* < nµnρ > mρν →< nµ, n,m
ν > *)

AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TU[m , ρ , ν ]->AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TU[m , ρ , ν ]->AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TU[m , ρ , ν ]->

AngleBracket[VD[n, µ], n,VU[m, ν]],AngleBracket[VD[n, µ], n,VU[m, ν]],AngleBracket[VD[n, µ], n,VU[m, ν]],

(* < nµnρ > mνρ →< nµ, n,mν > *)(* < nµnρ > mνρ →< nµ, n,mν > *)(* < nµnρ > mνρ →< nµ, n,mν > *)

AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TU[m , ν , ρ ]->AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TU[m , ν , ρ ]->AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TU[m , ν , ρ ]->

AngleBracket[VD[n, µ], n,VU[m, ν]],AngleBracket[VD[n, µ], n,VU[m, ν]],AngleBracket[VD[n, µ], n,VU[m, ν]],

(* < nµnρ > mν
ρ →< nµ, n,mν > *)(* < nµnρ > mν
ρ →< nµ, n,mν > *)(* < nµnρ > mν
ρ →< nµ, n,mν > *)

AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TM[m , ν , ρ ]->AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TM[m , ν , ρ ]->AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]TM[m , ν , ρ ]->

AngleBracket[VD[n, µ], n,VD[m, ν]],AngleBracket[VD[n, µ], n,VD[m, ν]],AngleBracket[VD[n, µ], n,VD[m, ν]],

(* < nµnρ > mνρ →< nµ, n,mν > *)(* < nµnρ > mνρ →< nµ, n,mν > *)(* < nµnρ > mνρ →< nµ, n,mν > *)

AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TU[m , ν , ρ ]->AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TU[m , ν , ρ ]->AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TU[m , ν , ρ ]->

AngleBracket[VU[n, µ], n,VU[m, ν]],AngleBracket[VU[n, µ], n,VU[m, ν]],AngleBracket[VU[n, µ], n,VU[m, ν]],

(* < nµnρ > mνρ →< nµ, n,mν > *)(* < nµnρ > mνρ →< nµ, n,mν > *)(* < nµnρ > mνρ →< nµ, n,mν > *)

AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TU[m , ρ , ν ]->AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TU[m , ρ , ν ]->AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TU[m , ρ , ν ]->

AngleBracket[VU[n, µ], n,VU[m, ν]],AngleBracket[VU[n, µ], n,VU[m, ν]],AngleBracket[VU[n, µ], n,VU[m, ν]],
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(* < nµn
ρ > mρν →< nµ, n,m

ν > *)(* < nµn
ρ > mρν →< nµ, n,m

ν > *)(* < nµn
ρ > mρν →< nµ, n,m

ν > *)

AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TD[m , ρ , ν ]->AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TD[m , ρ , ν ]->AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TD[m , ρ , ν ]->

AngleBracket[VD[n, µ], n,VD[m, ν]],AngleBracket[VD[n, µ], n,VD[m, ν]],AngleBracket[VD[n, µ], n,VD[m, ν]],

(* < nµn
ρ > mρν →< nµ, n,m

ν > *)(* < nµn
ρ > mρν →< nµ, n,m

ν > *)(* < nµn
ρ > mρν →< nµ, n,m

ν > *)

AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TD[m , ν , ρ ]->AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TD[m , ν , ρ ]->AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TD[m , ν , ρ ]->

AngleBracket[VD[n, µ], n,VD[m, ν]],AngleBracket[VD[n, µ], n,VD[m, ν]],AngleBracket[VD[n, µ], n,VD[m, ν]],

(*(*(*

< nµn
ρ > mρ

ν →< nµ, n,m
ν > *)AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TM[m , ρ , ν ]->< nµn

ρ > mρ
ν →< nµ, n,m

ν > *)AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TM[m , ρ , ν ]->< nµn
ρ > mρ

ν →< nµ, n,m
ν > *)AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]TM[m , ρ , ν ]->

AngleBracket[VD[n, µ], n,VU[m, ν]],AngleBracket[VD[n, µ], n,VU[m, ν]],AngleBracket[VD[n, µ], n,VU[m, ν]],

(* < nµnρ > mν
ρ →< nµ, n,mν > *)(* < nµnρ > mν
ρ →< nµ, n,mν > *)(* < nµnρ > mν
ρ →< nµ, n,mν > *)

AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TM[m , ν , ρ ]->AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TM[m , ν , ρ ]->AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]TM[m , ν , ρ ]->

AngleBracket[VU[n, µ], n,VD[m, ν]],AngleBracket[VU[n, µ], n,VD[m, ν]],AngleBracket[VU[n, µ], n,VD[m, ν]],

(*mµρ < nρ, n, k >→< mµ, n, n, k > *)(*mµρ < nρ, n, k >→< mµ, n, n, k > *)(*mµρ < nρ, n, k >→< mµ, n, n, k > *)

TU[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , k ]->AngleBracket[VU[m,µ], n, n, k],TU[m , µ , ρ ]AngleBracket[VD[n , ρ ],n , k ]->AngleBracket[VU[m,µ], n, n, k],TU[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , k ]->AngleBracket[VU[m,µ], n, n, k],

(*mρµ < nρ, n, k >→< mµ, n, n, k > *)(*mρµ < nρ, n, k >→< mµ, n, n, k > *)(*mρµ < nρ, n, k >→< mµ, n, n, k > *)

TU[m , ρ , µ ]AngleBracket[VD[n , ρ ], n , k ]->AngleBracket[VU[m,µ], n, n, k],TU[m , ρ , µ ]AngleBracket[VD[n , ρ ],n , k ]->AngleBracket[VU[m,µ], n, n, k],TU[m , ρ , µ ]AngleBracket[VD[n , ρ ], n , k ]->AngleBracket[VU[m,µ], n, n, k],

(*mµρ < nρ, n, k >→< mµ, n, n, k > *)(*mµρ < nρ, n, k >→< mµ, n, n, k > *)(*mµρ < nρ, n, k >→< mµ, n, n, k > *)

TD[m , µ , ρ ]AngleBracket[VU[n , ρ ], n , k ]->AngleBracket[VD[m,µ], n, n, k],TD[m , µ , ρ ]AngleBracket[VU[n , ρ ],n , k ]->AngleBracket[VD[m,µ], n, n, k],TD[m , µ , ρ ]AngleBracket[VU[n , ρ ], n , k ]->AngleBracket[VD[m,µ], n, n, k],

(*mρµ < nρ, n, k >→< mµ, n, n, k > *)(*mρµ < nρ, n, k >→< mµ, n, n, k > *)(*mρµ < nρ, n, k >→< mµ, n, n, k > *)

TD[m , ρ , µ ]AngleBracket[VU[n , ρ ], n , k ]->AngleBracket[VD[m,µ], n, n, k],TD[m , ρ , µ ]AngleBracket[VU[n , ρ ],n , k ]->AngleBracket[VD[m,µ], n, n, k],TD[m , ρ , µ ]AngleBracket[VU[n , ρ ], n , k ]->AngleBracket[VD[m,µ], n, n, k],
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(*mµ
ρ < nρ, n, k >→< mµ, n, n, k > *)(*mµ
ρ < nρ, n, k >→< mµ, n, n, k > *)(*mµ
ρ < nρ, n, k >→< mµ, n, n, k > *)

TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , k ]->AngleBracket[VD[m,µ], n, n, k],TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , k ]->AngleBracket[VD[m,µ], n, n, k],TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , k ]->AngleBracket[VD[m,µ], n, n, k],

(*mρ
µ < nρ, n, k >→< mµ, n, n, k > *)(*mρ
µ < nρ, n, k >→< mµ, n, n, k > *)(*mρ
µ < nρ, n, k >→< mµ, n, n, k > *)

TM[m , ρ , µ ]AngleBracket[VU[n , ρ ], n , k ]->AngleBracket[VU[m,µ], n, n, k],TM[m , ρ , µ ]AngleBracket[VU[n , ρ ], n , k ]->AngleBracket[VU[m,µ], n, n, k],TM[m , ρ , µ ]AngleBracket[VU[n , ρ ],n , k ]->AngleBracket[VU[m,µ], n, n, k],

(*mµρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mµρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mµρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)

TU[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , n , k ]->VU[k, µ],TU[m , µ , ρ ]AngleBracket[VD[n , ρ ],n , n , k ]->VU[k, µ],TU[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , n , k ]->VU[k, µ],

(*mρµ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mρµ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mρµ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)

TU[m , ρ , µ ]AngleBracket[VD[n , ρ ], n , n , k ]->VU[k, µ],TU[m , ρ , µ ]AngleBracket[VD[n , ρ ],n , n , k ]->VU[k, µ],TU[m , ρ , µ ]AngleBracket[VD[n , ρ ], n , n , k ]->VU[k, µ],

(*mµρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mµρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mµρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)

TD[m , µ , ρ ]AngleBracket[VU[n , ρ ], n , n , k ]->VD[k, µ],TD[m , µ , ρ ]AngleBracket[VU[n , ρ ],n , n , k ]->VD[k, µ],TD[m , µ , ρ ]AngleBracket[VU[n , ρ ], n , n , k ]->VD[k, µ],

(*mρµ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mρµ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mρµ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)

TD[m , ρ , µ ]AngleBracket[VU[n , ρ ], n , n , k ]->VD[k, µ],TD[m , ρ , µ ]AngleBracket[VU[n , ρ ],n , n , k ]->VD[k, µ],TD[m , ρ , µ ]AngleBracket[VU[n , ρ ], n , n , k ]->VD[k, µ],

(*mµ
ρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mµ
ρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mµ
ρ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)

TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , n , k ]->VD[k, µ],TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , n , k ]->VD[k, µ],TM[m , µ , ρ ]AngleBracket[VD[n , ρ ], n , n , k ]->VD[k, µ],

(*mρ
µ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mρ
µ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)(*mρ
µ < nρ, n, n, k >→ kµ < mµ, n, n, n, k > *)

TM[m , ρ , µ ]AngleBracket[VU[n , ρ ], n , n , k ]->VU[k, µ],TM[m , ρ , µ ]AngleBracket[VU[n , ρ ], n , n , k ]->VU[k, µ],TM[m , ρ , µ ]AngleBracket[VU[n , ρ ],n , n , k ]->VU[k, µ],
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(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)

AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], k]AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], k]AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], k]

→ AngleBracket[VD[n, µ], n, n, k],→ AngleBracket[VD[n, µ], n, n, k],→ AngleBracket[VD[n, µ], n, n, k],

(* < nµn
ρ >< nρ, k >→< nµ, n, n, k > *)(* < nµn
ρ >< nρ, k >→< nµ, n, n, k > *)(* < nµn
ρ >< nρ, k >→< nµ, n, n, k > *)

AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], k]AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], k]AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], k]

→ AngleBracket[VD[n, µ], n, n, k],→ AngleBracket[VD[n, µ], n, n, k],→ AngleBracket[VD[n, µ], n, n, k],

(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)

AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], k]AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], k]AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], k]

→ AngleBracket[VU[n, µ], n, n, k],→ AngleBracket[VU[n, µ], n, n, k],→ AngleBracket[VU[n, µ], n, n, k],

(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)(* < nµnρ >< nρ, k >→< nµ, n, n, k > *)

AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], k]AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], k]AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], k]

→ AngleBracket[VU[n, µ], n, n, k],→ AngleBracket[VU[n, µ], n, n, k],→ AngleBracket[VU[n, µ], n, n, k],

(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)

AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], n, k] → VU[k, µ],AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], n, k] → VU[k, µ],AngleBracket[Superscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], n, k] → VU[k, µ],

(* < nµn
ρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)(* < nµn
ρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)(* < nµn
ρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)

AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], n, k] → VD[k, µ],AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], n, k] → VD[k, µ],AngleBracket[Subscript[n , µ ]Superscript[n , ρ ]]AngleBracket[VD[n , ρ ], n, k] → VD[k, µ],

(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)

AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], n, k] → VU[k, µ],AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], n, k] → VU[k, µ],AngleBracket[Subscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], n, k] → VU[k, µ],

(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)(* < nµnρ >< nρ, n, k >→ kµ < nµ, n, n, n, k > *)

AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], n, k] → VU[k, µ]AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], n, k] → VU[k, µ]AngleBracket[Superscript[n , µ ]Subscript[n , ρ ]]AngleBracket[VU[n , ρ ], n, k] → VU[k, µ]

}}}
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(* This part of code identify tensor structure *)(* This part of code identify tensor structure *)(* This part of code identify tensor structure *)

IdentifyTensor[z ]:=Module[{iiii},IdentifyTensor[z ]:=Module[{iiii},IdentifyTensor[z ]:=Module[{iiii},

TensorStruct = 1;TensorStruct = 1;TensorStruct = 1;

(*find structure with mask < nµ, ... > or < ..., nµ > or < nµ, ... > or < ..., nµ > or couple of them*)(*find structure with mask < nµ, ... > or < ..., nµ > or < nµ, ... > or < ..., nµ > or couple of them*)(*find structure with mask < nµ, ... > or < ..., nµ > or < nµ, ... > or < ..., nµ > or couple of them*)

For[iiii = 1, iiii<=Length[z], iiii++,For[iiii = 1, iiii<=Length[z], iiii++,For[iiii = 1, iiii<=Length[z], iiii++,

{{{

If[(* try to check the appearance of the tensor structure in Angle Bracket *)If[(* try to check the appearance of the tensor structure in Angle Bracket *)If[(* try to check the appearance of the tensor structure in Angle Bracket *)

Head[Part[z, iiii]] == AngleBracket,Head[Part[z, iiii]] == AngleBracket,Head[Part[z, iiii]] == AngleBracket,

{If[(* Identify Tensor Structure (TS) to the beginning of bracket *){If[(* Identify Tensor Structure (TS) to the beginning of bracket *){If[(* Identify Tensor Structure (TS) to the beginning of bracket *)

Or[Head[Part[z, iiii, 1]] == VD,Head[Part[z, iiii, 1]] == VU],Or[Head[Part[z, iiii, 1]] == VD,Head[Part[z, iiii, 1]] == VU],Or[Head[Part[z, iiii, 1]] == VD,Head[Part[z, iiii, 1]] == VU],

(*then*)(*then*)(*then*)

TensorStruct = TensorStruct ∗ Part[z, iiii],TensorStruct = TensorStruct ∗ Part[z, iiii],TensorStruct = TensorStruct ∗ Part[z, iiii],

(*else*)(*else*)(*else*)

If[(*If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)If[(*If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)If[(*If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)If where is no TS at the beginning then we check TS at the End of the Angle Bracket *)

Or[Head[Part[z, iiii,Length[Part[z, iiii]]]] == VD,Head[Part[z, iiii,Length[Part[z, iiii]]]] == VU],Or[Head[Part[z, iiii,Length[Part[z, iiii]]]] == VD,Head[Part[z, iiii,Length[Part[z, iiii]]]] == VU],Or[Head[Part[z, iiii,Length[Part[z, iiii]]]] == VD,Head[Part[z, iiii,Length[Part[z, iiii]]]] == VU],

TensorStruct = TensorStruct ∗ Part[z, iiii,Length[Part[z, iiii]]];TensorStruct = TensorStruct ∗ Part[z, iiii,Length[Part[z, iiii]]];TensorStruct = TensorStruct ∗ Part[z, iiii,Length[Part[z, iiii]]];

]]]

]]]

}](*end of if*)}](*end of if*)}](*end of if*)

}](*end of for*);}](*end of for*);}](*end of for*);

(*find structure with mask < nµ ∗ ... > or < ... ∗ nµ > or < nµ ∗ ... > or < ... ∗ nµ > or couple of them*)(*find structure with mask < nµ ∗ ... > or < ... ∗ nµ > or < nµ ∗ ... > or < ... ∗ nµ > or couple of them*)(*find structure with mask < nµ ∗ ... > or < ... ∗ nµ > or < nµ ∗ ... > or < ... ∗ nµ > or couple of them*)

For[iiii = 1, iiii<=Length[z], iiii++,For[iiii = 1, iiii<=Length[z], iiii++,For[iiii = 1, iiii<=Length[z], iiii++,

{If[Depth[Part[z, iiii]] > 2, {{If[Depth[Part[z, iiii]] > 2, {{If[Depth[Part[z, iiii]] > 2, {
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If[(* try to check is where some tensor structure include in AngleBracket *)If[(* try to check is where some tensor structure include in AngleBracket *)If[(* try to check is where some tensor structure include in AngleBracket *)

Head[Part[z, iiii, 1]] == Times,Head[Part[z, iiii, 1]] == Times,Head[Part[z, iiii, 1]] == Times,

(*then*)(*then*)(*then*)

{If[(* Try to find tensor structure to the beginning of bracket *){If[(* Try to find tensor structure to the beginning of bracket *){If[(* Try to find tensor structure to the beginning of bracket *)

Or[Head[Part[z, iiii, 1, 1]] ==,Head[Part[z, iiii, 1, 1]] ==,Head[Part[z, iiii, 1, 2]] ==,Or[Head[Part[z, iiii, 1, 1]] ==,Head[Part[z, iiii, 1, 1]] ==,Head[Part[z, iiii, 1, 2]] ==,Or[Head[Part[z, iiii, 1, 1]] ==,Head[Part[z, iiii, 1, 1]] ==,Head[Part[z, iiii, 1, 2]] ==,

Head[Part[z, iiii, 1, 2]] ==],Head[Part[z, iiii, 1, 2]] ==],Head[Part[z, iiii, 1, 2]] ==],

(*then*)(*then*)(*then*)

TensorStruct = TensorStruct ∗ Part[z, iiii];TensorStruct = TensorStruct ∗ Part[z, iiii];TensorStruct = TensorStruct ∗ Part[z, iiii];

]]]

}](*end of if*)}](*end of if*)}](*end of if*)

}](*end of first if*)}](*end of first if*)}](*end of first if*)

}](*end of for*);}](*end of for*);}](*end of for*);

(* just try to find raw tensor or vector structure *)(* just try to find raw tensor or vector structure *)(* just try to find raw tensor or vector structure *)

For[iiii = 1, iiii<=Length[z], iiii++,For[iiii = 1, iiii<=Length[z], iiii++,For[iiii = 1, iiii<=Length[z], iiii++,

If[(*condition for Raw tensor structures *)If[(*condition for Raw tensor structures *)If[(*condition for Raw tensor structures *)

Or[(* metric tensor*)Head[Part[z, iiii]] == MTD,Head[Part[z, iiii]] == MTU,Or[(* metric tensor*)Head[Part[z, iiii]] == MTD,Head[Part[z, iiii]] == MTU,Or[(* metric tensor*)Head[Part[z, iiii]] == MTD,Head[Part[z, iiii]] == MTU,

Head[Part[z, iiii]] == MTM,Head[Part[z, iiii]] == MTM,Head[Part[z, iiii]] == MTM,

(*vector*)Head[Part[z, iiii]] == VD,(*vector*)Head[Part[z, iiii]] == VD,(*vector*)Head[Part[z, iiii]] == VD,

Head[Part[z, iiii]] == VU,Head[Part[z, iiii]] == VU,Head[Part[z, iiii]] == VU,

(*Tensor*)Head[Part[z, iiii]] == TD,(*Tensor*)Head[Part[z, iiii]] == TD,(*Tensor*)Head[Part[z, iiii]] == TD,

Head[Part[z, iiii]] == TU,Head[Part[z, iiii]] == TM], (* End of OR Operator *)Head[Part[z, iiii]] == TU,Head[Part[z, iiii]] == TM], (* End of OR Operator *)Head[Part[z, iiii]] == TU,Head[Part[z, iiii]] == TM], (* End of OR Operator *)

TensorStruct = TensorStruct ∗ Part[z, iiii];TensorStruct = TensorStruct ∗ Part[z, iiii];TensorStruct = TensorStruct ∗ Part[z, iiii];

]](*end of For*);]](*end of For*);]](*end of For*);

71



CHAPTER 5. APPENDIX A

JustSee[TensorStruct]JustSee[TensorStruct]JustSee[TensorStruct]

(*end of For*)](*end of For*)](*end of For*)]

(* This Procedure make a list of coefficients *)(* This Procedure make a list of coefficients *)(* This Procedure make a list of coefficients *)

MakeListOfCoefficients[det1 ]:=Module[{iiii,CList, det = DoRaw[det1]},MakeListOfCoefficients[det1 ]:=Module[{iiii,CList, det = DoRaw[det1]},MakeListOfCoefficients[det1 ]:=Module[{iiii,CList, det = DoRaw[det1]},

CList = {};CList = {};CList = {};

For[iiii = 1, iiii<=Length[det], iiii++,For[iiii = 1, iiii<=Length[det], iiii++,For[iiii = 1, iiii<=Length[det], iiii++,

If[(*test list for a tensor structures*)MemberQ[CList, IdentifyTensor[Part[det, iiii]]],If[(*test list for a tensor structures*)MemberQ[CList, IdentifyTensor[Part[det, iiii]]],If[(*test list for a tensor structures*)MemberQ[CList, IdentifyTensor[Part[det, iiii]]],

(*then*),(*then*),(*then*),

(*else*)CList = Join[CList, {IdentifyTensor[Part[det, iiii]]}](*else*)CList = Join[CList, {IdentifyTensor[Part[det, iiii]]}](*else*)CList = Join[CList, {IdentifyTensor[Part[det, iiii]]}]

(*end of if*)];(*end of if*)];(*end of if*)];

]; (*end of for *)]; (*end of for *)]; (*end of for *)

CList]CList]CList]

(*This Procedure make s Table of Tensor Coefficients...*)(*This Procedure make s Table of Tensor Coefficients...*)(*This Procedure make s Table of Tensor Coefficients...*)

MakeTableOfCoefficients[expression ]:=Module[{zozozo, zuzuzu, iiii},MakeTableOfCoefficients[expression ]:=Module[{zozozo, zuzuzu, iiii},MakeTableOfCoefficients[expression ]:=Module[{zozozo, zuzuzu, iiii},

zozozo = MakeListOfCoefficients[expression];zozozo = MakeListOfCoefficients[expression];zozozo = MakeListOfCoefficients[expression];

zuzuzu = DoFull[expression];zuzuzu = DoFull[expression];zuzuzu = DoFull[expression];

For[iiii = 1, iiii<=Length[zozozo], iiii++,For[iiii = 1, iiii<=Length[zozozo], iiii++,For[iiii = 1, iiii<=Length[zozozo], iiii++,

Print[iiii, ") ", zozozo[[iiii]], " — — — — ",Coefficient[zuzuzu, zozozo[[iiii]]], " "]Print[iiii, ") ", zozozo[[iiii]], " — — — — ",Coefficient[zuzuzu, zozozo[[iiii]]], " "]Print[iiii, ") ", zozozo[[iiii]], " — — — — ",Coefficient[zuzuzu, zozozo[[iiii]]], " "]

(*end of for*)]](*end of module*)(*end of for*)]](*end of module*)(*end of for*)]](*end of module*)

OutputRule:={(*This rule modify output for reed. Use it only on the final stage.*)OutputRule:={(*This rule modify output for reed. Use it only on the final stage.*)OutputRule:={(*This rule modify output for reed. Use it only on the final stage.*)

(*VU[k, µ] → kµ*)VU[k , µ ]->Superscript[k, µ],(*VU[k, µ] → kµ*)VU[k , µ ]->Superscript[k, µ],(*VU[k, µ] → kµ*)VU[k , µ ]->Superscript[k, µ],
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(*VD[k, µ] → kµ*)VD[k , µ ]->Subscript[k, µ],(*VD[k, µ] → kµ*)VD[k , µ ]->Subscript[k, µ],(*VD[k, µ] → kµ*)VD[k , µ ]->Subscript[k, µ],

(*MTD[µ, ν] → gµν*)MTD[µ , ν ]->Subscript[g, µν],(*MTD[µ, ν] → gµν*)MTD[µ , ν ]->Subscript[g, µν],(*MTD[µ, ν] → gµν*)MTD[µ , ν ]->Subscript[g, µν],

(*MTU[µ, ν] → gµν*)MTU[µ , ν ]->Superscript[g, µν],(*MTU[µ, ν] → gµν*)MTU[µ , ν ]->Superscript[g, µν],(*MTU[µ, ν] → gµν*)MTU[µ , ν ]->Superscript[g, µν],

(*MTM[µ, ν] → δµ
ν*)MTM[µ , ν ]->Subsuperscript[δ, µ, ν],(*MTM[µ, ν] → δµ
ν*)MTM[µ , ν ]->Subsuperscript[δ, µ, ν],(*MTM[µ, ν] → δµ
ν*)MTM[µ , ν ]->Subsuperscript[δ, µ, ν],

(*TD[n, µ, ν] → nµν*)TD[n , µ , ν ]->Subscript[n, µν],(*TD[n, µ, ν] → nµν*)TD[n , µ , ν ]->Subscript[n, µν],(*TD[n, µ, ν] → nµν*)TD[n , µ , ν ]->Subscript[n, µν],

(*TU[n, µ, ν] → nµν*)TU[n , µ , ν ]->Superscript[n, µν],(*TU[n, µ, ν] → nµν*)TU[n , µ , ν ]->Superscript[n, µν],(*TU[n, µ, ν] → nµν*)TU[n , µ , ν ]->Superscript[n, µν],

(*TM[n, µ, ν] → nµ
ν*)TM[n , µ , ν ]->Subsuperscript[n, µ, ν](*TM[n, µ, ν] → nµ
ν*)TM[n , µ , ν ]->Subsuperscript[n, µ, ν](*TM[n, µ, ν] → nµ
ν*)TM[n , µ , ν ]->Subsuperscript[n, µ, ν]

}}}

MakeListofEquation[zu ]:=Module[{zuzu, iiii, iii, zo},MakeListofEquation[zu ]:=Module[{zuzu, iiii, iii, zo},MakeListofEquation[zu ]:=Module[{zuzu, iiii, iii, zo},

EqList = {};EqList = {};EqList = {};

zuzu = DoFull[zu];zuzu = DoFull[zu];zuzu = DoFull[zu];

zo = MakeListOfCoefficients[zu];zo = MakeListOfCoefficients[zu];zo = MakeListOfCoefficients[zu];

For[iiii = 1, iiii<=Length[zo], iiii++,For[iiii = 1, iiii<=Length[zo], iiii++,For[iiii = 1, iiii<=Length[zo], iiii++,

If[MemberQ[EqList,Coefficient[zuzu, zo[[iiii]]]], (*then*),If[MemberQ[EqList,Coefficient[zuzu, zo[[iiii]]]], (*then*),If[MemberQ[EqList,Coefficient[zuzu, zo[[iiii]]]], (*then*),

EqList = Join[EqList, {Coefficient[zuzu, zo[[iiii]]]}]EqList = Join[EqList, {Coefficient[zuzu, zo[[iiii]]]}]EqList = Join[EqList, {Coefficient[zuzu, zo[[iiii]]]}]

]];]];]];

(*Traform into equation list*)(*Traform into equation list*)(*Traform into equation list*)

For[iii = 1, iii<=Length[EqList], iii++,For[iii = 1, iii<=Length[EqList], iii++,For[iii = 1, iii<=Length[EqList], iii++,

EqList[[iii]] = EqList[[iii]] == 0EqList[[iii]] = EqList[[iii]] == 0EqList[[iii]] = EqList[[iii]] == 0

];];];

EqListEqListEqList

]]]

73



CHAPTER 5. APPENDIX A

DoFull[expression ]:=DoFull[expression ]:=DoFull[expression ]:=

Expand[expression]//.MetricTensorRule//.NScalarProduct//.FullScalarProductRuleExpand[expression]//.MetricTensorRule//.NScalarProduct//.FullScalarProductRuleExpand[expression]//.MetricTensorRule//.NScalarProduct//.FullScalarProductRule

//.PartialScalarProductRule//.ComplicateScalarProductRule/.OutputRule//.PartialScalarProductRule//.ComplicateScalarProductRule/.OutputRule//.PartialScalarProductRule//.ComplicateScalarProductRule/.OutputRule

DoRaw[expression ]:=Expand[expression]//.MetricTensorRule//.NScalarProductDoRaw[expression ]:=Expand[expression]//.MetricTensorRule//.NScalarProductDoRaw[expression ]:=Expand[expression]//.MetricTensorRule//.NScalarProduct

//.FullScalarProductRule//.PartialScalarProductRule//.ComplicateScalarProductRule//.FullScalarProductRule//.PartialScalarProductRule//.ComplicateScalarProductRule//.FullScalarProductRule//.PartialScalarProductRule//.ComplicateScalarProductRule

JustSee[expression ]:=Expand[expression]/.OutputRuleJustSee[expression ]:=Expand[expression]/.OutputRuleJustSee[expression ]:=Expand[expression]/.OutputRule

JustContract[expression ]:=Expand[expression]//.MetricTensorRule//.NScalarProductJustContract[expression ]:=Expand[expression]//.MetricTensorRule//.NScalarProductJustContract[expression ]:=Expand[expression]//.MetricTensorRule//.NScalarProduct

//.OutputRule//.OutputRule//.OutputRule
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