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Abstract
We consider the spin-1/2 Heisenberg chain with alternating spin exchange in the presence of
additional modulation of exchange on odd bonds with period 3. We study the ground state
magnetic phase diagram of this hexamer spin chain in the limit of very strong
antiferromagnetic (AF) exchange on odd bonds using the numerical Lanczos method and
bosonization approach. In the limit of strong magnetic field commensurate with the
dominating AF exchange, the model is mapped onto an effective XXZ Heisenberg chain in the
presence of uniform and spatially modulated fields, which is studied using the standard
continuum-limit bosonization approach. In the absence of additional hexamer modulation, the
model undergoes a quantum phase transition from a gapped phase into the only one gapless
Lüttinger liquid (LL) phase by increasing the magnetic field. In the presence of hexamer
modulation, two new gapped phases are identified in the ground state at magnetization equal
to 1

3 and 2
3 of the saturation value. These phases reveal themselves also in the magnetization

curve as plateaus at corresponding values of magnetization. As a result, the magnetic phase
diagram of the hexamer chain shows seven different quantum phases, four gapped and three
gapless, and the system is characterized by six critical fields which mark quantum phase
transitions between the ordered gapped and the LL gapless phases.

(Some figures may appear in colour only in the online journal)

1. Introduction

Plateaus observed in the zero-temperature magnetization
curve of spin systems usually display the quantum nature
of this phenomenon. Formation of a plateau is connected
with the generation of a gap in the excitation spectrum,
which can be in some senses regarded as a realization of
generation of the Haldane conjecture [1]. The quantum nature
of a plateau formation mechanism was clearly shown in the
seminal paper by Oshikawa et al [2], who proposed the
condition for realization of a plateau at magnetization m as
n(S − m) = integer, where S is the magnitude of the local
spin, n is the number of spins in a translational unit cell of the
ground state and m is normalized to 1 at saturation.

A particular realization of such a scenario appears
in the one-dimensional (1D) space-modulated (alternating)
quantum spin systems. The bond-alternating Heisenberg
spin-1/2 chains which are obtained by a space modulation
in the exchange couplings represent one particular subclass
of low-dimensional quantum magnets which pose interesting
theoretical [3–17] and experimental [18–26] problems. The
bond alternating spin-1/2 chains have a gap in the spin
excitation spectrum and reveal extremely rich quantum
behaviors in the presence of an external magnetic field.
By turning the magnetic field, the excitation gap reduces
and reaches zero at the first critical field. Simultaneously,
the magnetization remains zero up to the first critical field.
By greater increasing of the magnetic field, the system

10953-8984/12/116002+12$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/11/116002
http://stacks.iop.org/JPhysCM/24/116002


J. Phys.: Condens. Matter 24 (2012) 116002 M S Naseri et al

remains in the gapless phase and at the second critical field,
the gap re-opens and the saturation plateau appears in the
magnetization curve. These models have only two plateaus,
at zero and saturation values of the magnetization.

The subject of the space-modulated spin chains
has grown in recent years and it has been found
that a space modulation in the exchange couplings
can affect the behaviors of the field-induced magne-
tization. First, the modulation was suggested as the
ferromagnetic–ferromagnetic–antiferromagnetic (F–F–AF)
trimerized Heisenberg spin-1/2 chains and found that the
magnetization curve has a plateau at 1/3 of the saturation
magnetization value [9, 27]. The F–F–AF trimerized chain
has been observed experimentally in the compound 3CuCl2 ·
2dx [28]. During recent years, the trimerized Heisenberg
chains have been studied in detail [29–31]. Using the
density matrix renormalization group (DMRG) method, the
observation of the plateaus for chains with different spin
(S = 1/2, 1, 3/2, 2) has been reported [29]. A magnetization
plateau at m = 1/3 of the saturation value exists at low
temperature for both, F–F–AF and AF–AF–F trimerized
spin-1/2 chains [30]. The spin structure factors are also
calculated for the trimerized cases and found that the static
structure factor does not vary with the external magnetic field
at the plateau state [31].

The other example of the spin chain with mixed (F–AF)
and spatially modulated exchange is the compound Cu(3-
Clpy)2(N3)2, where (3-Clpy) = 3-chloropyridine, which is
known as a typical example of a spin- 1

2 F–F–AF–AF
tetrameric spin chain [32]. In this system, there is a gap from
the singlet ground state to the triplet excited states in the
absence of a magnetic field. The thermodynamic properties
of the tetrameric spin chains with alternating F–F–AF–AF
exchange interactions have been investigated numerically [33,
34]. The existence of a plateau at m = 1/2 of the saturation
value has been observed. The temperature dependence of the
magnetization, susceptibility and specific heat are studied to
characterize the corresponding phases. In a recent paper, one
of the authors considered a different tetrameric spin chain
such as AF1–F–AF2–F [35]. By means of the numerical
Lanczos method, nonlinear sigma model and bosonization
approach, it has been found that a magnetization plateau
appears at 1

2 of the saturation value. The effects of the space
modulation are reflected in the emergence of a plateau in other
physical functions such as the F-dimer and the bond-dimer
order parameters, and the pair-wise entanglement.

In this paper, we consider the spin- 1
2 Heisenberg chains

with alternating exchange supplemented by the additional
modulation of the one subset of bonds with period 3, which
gives the hexamer modulation of the spin exchange in the
chain. Besides the very rich quantum magnetic phase diagram,
this model has the ability to exhibit two new plateaus
theoretically, at values 1/3 and 2/3 of the saturation. We
restrict our consideration by the case where the exchange
on the modulated subset of bonds is antiferromagnetic and
substantially larger then the exchange on undistorted bonds.
In the presence of strong magnetic field commensurate with
dominant AF exchange, the model is mapped onto an effective

spin-1/2 XXZ Heisenberg chain in the presence of both
longitudinally uniform and spatially modulated fields. This
mapping allows us to use the continuum-limit bosonization
analysis and study the ground state phase diagram of
the effective spin-chain model. We show that the very
presence of additional modulation leads to the dynamical
generation of two new energy scales in the system and to
the appearance of four additional quantum phase transitions
in the magnetic ground state phase diagram. These transitions
manifest themselves most clearly in the presence of two new
magnetization plateaus at magnetization equal to 1

3 and 2
3 of

the saturation value. Also, the widths of the new plateaus are
estimated using the scaling properties of the effective theory.

We confirm the results obtained within the continuum-
limit studies of the effective model by using the exact
diagonalization of finite chains and performing an accurate
simulation at zero temperature using the numerical Lanczos
method. There are two additional gapped phases and two
corresponding magnetization plateaus in the magnetization
curve of our model at values of magnetization equal to 1

3 and
2
3 of the saturation value. Using the numerical technique, we
also study the magnetic field effects on the bond-dimer order
parameter and string correlation function. Finally, treating the
non-modulated weak bonds as perturbation, we obtain perfect
analytical expressions for parameters characterizing the width
of the two additional plateaus.

This paper is organized as follows. In section 2, we
introduce our alternating space-modulated spin-1/2 model
and in the strong modulated coupling limit derive an effective
spin-chain Hamiltonian in section 3. In section 4, we present
our analytical bosonization results. In section 5, the results of
a numerical simulation are presented. Finally, we discuss and
summarize our results in section 6. In the appendix, the details
of calculations considering the perturbation approach used are
presented.

2. The model

The Hamiltonian of the model under consideration on a
periodic chain of N sites is defined as

H = J
N/2∑
n=1

S2n ·S2n+1 +

N/2∑
n=1

JAF(n)S2n−1 ·S2n

−H
N/2∑
n=1

(
Sz

2n−1 + Sz
2n

)
, (1)

where Sn is the spin-1/2 operator on the nth site, J > 0
and J < 0 denote the antiferromagnetic and ferromagnetic
couplings respectively. H is the uniform magnetic field and
JAF(n) is the spatially modulated antiferromagnetic exchange.
We restrict our consideration by following two types of
antiferromagnetic exchange modulation corresponding to the
hexameric distortion of the exchange pattern: the ‘A’ type:

JAF(n) = J0
AF

(
1+ δ cos

(
2π
3

n

))
, (2)

2
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Figure 1. Schematic representation of spin chains with the
hexameric modulation of spin exchange which is considered in the
paper. (a) corresponds to the hexamer distortion of the exchange
pattern ‘A’ type and (b) shows the ‘B’ type.

which corresponds to the hexamer modulation of the spin
exchanges given in figure 1(a), and the ‘B’ type:

JAF(n) = J0
AF

(
1−

2δ
√

3
sin
(

2π
3

n

))
, (3)

which corresponds to the following pattern of hexamer
modulation of the spin exchanges given in figure 1(b). The
uniform spin-exchange coupling between spins separated by
odd bonds is considered as |J| � J0

AF. For δ = 0 and J <
0 the Hamiltonian equation (1) reduces to the Hamiltonian
of alternating F–AF spin-1/2 chains and for J > 0 to
the Hamiltonian of alternating AF–AF spin chains in a
longitudinal uniform magnetic field.

3. The effective Hamiltonian

In the considered limiting case of strong antiferromagnetic
exchange on odd bonds J0

AF � |J| and for magnetic field
H ' J0

AF, one can use the standard procedure [36, 37] to map
the model equation (1) onto the effective XXZ model. The
easiest way to obtain the effective model, is to start from the
limit J = 0, where at H = 0 the system reduces to the set
of disconnected pairs of spins in the singlet state, located on
odd bonds and coupled with strong AF exchange JAF(n). At
H 6= 0 spins on each bond either remain in a singlet state,
|s〉, with energy Es(n) = −0.75JAF(n) or in one of the triplet
states, |t+〉, |t0〉 and |t−〉 with energies Et0(n) = 0.25JAF(n)
and Et±(n) = 0.25 JAF(n) ∓ H, respectively. As the field
H increases, the energy of the triplet state |t+〉 decreases
and at H ' JAF(n) forms, together with the singlet state, a
doublet of an almost degenerate low energy state, split from
the remaining high energy two triplet states. This allows us
to introduce the effective spin operator τ which act on these
states as [36, 16]

τ z
n|s〉n = −

1
2 |s〉n, τ z

n|t
+
〉n =

1
2 |t
+
〉n,

τ+n |s〉n = |t
+
〉n, τ+n |t

+
〉n = 0,

τ−n |s〉n = 0, τ−n |t
+
〉n = |s〉n.

(4)

The relation between the real spin operator Sn and the
pseudo-spin operator τn in this restricted subspace can be
easily derived by inspection:

S±2n−1 = −S±2n =
1
√

2
τ±n ,

Sz
2n−1 = Sz

2n =
1
2 (

1
2 + τ

z
n).

(5)

Using equations (5), to first order and up to a constant, we
easily obtain the effective Hamiltonian

Heff =
J

2

N/2∑
n=1

[
(τ x

nτ
x
n+1 + τ

y
nτ

y
n+1)+

1
2
τ z

nτ
z
n+1

]

−

N/2∑
n=1

[h0
eff + h1

eff(n)]τ
z
n, (6)

where

h0
eff = H − J0

AF − J/4, (7)

and

h1
eff(n) = −δJ

0
AF cos(2πn/3) ≡ −hA

1 cos(2πn/3), (8)

in the case of the ‘A’ type of modulation and

h1
eff(n) =

2δJ0
AF
√

3
sin
(

2π
3

n

)
≡ hB

1 sin(2πn/3), (9)

in the case of the ‘B’ type of modulation.
Thus, the effective Hamiltonian is nothing other than the

anisotropic XXZ Heisenberg chain in an uniform and spatially
trimer modulated magnetic field. The anisotropy is 1 = 1/2
(1 = −1/2) in the case of a chain with antiferromagnetic
(ferromagnetic) weak bonds J > 0 (J < 0). It is worth
noticing that a similar problem has been studied intensively
in the past few years [38–40]. At δ = 0, the effective
Hamiltonian reduces to the XXZ Heisenberg chain in a
uniform longitudinal magnetic field. The magnetization curve
of this model has only a saturation plateau corresponding
to the fully polarized chain. At H = 0 and J0

AF � |J| spins
coupled by strong bonds form singlet pairs and the singlet
ground state of the initial spin-chain system is well described
by superposition of singlets located on strong bonds with
magnetization per bond M = 0. In terms of the effective τ -spin
model, this state corresponds to the ferromagnetic order with
magnetization per site equal to its negative saturation value
m = −1/2. In the opposite limit of very strong magnetic
field H � J0

AF, the fully polarized state of the initial chain
with magnetization per strong bond, M = 1, is represented in
terms of an effective τ -spin chain as a fully polarized state
with magnetization per site m = 1/2. This gives the following
relation between the magnetization per strong bond of the
initial spin S = 1/2 chain, (M), and the magnetization per site
of the effective τ -chain (m): M = m+ 1/2.

At δ 6= 0, the effective model corresponds to the
Heisenberg chain in spatially modulated fields with period
3. In this case, in agreement with standard theoretical
predictions, additional magnetization plateaus would appear
at values of magnetization 1

3 and 2
3 of the saturation value.

Below, in this paper we use the analytical and numerical tools
to analyze the magnetic phase diagram of the model under
consideration and determine critical values of magnetic fields
corresponding to transitions between sectors of the ground
state phase diagram characterized by different magnetic
behaviors.

3
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4. Analytical results

4.1. The magnetization onset critical field H−c and the
saturation field H+c

The performed mapping allows us to determine critical fields
H−c corresponding to the onset of magnetization in the system
and the saturation field H+c [36]. The easiest way to get H−c
and H+c is to perform the Jordan–Wigner transformation [41]
which maps the problem onto a system of interacting spinless
fermions with trimerized modulated on-site potential:

Hsf = ±
|J|

2

N/2∑
n
(a†

nan+1 + h.c.)

+
|J|

4

N/2∑
n
ρnρn+1 − (µ0 + µ1(n)) ρn, (10)

where ρn = a+n an, µ0 = h0
eff−J/4 = H−J0

AF−J/2, µ1(n) =
h1

eff(n) and the sign + (−) corresponds to the J > 0 (J < 0).
The lowest critical field H−c corresponds to that value

of the chemical potential µc
0 for which the band of spinless

fermions starts to fill up. In this limit, we can neglect the
interaction term in equation (10) and obtain the model of free
particles with a three-band spectrum. Below, in this section we
consider only the case of the ‘A’ type of exchange modulation
with µ1(n) = h1

eff(n) given by equation (8). Generalization of
this results for case ‘B’ is straightforward.

In this case three bands of the single-particle spectrum are
given by

E1(k) = −H + J0
AF + J

√
1+12 cosϕ(k), (11)

E2(k) = −H + J0
AF + J

√
1+12 cos(ϕ(k)+ 2π/3), (12)

E3(k) = −H + J0
AF + J

√
1+12 cos(ϕ(k)+ 4π/3), (13)

where 1 = δJ0
AF/J

ϕ(k) =
1
3

arccos

cos(3k)+13√
(1+12)

3

 , (14)

and −π/3 < k ≤ π/3. This gives

H−c = J0
AF + J

√
1+12 cos(ϕ(π/3)+ 4π/3)

at J > 0, (15)

H−c = J0
AF − J

√
1+12 cosϕ(0) at J < 0. (16)

To estimate the critical magnetic field H+c , which marks
the transition into the phase with saturated magnetization, it is
useful to make a site-dependent particle–hole transformation
on the Hamiltonian of equation (10): a†

n → dn. Up to a
constant the new Hamiltonian is

Hhole = ∓
|J|

2

N/2∑
n
(d†

ndn+1 + h.c.)

+
J

4

N/2∑
n
ρd

nρ
d
n+1 − (µ

h
0 + µ1(n))ρ

d
n , (17)

where the hole chemical potential µh
0 = −µ0 + J/2. In terms

of holes, H+c corresponds to the chemical potential where the
band starts to fill up, and one can neglect again the interaction
term. However, the effect of the interaction is now included
in the shifted value of the chemical potential for holes. After
simple transformations, we obtain

H+c = J0
AF +

J

2
+ J

√
1+ γ 2 cosϕ(0) at J > 0, (18)

H+c = J0
AF +

J

2
− J

√
1+12 cos(ϕ(π/3)+ 4π/3)

at J < 0. (19)

The spectrum of the system in the free fermion limit
(11)–(13) allows us to determine two other important
parameters which characterize the values of magnetization in
the magnetization curve of the system in which the additional
plateaus appear and the values of the magnetic field which
correspond to the center of each plateau. Below we consider
only the case J > 0: however, extension to the case J < 0 is
straightforward.

At 1/3rd band-filling, all states in the lower band E3(k)
are filled and separated from the empty band at E2(k) by
the energy 2m0 = E2(k = 0) − E3(0). Therefore, the first
magnetization plateau will appear at magnetization equal to
1/3 of the saturation value. The magnetic field at the center of
the plateau is given by

H0
c1 = J0

AF + E3(0)+ m0. (20)

Analogically at 2/3rd band-filling, all states in the lower
bands E3(k) and E2(k) are filled and separated from the
empty band at E1(k) by the energy 2m0 = E1(π/3) −
E2(π/3). Therefore, the second magnetization plateau appears
at magnetization equal to 2/3 of the saturation value and the
magnetic field at the center of the plateau is given by

H0
c2 = J0

AF + E2(π/3)+ m0. (21)

Since at finite band-filling the effective interaction between
spinless fermions cannot be ignored the width of the plateau
differs from its bare value 2m0. In section 4.2 we use the
continuum-limit bosonization treatment of the effective spin-
chain model equation (10) to determine parameters character-
izing the appearance and scale of the magnetization plateaus.

4.2. Magnetization plateaus: H±c1
and H±c2

To determine parameters characterizing the appearance and
scale of the magnetization plateaus, we use the continuum-
limit bosonization treatment of the model equation (6).
Following the usual procedure in the low energy limit, we
bosonize the spin degrees of freedom at fixed magnetization
m and the interaction term becomes [42]

τ z
n = m+

√
K

π
∂xφ(x)+

A1

π
sin(
√

4πKφ(x)

+ (2m+ 1)πn), (22)

τ+n = e−i
√
π/Kθ(x)

×

[
1+

B1

π
sin(
√

4πKφ(x)+ (2m+ 1)πn)

]
, (23)

4
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where A1 and B1 are non-universal real constants of the order
of unity [43] and m is the magnetization (per site) of the chain.
Here φ(x) and θ(x) are dual bosonic fields, ∂tφ = vs∂xθ , and
satisfy the following commutation relations:

[φ(x), θ(y)] = i2(y− x), [φ(x), θ(x)] = i/2, (24)

and K(1,m) is the spin stiffness parameter for a chain with
anisotropy 1 and magnetization m. At zero magnetization

K(1, 0) =
π

2(1− arccos1)
. (25)

Therefore, at m = 0, K = 0.75 for J > 0 and K = 1.5 for
J < 0. At the transition line into the ferromagnetic phase,
where the magnetization reaches its saturation value msat =

0.5, the spin stiffness parameter takes the universal value
K(1, 0.5) = 1 [44]. Respectively for finite magnetization, at
0 < m < msat and J > 0, the function K(1,m)monotonically
increases with enhancing m and reaches its maximum value
at saturation magnetization, K(1,msat) = 1, while for J < 0,
it monotonically decreases with increasing m and reaches its
minimum value at saturation magnetization K(1, 0.5) = 1.

Using (22) and (23), in the case of the ‘A’ type
of exchange modulation, we get the following bosonized
Hamiltonian:

HA
Bos =

∫
dx

{
vs

2
[(∂xφ)

2
+ (∂xθ)

2
] − h0

eff

√
K

π
∂xφ

+
hA

1

2πa0

[
sin
(

2π
(

m+
1
6

)
n+
√

4πKφ

)

+ sin(2π(m+ 5
6 )n+

√
4πKφ)

]}
, (26)

while in the case of the ‘B’ type of modulation—following

HB
Bos =

∫
dx

{
vs

2
[(∂xφ)

2
+ (∂xθ)

2
] − h0

eff

√
K

π
∂xφ

+
hB

1

2πa0

[
cos

(
2π
(

m+
1
6

)
n+
√

4πKφ

)

− cos(2π(m+ 5
6 )n+

√
4πKφ)

]}
. (27)

From the bosonized Hamiltonian, one easily gets the
commensurate values of magnetization m = ±1/6 where a
magnetization plateau appears. Away from this commensurate
value of magnetization, arguments of cosine terms are
strongly oscillating and in the continuum limit their
contribution is irrelevant. Therefore in this case, the model
is described by the effective Gaussian model, indicating a
gapless character of excitations and continuously increasing
magnetization of the chain with increasing magnetic field.

At commensurate values of magnetization m = ±1/6,
the cosine term in (26) and (27) is not oscillating and
therefore the modulated magnetic field term comes into play.
Up to an irrelevant shift on a constant of the bosonic field,
the generalized Hamiltonian which describes the system at

commensurate magnetization is given by

Hi
Bos =

∫
dx

{
vs

2
[(∂xφ)

2
+ (∂xθ)

2
] +

mi
0

2πa0
cos(
√

4πKφ)

− h0

√
K

π
∂xφ

}
i = A,B. (28)

where

mA
0 = δJ

0
AF and mB

0 = 2mA
0 /
√

3. (29)

The Hamiltonian (28) is the standard Hamiltonian for
the commensurate–incommensurate transition which has been
intensively studied in the past using bosonization [45] and the
Bethe ansatz [46]. Below, we use these results to describe
the magnetization plateau and the transitions from a gapped
(plateau) to gapless paramagnetic phases.

Let us first consider h0
eff = 0. In this case, the continuum

theory of the initial hexamer spin-chain model in the magnetic
field H = J0

AF + J/4 is given by the quantum sine–Gordon
(SG) model with a massive term ∼hi

1 cos(
√

4πKφ). From
the exact solution of the SG model [47], it is known that the
excitation spectrum is gapless for K ≥ 2 and has a gap in the
interval 0 < K < 2. The exact relation between the soliton
mass M and the bare mass m0 is given by [48]

M = JC(K) (m0/J)
1/(2−K), (30)

where

C(K) =
2
√
π

0( K
8−2K )

0( 2
4−K )

[
0(1− K/4)

20(K/4)

]2/(4−K)

. (31)

Here 0 is the Gamma function and the spin stiffness parameter
K depends on the sign of J and magnetization m.

In the gapped phase, the ground state properties of the
system are determined by the dominant potential energy term
∼cos(

√
4πKφ) and therefore, in the gapped phases, the field

φ is pinned in one of the vacua:

〈0|
√

4πKφ|0〉 = (2n+ 1)π, (32)

to ensure the minimum of the energy.
At h0

eff 6= 0 (i.e. H 6= J0
AF + J/4), the presence of the

gradient term in the Hamiltonian equation (28) makes it
necessary to consider the ground state of the sine–Gordon
model in sectors with nonzero topological charge. The

effective chemical potential ∼h0
eff

√
K
π
∂xφ tends to change the

number of particles in the ground state, i.e. to create a finite
and uniform density of solitons. It is clear that the gradient
term in (28) can be eliminated by a gauge transformation

φ→ φ+h0
eff

√
K
π

x. However, this immediately implies that the
vacuum distribution of the field φ will be shifted with respect
to the minima (32). This competition between contributions of
the smooth and modulated components of the magnetic field is
resolved as a continuous phase transition from a gapped state
at |h0

eff| < M to a gapless (paramagnetic) phase at |h0
eff| > M,

where M is the soliton mass [45]. This condition gives two
critical values of the magnetic field for each plateau H±c,j =

H0
c,j ±Mj.

5
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In the case of a chain with AF exchange on weak bonds
(J > 0) this gives

H±c,1 = J0
AF ± JC(K1) (ciγ )

1/(2−K1), (33)

H±c,2 = J0
AF + J ± JC(K2) (ciγ )

1/(2−K2),

i = A,B (34)

where

K1 = K(1/2,−1/6), and

K2 = K(1/2,+1/6), and

cA = 1, cB = 2/
√

3.

(35)

Respectively, in the case of a chain with ferromagnetic
exchange on weak bonds (J < 0) we obtain

H±c,1 = J0
AF + J ± |J|C(K

′

1) (ciγ )
1/(2−K

′

1), (36)

H±c,2 = J0
AF ± |J|C(K

′

2) (ciγ )
1/(2−K

′

2), i = A,B

(37)

where

K
′

1 = K(−1/2,−1/6) and

K
′

2 = K(−1/2,+1/6).
(38)

Correspondingly the width of each magnetization plateau
is given by

H+c,j − H−c,j = 2Mj

=

2JC(Kj) (m
j
0/J)

1/(2−Kj)
at J > 0

2|J|C(K
′

j) (m
j
0/|J|)

1/(2−K
′

j ) at J < 0
j = 1, 2.

(39)

To estimate the numerical value of the spin stiffness
parameter K at magnetization m and anisotropy 1 we use the
following ansatz:

K(1,m) = K(1, 0)+
|m|

msat
(1− K(1, 0)). (40)

Here, we assume that with increasing magnetization, the spin
stiffness parameter monotonically reaches its extremum K =
1 at m = msat. This ansatz gives that K1 = K2 ' 0.87 for
J > 0 and K1 = K2 ' 1.335 for J < 0. It is straightforward
to get that, in the antiferromagnetic case, the width of the
magnetization plateau scales as δ1.13 while in the case of a
chain with ferromagnetic weak bonds it scales as δ1.50.

In order to investigate the detailed behavior of the
ground state magnetic phase diagram and to test the
validity of the picture obtained from the continuum-limit
bosonization treatment, below in this paper we present results
of numerical calculations using the Lanczos method of exact
diagonalization for finite chains.

5. Numerical simulation

A very famous and accurate method in the field of numerical
simulation is known as the Lanczos method. In order to

explore the nature of the spectrum and the phase transition,
we use the Lanczos method to diagonalize numerically the
model (1) with periodic boundary conditions.

In this section, to find the effect of a magnetic field on the
ground state phase diagram of the model, we calculate the spin
gap, the magnetization, the string correlation function and
the bond-dimer order parameter for finite chains with lengths
N = 12, 18 and 24 and periodic boundary conditions.

Since in a critical field, the energy gap should be closed,
the best way to find the critical fields is the investigation of
the energy gap, which is recognized as the difference between
the energies of the first excited state and the ground state in
finite chains. In figure 2, we have presented results of these
calculations on the energy gap for the exchange parameter
corresponding to the ‘A’ and ‘B’ types as

J0
AF =

19
3 , δ = 2

19 , J = −1, (41a)

J0
AF =

19
3 , δ = 2

19 , J = +1, (41b)

J0
AF = 6, δ = 1

6 , J = −1, (41c)

J0
AF = 6, δ = 1

6 , J = +1. (41d)

and chain lengths N = 12, 18 and 24. At H = 0, it is clearly
seen that the spectrum of the model is gapped. As soon as the
magnetic field applies, the energy gap decreases linearly with
H and vanishes at H−c . This is the first level crossing between
the ground state energy and the first excited state energy. By
further increasing the magnetic field, three gapless regions:

H−c < H < H−c1
, H+c1

< H < H−c2
,

H+c2
< H < H+c ,

(42)

and three gapped regions:

H−c1
< H < H+c1

,

H−c2
< H < H+c2

, H > H+c .
(43)

are seen in figure 2. Oscillations of the energy gap in gapless
regions are the result of level crossings in finite size systems.
One should note that the energy gap in the last gapped region,
H > H+c , growths linearly with the magnetic field H which is
an indication of the saturated ferromagnetic phase. Therefore
with respect to the non-modulated case δ = 0 [16], two new
gapped regions are created by adding δ. To find the critical
fields, we have used the phenomenological renormalization
group (PRG) method [16]. As an example, critical fields for
the exchanges J0

AF =
19
3 , δ = 2

19 and J = −1 are given as
follows:

H−c = 5.67± 0.01, H+c = 6.65± 0.01,

H−c1
= 5.75± 0.01, H+c1

= 5.91± 0.01,

H−c2
= 6.00± 0.01, H+c2

= 6.62± 0.01.

(44)

The first insight into the magnetic order of the
ground state of the system is determined by studying the
magnetization process. The magnetization along the field axis
is defined as

Mz
=

1
N

N∑
n=1

〈Gs|Sz
n|Gs〉, (45)

6
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Figure 2. Difference between the energy of the first lowest level and the ground state (Gap) as a function of the magnetic field, H for chains
with exchanges (a) J0

AF =
19
3 , δ = 2

19 and J = −1, (b) J0
AF =

19
3 , δ = 2

19 and J = 1, (c) J0
AF = 6, δ = 1

6 and J = −1, and (d) J0
AF = 6, δ = 1

6
and J = 1, and lengths N = 12, 18 and 24.

where the notation 〈Gs| · |Gs〉 represents the ground
state expectation value. In figure 3, we have plotted the
magnetization along the applied magnetic field, Mz, versus H
for chain lengths N = 12, 18 and 24 and different exchange
parameters corresponding to the ‘A’ and ‘B’ types. As it is
clearly seen, in the absence of the magnetic field H = 0,
the magnetization is zero. By increasing the magnetic field,
the magnetization remains zero up to the first critical field
H = H−c . This part of the magnetization is known as the
zero plateau. This behavior is in agreement with expectation
based on the general statement that, in the gapped phases,
the magnetization along the applied field appears only at a
finite critical value of the magnetic field equal to the spin
gap. Besides the standard zero and saturation plateaus at
H < H−c and H > H+c , respectively, two additional plateaus
are seen at Mz

=
1
3 Msat and Mz

=
2
3 Msat, where both of them

satisfy the Oshikawa–Yamanaka–Affleck (OYA) condition.
To check that the middle plateaus are not a finite size effect,
we performed the size scaling [49] of their width and found
that the size of the plateaus interpolates to a finite value when
N −→ ∞. As has been clearly seen in figures 2 and 3, the
width of plateaus and the mentioned gapped regions grow
by increasing the modulation δ. In the insets of figure 3, the
magnetization on site, Mz

n = 〈Gs|Sz
n|Gs〉, as a function of the

site number n is plotted for some values of the magnetic field
corresponding to the plateaus at 1

3 Msat and 2
3 Msat and length

N = 24. As we observe, the system shows a well-pronounced
modulation of the on-site magnetization, where magnetization

on weak modulated bonds is larger than on strong modulated
bonds. This distribution remains almost unchanged within the
plateau at 1

3 Msat for H−c1
< H < H−c1

and the plateau at 2
3 Msat

for fields H−c2
< H < H+c2

.
By analyzing the results on the energy gap, we found

that the spectrum is gapped in the absence of the magnetic
field which is one of the properties of the Haldane phase.
Since we have considered the very strong antiferromagnetic
(AF) exchange on odd bonds, the Haldane phase cannot be
found and it is expected to be the gapped dimer phase. This
phase can be recognized from studying the string correlation
function. The string correlation function in a chain of length
N, defined only for odd l, is [50]

OStr(l,N) = −

〈
exp

{
iπ

2n+l+1∑
2n+1

Sx
k

}〉
. (46)

In particular, we calculated the string correlation function
for different finite chain lengths N = 12, 18 and 24. Since
the model has the U(1) symmetry in the presence of a
magnetic field, we consider the transverse component of the
string correlation function. Figure 4 presents the Lanczos
results on the string correlation function for the chain with
lengths N = 12, 18 and 24 and different exchange parameters
corresponding to the ‘A’ and ‘B’ types. As can be seen
from this figure, at H < H−c , the string correlation function
OStr(l,N) is saturated and the hexamer chain system is in the
dimer phase. As soon as the magnetic field increases from the

7
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Figure 3. Magnetization as a function of the magnetic field, H for chains with exchanges (a) J0
AF =

19
3 , δ = 2

19 and J = −1, (b) J0
AF =

19
3 ,

δ = 2
19 and J = 1, (c) J0

AF = 6, δ = 1
6 and J = −1, and (d) J0

AF = 6, δ = 1
6 and J = 1, and lengths N = 12, 18 and 24. In the insets, the

magnetization on site as a function of the site number n is plotted for a value of the magnetic field in the region of the plateau of 1/3Msat and
2/3Msat for length N = 24.

first critical field, as expected the string correlation function
decreases very rapidly and reaches zero in the thermodynamic
limit, which shows that only the dimer phase remains stable
in the presence of a magnetic field less than H−c . The nonzero
values of the string correlation function in the region H > H−c
are finite size effects and it is completely clear that in the
thermodynamic limit N −→∞ will be zero.

An additional insight into the nature of different phases
can be obtained by studying the correlation functions. Since
there are three kinds of space-modulated exchanges in our
hexameric chain model, we define the following bond-dimer
order parameters:

dAF1
r =

6
N

(N/6)−1∑
n=0

〈Gs|S6n+1 ·S6n+2|Gs〉,

dAF2
r =

6
N

(N/6)−1∑
n=0

〈Gs|S6n+3 ·S6n+4|Gs〉,

dAF3
r =

6
N

(N/6)−1∑
n=0

〈Gs|S6n+5 ·S6n+6|Gs〉,

(47)

where summations are taken over the space-modulated
antiferromagnetic bonds. In figure 5, we have plotted dAF1

r ,
dAF2

r and dAF3
r versus magnetic field H for chains of length

N = 24 with different exchange parameters corresponding to
the ‘A’ and ‘B’ types. As is seen from this figure, at H <

H−c spins on all antiferromagnetic space-modulated bonds

are in a singlet state dAF1
r = dAF2

r = dAF3
r ' −0.75, while

at H > H+c , the bond-dimer order parameter dr, is equal
to the saturation value dAF1

r = dAF2
r = dAF3

r ∼ 0.25 and
the ferromagnetic long-range order along the magnetic field
axis is present. However, in the considered case of strong
antiferromagnetic exchanges (J0

AF � |J|) and high critical
fields, quantum fluctuations are substantially suppressed and
calculated averages of spin correlations are very close to their
nominal values.

For intermediate values of the magnetic field, at H−c <

H < H+c the data presented in figure 5 gives us a possibility to
trace the mechanism of singlet-pair melting with increasing
the magnetic field. As follows from figure 5, at values of
the magnetic field slightly above H−c spin singlet pairs start
to melt in all modulated bonds simultaneously and almost
with the same intensity. By further increasing of H and for
fields H > H−c , melting of weak modulated bonds gets more
intensive. However, at H = H−c1

the process of melting stops
and the bond-dimer order parameter remains constant up to
the critical field H = H+c1

. As is seen in figures 5(a) and (b)
for the ‘A’ type of modulation, in the 1/3-plateau state, weak
and strong modulated bonds manifest on-site singlet features
with dimerization values '−0.25 and '−0.70, respectively.
In contrast, for the ‘B’ type of modulation (figures 5(c)
and (d)), weak modulated bonds are almost polarized with
dimerization value ' 0.18, while intermediate and strong
bonds manifest strong on-site singlet features with value

8
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Figure 4. String correlation function as a function of the magnetic field, H for chains with exchanges (a) J0
AF =

19
3 , δ = 2

19 and J = −1,
(b) J0

AF =
19
3 , δ = 2

19 and J = 1, (c) J0
AF = 6, δ = 1

6 and J = −1, and (d) J0
AF = 6, δ = 1

6 and J = 1, and lengths N = 12, 18 and 24.

'−0.70. By increasing the magnetic field more and for fields
H > H+c1

, the melting of the weak bonds happens intensively
and at H = H−c2

the process of melting stops and remains
stable up to the critical field H+c2

. It is clearly seen, in the
2/3-plateau state, that weak bonds for ‘A’ type and weak
and intermediate modulated bonds for ‘B’ type are polarized
('0.22), but strong bonds still manifest strong on-site singlet
features ('−0.65). Finally, for H+c2

strong bonds start to
melt more intensively while the polarization of weak bonds
increases slowly and at H = H+c all weak and strong bonds
achieve an identical, almost fully polarized state.

6. Conclusion

In this paper, we have studied the effect of additional
modulation of strong antiferromagnetic bonds on the ground
state magnetic phase diagram of the 1D spin-1/2 chain with
alternating exchange. In particular, we focus our studies on
the chain with hexamer modulation, where the spin exchange
on even bonds is the same, while the strong antiferromagnetic
exchange on odd bonds is modulated with period 3.

In the limit where the odd couplings are dominant, we
mapped the model to an effective XXZ Heisenberg chain
with anisotropy 1 in an effective uniform and spatially trimer
modulated magnetic field. The anisotropy parameter is1 = 1

2
in the case of antiferromagnetic exchange on even bonds and

1=− 1
2 in the case of ferromagnetic exchange on even bonds.

Using the continuum-limit bosonization treatment of the
effective spin-chain model, we have shown that the additional
modulation of the strong bonds with period 3 and amplitude
' δ leads to the generation of two gaps in the excitation
spectrum of the system at magnetization equal to 1/3 and
2/3 of its saturation value. As a result of this new energy
scale formation, the magnetization curve of the system M(H)
exhibits two plateaus at M = 1

3 Msat and M = 2
3 Msat. The width

of the plateaus is proportional to the excitation gap and scales
as δν , where the critical exponent ν = 1.13± 0.01 in the case
of an AF exchange on even bonds and ν = 1.50± 0.01 in the
case of ferromagnetic exchange on even bonds.

For a complete description of the model, we supplement
our analysis by a very accurate numerical simulation. Using
the Lanczos method of numerical diagonalizations for chains
up to N = 24, we have studied the effects of an external
magnetic field on the ground state properties of the system.
In the first part of the numerical experiment, we have focused
on the energy gap of the system. Our results showed that,
with respect to the non-modulated chain, two new gapped
regions were created by adding the modulation. The widths
of the mentioned gapped regions grow by increasing the
parameter of modulation δ. In the second part of the numerical
experiment, we have studied the magnetization process. We
provided a clear picture of the magnetization which showed
that two magnetization plateaus appear at values 1

3 Msat and

9
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Figure 5. The bond-dimer order parameter as a function of the magnetic field, H for chains with exchanges (a) J0
AF =

19
3 , δ = 2

19 and
J = −1, (b) J0

AF =
19
3 , δ = 2

19 and J = 1, (c) J0
AF = 6, δ = 1

6 and J = −1, and (d) J0
AF = 6, δ = 1

6 and J = 1, and length N = 24.

2
3 Msat in the new gapped regions. To find additional insight
into the nature of the different phases, we also calculated
the on-site magnetization, the string correlation function and
the bond-dimer order parameters. The on-site magnetization
showed a microscopic picture of the direction of spins on
different sites, when the system is in the new gapped regions.
On the other hand, by studying the string correlation function,
we found that in the absence of the magnetic field, the
suggested alternating chain is in the dimer phase and this
phase remains stable in the presence of an external magnetic
field up to the first critical field. Finally, we studied the effect
of the magnetic field on the ground state phase diagram of
the model by means of the perturbation approach. Using
perturbation theory, we provided the analytical results for the
critical fields that these results were in good agreement with
the obtained numerical experiment results.
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Appendix . Perturbation results

In this section, we study the effect of the magnetic field
on the ground state phase diagram of the model, using the

perturbation approach. We try to find the analytical results for
the critical fields. The behavior of the model (1) in the limit of
strong couplings on the odd bonds JAF(n)� J is interesting.
For this aim, it is convenient to rewrite the Hamiltonian
equation (1) in the form

H = H0 + V

H0 =

N/2∑
n=1

JAF(n)S2n−1 ·S2n − h
N∑

n=1

Sz
n

V = J
N/2∑
n=1

S2n ·S2n+1.

(48)

The unperturbed part, H0, is the Hamiltonian of
N/2 non-interacting pairs of spins. The eigenstate of the
unperturbed Hamiltonian is written as a product of pair states.
By solving the eigenvalue equation of an individual pair, one
can easily find the eigenstates as mentioned in section 3. Let
us start with the case of δ = 0. Since the ground state energy
of a distinct pair is twofold-degenerate at H = JAF(n), the
ground state energy of the unperturbed Hamiltonian H0 is
2N/2 times degenerate [36]. The perturbation V splits this
degeneracy. By applying the first-order and second-order
perturbation theory for finite chains with periodic boundary
conditions and generalizing results to the thermodynamic
limit, one can find two critical fields. In the case modulated
chain, δ 6= 0, there are different kinds of bonds: strong and
weak. In this case, by increasing the magnetic field, first weak

10
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Table A.1. The critical fields which are obtained by the
perturbation theory and the corresponding values obtained by the
numerical experiment in the hexameric chain of the ‘A’ type and
J < 0, the ‘A’ type and J > 0, the ‘B’ type and J < 0 and the ‘B’
type and J > 0.

Critical fields Perturbation results Numerical results

‘A’ type and J < 0

H−c 5.62 5.67± 0.01
H−c1

5.75 5.75± 0.01
H+c1

5.87 5.91± 0.01
H−c2

6.00 6.00± 0.01
H+c2

6.62 6.62± 0.01
H+c 6.62 6.65± 0.01

‘A’ type and J > 0

H−c 5.62 5.61± 0.01
H−c1

5.75 5.75± 0.01
H+c1

6.37 6.40± 0.01
H−c2

6.50 6.59± 0.01
H+c2

7.62 7.61± 0.01
H+c 7.62 7.66± 0.01

‘B’ type and J < 0

H−c 4.90 4.90± 0.01
H−c1

4.90 4.96± 0.01
H+c1

5.75 5.75± 0.01
H−c2

5.75 5.78± 0.01
H+c2

6.59 6.60± 0.01
H+c 6.59 6.61± 0.01

‘B’ type and J > 0

H−c 4.90 4.87± 0.01
H−c1

4.90 4.92± 0.01
H+c1

6.25 6.27± 0.01
H−c2

6.25 6.33± 0.01
H+c2

7.59 7.60± 0.01
H+c 7.59 7.61± 0.01

bonds melt and go to the triplet state with respect to the strong
bonds. Therefore, it is natural to find four additional critical
fields with respect to the non-modulated case, δ = 0.

The determined critical fields for a hexameric chain of the
‘A’ type with J < 0 and by using the perturbation approach are

H−c = J0
AF

(
1−

δ

2

)
+

J

4
−

J2

12δJ0
AF

,

H−c1
= J0

AF

(
1−

δ

2

)
+

J

4
,

H+c1
= J0

AF

(
1−

δ

2

)
−

J2

12δJ0
AF

,

H−c2
= J0

AF

(
1−

δ

2

)
,

H+c2
= J0

AF

(
1+

δ

2

)
+

J

4
+

J2

12δJ0
AF

,

H+c = J0
AF

(
1+

δ

2

)
+

J

4
+

J2

12δJ0
AF

.

(49)

Generalization of this result for ‘A’ type and J > 0, ‘B’ type
and J < 0 and ‘B’ type and J > 0 is straightforward. In
table A.1, the numerical and perturbation analytical results of
critical fields were compared for a chain of the ‘A’ type and
J < 0, the ‘A’ type and J > 0, the ‘B’ type and J < 0 and
the ‘B’ type and J > 0. The accuracy of analytical results are
to two significant digits. We emphasize that the perturbation
results are in good agreement with the obtained numerical
experiment results.
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