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ON SOME CONSTRUCTIVE METHODS
FOR THE MATRIX RIEMANN–HILBERT BOUNDARY-VALUE PROBLEM

G. Giorgadze and N. Manjavidze UDC 517.548.6

Abstract. In this paper we consider the relations between the Riemann–Hilbert monodromy problem
and the matrix Riemann–Hilbert boundary-value problem with piecewise continuous coefficient and
construct the so-called canonical matrix for the boundary-value problem for a piecewise continuous
matrix-function. The formula for the calculation of the index is also obtained.
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1. Partial Indices of Matrix Function
and Riemann–Hilbert Monodromy Problem

A simple contour on the Riemann sphere together with a piecewise-constant matrix on it defines
the monodromy

π1(punctured sphere) → GLn(C). (1.1)

This monodromy in turn generates a flat rank-n complex vector bundle over the punctured sphere. This
bundle may be naturally continued to the entire sphere. As we know from the Birkhoff–Grothendieck
theorem, any holomorphic vector bundle over the sphere is equivalent to the sum of the powers of
Hopf line bundles. Those powers are also known as the partial indices of the factorization problem
(see [4, 7, 8, 13, 15, 16, 25].

One general condition for the solvability of the Riemann–Hilbert problem is the existence of a trivial
fibration among all holomorphic fibrations with logarithmic connection on the Riemann sphere having
prescribed monodromy ρ and collection of singular points s1, . . . , an. The existence of a stable pair
(F,Λ) among the aforementioned family of fibrations, where F → CP

1 is a holomorphic fibration and
r is a logarithmic connection with prescribed singular points, is a sufficient condition for solvability
of the Riemann–Hilbert problem for Fuchsian systems [4] (see also [11, 12]). In [33] the possibility of
the existence of a finite algorithm for checking the existence of a stable pair with a given monodromy
representation is investigated. In particular, it is proved that for the representation

ρ : π1(CP
1 \ {s1, . . . , sn}, z0) → GL(n,C)

with generators G1, . . . , Gn, where to each eigenvalue of the matrix Gi there corresponds exactly one
Jordan block for i = 1, . . . , n, there exists an algorithm that clarifies in a finite number of steps
whether construction of a stable pair with the given monodromy is possible. From this result, in
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particular, follows the existence of a finite algorithm for checking the solvability of the Riemann–
Hilbert problem. In [31], the algorithm for determining the splitting types of vector bundles associated
to the representation ρ is presented.

To determine partial indices or at least to find some information about them is a difficult problem.
For rank n = 2 and number of punctures m = 4, and in the case n = m = 3, the detailed classification
of the problem is given in [29] (see also [30]), and the partial indices are found (but the answer is not
constructive).

In [30] the authors consider piecewise constant 2 × 2 matrix functions with at most three jumps
on the one-point compactification of R. For such matrices, they establish criteria for factorizability
and Φ-factorizability (in the Wiener–Hopf sense), formulas for the partial indices, and criteria for the
stability of the partial indices.

In [29] is constructed the factorization in Lp,ρ(R
1) of a piecewise-constant matrix function G ∈ L∞

in the form G = G+ΛG−, where

Λ = diag(ζκ1 , . . . , ζκn), κj ∈ Z, ζ =
t− i

t+ i
,

(t± i)−1G± ∈ H±
p,ρ = P±Lp,ρ, (t± i)−1G−1

± ∈ Hp,ρ−1 , q =
p

p− 1
,

ρ(t) = (1 + t2)
ν
2

N−1∏

k=0

|t− tk|νk ,

−1

p
< νk < 1− 1

p
, k = 0, 1, . . . , N − 1, νN = 1− 2

p
− ν − ν0 − · · · − νN−1.

A factorization in Lp,ρ with the additional property that the operator G−Λ−1P−G−1
+ is invertible in

Lp,ρ is called a Φ-factorization. The main result is as follows.

Theorem 1.1 (see [9]). For G to be Φ-factorizable in Lp,ρ it is necessary and sufficient that

(i) detG(t) �= 0 for t∈{tj}Nj=0, detG(tj ± 0) �= 0 for j = 0, 1, . . . , N , and

(ii)
1

p
+ νj − γjr∈Z, k = 1, . . . , n, j = 0, . . . , N , where 2πγjk denotes the argument of the kth

eigenvalue of the matrix G(tj − 0)−1G(tj + 0).

If (i) and (ii) are satisfied, then

κ = κ1 + κ2 + · · ·+ κn

=
1

2π

∑(
arg detG

)∣∣
Γj

+
n∑

k=0

N∑

j=0

(
Γjk +

[
1

p
+ νj − γjk

])
.

Here the first sum is taken over the following intervals: (−∞, t0), (t0, t1), . . . , (tN−1 +∞).

The paper [27] deals with the Riemann boundary-value problem

ϕ+(t) = G(t)ϕ−(t) + g(t), t ∈ C, (1.2)

where C is a finite set of simple, closed, non-intersecting Lyapunov curves bounding the interior
domain D+, the domain complementary to D++C with respect to the extended plane being denoted
by D−. The problem requires determination of n-vectors ϕ+(t) and ϕ−(t) analytic in D+ and D−,
respectively, whose limiting values on C satisfy (1.2), where g(t) is a specified n-vector and G(t) is a
given n-square matrix. The cases n = 1 and n > 1 are considered separately.

The case n = 1 was first solved by Gakhov assuming G(t) and g(t) Hölder-continuous on C. This
was extended by Khvedelidze who assumed g(t) ∈ Lp(C), p > 1 (see [10, 25]). Further weakening of
the requirements on G and g was made by Mikhlin, Gohberg, Ivanov, Danilyuk, Widom, et al. (see [27,
28]). Using methods of functional analysis, they show that the basic Noether theorems associated with
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(1.2) continue to hold for g ∈ Lp(C) and with G(t) bounded, measurable, and such that for each t0 on
C there is a neighborhood of t0 and a δ > 0 for which G(t) is contained in a sector with vertex at the

origin and of opening
2π − δ

max(p, p
p−1)

. For the case n > 1, one can assume that the components of the

n-vector g belong to L2(C) and the n-square matrix G(t) has the following properties: (i) its elements
are bounded and measurable, (ii) it may be written as the product G1(t)G2(t)G3(t) of matrices wherein
G1(t), G3(t) are continuous and nonsingular and G2(t) is such that

ReG2(t) =
1

2
(G(t) +G∗(t)) > ν > 0 (1.3)

(ν is independent of t and ≥ refers to a comparison of Hermitian matrices). The number
1
2π argΔ(G1G3)C is invariant with respect to the representation (1.3) and defines the index of G
on C.

Let Lp(Γ) be the space of Lebesgue measurable functions satisfying the condition on that norm

‖f‖Lp(Γ) =

⎛

⎝
∫

Γ

|f(τ)|p|dτ |
⎞

⎠

1
p

<∞,

so that Lp(Γ) is a Banach space.
Consider the singular integral operator

(SΓf)(t) =
1

πi

∫

Γ

f(τ)

τ − t
dt, t ∈ Γ.

This operator is bounded on Lp(Γ) and S2
Γ = 1. Let us introduce the following projectors:

PΓ =
1+ SΓ

2
, QΓ =

1− SΓ
2

.

All f ∈ Lp
+(Γ) can be identified with functions f̂ holomorphic in U+. Thus, f̂ is an analytic

continuation of f to U+. Here Lp
+(Γ) denotes the space of those holomorphic functions which are

boundary values of functions from Lp(Γ); similarly let Lp
−(Γ) denote the space of those holomorphic

functions on U− whose extension to Γ gives an element of Lp(Γ).
Let L∞(Γ) be the Banach space of Lebesgue measurable and essentially bounded functions.

Definition 1.1. The factorization of a matrix-function G ∈ L∞(U)n×n in the space Lp(Γ) is its
representation in the form

G(t) = G+(t)Λ(t)G−(t), t ∈ Γ, (1.4)

where

Λ(t) = diag(tk1 , . . . , tkn), ki ∈ Z, i = 1, . . . , n,

G+ ∈ L+(Γ)
n×n, G−1

+ ∈ Lq
+(Γ)

n×n, G− ∈ Lq
−(Γ)

n×n, G−1
− ∈ Lp

−(Γ)
n×n,

1

p
+

1

q
= 1.

We say that G admits the canonical factorization in Lp(Γ) if k1 = · · · = kn = 0.
This definition implies that the operator G−1

− QΓG
−1
+ is defined on the everywhere dense subspace of

the space Lp(Γ)n consisting of those rational vector-functions that are allowed to have poles on Γ, and
maps this subspace onto L1(Γ)n. If this operator is bounded in the Lp norm, then it can be extended
to the whole Lp(Γ)n, and the obtained operator is still bounded, in which case the representation (1.4)
from definition (1.1) will be called the Φ-factorization of G(t).

It is known that a matrix-function G ∈ L∞(Γ)n×n is Φ-factorizable in the space Lp(Γ) if and only
if the operator PΓ +GQΓ is a Fredholm operator on the space Lp(Γ)n (see [9]).
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Let us consider the particular case, namely, on the subspace PC(Γ)n×n of piecewise continuous
matrix-functions. For elements of this subspace, there exist the one-sided limits G(t+0) and G(t− 0)
for each t ∈ Γ. For such matrix-functions, the necessary and sufficient condition for the existence of
Φ-factorization is given by the following theorem.

Theorem 1.2 (see [9]). A matrix-function G ∈ PC(Γ)n×n is Φ-factorizable in the space Lp(Γ) if and
only if

(a) the matrices G(t+ 0) and G(t− 0) are invertible for each t ∈ Γ;
(b) for each j = 1, . . . , n and t ∈ Γ one has

1

2π
arg λj(t) +

1

p
/∈ Z.

Here λ1(t), . . . , λn(t) are eigenvalues of the matrix-function G(t− 0)G(t+ 0)−1.

If a matrix-function G is Φ-factorizable, then ξj(τ) =
1
2π arg λj(τ) is a single-valued function taking

values in the interval
(
1
p − 1, 1p

)
.

Suppose that G has m singular points s1, . . . , sm ∈ Γ; then

κ =
m∑

k=1

[
1

2π
arg detG(t)

]ak+1−0

t=ak+0

+
m∑

k=1

n∑

j=1

ξj(sk). (1.5)

It can be seen from (1.5) that κ depends on Lp(Γ). If the λj(τ) are positive real numbers, then
ξj(τ) = 0, and consequently κ does not depend on the space Lp(Γ).

Suppose that G ∈ PC(Γ)n×n is, moreover, a piecewise constant matrix function with singular points
s1, . . . , sm ∈ Γ, occurring in this order on Γ. Suppose that G is factorizable in the space Lp(Γ). Let
us denote Mk = G(sk − 0)G(sk + 0)−1, k = 1, . . . ,m. Thus G is constant on the arc (sk, sk+1), and
clearly M1M2 · · ·Mk = 1. Suppose that the matrices are similar to the matrices exp(−2πiEk) and

eigenvalues of Ek belonging to the interval
(
1
p − 1, 1p

)
, where the matrices Ek are determined uniquely

up to similarity since the length of that interval is 1. The numbers ξ1(sk), . . . , ξn(sk) are equal to real

parts of eigenvalues of Ek. This implies that for the index κ one has the formula κ =
m∑
k=1

trEk. Thus

the matrices E1, . . . , Ek depend on the space Lp(Γ). They also depend on the choice of a logarithm
of eigenvalues of the matrices Mj . Thus G ∈ PC(Γ)n×n produces two m-tuples (M1, . . . ,Mm) and
(E1, . . . , Em) of matrices.

Let
df

dz
= Ω(z)f(z) (1.6)

be a system of differential equations with regular singularities, having s1, . . . , sm as singular points,
and ∞ as an apparent singular point. It is known that such a system has n linearly independent
solutions in a neighborhood of a regular point.

Let us denote such a fundamental system of solutions by F (z̃). It is possible to characterize F (z̃)
by its behavior near the singular points s1, . . . , sm, using the monodromy matricesM1, . . . ,Mm, which
are determined by the matrices E1, . . . , Em, and by the behavior at ∞ which is characterized by the
partial indices k1, . . . , km. Therefore, it is said that the system (1.6) has the standard form with
respect to the matrices (M1, . . . ,Mm) and (E1, . . . , Em) satisfying the condition M1 · · ·Mm = 1 such
that Mk are similar to exp(−2πiEk), k = 1, . . . ,m and Ej are not resonant, with singular points
s1, . . . , sm and partial indices k1 ≥ · · · ≥ kn, if

(i) s1, . . . , sm are the only singular points of (1.6), with ∞ as an apparent singular point;
(ii) the monodromy group of (1.6) is conjugate to the subgroup of GLn(C) generated by the matrices

M1, . . . ,Mm;
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(iii) in a neighborhood Uj of the point sj the solution has the form

F (z̃) = Zj(z)(z̃ − sj)
EjC,

where Zj(z) is an analytic and invertible matrix-function on Uj ∪{sj} and C is a nondegenerate
matrix;

(iv) the solution of the system in a neighborhood U∞ of ∞ has the form

F (z) = diag(zk1 , . . . , zkn)Z∞(z)C, z ∈ U∞,

with Z∞(z) holomorphic and invertible on U∞.

Theorem 1.3 (see [9]). Suppose that G ∈ PC(Γ )n×n is a piecewise constant function with jump points
s1, . . . , sm. Suppose that G has a Φ-factorization in the space Lp(Γ), 1 < p < ∞, and (M1, . . . ,Mm)
and (E1, . . . , Em) are matrices associated to G on Lp(Γ). Suppose that there exists a system of differ-
ential equations in standard form (1.6) with singular points s1, . . . , sm and partial indices κ1, . . . , κm.
Let F1(z), F2(z) be a fundamental system of its solutions in U+ and U− \ {∞}. Then there exist
nondegenerate (n× n)-matrices C1 and C2 such that

G(t) = G+(t)Λ(t)G−(t)

is a Φ-factorization of G in Lp(Γ), where Λ(t) = diag(tk1 , . . . , tkn),

G+(z) = C−1
1 F−1

1 (z), z ∈ U+, G−(z) = Λ−1(z)F2(z)C2, z ∈ U− \ {∞}.
This result can be used to obtain the solvability condition of the Riemann–Hilbert problem.
Let Γ the closed simple contour, s1, . . . , sm ∈ Γ and M1, . . . ,Mm ∈ GLn(C). We call that the piece-

wise constant matrix function G(t) induced from collections s = {s1, . . . , sm}, M = {M1, . . . ,Mm} if
it is constructed in following manner:

G(t) =Mj · · · · ·M1, if t ∈ [sj , sj+1),

where Mj are monodromy matrices corresponding to going around small loop singular points sj .

Theorem 1.4. Let

ρ : π1(CP
1 \ {s1, . . . , sm}) → GLn(C) (1.7)

be the representation such that (ρ(γ1) =M1, . . . , ρ(γm) =Mm) and (E1, . . . , Em) is admissible.
Then for the representation (1.7) the Riemann–Hilbert monodromy problem is solvable if G(t) admits

a canonical factorization in Lα(Γ), for some α > 1 sufficiently close to 1.

Proof. It is known that for the given monodromy matricesM1, . . . ,Mm, and singular points s1, . . . , sm
there exists the system of differential equations of the type

df = ωf, (1.8)

such that s1, . . . , sm are the poles of first order for (1.8), ∞ is an apparent singular point, the matrices
M1, . . . ,Mm are monodromy matrices of (1.8), and the solution of the (1.8) in the neighborhood of
the singular point sj has the form

Φj(z̃) = Uj(z)(z̃ − sj)
EjC,

where the matrix function Uj(z) is invertible and analytic in the neighborhood of sj and C is a
nondegenerate matrix. In the neighborhood of ∞ the solution has the form

Φ∞(z̃) = diag(k1, . . . , kn)U∞(z)C, (1.9)

where U∞(z) is analytic and invertible at ∞ [9]. By Theorem 1.1, the piecewise constant matrix
function G(t) admits a Φ-factorization; therefore, ξj(τ) = 1

2π arg λj(τ) is a single-valued function
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taking values in the interval
(
1
p − 1, 1p

)
. From the factorization condition G(t) = G+(t)Λ(t)G−(t) and

by Theorem 1.2, we have

G+(z) = C−1
1 F−1

1 (z), z ∈ U+, G−(z) = Λ−1(z)F2(z)C2, z ∈ U− \ {∞}.
By the assumption, G(t) admits a canonical factorization, i.e., k1 = · · · = kn = 0. From this it follows
that ∞ is a regular point of system (1.8).

Below is given the solution of the Riemann–Hilbert problem for the regular systems. In this case
the problem is reduced to the linear conjugation problem for the Hölder class functions [26, 32].

Suppose that Γ is the same as above and G : Γ → GL(n,C) has a discontinuity of the first kind at
the point s1 ∈ Γ. Introduce the notation

G(s1 + 0) = lim
t→s1+0

G(t), G(s1 − 0) = lim
t→s1−0

G(t)

and put

M = G−1(s1 + 0)G(s1 − 0), E =
1

2πi
lnM,

so that if λi are eigenvalues of M , then μi =
1

2πi lnλi satisfies the condition 0 ≤ Reμi < 1.
Consider the functions

ω+(z) = (z − s1)
E def

= eE ln(z−s1), ω−(z) =
(
z − s1
z − z0

)E
def
= e

E ln
(

z−s1
z−z0

)
,

where z0 is some fixed point in U+. It is known that ω+(z) is a single-valued matrix-function on C\ l1,
where l1 is a curve with endpoints s1 and ∞, and ω−(z) is a single-valued matrix-function on C \ l2,
where l1 is a curve with endpoints z0 and s1.

Introduce new vector-functions f+1 (z) and f−1 (z) :

f+1 (z) = (z − s1)
EG−1(s1 + 0)f+(z), f−1 (z) =

(
z − s1
z − z0

)−E

f−(z).

They are holomorphic respectively on U± and satisfy the transmission condition

f+1 (z) = (z − s1)
−EG−1(s1 + 0)G(t)

(
z − s1
z − z0

)E

f−1 (z).

Denoting

G1(z) = (z − s1)
−EG−1(s1 + 0)G(t)

(
z − s1
z − z0

)−E

,

one can prove that G1(t) is continuous at the point s1 [32]. Granted this, we can deal with the general
case.

Let s1, . . . , sm ∈ Γ be points of discontinuity, and let there exist finite limits

G(sj + 0) = lim
t→s1+0

G(t), G(sj − 0) = lim
t→s1−0

G(t).

The curve Γ is assumed to be a union of smooth nonintersecting arcs Γ1,Γ2, . . . ,Γm with fixed orien-
tations. The ends of arcs Γj , j = 1, 2, . . . ,m, are sj and sj+1.

Suppose that Mj = G−1(sj + 0)G(sj − 0) and Ej = 1
2πi lnMj so that if λij are eigenvalues of Gj ;

then μji =
1

2πi lnλ
i
j . Denote ρji = Reμji and normalize the logarithm demanding that 0 ≤ ρji < 1.

Consider the matrix-functions

Ω+
j (z) = AjG(sj + 0)(z − sj)

Ej , Ω−
j (z) = Bj

(
z − sj
z − z0

)Ej

,
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where Aj and Bj are constant matrices:

A1 = E, Aj =

[
j−1∏

k=1

Ω+
k (sj)

]−1

, B1 = E,Bj =

[
j−1∏

k=1

Ω−
k (sj)

]−1

, j = 2, 3, . . . .

The functions Ω+
j (z) are holomorphic, respectively, in U±. Introduce the new vector-functions

f+(z) =

m∏

j=1

Ω+
j (z)f

+
1 (z), f−(z) =

m∏

j=1

Ω−
j (z)f

−
1 (z).

One can use the transmission condition (2) to obtain

f+1 (t) =

⎡

⎣

⎛

⎝
m∏

j=1

Ω+
j (t)

⎞

⎠
−1

G(t)

m∏

j=1

Ω−
j (t)

⎤

⎦ f−1 (t).

Proposition 1.1. The matrix-function

G1(t) =

⎛

⎝
m∏

j=1

Ω+
j (t)

⎞

⎠
−1

G(t)

m∏

j=1

Ω−
j (t)

is continuous at points s1, . . . , sm.

According to [32], there exists a system of canonical solutions χ0(z) to our linear conjugation
problem that satisfy the following conditions:

1. detχ(z) �= 0 on C, with the possible exception of points s1, s2, . . . , sm.
2. There exists a diagonal matrix-function dK such that lim

z→∞χ(z)dK(z) is invertible at ∞.

3. If sj is some singular point, then

lim
z→sj

(z − sj)
εχ(z) = 0,

for some real number ε > 0.

Let ω = dχ · χ−1 be a holomorphic 1-form on CP
1 \ {s1, . . . , sm}. The corresponding system of

differential equations df = ωf is a regular system with singular points s1, . . . , sm and given monodromy,
which gives a solution of the Riemann–Hilbert problem in the class of regular systems.

Let a : Γ → GLn(C) be a continuous and invertible matrix function on the contour Γ. In this
section we will consider methods for calculation of partial indices of such matrix functions [1–3]. A
recursive procedure allowing one to construct the factorizations (in particular, to compute the partial
indices) was described by Litvinchuk and Spitkovsky [17]. An alternative approach, making use of
the moments of a−1 with respect to Γ and yielding finite formulas for the factors, was proposed by
Adukov (see [1–3]).

The formulas for the indices in [2] are obtained in the case where a(t) is a meromorphic matrix
function with no poles and zeros on Γ. The formulas are given in terms of ranks of the matrices Tl.

Definition 1.2. The power moment of the matrix function a(t) with respect to the contour Γ is called
the following matrix:

cj =
1

2πi

∫

Γ

t−j−1a−1(t)dt, j ∈ Z.
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Let k = ind a(t) and consider the family of block Töplitz matrices:

Tl =

⎛

⎜⎜⎝

cl cl−1 · · · c−2k

cl+1 cl · · · c−2k+1

. . . . . . . . . . . . . . . . .
c0 c−1 · · · c−2k−l

⎞

⎟⎟⎠ , −2k ≤ l ≤ 0.

The following theorem holds.

Theorem 1.5 (see [1–3]). The left and right partial indices of the matrix function a(t) are calculated
by the formulas

krj = card {l | n+ r−l−1 − r−l ≤ j − 1, l = 2k, 2k − 1, . . . 0} − 1,

klj = 2k + 1− card {l | r−l−1 − r−l ≤ j − 1, l = 2k, 2k − 1, . . . , 0} ,
where j = 1, . . . , n, rl is the rank of the Töpliz matrix T−l, and it is assumed that r−2l−1 = 0 and
l = 2k, 2k − 1, . . . , 0.

Suppose that the matrix function a(t) admits analytic continuation to U+ and has in that domain
p poles z1, . . . , zp of multiplicities κ1, . . . , κp. Then the matrix function

ã(t) =

p∏

j=1

(z−zj)rja(t)

is analytic and

indΓ det ã(t) = indΓ det a(t) + (κ1 + κ2 + · · ·+ κp)n.

For such matrix function, the left and right partial indices klj , k
r
j , j = 1, . . . , n, can be expressed by

the formulas

krj = card {l | n+ r−l−1 − r−l ≤ j − 1, l = 2k, 2k − 1, . . . 0} − κ− 1, (1.10)

klj = 2(κ+ nκ)k − κ+ 1− card {l | r−l−1 − r−l ≤ j − 1, l = 2(κ+ nκ), . . . , 0} , (1.11)

where κ = κ1 + · · ·+ κp is the total multiplicity of poles of a(t).
Let κ > 0.

(i) Suppose that κ > 2k; then all right partial indices of the meromorphic function a(t) are negative.
(ii) Suppose that n ≤ 2κ; then in order for the inequalities krj ≤ 0 to hold for all j, it is necessary

and sufficient that

rκ−2k ≤ rκ−2k+1 + 1.

If among the right partial indices occur both negative and positive numbers, then let us introduce
the following numbers:

α =
∑

krj<0

|krj |, β =
∑

krj>0

|krj |.

As we will see later, the numbers α and β are dimensions of the kernel and cokernel of a certain
Fredholm operator. Suppose that among the partial indices of the meromorphic function a(t), there
are positive as well as negative numbers. Then the possibility of calculating these numbers using rank
of the matrix T−k is seen from the following:

α = (κ+ 1)n− rκ−2k, β = k + n− rκ−2k.

In order that among the partial indices of the meromorphic matrix function there are some that
are nonnegative, it is necessary and sufficient that the following conditions hold:

(i) indγdeta(t) ≥ 0,
(ii) rκ−2k = (κ+ 1)n.
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In order that the meromorphic matrix function a(t) has canonical factorization, it is necessary and
sufficient that

(i) indγ det a(t) = 0,
(ii) r−(2n−1)κ = (κ+ 1)n.

Suppose that
k = indγ det a(t) + κn = 0;

then right partial indices of the meromorphic matrix function a(t) are equal to −κ and hence a(t) is
stable.

Let k �= 0. We can find the numbers q and r, 0 ≤ r < q from the relation

indΓ det a(t) = nq + r.

Then for the stability of partial indices it is necessary and sufficient that

rκ+q−2k = (κ+ q + 1)n,

rκ+q−2k+1 = (κ+ q + 1)n+ r.

Theorem 1.6. For the left partial indices, the following estimate is valid :

−N ≤ kj ≤ 2 indΓ det a(t) +N(2n− 1) + 1,

where N is the number of poles counted with multiplicities and n is the dimension of a(t).

Proof. Indeed,

kj = 2 indΓ det a(t) +N(2n− 1) + 1− card {k | r−k−1 − r−k ≤ j − 1, k = 2κ, 2κ− 1, . . . , 0} ,
which gives

max
1≤j≤n

card {k | r−k−1 − r−k ≤ j − 1, k = 2κ, . . . , 0}
= max card {k | r−k−1 − r−k ≤ 0, k = 2κ, . . . , 0} = 2κ+ 1

and

min
1≤j≤n

card {k | r−k−1 − r−k ≤ j − 1, k = 2κ, . . . , 0}
= min card {k | r−k−1 − r−k ≤ 0, k = 2κ, . . . , 0} = 0,

which proves the above inequalities (see also [11, 16]).

2. Riemann–Hilbert Boundary-Value Problem

By the problem of linear conjugation, we mean the following problem:
Let Γ be a simple, closed, piecewise-smooth curve Γ, a(t) and b(t) be given (n × n)-matrices on

Γ, a(t) be a piecewise-continuous matrix, inf | det a(t)| > 0, b(t) ∈ Lp(Γ, ρ), p > 1, and the weight
function ρ have the form

ρ(t) =
r∏

k=1

|t− tk|νk , tk ∈ Γ, −1 < νk < p− 1. (2.1)

The set {tk} contains all discontinuity points of the matrix a(t); it may contain also other points of Γ.
Find an (n× l)-matrix Φ(z) ∈ E±

p (Γ, ρ) satisfying the boundary condition

Φ+(t) = a(t)Φ−(t) + b(t) (2.2)

almost everywhere on Γ.
Let c be some point of discontinuity of the matrix a(t); denote by λ1, . . . , λn the roots of the equation

det[a−1(c+ 0)a(c− 0)− λI] = 0.
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Consider the following numbers:

τk =
1

2πi
lnλk;

these numbers are defined to within the integer summands. We say that the point c is singular if
Re τk are integers; otherwise c is called nonsingular (see [25]).

The quadratic matrix χ(z) of order n is called the normal matrix of the boundary-value problem
(2.2) (or for the matrix a(t)) if it satisfies the following conditions:

χ(z) ∈ E±
q (Γ, ρ), χ−1(z) ∈ E±

p (Γ, ρ
1−q), q =

p

p− 1
, χ+(t) = a(t)χ−(t)

almost everywhere on Γ.
The normal matrix χ(z) is said to be canonical if it has normal form at infinity, i.e., lim

z→∞(z−σdetχ(z))

(σ is the sum of the column orders of χ(z)) is finite and nonzero. In connection with the fact that it is
possible to consider the different classes E±

p (Γ, ρ), we shall speak of the canonical (normal) matrices

of the classes E±
p (Γ, ρ).

We shall say that the matrix a(t) is factorizable in E±
p (Γ, ρ) if for a(t), there exists the canonical

matrix of the same class E±
p (Γ, ρ), and in this case we shall write a(t) ∈ Fp(Γ, ρ).

It is easy to prove the following proposition. If χ1(z) and χ2(z) are normal matrices (in particular
canonical) of the problem (2.2) of one and the same class, then χ1(z) = χ2(z)P (z), where P (z) is a
polynomial matrix with constant and nonzero determinant.

Consequently the determinants of all normal (canonical) matrices of the given class of the boundary-
value problem (2.2) have the same orders at infinity.

Definition 2.1. We define the index (or the total index) of the problem (2.2) of the class E±
p (Γ, ρ)

(or the index of class E±
p (Γ, ρ) of the matrix a(t)) as the order at infinity of the determinant of the

normal (canonical) matrix of the given class E±
p (Γ, ρ) taken with the opposite sign.

Having the normal matrix χ(z) of some class, we may obtain the canonical matrix by multiplying
χ(z) from the right on the corresponding polynomial matrix with the constant nonzero determinant.

Let χ(z) be a canonical matrix (of the given class) for the matrix a(t). Denote by −κ1, . . . ,−κn

the orders of the columns of χ(z) at infinity. The integers κ1, . . . ,κn are called the partial indices of
the matrix a(t) or of the boundary-value problem (1.2) (of the given class). The sum of the partial
indices κ1 + κ2 + · · ·+ κn is equal to the index of a(t) (or of the problem (2.2) of the given class).

Note that if χ(z) is a canonical matrix of E±
p (Γ, ρ) of the matrix a(t), then the matrix [χ′(z)]−1 will

be a canonical matrix of the class E±
p (Γ, ρ

1−q) of the matrix [a′(t)]−1.
It is easy to prove the following lemmas (see [21]).

Lemma 2.1. Let χ(z) be a normal (canonical) matrix of the class E±
p (Γ, ρ) of the problem (1.2). If

(1.2) is solvable for the given matrix b(t) ∈ Lp(Γ, ρ), then all solutions of the problem (1.2) of the class
E±

p (Γ, ρ) are given by the following formula:

Φ(z) =
χ(z)

2πi

∫

Γ

[χ+(t)]−1b(t)dt

t− z
+ χ(z)P (z),

where P (z) is an arbitrary polynomial (n× l)-matrix. In particular, the solutions of the homogeneous
problem (b(t) ≡ 0) have the form χ(z)P (z).

Lemma 2.2. Let χ(z) be a normal (canonical) matrix of the class E±
p (Γ, ρ) of the problem (1.2), and

let the angular boundary values of the matrix of the form Φ(z) = f(z)ϕ(z)g(z) (here ϕ(z) ∈ E±
p (Γ, ρ),

f(z) and g(z) are the piecewise meromorphic matrices that are continuously extendable from both
sides everywhere on Γ) satisfy the boundary-value problem (2.2) for the given b(t) ∈ Lp(Γ, ρ). Then
the boundary-value problem (2.2) has the solution of the class E±

p (Γ, ρ).
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We can prove now the following propositions.

Proposition 2.1. If the boundary-value problem (2.2) is solvable for an arbitrary b(t) ∈ Lp(Γ, ρ) and
there exists the normal (canonical) matrix χ of the class E±

p (Γ, ρ), then the expressions

L1b ≡ χ+(t)

∫

Γ

[χ+(τ)]−1b(τ)

τ − t
dτ,

L2b ≡ χ−(t)
∫

Γ

[χ−(τ)]−1b(τ)

τ − t
dτ.

are the linear bounded operators in the space Lp(Γ, ρ).

Proof. Indeed, let bm(t) → b(t) and L1bm → g with respect to the norm of the space Lp(Γ, ρ). From
bm(t) → b(t) it follows that L1bm → L1b with respect to the measure (see [21]); therefore, g = L1b
and the operator L1 is a closed operator; since Lp(Γ, ρ) is a Banach space, L1b will be the bounded
operator.

Proposition 2.2. The partial indices κ1, . . . ,κn of the problem (1.2) of the class E±
p (Γ, ρ) do not

depend on the choice of a canonical matrix.

Proof. See [21, 25]. Let χ(z) be a canonical matrix of the class E±
p (Γ, ρ), and D

+ and D− be finite
and infinite domains bounded by Γ. We have

χ(z) = χ0(z)Λ(z), z ∈ D−,

Λ(z) = diag
[
(z − c)−κ1 , . . . , (z − c)−κn

]
, c ∈ D+, detχ0(∞) �= 0.

Rewrite the boundary condition of the homogeneous problem (2.2) in the following form:

[χ+(t)]−1Φ+(t) = Λ−1(t)[χ−
0 (t)]

−1Φ−(t),

from which it follows that
−1Φ(z) = P (z), z ∈ D+, [χ0(z)]

−1Φ(z) = ξ(z)P (z),

ξ(z) = diag[(z − c)−κ1 , . . . , (z − c−κn)], P (z) = (p1, . . . , pn),
(2.3)

Pj(z) is an arbitrary polynomial of order j; Pj(z) = 0 when j < 0.
Denoting by λ the number of linear independent solutions of the homogeneous problem 2.2 of the

class E±
p,0(Γ, ρ), from the equalities (2.3) we obtain λ =

∑
κk≥0

κk. It is evident that the number μ of

linear independent solutions of the conjugate homogeneous problem Φ+(t) = [a′(t)]−1Φ−(t) of the
class E±

q,0(Γ, ρ
1−q) is equal to μ = − ∑

κk≤0
κk.

Obviously, λ and μ are the invariants of the problem.
Let χ1(z) and χ2(z) be the canonical matrices of the problem (1.2) of the class E±

p (Γ, ρ). Denote

by −κ
(i)
k , i = 1, 2, k = 1, 2, . . . , n, the orders of the columns of χi(z) at infinity. Let

κ
(i)
1 ≥ κ

(i)
2 ≥ · · · ≥ κ

(n)
n , κ

(1)
1 ≥ κ

(2)
1 .

Consider the matrix a0(t) = (t− c)−κ
(2)
1 a(t), and for this matrix as a canonical matrix we may take

the matrix

χ0
i (z) =

{
χi(z), z ∈ D+,

(z − c)κ
(2)
1 χi(z), z ∈ D−,

i = 1, 2.

Note that the orders of columns of the matrix χ0
1(z) at infinity are equal to −κ

(1)
k + κ

(2)
1 ; we get

κ
(1)
1 − κ

(2)
1 ≤ 0, κ

(1)
1 = κ

(2)
1 .

If we continue the argument, then we have that κ
(1)
k = κ

(2)
k , k = 2, . . . , n.
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Boundary-value problem of linear conjugation with continuous coefficient. Consider the
following boundary-value problem:

Φ+(t) = a(t)Φ−(t) + b(t), t ∈ Γ, (2.4)

where a(t) and b(t) are given (n×n)-matrices on Γ, b(t) ∈ Lp(Γ), p > 1, a(t) ∈ C(Γ), and det a(t) �= 0.
For an arbitrary ε > 0, there exists the rational matrix r(z) satisfying the conditions; r(z) has no

poles on Γ, detr(t) �= 0 when t ∈ Γ, and

‖a(t)r−1(t)− I‖C(Γ) ≤ ε, ‖a−1(t)r(t)− I‖C(Γ) ≤ ε, (2.5)

where I is a unit matrix.
Let us consider the sequence of matrices

ϕm(z) =
1

2πi

∫

Γ

a0(t)ϕ
−
m−1(t)

t− z
dt+

1

2πi

∫

Γ

b(t)dt

t− z
, (2.6)

where

a0 = ar−1 − I, m = 1, 2, . . . , ϕ−
0 (t) = 0.

It is evident that ϕ−
m(t) ∈ Lp(Γ). Using the Sokhotsky–Plemelj formulas, from (2.6) we obtain

ϕ−
m+1(t)− ϕ−

m(t) =
1

2πi

∫

Γ

a0(τ)[ϕ
−
m(τ)− ϕ−

m−1(τ)]− a0(t)[ϕ
−
m(t)− ϕ−

m−1(t)]

τ − t
dτ.

Hence

‖ϕ−
m+1 − ϕ−

m‖Lp(Γ) ≤ Apε‖ϕ−
m − ϕ−

m−1‖Lp(Γ). (2.7)

From inequality (2.7) it follows that if Apε < 1, then the sequence ϕ−
m(t) converges by the norm

of Lp(Γ) to some matrix ϕ−(t) ∈ Lp(Γ). Whence it follows that for every z �∈ Γ there exists the
limϕm(z) = ϕ(z) representable by the following formula:

ϕ(z) =
1

2πi

∫

Γ

a0(t)ϕ
−(τ)

τ − t
dτ +

1

2πi

∫

Γ

b(t)dt

τ − t
. (2.8)

The matrix ϕ(z) defined by the formula (2.8) belongs to the class E±
p,0(Γ) and satisfies the boundary

condition

ϕ+(t) = a(t)r−1(t)ϕ−(t) + b(t).

If we take b(t) equal to a(t)r−1(t), then ϕ(z) will satisfy the following boundary condition:

ϕ+(t) = a(t)r−1(t)[ϕ−(t) + I]. (2.9)

Substituting the matrix a(t) into a′−1(t) and r(t) into r′−1(t) (this is possible by virtue of (2.5)),
we obtain that there exists the matrix ψ(z) ∈ E±

p,0(Γ) such that ψ+(t) = a′−1(t)r′(t)[ψ−(t) + I], or

ψ′+(t) = [ψ′−(t) + I]τ(t)a−1(t). (2.10)

It follows from (2.9) and (2.10) that

ψ′+(t)ϕ+(t) = [ψ′−(t) + I][ϕ−(t) + I]. (2.11)

Let p ≥ 2. The matrix defined by the formula

χ(z) =

{
ψ′(z)ϕ(z), z ∈ D+,

(ψ′(z) + I)(ϕ(z) + I), z ∈ D−,

belongs to the class E±
1 (Γ), and from (2.11) we have χ(z) ≡ I, i.e.,

[ϕ(z)]−1 = ψ′(z), z ∈ D+, [ϕ(z) + I]−1 = ψ′(z) + I, z ∈ D−.
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Consider now the matrix

χ(z) =

{
ϕ(z)R(z), z ∈ D+,

r−1(z)[ϕ(z) + I]R(z), z ∈ D−,

where R(z) is a rational matrix chosen in the following way: it liquidates the zeros of detr−1(t) in the
domain D− and the poles of r−(z) in the same domain and gives to χ(z) the normal form at infinity;
there exists such a matrix [25]. It is easy to see that χ(z) ∈ E±

p (Γ), χ−1(z) ∈ E±
p (Γ); therefore for

an arbitrary continuous nonsingular matrix a(t) there exists a canonical matrix of the class E±
p (Γ) for

an arbitrary p ≥ 2.
Let χ1(z) and χ2(z) be canonical matrices of the classes E±

p1(Γ) and E
±
p2(Γ), respectively, 2 ≤ p1 <

p2.
We obtain

χ1(z) = χ2(z)P1(z),
[
χ′
1(z)
]−1

= [χ′
2(z)]

−1P2(z),

where P1(z) and P2(z) are some polynomial matrices. From the last equalities it follows that χ1(z) ∈
E±

p2(Γ) and [χ1(z)]
−1 ∈ E±

p2(Γ).

Consequently the canonical matrix of an arbitrary class E±
p (Γ) (p ≥ 2) has the property

χ(z) ∈ E±
∞(Γ), χ−1(z) ∈ E±

∞(Γ).

It is evident that these matrices are the canonical matrices also for 1 < p < 2. So it follows from
these arguments that the boundary-value problem (2.4) is solvable for an arbitrary b(t) ∈ Lp(Γ, ρ) in
the class E±

p (Γ), and all solutions of this class are given by the following formula:

Φ(z) =
χ(z)

2πi

∫

Γ

[χ+(τ)]−1b(τ)dτ

τ − t
+ χ(z)P (z),

where P (z) is an arbitrary polynomial (n× n)-matrix.
Let now the matrix a(t) be Hölder-continuous. Then the canonical matrix χ(z) is continuously

extendable for all points of the curve Γ from both sides, and the matrices χ+(t) and χ−(t) are Hölder-
continuous, detχ±(t) �= 0.

Let us construct again the sequence ϕm(Γ) by the formula (2.6); however, we take the rational
matrix χ(z) such that the inequalities (2.5) will be fulfilled by the norm of the space Hβ(Γ), 0 < β <
α (a(t) ∈ Hα(Γ)). Then the sequence ϕ−

m(t) converges by the norm of Hβ(Γ), ϕ
−(t) ∈ Hβ(Γ) and

the matrix ϕ(z) defined by the formula (2.8) will be Hölder-continuous in closures D̄+ and D̄−. This
proves the above proposition.

3. Boundary-Value Problem with Piecewise Continuous Coefficient

In this section we give a review of an important approximation method of G. Manjavidze for
piecewise continuous matrix-function by rational matrices. We follows Manjavidze’s papers [18–21]
(see also [22–24]).

Let Γ be a simple, smooth, closed contour in the complex plane with interiorD+ and exteriorD−, on
which are defined matrices G(t) = (Gik(t)) and F (t) = (Fik(t)) whose elements are Hölder continuous
on Γ with index μ; in addition, it is assumed that detG(t) �= 0 on Γ. Consider the problem of finding a
sectionally-holomorphic matrix Φ(z) with elements of finite degree at infinity whose boundary values
Φ+(t) and Φ−(t), along the inner and outer edges of Γ, respectively, satisfy

Φ+(t) = G(t)Φ−(t) + F (t). (3.1)

The solution of this problem in terms of Cauchy integrals is given by Mushelishvili in his well-known
book [25]. In [20] the author determines this solution approximately by the following scheme. Define
the sectionally-holomorphic matrix ϕ(z) to be Φ(z) for z in D+ and R(z)Φ(z) for z in D−, where
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R = (Rik) is a matrix whose elements are rational functions such that on Γ one has |Gik −Rik|ν < ε,
i, k = 1, 2, . . . , n, where ε is a small positive number and the norm is defined by

‖f‖ν = max
t∈Γ

|f(t)|+ sup
|f(t1)− f(t2)|

|t1 − t2|ν , 0 < ν < 1, ν < μ. (3.2)

The boundary relation (3.1) can then be rewritten as

ϕ+(t)− ϕ−(t) = g(t)ϕ−(t) + F (t), (3.3)

where g = (G− R)R−1 (ε is taken sufficiently small so that detR(t) �= 0 on Γ). It is then shown, for
the sequence of sectionally-holomorphic matrices ϕm(z) defined recursively by

ϕm(z) =
1

2πi

∫

Γ

g(t)ϕm−1(t)dt

t− z
+

1

2πi

∫

Γ

F (t)dt

t− z
, (3.4)

that the sequences ϕ+
m(t) and ϕ−

m(t) converge in the sense of the norm (3.2) whenever ε is small enough,
and hence ϕm(z) → ϕ(z). As a corollary to the method, there arises the possibility to construct an
approximate solution of the homogeneous problem α+(t) = G(t)α−(t) with poles possible only in D−,
whence by known methods the canonical solution may be obtained. From the results above, it follows
also to allow G(t) and F (t) to have at most a finite number of jump points on Γ.

Scalar case. First let us consider the homogeneous problem for n = 1

Φ+(t) = a(t)Φ−(t), a(t) ∈ C0(Γ; c1, . . . , cm). (3.5)

Now we make the substitution (see [26, 32]):

Φ(z) =
m∏

k=1

χ1
k(z)ϕ(z), z ∈ D+, Φ(z) =

m∏

k=1

χk(z)ϕ(z), z ∈ D−, (3.6)

where

χ1
k(z) = (z − ck)

τk , χk(z) =

(
z − ck
z − z0

)τk

, z0 ∈ D+,

τk =
1

2πi
lnλk, λk =

a(ck − 0)

a(ck + 0)
, −1 < Re τk ≤ 0,

and where χ1
k and χk are the univalent branches of the elementary multi-valued functions defined as

follows: χ1
k(z) is the univalent branch in the plane cut along the line ek that connects the point ck

with the point z = ∞ and lies in the domain D−, and χk(z) is the univalent branch in the plane cut
along the line �1k that connects the point z0 with the point ck and lies in the domain D+, χk(∞) = 1.
With respect to the function ϕ(z), we obtain the boundary condition ϕ+(t) = g(t)ϕ−(t), where

g(t) = a(t)

[
r∏

k=1

χ1+
k (t)

]−1 r∏

k=1

χ−
k (t) = a(t)

r∏

k=1

(t− z0)
−τk ;

g(t) is a continuous function, g(t) �= 0.
In the previous section we proved that, for the continuous function g(t), there exists the canonical

function A(z) ∈ E±∞(Γ), A−1(z) ∈ E±∞(Γ).
Consider the function

χ0(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(z)
r∏

k=1

X1
k(z), z ∈ D+,

A(z)
r∏

k=1

Xk(z), z ∈ D−.

It is evident that χ−1
0 (z) ∈ E±∞(Γ) and χ0(z) ∈ E±

ε (Γ) for some ε > 1.
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Let Φ(z) be some solution of the problem (3.5) of the class E±
δ (Γ), δ > 1. Consider the function

Φ1(z) = Φ(z)/χ0(z). Obviously Φ1(z) ∈ E±
δ1
(Γ), δ1 > 1, and Φ+

1 (t) = Φ−
1 (t), t ∈ Γ.

Consequently, Φ1(z) is a polynomial P (z) and Φ(z) = χ0(z)P (z).
Assume that there exists the canonical function of the problem (3.5) of the class E±

p (Γ, ρ), ρ(t) =
r∏

K=1

|t − ak|νk , −1 < νk < p − 1. Then it will have the form χ(z) = χ0(z)Q(z), where Q(z) is some

polynomial; in addition,

χ0(z)Q(z) ∈ E±
p (Γ, ρ), [χ0(z)Q(z)]−1 ∈ E±

q (Γ, ρ
1−q). (3.7)

One can see from (3.7) that the polynomial Q(z) may have zeros only in the points ck and

A+(t)
r∏

k=1

(t− ck)
τkQ(t) ∈ Lp(Γ, ρ),

[
A+(t)

r∏

k=1

(t− ck)
τkQ(t)

]−1

∈ Lq(Γ, ρ
1−q).

(3.8)

Denote by mk (mk ≥ 0) the order of zero of the polynomial Q(z) at the point ck. The relations

|A+(t)|p|Qs(t)|p
r∏

k=1

|t− ck|mkp+νk |(t− ck)
τk |p ∈ L1(Γ),

|A+(t)|q|Qs(t)|q
r∏

k=1

|t− ck|−mkq+νk(1−q)|(t− ck)
−τk |q ∈ L1(Γ),

Qk(z) = (z − ck)
−mkQ(z).

hold.
From these relations, it follows that

r∏

k=1

|t− ck|mkp+νk |(t− ck)
τk |p ∈ L1−λ(Γ),

r∏

k=1

|t− ck|−mkq+νk(1−q)|(t− ck)
−τk |q ∈ L1−λ(Γ),

(3.9)

where λ is an arbitrary small positive number.
Denoting by τk = αk + iβk, from (3.9) we obtain

r∏

k=1

|t− ck|(αk+mk)p+νk ∈ L1−λ(Γ),

r∏

k=1

|t− ck|−(αk+mk)q+νk(1−q) ∈ L1−λ(Γ),

from which it follows that

(αk +mk)p+ νk > −1, −(αk +mk)q + νk(1− q) > 1,

or

−αk − 1

p
− νk

p
< mk < −αk +

1

q
− νk

p
.
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Denote |αk| = μk and call this number the parameter of the function a(t) at the point ck. The
parameter μk may also be defined by the following relations:

μk = Re
1

2πi

a(ck + 0)

a(ck − 0)
, 0 ≤ arg

a(ck + 0)

a(ck − 0)
< 2π.

Introduce the notation

μk − 1 + uk
p

= εk.

Evidently,

−1 + νk
p

< εk < νk

and therefore −1 < εk < 1. So we have

εk < mk < 1 + εk.

If εk = 0, then the inequality is unrealizable; if εk > 0, then mk = 1; if εk < 0, then mk = 0. Hence
we get the following result.

Theorem 3.1. If μkp = 1+ νk for some k, then a canonical function of the corresponding class does
not exist.

If μkp �= 1+ νk, k = 1, 2, . . . , r, then the canonical function of the class E±
p (Γ, ρ) exists and is given

by the formula
χ(z) = χ0(z)Q(z),

where

Q(z) =
r∏

k=1

(z − ck)
mk , mk =

⎧
⎪⎪⎨

⎪⎪⎩

1, if μk − 1 + νk
p

> 0,

0, if μk − 1 + νk
p

< 0.

The index of the class E±
p (Γ, ρ) of the function a(t) (or the problem (3.5)) is given by the formula

κ = ind g(t)−
r∑

k=1

mk or by the formula

κ =
1

2π

⎧
⎪⎪⎨

⎪⎪⎩
arg

a(t)
r∏

k=1

(t− z0)sk

⎫
⎪⎪⎬

⎪⎪⎭
Γ

, (3.10)

where sk =
1

2πi
lnλk and

−1 < Re sk ≤ 0 if μk <
1 + νk
p

(i.e., sk = τk),

0 ≤ Re sk < 1 if μk >
1 + νk
p

(i.e., sk = τk+1).

Note that the condition μkp �= 1+νk is trivially fulfilled if the point ck is singular, because in this case
μk = αk = 0; sk = τk, Re sk = 0.

Remark 3.1. If χi(z), i = 1, 2, are the canonical functions of the classes E±
pi(Γ, ρi) (ρi are the

functions of the form (1.1), Sec. 1), then

χ2(z) = χ1(z)
r∏

k=1

(z − ck)
mk ,

where m = +1,−1 or 0.
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In particular, if χ1(z) and χ2(z) are canonical functions of the classes E±
1+ε(r) and E±

p (r) (ε is a
sufficiently small positive number and p is a sufficiently large number), then in the last equalitymk = 0
for singular points and mk = 1 for nonsingular points. Between the indices of the these classes, the
relation κp = κ1+ε − τ0 holds, where τ0 is the number of nonsingular points (see [25, p. 78]).

Consider now the nonhomogeneous problem

φ+(t) = a(t)φ− + b(t), b(t) ∈ Lp(Γ, ρ), (3.11)

and make the substitution (3.6).
Instead of −1 < Re τk ≤ 0 we suppose

−1 + νk
p

< Re τk < 1− 1 + νk
p

. (3.12)

Since Re τk is defined to within an integer, the inequalities

1 + νk
p

≤ Re τk < 1− 1 + νk
p

are always fulfilled.
Since the equality

−1 + νk
p

= Re τk

is eliminated, inequalities (3.11) are satisfied.
We obtain the nonhomogeneous problem

φ+(t) = g(t)φ−(t) + f(t), f(t) = b(t)

(
r∏

k=1

χ1
k(t)

)−1

. (3.13)

It is obvious that

f(t) ∈ Lp(Γ, ρ1), ρ1(t) =
r∏

k=1

|(t− ck)|ν1k , ν1k = αkp+ νk, αk = Re τk.

It is easy to see that −1 < ν1k < p− 1 as this inequality coincides with (3.11).
We shall construct the solution of (3.12) in the class E±

p (Γ, ρ1). Take the rational function R(z)
such that ‖g(t)− R(t)‖C(Γ) ≤ ε, where ε is a sufficiently positive number, and consider the following
sequence:

ψm+1(z) =
1

2πi

∫

Γ

g0(t)ψ
−
m(t)

t− z
dt+

1

2πi

∫

Γ

f(t)dt

t− z
, ψ−

0 (t) = 0, g0 = gR−1 − I. (3.14)

It is evident that ψm(z) ∈ E±
ρ,0(r, ρ1). From (3.14) we have

ψ−
m+1(t0)− ψ−

m(t0) = −1

2
g0(t)

[
ψ−
m(t0)− ψ−

m−1(t0)
]
+

1

2πi

∫

Γ

g0(t)
[
ψ−
m(t)− ψ−

m−1(t)
]

t− z
dt.

Consequently the sequence ψ−
m(t) converges by the norm of the space Lp(Γ, ρ) to some function h(t) ∈

Lp(Γ, ρ1).
From (3.14) we also have

h(to) = −1

2

[
g0(t0)h(t0) + f(t0)

]
+

1

2πi

∫

Γ

g0(t)h(t) + f(t)

t− t0
dt.
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Hence h(t0) is a boundary value of some analytic function on Γ in the domain D− vanishing at
infinity. Finally, we obtain

ψ(z) =
1

2πi

∫

Γ

g0(t)ψ
−(t)

t− z
dt+

1

2πi

∫

Γ

f(t)

t− z
dt

(here ψ−(t) denotes h(t)).
From the last equality we get

ψ+(t)− ψ−(t) = g0(t)ψ
−(t) + f(t)

or

ψ+(t) = gR−1ψ−(t) + f(t). (3.15)

Comparing (3.12) and (3.14) we can see that the function φ(z) = ψ(z), if z ∈ D+, and φ(z) =
R−1(z)ψ(z), if z ∈ D− is a solution of the problem (3.13). As far as the problem (3.12) has a
canonical function of the class E±

p (Γ, ρ), it is solvable in this class for any f(t) ∈ Lp(Γ, ρ), and the

initial problem (3.11) is solvable in E±
p (Γ, ρ) for an arbitrary function b(t) ∈ Lp(Γ, ρ). Whence, by

virtue of Lemma 1.3, the expressions

χ+(t0)

∫

r

[χ+(t)]−1b(t)

t− t0
dt, χ−(t0)

∫

r

[χ+(t)]−1b(t)

t− t0
dt

are the linear bounded operators in Lp(Γ, ρ).

Case of triangular matrix. Consider now the following boundary-value problem:

φ+(t) = a(t)φ−(t) + b(t), t ∈ Γ, (3.16)

where a(t) is a triangular piecewise-continuous nonsingular matrix a = (aik), aik = 0, where i < k,
b ∈ Lp(Γ, ρ). Denote by c1, . . . , cr all discontinuity points of the functions aii(t), i = 1, . . . , n. By μik
denote the parameters of the functions aii(t) at the points ck, k = 1, . . . , r. It is evident that μik = 0
if the function aii(t) is continuous at the point ck. Let us assume that the inequalities

1 + νk
p

�= μik, k = 1, . . . , r, i = 1, . . . , n, (3.17)

are valid and show that in this case there exists a canonical matrix of the problem (3.16) of the
corresponding class. Obviously, if inequalities (3.17) are fulfilled, then every function akk(t) is a
canonical function of the class E±

p (Γ, ρ). Denote it by χk(z).
Consider the triangular matrix χ(z) = (χik), i, k = 1, . . . , n; χik = 0 when i < k, χik(z) = χk(z),

and the remaining elements are defined by the formulas

χs1(z) =
χs(z)

2πi

∫

Γ

s−1∑
i=1

asi(t)χ
−
i1(t)dt

χ+
s (t)(t− z)

, s = 2, . . . , n,

χs2(z) =
χs(z)

2πi

∫

Γ

s−1∑
i=1

asi(t)χ
−
i2(t)dt

χ+
s (t)(t− z)

, s = 3, . . . , n,

χn,n−1(z) =
χs(z)

2πi

∫

Γ

s−1∑
i=1

an,n−1(t)χ
−
n−1,n−1(t)dt

χ+
n (t)(t− z)

.
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It can be easily seen that the matrix constructed in this manner belongs to the class E±
p (Γ, ρ) and

satisfies the relation

χ+(t) = a(t)χ−(t).

Moreover,

detχ(z) =
n∏

k=1

χk(z).

Construct now the same matrix χ∗(z) for the matrix [a′(t)]−1 as above, where

χ∗(z) ∈ Eq(Γ, ρ
1−q), detχ∗(z) =

n∏

k=1

[χk(z)]
−1, χ+

∗ (t) = [a′(t)]−1χ−
∗ (t).

Consider the matrix χ′∗(t)χ(z) = χ0(z). We have

χ0(z) ∈ E±
1 (Γ), χ′+

∗ (t) = χ′−
∗ ((t)[a(t)]−1, χ′+

∗ (t)χ+(t) = χ′−
+ (t)χ−(t).

Whence χ0(z) = P (z), where P (z) is some polynomial matrix. But detP (z) = 1 and P−1(z) is also
a polynomial matrix. Thus,

P−1(z)χ′
∗(z)χ(z) = I

and χ(z) has a inverse matrix equal to

P−1χ
′
∗(z) ∈ E±

q (Γ, ρ
1−q).

Thus, we have proved that χ(z) is a normal matrix for a(t) of the class E±
p (Γ, ρ).

It is easy to see that the boundary-value problem (3.16) is solvable for an arbitrary vector b(t) ∈
Lp(Γ, ρ), and therefore the operators

χ+(t0)

∫

Γ

[χ+(t)]−1b(t)dt

t− t0
, χ−(t0)

∫

Γ

[χ−(t)]−1b(t)dt

t− t0

are linear bounded operators in Lp(Γ, ρ).
The index of the problem (3.16) of the class E±

p (Γ, ρ) is equal to the sum of the indices of the

boundary-value problems ϕ+
k (t) = akk(t)ϕ

−
k (t), i.e., κ =

n∑
k=1

κk, and κk is calculated by the for-

mula (3.10):

κk =
1

2π

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
arg

akk(t)
r∏

j=1
(t− z0)skj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
Γ

,

where

skj =
1

2πi
lnλkj , λkj =

akk(cj − 0)

akk(cj + 0)
,

−1 < Re skj ≤ 0 if μkj <
1 + νj
p

, 0 ≤ Re skj < 1 if μkj >
1 + νj
p

.
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General case. Consider now the following problem:

Φ+(t) = a(t)Φ−(t) + b(t), b(t) ∈ Lp(Γ, ρ), (3.18)

where a(t) is an arbitrary piecewise-continuous matrix, and inf | det a(t)| > 0. Let us represent the
matrix a(t) in the form a(t) = a1(t)Λ(t)a2(t), where a1(t) and a2(t) are continuous nonsingular
matrices and Λ(t) is a piecewise-continuous nonsingular triangular matrix. This is possible by virtue
of the lemma proved in [21].

Take the rational matrices R1(z) and R2(z) such that ‖ak(t) − Rk(t)‖ ≤ ε, k = 1, 2, where ε is a
sufficiently small positive number. Rewrite the boundary condition (3.18) in the following form:

Φ+ = R1(t)Λ(t)R2(t)Φ
−(t) +

[
a(t)−R1(t)Λ(t)R2(t)

]
Φ−(t) + b(t).

Introduce the following notation:

R−1
1 (z)Φ(z) = ϕ(z), z ∈ D+, R2(z)Φ(z) = ϕ(z), z ∈ D−, R−1

1 (t)b(t) = B(t);

we have

ϕ+(t) = Λ(t)ϕ−(t) +
[
R−1

1 (t)a1(t)Λ(t)a2(t)R
−1
2 (t)− Λ(t)

]
ϕ−(t) +B(t).

It is evident that

a0(t) = R−1
1 (t)a(t)R−1

2 (t)− Λ(t)

is a piecewise-continuous matrix and

sup
t∈Γ

|a0(t)| < C1ε,

where C1 is constant.
Consider now a sequence of matrices

ϕm+1(z) =
χ(z)

2πi

∫

Γ

[χ+(t)]−1a0(t)ϕ
−
m(t)

t− z
dt+

χ(z)

2πi

∫

Γ

[χ+(t)]−1B(t)

t− z
dt, (3.19)

where ϕ−
0 (t) = 0 and χ(z) is a canonical matrix of the class E±

p (Γ, ρ) of the matrix Λ(t). It is evident

that ϕm(z) ∈ E±
p (Γ, ρ), m ≥ 1. From (3.19) we have

ϕ−
m+1(t)− ϕ−

m(t0) = −1

2
a−1(t)a0(t)

[
ϕ−
m(t0)− ϕ−

m−1(t0)
]

+
χ(t0)

2πi

∫

Γ

[χ+(t)]−1a0(t)
[
ϕ−
m(t)− ϕ−

m−1(t)
]

t− z
dt.

Whence

‖ϕ−
m+1 − ϕ−1

m ‖Lp(Γ,ρ) ≤ C2ε,

where C2 is a constant. Therefore, if C1C2ε < 1, then the sequence ϕ−
m converges in the space Lp(Γ, ρ).

It follows from (3.19) that ϕ+
m also converges in the space Lp(Γ, ρ). The limit matrix ϕ(z) ∈ E±

p,0(Γ, ρ)
and satisfies the following boundary condition:

ϕ+(t) = R−1
1 (t)a(t)R−1

2 (t)ϕ−(t) +R−1
1 (t)b(t).

Consequently the matrix

Φ(z) =

{
R1(z)ϕ(z), z ∈ D+,

R−1
2 (z)ϕ(z), z ∈ D−,

(3.20)

will be the solution of the boundary-value problem, which may have poles in some points of the
domains D+ and D−.

Now we consider the adjoint boundary-value problem, i.e., the problem

Ψ+(t) = [a
′
(t)]−1Ψ−(t) + g(t), g ∈ Lq(Γ, ρ

1−q). (3.21)
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Substituting in the previous arguments the matrices R1 and R2, respectively, by the matrices R
′−1
1

and R
′−1
2 , we construct the solution in the form

Ψ(z) =

{
[R′

1(z)]
−1ψ(z), z ∈ D+,

R′
1(z)ψ(z), z ∈ D−.

Take now b = aR−1
2 χ− and g = a

′−1R1
2(χ

′−)−1. We obtain

Φ+(t) = a(t)
[
Φ−(t) +R−1

2 (t)χ−(t)
]
,

Ψ+(t) = [a
′
(t)]−1

[
Ψ−(t) +R′

2(t)(χ
1−(t))−1

]
.

It follows from these equalities that

Ψ
′+(t)Φ+(t) =

[
Ψ

′−(t) + (χ−(t))−1
][
Φ−(t) + χ−(t)

]
.

Consider the matrix

Q(z) =

{
ψ′(z)ϕ(z), z ∈ D+,[
ψ′(z) + χ−1(z)

]
[ϕ(z) + χ(z)] , z ∈ D−.

It is evident that Q(z) ∈ E±
1 (Γ), Q(∞) = I. Therefore, Q(z) ≡ I and

[ϕ(z)]−1 = ψ
′
(z), z ∈ D+,

[ϕ(z) + χ(z)]−1 = ψ
′
(z) + χ−1(z), z ∈ D−.

Consequently, the matrix

ω(z) =

{
ϕ(z), z ∈ D+,

ϕ(z) + χ(z), z ∈ D−,

has the following properties:

ω(z) ∈ E±
p (Γ, ρ), ω−1(z) ∈ E±

q (Γ, ρ
1−q),

and the matrix

Φ(z) =

{
R1(z)ω(z), z ∈ D+,

R−1
2 (z)ω(z), z ∈ D−,

(3.22)

is suitable for the preparation of the canonical matrix.
Now we shall show this. First cite the following auxiliary propositions.

Lemma 3.1. Let ϕ1(z) be a quadratic matrix of order n and have the following form:

ϕ1(z) = P (z)ϕ(z)[ϕ(c)]−1P−1(z), c ∈ Γ,

where P (z) is a diagonal matrix, Pkk(z) = 1, k = 1, . . . , s, Pkk(z) = z − c, k = s + 1, . . . , n (or
all Pkk(z) = z − c), ϕ ∈ E±

p (Γ, ρ), and ϕ−1 ∈ Eq(Γ, ρ
1−q). Then ϕ1(z) ∈ E±

p (Γ, ρ) and ϕ−1
1 (z) ∈

E±
q (Γ, ρ

1−q).

From the equalities

ϕ1(z) = P (z)[ϕ(z)[ϕ(c)]−1 − I]P−1(z) + I, ϕ−1
1 (z) = P−1(z)[ϕ(c)ϕ−1(z)− I]P (z) + I

it follows immediately that the lemma is valid.

Lemma 3.2. Let Φ(z) be a matrix defined by the formula

Φ(z) =

{
r1(z)ϕ(z), z ∈ D+,

r2(z)ϕ(z), z ∈ D−
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(here rk(z), k = 1, 2, are rational matrices whose poles are not situated on Γ, det rk(t) �= 0, t ∈ Γ,
ϕ(z) ∈ E±

p (Γ, ρ), ϕ
−1(z) ∈ Eq(Γ, ρ

1−q)). If Φ(z) satisfies the condition

Φ+(t) = a(t)Φ−(t), t ∈ Γ, (3.23)

where a(t) is a given piecewise-continuous matrix on Γ, then there exists a rational matrix R(z) such
that Φ(z)R(z) is a canonical matrix for the matrix a(t) of the class E±

p (Γ, ρ). The index of the matrix

a(t) of the class E±
p (Γ, ρ) is equal to

κ =
1

2πi

[
arg

det r1(t)

det r2(t)

]

Γ

− s, (3.24)

where s is the order of detϕ(z) at infinity.

Proof. Let us represent the matrices rk(z), k = 1, 2, in the following form:

rk(z) = P
(1)
k (z)Qk(z)P

(2)
k (z)/λk(z),

where λk(z) are polynomials, P
(1)
k (z) and P

(2)
k (z) are polynomial matrices with nonzero, constant

determinants, Qk(z) is a diagonal polynomial matrix, and the polynomial Qs+1,s+1
k is divisible by the

polynomial Qs,s
k .

Represent the polynomial λk and the matrix Qk in the following form:

λk(z) = λ
(1)
k (z)λ

(2)
k (z), Qk(z) = Q

(1)
k (z)Q

(2)
k (z),

where the polynomials λ1k(z) (respectively, λ
2
k(z)) may have poles only in the domain D+ (respectively,

D−), and the elements of the main diagonal of the matrix Q
(1)
k (z) (respectively, Q

(2)
k (z)) may have

zeros only in the domain D+ (respectively, D−).
Write the matrix Φ(z) in the following form:

Φ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P
(1)
1 (z)

λ
(1)
1 (z)

q1(z)Ψ(z), z ∈ D+,

P 1
2 (z)

λ
(2)
2 (z)

q2(z)Ψ(z), z ∈ D−,

where the following notation is introduced:

Ψ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q
(2)
1 (z)P

(2)
1 (z)

λ
(2)
1 (z)

ϕ(z), z ∈ D+,

Q
(1)
2 (z)P

(2)
2 (z)

λ
(1)
2 (z)

ϕ(z), z ∈ D−,

qk(z) = Q
(k)
k (z) = diag(q1k, . . . , q

n
k ), k = 1, 2.

It is evident that
Ψ(z) ∈ E±

p (Γ, ρ), Ψ−1(z) ∈ E±
q (Γ, ρ

1−q).

Consider the matrix

Φ1(z) =
λ
(1)
1 (z)λ

(2)
2 (z)

q′1(z)q′2(z)
,

Φ(z) =

{
P1(z)[q

′
1(z)]

−1q1(z)Ψ(z), z ∈ D+,

P2(z)[q
′
2(z)]

−1q2(z)Ψ(z), z ∈ D−.

P1 = λ22P
(1)
1 /q12(z), P2 = λ11P

(1)
2 /q11(z).

It is clear that Φ(z) satisfies the boundary condition (3.23).
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Denote by c a zero of the polynomial q21(z)/q
1
1(z) (if such exist) and consider the matrix

Φ2(z) = Φ1(z)[Ψ(c)]−1M−1(z) =

{
P1(z)(q

′
1(z))Ψ(z)[Ψ(c)]−1M−1(z), z ∈ D+,

P2(q
′
2(z))

−1q2(z)Ψ(z)[Ψ(c)]−1M−1(z), z ∈ D−,

where M(z) = diag[1, z − c, . . . , z − c]. It is evident that Φ(z) also satisfies the boundary condition
(3.23). If we continue this process, then we will get the solution of the homogeneous problem (3.23),
the determinant of which is not equal to zero in the domains D+, D−. Consequently we obtain the
normal matrix of the class E±

p (Γ, ρ). Bringing this matrix to the normal form at infinity (for this
we shall multiple it by the corresponding polynomial matrix from the right) we get the canonical
matrix.

Tracing the construction of the normal matrix, we see that formula (3.24) is valid. If we apply this
formula to the matrix (3.20), we will obtain the index for the problem (3.19) of the class E±

p (Γ, ρ) (if
the corresponding conditions are fulfilled) as

κ =
1

2π
{arg det[a1(t)a2(t)]}Γ + κΛ,

where κΛ is the index of the matrix Λ(t) of the class E±
p (Γ, ρ) . Thus we have the following theorem.

Theorem 3.2. Let a(t) be a piecewise-continuous nonsingular matrix with points of discontinuity tk,
k = 1, . . . , r, and let λkj, k = 1, . . . , r, j = 1, . . . , n, be the roots of the equation

det[a−1(tk−0)a(tk+0)− λI] = 0.

Denote μkj = arg λkj/2π, 0 ≤ arg λkj < 2π.
If the inequalities

1 + νk
p

�= μkj (3.25)

are fulfilled, then there exists the canonical matrix of the problem (3.19) of the class E±
p (Γ, ρ), and the

index of the matrix a(t) is calculated by the formula

κ =
1

2π

⎡

⎢⎢⎣arg
det a(t)

r∏
k=1

(t− z0)σk

⎤

⎥⎥⎦

Γ

, (3.26)

where σk =
r∑

j=1
ρkj,

1 < Re ρkj ≤ 0 if μkj <
1 + νk
p

,

0 ≤ Re ρkj < 1 if μkj >
1 + νk
p

,

ρkj = − 1

2π
lnλkj .

Formula (3.26) is analogous to the formula mentioned in [32, p. 18]. Consider now the nonhomoge-
neous problem. Denote by χ(z) the canonical matrix of the class E±

p (Γ, ρ). By virtue of Lemmas 1.1

and 1.2, the problem (3.18) is solvable in the class E±
p (Γ, ρ), and solutions of this class are given by

the formula

Φ(z) =
χ(z)

2πi

∫
[χ+(t)]−1b(t)dt

t− z
+ χ(z)P (z), (3.27)

where P (z) is an arbitrary polynomial vector.
We look now for the solutions of (3.19) vanishing at infinity. Without loss of generality, it is

possible to assume that the partial indices κ1,κ2, . . . ,κn are situated in the decreasing order: κ1 ≥
κ2 ≥ · · · ≥ κn. For this purpose, it is enough to change the position of the columns, i.e., to multiply
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χ(z) from the right by a constant nonsingular matrix. Let κ1 ≥ · · · ≥ κm ≥ 0 > κm+1 ≥ · · · ≥ κn,
λ = κ1 + κ2 + · · ·+ κn, and μ = −(κm+1 + · · ·+ κn).

Introduce the following notation:

[χ+(t)]−1b(t) = (b1, . . . , bn), P (z) = (P1, . . . , Pn);

denote also the columns of the canonical matrix by χ1(z), . . . , χn(z). It is possible to write the formula
(3.16) in the form

Φ(z) =
n∑

k=1

χk(z)

⎡

⎣ 1

2πi

∫

Γ

hk(t)dt

t− z
+ Pk(z)

⎤

⎦ . (3.28)

Expanding the Cauchy-type integral (3.28) in the neighborhood of the point z = ∞,
∫

Γ

hk(t)dt

t− z
= −

∞∑

s=0

1

zs+1

∫

Γ

tshk(t)dt,

we obtain that for the existence of the desired solution it is necessary and sufficient that the free term

b(t) satisfy the μ = −
n∑

k=m+1

κk conditions

∫

Γ

tshk(t)dt = 0, s = 0, 1, . . . ,−κk−1, k = m+ 1, . . . , n, (3.29)

and when these conditions are fulfilled, the general solution of the desired form is given by the formula
(3.27), in which we assume that

Pk(z) = Pκk−1
(z),

where Pα(z) denotes an arbitrary polynomial of order α; Pα(z) ≡ 0 if α < 0. The union of the
conditions (3.28) can be written in the form of one relation:

∫

Γ

q(t)h(t)dt = 0 or

∫

Γ

q(t)[χ+(t)]−1h(t)dt = 0, (3.30)

where q(t) is defined by the formula

q(t) = (q−κ1−1, . . . , q−κn−1);

qα are arbitrary polynomials of order α (qα = 0 in case α < 0). The condition (3.30) can be rewritten
in the form ∫

Γ

h′(t)[χ′+(t)]−1q′(t)dt = 0. (3.31)

Note that the expression [χ′+(t)]−1q′(t) in (3.30) is a boundary value of the general solution from
the domain D+ of the adjoint homogeneous problem

Ψ+(t) = [a′(t)]−1Ψ−(t) (3.32)

of the class E±
q,0(Γ, ρ

1−q). Therefore we get the following theorem.

Theorem 3.3. If the conditions (3.22) are fulfilled, then for the problem (3.19) to be solvable in the
class E±

p,0(Γ, ρ) it is necessary and sufficient that the conditions
∫

Γ

h(t)Ψ+(t)dt = 0

be fulfilled, where Ψ(z) is an arbitrary solution of the adjoint homogeneous problem (3.30) of the class
E±

q,0(Γ, ρ
1−q).
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Let l(l′) be a number of linear independent solutions of the homogeneous problem (3.18) (of the
homogeneous problem (3.30)) of the class E±

p (Γ, ρ) (of the class E±
q (Γ, ρ

1−q). Then l − l′ = κ, where

κ is the index of the matrix a(t) of the class E±
p (Γ, ρ).

Remark 3.2. If χ(z) is a canonical matrix of the problem (3.18) of the class E±
p (Γ, ρ), then χ(z) is

a canonical matrix of the same problem of the class Ep+ε(Γ, ρη), ρη = Π|t − tk|νk+ηk if ε and ηk are
sufficiently small numbers.

Remark 3.3. For the boundary-value problem (3.18) the following proposition is valid: if a(t), b(t) ∈
H(Γ), then the solution of this problem of an arbitrary class E±

p (Γ, ρ) is Hölder-continuous in the

closuresD
+
andD

−
(except perhaps the point z = ∞ if the solution have the pole there). If a(t), b(t) ∈

H0(Γ)), then the solution of the problem of an arbitrary class consists of piecewise-holomorphic vectors;
they are continuously extendable on all points of Γ, except perhaps the points of discontinuity of a(t)
and b(t).

4. Stability of Partial Indices

The partial indices of a continuous matrix are unstable in general. The necessary and sufficient
stability condition is the following condition:

κ1 − κn ≤ 1,

where κ1 (respectively, κn) is the greatest (respectively, smallest) among the partial indices (see [5,
6, 14, 21]).

Consider the problem of stability of the partial indices of a piecewise-continuous matrix. Let the
matrix a(t) ∈ C0(Γ, t1, . . . , t2), inf | det a(t)| > 0.

Let the matrix-function g(t) of the class C0(Γ, t1, . . . , tr) satisfies the following conditions:

(a) g(c± 0) = a(c± 0), c is an arbitrary singular point of the matrix a,
(b) sup |a(t)− g(t)| ≤ ε; for small ε we shall say that g(t) is close to a(t).

It is evident that if the Noetherian conditions (3.22) for the matrix a(t) are fulfilled, then these
conditions are fulfilled also for the matrix g(t), and we may speak of the partial indices of g(t).

Let χ(z) be a canonical matrix of the class E±
p (Γ, ρ), and let the vector Φ be some solution of the

class E±
p,0(Γ, ρ) of the boundary-value problem

Φ+(t) = g(t)Φ−(t), t ∈ Γ. (4.1)

Rewrite (4.1) in the form

[χ+(t)]−1Φ+(t) = [χ−(t)]−1Φ−(t) + F (t),

F (t) = [χ+(t)][g(t)− a(t)]Φ(t).
(4.2)

If the partial indices of the matrix a(t) are nonpositive, then it follows from (4.2) that

[χ(z)]−1Φ(z) =
1

2πi

∫

Γ

F (t)dt

t− z
,

Φ−(t0) = −1

2
a−1(t0)[g(t0)− a(t0)]Φ

−(t0) +
χ−(t0)
2πi

∫

Γ

[χ+(t)]−1[g(t)− a(t)]Φ−(t)dt
t− t0

.

It follows from the last equality that

‖Φ−‖Lp(Γ,ρ) ≤ B sup |g(t)− a(t)|‖Φ−(t)‖Lp(Γ,ρ), (4.3)

where B is constant.
If sup |g(t) − a(t)| is sufficiently small, then from inequality (4.3) it follows that Φ−(t) ≡ 0 and

Φ(z) ≡ 0. Therefore, if the matrix has nonpositive partial indices, then the boundary-value problem
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(4.1) has nontrivial solutions of the class E±
p,0(Γ, ρ) when the matrices a(t) and g(t) are close, and

hence such matrices g(t) have also nonpositive indices.
Let now the matrix a(t) have arbitrary partial indices

κ1 ≥ · · · ≥ κn,

and g(t) be a matrix close to a(t) with the partial indices

η1 ≥ · · · ≥ ηk.

It is clear that the matrix

a1(t)(t− b)−κ1a(t)[g1(t) = (t− b)−κ1g(t)],

where b is a fixed point inside of Γ, has the numbers κk − κ1 ≤ O(ηk − η1) as the partial indices.
Hence, when the matrices a(t) and g(t) are sufficiently close, then the partial indices of the matrix
g1(t) will be nonpositive and therefore η1 ≤ κ1.

Passing from the matrices a and g to the matrices (a′)−1 and (g′)−1 and to the classes E±
p (Γ, ρ)

and E±
q (Γ, ρ

1−q), we get ηn ≥ κk,

κ1 ≥ η1 ≥ · · · ≥ ηn ≥ κn. (4.4)

The relations (4.4) imply that if the partial indices of the matrix a(t) satisfy the condition κ1−κn ≤
1, then for all sufficiently close matrices

ηk = κk, k = 1, . . . , n.

Due to [5] it follows that if κ1 − κn ≥ 2, then the partial indices are unstable.
Let

κ1 = · · · = κs > κs+1 ≥ · · · ≥ κn

be the partial indices of the matrix a(t) of the class E±
p (Γ, ρ).

Consider the case where the matrix a(t) has only one point of discontinuity c ∈ Γ; this restriction
is not essential and is made because of the simplicity of the formulas.

Construct the sequence of matrices am(t) ∈ H1
0 (Γ, C), am(c±0) = a(c±0) convergent to the matrix

a(t):

sup
t

|am(t)− a(t)| → 0, m→ 0.

Consider two possible cases:

(a) the partial indices of am(t) coincide with the partial indices starting from some m0;
(b) when case (a) is not possible.

In case (b), the partial indices are unstable. Therefore, we consider case (a).
As is known, the partial indices of the matrix a(t) of the class E±

p (Γ, ρ) (ρ = |t− c|ν) coincide with
the partial indices of the Hölder-continuous matrix

Am(t) = Y −1
+ amY−(t),

where
Y+(z) = AU [u1]χ1(z), z ∈ D+,

Y−(z) = BU [u]χ(z), z ∈ D−,

χ1(z) = diag[(z − c)ρ1 , . . . , (z − c)ρn ], χ = χ1χ
−1
0 ,

χ0(z) = diag[(z − z0)
ρ1 , . . . , (z − z0)

ρn ], z0 ∈ D+,

− 1 + ν

p
< Re ρn < 1− 1 + ν

p
, ρk =

1

2πi
lnλk,

A and B are constant nonsingular matrices.
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The λk are the roots of the equation det(a−1(c+ 0)a(c− 0)− λI) = 0,

u1 =
1

2πi
ln(z − c), u2 =

1

2πi
ln

z − c

z − z0
,

and u(ξ) is a definite polynomial matrix of ξ. These matrices are defined in [32, Sec. 18].
Represent the matrix Am in the form (see [32, Sec. 7])

Am = χ+
mΛχ−,

where χ±
m(t) are Hölder-continuous matrices and

Λ(t) = diag[tκ1 , tκ2 , . . . , tκn−1 ]

(we suppose that O ∈ D+).
Consider the matrix

Aε
m = Am(t) + ε(t− c)q(t),

q(t) =

⎛

⎜⎜⎜⎝

0 tκ2 . . . 0
tκ2−2 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞

⎟⎟⎟⎠ . (4.5)

Let κ̃1 ≥ κ̃2 ≥ · · · ≥ κ̃n be the partial indices of Aε
m. It is not difficult to check that for sufficiently

small ε for the matrix Aε
m(t) we will have

κ̃s = κs − 1.

It follows from (4.5) that

aεm = Y+A
ε
mY

−1
− = am + ε(t− c)Y+qY

−1
− ,

and hence

aεm(c± 0) = am(c± 0),

sup |aεm − am| → 0 as ε→ 0.

The sequence aεmm (t) (εm → 0) converges to the matrix a(t) with respect to the above mentioned
norm; therefore, the condition κ1 − κn ≤ 1 is not only sufficient but also necessary for the partial
indices to be stable.
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