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Synthetic helical liquid in a quantum wire
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We show that the combination of a Dresselhaus interaction and a spatially periodic Rashba interaction leads
to the formation of a helical liquid in a quantum wire when the electron-electron interaction is weakly screened.
The effect is sustained by a helicity-dependent effective band gap which depends on the size of the Dresselhaus
and Rashba spin-orbit couplings. We propose a design for a semiconductor device in which the helical liquid can
be realized and probed experimentally.
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The concept of a helical liquid—a phase of matter where
spin and momentum directions of electrons are locked to
each other—underpins many of the fascinating features of the
recently discovered topological insulators [1]. In the case of
an ideal two-dimensional (2D) topological insulator, electron
states at its edges propagate in opposite directions with oppo-
site spins, forming a one-dimensional (1D) helical liquid (HL)
[2,3]. Given the right conditions [4,5], the spin-filtered modes
of the HL may serve as ballistic conduction channels [6],
holding promise for novel electronics/spintronics applications.

The HL is expected to exhibit several unusual properties,
such as charge fractionalization near a ferromagnetic domain
wall [7], interaction-dependent response to pinching the
sample into a point contact [8], and enhanced superconducting
correlations when two HLs are coupled together [9]. A
particularly tantalizing scenario is the appearance of Majorana
zero modes in an HL in proximity to a superconductor and a
ferromagnet [10]. However, testing these various predictions
in experiments on the HgTe/CdTe quantum well structures
in which the HL phase has been observed is a formidable
challenge: The softness and reactivity of HgTe/CdTe makes it
difficult to handle [11], and moreover, charge puddles formed
due to fluctuations in the donor density may introduce a
helical edge resistance [12]. Alternative realizations of the
HL are therefore in high demand. The prospect of using the
dissipationless current of an HL in future chip designs adds to
the importance of this endeavor [13].

One suggestion is to use a nanowire made of a “strong
topological insulator” material [1]. When pierced with a
magnetic flux quantum, the electrons in the wire are predicted
to form an interacting HL [14]. In another scheme—appearing
in attempts to engineer Kitaev’s toy model [15] for p-wave
pairing [16]—electrons in a quantum wire form an HL when
subject to a Rashba spin-orbit coupling combined with a
transverse magnetic field [17]. These, like most other proposals
for HLs in quantum wires [18], specifically rely on the presence
of a magnetic field.

In this Rapid Communication we show that an HL can be
produced and controlled in a quantum wire using electric fields
only. The advantages of employing electric fields rather than
magnetic fields are manifold. Most importantly, an electric
field does not corrupt the feature that counterpropagating
helical modes carry antiparallel spins. Also, an electric field

can easily be generated and applied locally, and eliminates
many of the design complexities that come with the use
of magnetic fields [19]. Our proposed device (see Fig. 1)
exploits an unexpected effect that appears when interacting
electrons are subject to a Dresselhaus spin-orbit interaction
combined with a spatially periodic Rashba interaction: When
the electron density is tuned to a certain value, determined
by the wavelength of the Rashba modulation, a band gap tied
to the helicity of the electrons opens. This gives rise to an
HL. Notably, the required setup for realizing this HL is built
around standard nanoscale semiconductor technology, and is
very different from the recently proposed all-electric setup in
Ref. [20] using carbon nanotubes. In what follows we derive
an effective model that captures the surprising effect from the
interplay between the Dresselhaus and the modulated Rashba
interaction. We analyze the model and explain how the HL
materializes, and also discuss the practicality and robustness
of this type of a synthetic HL.

We consider a setup with a single-channel quantum wire
formed in a gated 2D quantum well supported by a semicon-
ductor heterostructure. The electrons in the well are subject
to two types of spin-orbit interactions, the Dresselhaus and
Rashba interactions [21]. For a heterostructure grown along
[001], with the electrons confined to the xy plane, the leading
term in the Dresselhaus interaction takes the form HD =
β(kxσx − kyσy) with β a material-specific parameter. The
Rashba interaction is given by HR = α(kxσy − kyσx), where
α depends on several distinct features of the heterostructure
[22,23], including the applied gate electric field. The latter
feature allows for a gate control of the Rashba coupling α [24].
It is important to mention that large fluctuations of α [22] may
drive the HL to an insulating state through an Anderson-type
transition [25]. We shall return to this issue below.

Taking the x axis along the wire, adding to HD and HR

the kinetic energy of the electrons as well as the chemical
potential, one obtains—using a tight-binding formulation—
the Hamiltonian H0 + HDR, where

H0 = −t
∑
n,α

c†n,αcn+1,α + μ

2

∑
n,α

c†n,αcn,α + H.c., (1)

HDR = −i
∑
n,α,β

c†n,α

[
γD σx

αβ +γR σ
y

αβ

]
cn+1,β +H.c., (2)
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FIG. 1. (Color online) Device supporting a 1D synthetic helical
liquid: Electrons in a single-channel quantum wire (blue) formed in
a heterostructure supporting a Dresselhaus interaction are subject to
a modulated Rashba field from a periodic sequence of charged top
gates (dark gray).

with HDR the second-quantized projection of HD + HR along
the wire. Here c

†
n,α (cn,α) is the creation (annihilation) operator

for an electron with spin α = ↑,↓ on site n (with spin along
the growth direction ẑ), t is the electron hopping amplitude,
and μ a chemical potential controllable by a back gate. The
signs and magnitudes of γD ≡ βa−1 and γR ≡αa−1 (a being
the lattice spacing) depend on the material as well as on the
particular design of the heterostructure.

We now envision that we place a sequence of equally
charged nanoscale electrodes on top of the heterostructure
(cf. Fig. 1). As a result, the Rashba coupling will pick up a
modulated contribution due to the modulation of the electric
field from the electrodes. Taking their separation to be the
same as their extension along the wire (cf. Fig. 1), we model
the Rashba modulation by a simple harmonic,

H mod
R = −iγ ′

R

∑
n,α,β

cos(Qna)c†n,ασ
y

αβcn+1,β + H.c., (3)

with γ ′
R the amplitude and Q its wave number. Besides

the modulation of the Rashba interaction, also the chemical
potential gets modulated by the external gates:

H mod
cp = μ′

2

∑
n,α

cos(Qna)c†n,αcn,α + H.c. (4)

As follows from the analysis in Ref. [26], this term has
no effect at low energies unless the electron density is
tuned to satisfy the commensurability condition |Q − 2kF | �
O(1/a) mod 2π , with kF the Fermi wave number: At all other
densities, including those for which an HL emerges, H mod

cp in
Eq. (4) is rapidly oscillating and gives no contribution in the
low-energy continuum limit. Hence, we shall neglect it here.

Given the full Hamiltonian H = H0 + HDR + H mod
R , we

pass to a basis which diagonalizes H0 + HDR in spin space,(
dn,+
dn,−

)
≡ 1√

2

(−ie−iθ cn,↑ + eiθ cn,↓
e−iθ cn,↑ − ieiθ cn,↓

)
, (5)

with 2θ = arctan γD/γR. The index τ =± of the operator dn,τ

labels the new quantized spin projections along the direction
of the combined Dresselhaus (∝γDx̂) and uniform Rashba (∝
γRŷ) fields. Putting γ ′

R = 0 in Eq. (3) and using (5), the system
is found to exhibit four Fermi points ±kF + τq0, where q0a =
arctan

√
(t̃/t)2 − 1 with t̃ =

√
t2 + γ 2

R + γ 2
D, and where kF =

πν/a with ν = Ne/2N , Ne (N ) being the number of electrons

(lattice sites). The corresponding Fermi energy εF is given by
εF = −2t̃ cos(kF a) + μ.

To analyze what happens when γ ′
R is switched on, we focus

on the physically relevant limit of low energies, linearize the
spectrum around the Fermi points, and take the continuum limit
na → x. By decomposing dn,τ into right- and left-moving
fields Rτ (x) and Lτ (x),

dn,τ → √
a[ei(kF +τq0)xRτ (x) + ei(−kF +τq0)xLτ (x)],

and choosing |Q − 2(kF + τq0)| � O(1/a) mod 2π one thus
obtains an effective theory with two independent branches,
H → ∑

i=1,2

∫
dx Hi . Let us first consider Q = 2(kF + q0)

for which H1 applies to the Fermi points ±kF ∓ q0, and H2 to
±kF ± q0 and come back to the general case below. Omitting
all rapidly oscillating terms that vanish upon integration, one
finds

H1 = −ivF (:R†
−∂xR− : − :L†

+∂xL+ :), (6)

H2 = −ivF (:R†
+∂xR+ : − :L†

−∂xL− :)

+ iλ (R†
+∂xL−+L

†
−∂xR+), (7)

where vF = 2at̃ sin(πν), λ = aγ ′
RγD(γ 2

R + γ 2
D)−1/2, : · · · : de-

notes normal ordering, and where we have absorbed the
constant phase ei(kF +q0)a into R+(x).

While the nondiagonal term in Eq. (7) is renormalization-
group (RG) irrelevant in the absence of e-e interactions, it may
turn relevant and open a gap at the Fermi points ±kF ± q0

when the e-e interaction

He-e =
∑

n,n′;α,β

V (n − n′)c†n,αc
†
n′,βcn′,βcn,α, (8)

is included. Its low-energy limit can be extracted by following
the procedure from above, and we obtain He-e → ∫

dx He-e,
where

He-e = g1 :R†
τLτL

†
τ ′Rτ ′ : + g2 :R†

τRτL
†
τ ′Lτ ′ :

+g2

2
(:L†

τLτL
†
τ ′Lτ ′ : +L → R), (9)

with τ,τ ′ = ± summed over, and where g1 ∼ Ṽ (k ∼ 2kF )
and g2 ∼ Ṽ (k ∼ 0), Ṽ (k) being the Fourier transform of
the screened Coulomb potential V (n − n′) in Eq. (8). The
backscattering ∼g1 is weak in a semiconductor structure and
renormalizes to zero at low energies also in the presence of
spin-orbit interactions [27]. In effect we are thus left with only
the dispersive and forward scattering channels ∼g2 in Eq. (9),
to be added to H1 and H2 from Eqs. (6) and (7). Passing
to a bosonized formalism [28], the resulting full Hamiltonian
density can be written as H = H(1) + H(2) + H(12) with

H(i) = H(i)
0 + λ δi2√

πKa
cos(

√
4πKφ2)∂xθ2, i = 1,2, (10)

H(12) = g2K

π
∂xφ1∂xφ2, (11)

where K ≈ (1 + g2/πvF )−1/2. Here H(i)
0 = u[(∂xθi)2 +

(∂xφi)2] is a free boson theory with u ≈ vF /2K , and with
θi the dual field to φi . The indices “1” and “2” tagged to the
fields label the two branches originating from Eqs. (6) and (7).

201403-2



RAPID COMMUNICATIONS

SYNTHETIC HELICAL LIQUID IN A QUANTUM WIRE PHYSICAL REVIEW B 89, 201403(R) (2014)

We should point out that our fields φi (i = 1,2) are
rotated with respect to the conventional bosonic fields φR,L

τ

(τ = ±) [29] representing the original fermion fields Rτ

and Lτ , φi = φR
± + φL

∓, with upper (lower) sign attached to
i = 1 (i = 2). This nonstandard spin-mixing basis {φi} is
suitable for revealing how the nondiagonal term in Eq. (7)
combines with the e-e interaction in Eq. (9) to gap out the
states near ±kF ± q0: The term in Eq. (7) transforms into the
sine-Gordon-like potential in Eq. (10) [30], controlled by e-e
interactions through the Luttinger liquid K parameter. As we
shall see, the theory expressed in the form of Eqs. (10) and (11)
can be efficiently handled by using an adiabaticity argument.

To make progress we pass to a Lagrangian formalism by
Legendre transforming Eqs. (10) and (11). Using that �i =√

K∂xθi serves as conjugate momentum to φi/
√

K , �i can be
integrated out from the partition function Z, with the result

Z ∼
∫

Dφ1Dφ2e
−(S(1)+S(2)+S(12)), (12)

with Euclidean actions

S(i) = S
(i)
0 − δi2

m0

πa

∫
dτ dx cos(

√
16πKφ2), i = 1,2,

(13)

S(12) = g2K

π

∫
dτdx∂xφ1∂xφ2. (14)

Here S
(i)
0 = (1/2)

∫
dτ dx[(1/v)(∂τφi)2 + v(∂xφi)2] is a free

action with v = 2u, and m0 = λ2/4Kva.
Having brought the theory on the form of Eqs. (13) and

(14), valid for a Rashba modulation with Q = 2(kF + q0), we
first consider the auxiliary problem where the amplitude g2 in
Eq. (14) is replaced by a tunable parameter, call it g′

2 . Putting
g′

2 = 0 and refermionizing S(1) we then obtain a helical Dirac
action for the first branch (with Fermi points ±kF ∓ q0), with
the second branch (with Fermi points ±kF ± q0) described by
a sine-Gordon action, S(2). The cosine term in S(2) becomes RG
relevant for K < 1/2, driving this branch to a stable fixed point
with massive soliton-antisoliton excitations [30]. The energy
to create a soliton-antisoliton pair defines an insulating gap
�, and one finds from the exact solution of the sine-Gordon
model [31] that

� = c(K)�

(
m0

�

)1/(2−4K)

, K <
1

2
, (15)

where � = v/a is an energy cutoff, and c(K) is expressible in
terms of products of Gamma functions. The opening of a gap
implies that the field φ2 gets pinned at one of the minima of
the cosine term. Thus, in the neighborhood of the fixed point
its gradient is suppressed with the effect that the action S(12)

remains vanishingly small also after g′
2 has been restored to its

true value, g′
2 → g2. In particular, it follows that S(12) cannot

close the gap. Note that this “argument by adiabaticity” is
perfectly well controlled as the approach to a stable fixed point
rules out any nonanalyticities in the spectrum. In summary,
when K < 1/2, a Rashba modulation Q = 2(kF + q0) opens
a gap in the second branch which becomes insulating, leaving
behind a conducting helical electron liquid in the first branch
[see Fig. 2(a)].

FIG. 2. (Color online) Schematic plot of the dispersion relations
for the two types of helical liquid phases, with (a) Q = 2(kF + q0)
and (b) Q = 2(kF − q0).

The analysis above is readily adapted to the case with Q =
2(kF − q0), and one finds that the gap now opens in the first
branch. Note that our results remain valid in the presence of the
weakened commensurability condition |Q − 2(kF + τq0)| �
O(1/a) mod 2π, τ = ±, as this condition still allows us to
throw away the rapidly oscillating terms in the low-energy
limit of H mod

R .
Our interpretation of the dynamically generated gap �

as an effective band gap—as in Fig. 2–draws on a result
by Schulz [32] where a bosonized theory similar to that
defined by our Eqs. (10) and (11) is refermionized into a
noninteracting two-band model, with the bands separated by a
gap corresponding to the dynamic gap of the bosonized theory.
This picture—while heuristic only—helps to conceptualize the
role of the commensurability conditions for the emergence of
the synthetic HL.

The fact that e-e interactions can open a gap in an HL is
well known from the literature [4,5,16]. In particular, Xu and
Moore [5] noted that if a dynamically generated gap opens in
one of two coexisting Kramers pairs (alias “branches” 1 and
2 in our model), this gives rise to a stable HL in the other pair.
Their observation pertains to the case where the scattering
within each branch is governed by distinct strengths of the
e-e interaction: A gap may then open in the branch with the
stronger interaction. For this reason the Xu-Moore observation
does not apply to the realistic case of of a single quantum
wire with the same interaction strength in the two spin-split
branches. This is where our proposal injects a different element
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into the picture: By properly combining a modulated Rashba
spin-orbit interaction with a Dresselhaus interaction we find
that the gap-opening mechanism from e-e interactions can
indeed be triggered in such a way as to open a gap in one
of the branches only, leaving behind a stable HL in the
other. This HL is of a different type compared to the ones
hitherto probed experimentally: It owes its existence neither
to being “holographic” [33] (like the edge states of an HgTe
quantum well [6]) nor to being “quasihelical” [18] (as is the
case for magnetic-field-assisted HLs [34]). The time-reversal
analog of the notorious fermion-doubling problem [35] is
instead circumvented by the fact that the gapped branch
breaks time-reversal symmetry spontaneously by developing a
spin-density wave [36]. As there is no need to apply a magnetic
field to realize the synthetic HL, it escapes the complications
from time-reversal symmetry breaking that mar a quasihelical
liquid [18]. By this, it becomes an attractive candidate for
renewed Majorana fermion searches [37].

Having established a proof of concept that a synthetic HL
can be sustained in a quantum wire by application of electric
fields only, is our proposal also “deliverable” in the laboratory?
The query can be broken down into three specific questions:
(i) Is it feasible to realize a regime with sufficiently strong
e-e interactions (as required by the condition K < 1/2)? (ii)
Can the size of the gap � be made sufficiently large to block
thermal excitations at experimentally relevant temperatures?
(iii) Is the synthetic HL robust against disorder?

To answer these questions, we take as a case study a
quantum wire patterned in an InAs quantum well (QW)
[24,38]. Starting with (i), a detailed analysis yields that

Ṽ (k ∼ 0) ≈ e2

πε0εr

ln

(
2d

η

)
+ O

(
η2

d2

)
(16)

with η the half width of the wire, and where εr is the averaged
relative permittivity of the dopant and capping layers between
the QW and a metallic back gate at a distance d from the
wire [39]. The commonly used In1−xAlxAs capping layer has
εr ≈ 12 when x = 0.25, with roughly the same value when
doped with Si. With η ≈ 5 nm and vF ≈ 6 × 105 m/s [40],
taking d > 1 μm and using that g2 = 4Ṽ (k ∼ 0)/π� [28], one
verifies that K ≈ (1 + g2/πvF )−1/2 < 1/2. Thus, the desired
“strong-coupling” regime is attainable without difficulty.

Turning to (ii), we need to attach a number to the gap
� in Eq. (15). Reading off data from Ref. [24], applicable
when the InAs QW is separated from the top gates by a solid
PEO/LiClO4 electrolyte, the Rashba coupling �α is found to
change from 0.4 × 10−11 eV m to 2.8 × 10−11 eV m when
tuning a top gate from 0.3 to 0.8 V. With a ≈ 5 Å [40], we

may thus take �γR = 8 meV and �γ ′
R = 60 meV, assuming

that (the spacers between) the top gates in Fig. 1 are biased at
(0.3 V) 0.8 V. As for the Dresselhaus coupling, experimental
data for InAs QWs come with large uncertainties. We here
take �γD = 5 meV, guided by the prediction that 1.6 < α/β <

2.3 in conventionally gated structures [38]. Inserting λ =
aγ ′

RγD(γ 2
R + γ 2

D)−1/2 into Eq. (15), and choosing, say, K =
1/4 with c(1/4) = 1 [31] we obtain � ≈ 0.3 meV (with
smaller values of K producing a larger gap). While this value
of � is much smaller than the bulk gap in an HgTe QW [6], it is
still large enough—with safe margins—to protect the synthetic
HL at sub-Kelvin temperatures. This allows one to probe it by
standard quantum transport experiments. It is here interesting
to note that a recent proposal for an “all-electric” topological
insulator in an InAs double well arrives at an inverted band
gap of roughly the same size as our interaction-assisted gap
[41].

Finally, let us address (iii). As shown in Refs. [4] and [5],
a 1D helical liquid may undergo a localization transition due
to disorder-generated correlated two-particle backscattering.
A case in point is when a Rashba interaction is present
[25], with a fluctuating component αrand(x) from the random
ion distribution in nearby doping layers [22]. Fortuitously,
the localization length ξrand for an InAs wire, making the
usual assumption that

√
〈α2

rand(x)〉 ≈ 〈α(x)〉 [22], turns out
to be much larger than the renormalization scale ξ = �v/�

at which the helicity gap develops [43]. Moreover, estimates
of the elastic mean free path �e for InAs quantum wires
[42] show that ξ < �e < ξrand when 1/5 < K < 1/2 and
αrand(x) < 4 × 10−11 eV m. It follows that the synthetic HL is
well protected within these parameter intervals.

In summary, we have unveiled a scheme for producing
an interacting helical electron liquid in a quantum wire
using electric fields only, exploiting an interplay between
a Dresselhaus and a spatially periodic Rashba spin-orbit
interaction. This synthetic helical liquid is of a different
type than existing varieties, being neither “holographic” [6]
nor “quasihelical” [34]. While a number of nontrivial design
criteria have to be satisfied for its realization in the laboratory,
none of them are beyond present-day capabilities. Indeed,
considering the principal simplicity and robustness of the
required setup, the synthetic helical liquid could become a
workhorse for exploring many of the intriguing phenomena
associated with helical electrons in one dimension.
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[12] J. I. Väyrynen, M. Goldstein, and L. I. Glazman, Phys. Rev. Lett.
110, 216402 (2013).

[13] B. A. Bernevig and S. Zhang, IBM J. Res. Dev. 50, 141
(2006).

[14] R. Egger, A. Zazunov, and A. L. Yeyati, Phys. Rev. Lett. 105,
136403 (2010).

[15] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[16] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010); Y. Oreg, G. Refael, and F. von Oppen, ibid.
105, 177002 (2010).
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