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Abstract 

On the basis of generalizing Cauchy's integral formulae the boundary value prob­

lems with discontinuous matrix coefficients for general elliptic systems of first order on 

the plane are solved . The necessary and sufficient conditions for the solvability and the 

index formulae of these problems in the weighted classes are established . Sufficiently 

wide classes of special (degenerate in point) differential equations are also studied. 
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1 Introduction 

The first order linear system of partial differential equations 

au au 
~ = A(:r, y) ~ + B(:c, y) u(x, y) + F(x, y) , 
uX uy 

(1) 

where u = u("u1 , u2 , ... , u.n) is 2n-desired vector, A , Bare given real2n x 2n­
matrices, depending on two variables x, y , F is given real 2n-vector, is said 
to be elliptic in domain D, if 

det(A - .\I) -:/ 0, (2) 

for all real).. and for all points (x, y) E D; I is a unit matrix. In other words 
the system is elliptic in some plane domain D if and only if the matrix A 
has no real characteristic numbers in D. 

As it is ''veil-known, when n = 1 in case of sufficient smoothness of the 
coefficients of ( 1), after corresponding changing of variables we can reduce 
the system to one complex equation 

Bzw + A1 w + B 1 w = F ( 8z = ~ ( :x + i :y)). (3) 
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At present this equation is called Carleman-Vekua equation. 

Remark Some important generalizations in other directions see below 
in Section 3. 

The complete theory of functions, satisfying this equation, the theory of 
generalized analytic functions was constructed by I. Vekua [13] Later on B. 
Bojarski has shown, that the methods of the theory of generalized analytic 
functions admit far-going generalizations on case of elliptic system of first 
order in complex form which has the following form 

where Q(z), A(z), B(z) are given square matrices of order n, Q(z) is a 
matrix of special quasi-diagonal form [1], Q(z) E Wi(C.C) , p > 2, lqiil ~ 
qo < 1, Q(z) = 0 outside of some circle, A, B are bounded measurable 
matrices. (The notation A E K, where A is a matrix and K is some class 
of functions, means that every element Ao:,e of A belongs to K). 

The regular solutions of the equation ( 4) are called the generalized 
analytic vectors. In case A = B = 0 such solutions are called the Q­
holomorphic vectors. 

In the works of B. Bojarski by the full analogy with the theory of 
generalized analytic functions are given the formulae of general represen­
tations. On this basis the boundary value problems of linear conjugation 
and Riemann-Hilbert boundary value problem with Holder-continuous co­
efficients are considered. These results of B. Bojarski and some further 
development of the theory of generalized analytic vectors are presented in 
the monograph [2]. 

The present paper first of all deals with discontinuous problems of the 
theory of analytic vectors. By analogy with the case of analytic functions 
[3,4] under these problems we mean the problems, where desired vectors 
in considered domains have angular boundary values and conditions con­
tinuous are to be fulfilled only almost everywhere on r. In addition given 
coefficients of the boundary conditions are to be piecewise continuous ma­
trices. In the second part of our paper sufficiently wide classes of special 
(degenerate at point) differential equations are studied. 

2 The solvability of the Problem (1/) 

Differential boundary value problem is such boundary value problem for 
which the boundary condition contains the boundary values of derivatives of 
the desired functions . In the theory of differential boundary value problems 
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for holomorphic functions an integral representation formula constructed by 
I. Vekua (1942) [12] plays important role. 

Let D be a finite domain bounded by a simple smooth curve r, 0 ED, 
let <I>(z) be holomorphic in D. Suppose the derivative of order m (m 2:: 1) 
of <I>(z) has boundary values on r satisfying Holder-condition. Then <I>(z) 
can be represented by the formula 

<I>(z) = fr ~t(t) (1- ~) m -
1

ln ( 1- f)ds + 1r fi.(t)ds + ic, (5) 

where f.L(t) is a real-valued function , f.L(t) E H(r) and cis a real constant; 
p.(t) and c are uniquely determined by <I>(z). 

This representation gave I. Vekua the possibility to study the differential 
boundary value problem for holomorphic functions in Holder-classes. 

We introduce the suitable classes of generalized analytic vectors and 
for the elements of these classes the analog of I. Vekua representations, 
which allow us the investigation of discontinuous differential boundary value 
problems in these classes. 

Denote by Ep(D , Q), p 2:: 1, Q(z) E W~0 (C) , Po > 2, the class of Q­
holomorphic vectors in D satisfying the conditions 

r iwk(z)IP jdz i ::; c, k = 1, 2, ... , n , 
}8kr 

(6) 

where cis a constant , Skr is the image of the circumference j(j = r , r < 1, 
under quasi-conformal mapping 

( = wk(sk(z)) (7) 

of unit circle j( j < 1 onto D , wk is a schlicht analytic function in the domain 
sk(D) , sk(Z) is a fundamental homeomorphism of the Beltrami equation 

fhS - qkk(z )ozS=O, k=1 , 2, ... , n, (8) 

qkk are the main diagonal elements of the matrix Q. 
By Em,p(D, Q) denote the class of Q-holomorphic vectors satisfying the 

inequalities 
r lomwk(z ) lp 

}8kr {)zm jdz i ::; c, k = 1, 2, ... l n, (9) 

where c is a constant and bkr denotes the same. 
By Em,p(D, Q, p) denote the class of the vectors w(z ) belonging to the 

class Em,>..(D, Q) for some .\ > 1 such that the boundary values of the 
vector omw I ozm belong to the class Lp(f ' p). 

5 
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If w(z) is a Q-holomorphic vector from Ern,p(D, Q, p), Q(z) E W~:(C), 

Po > 2. Then the analogous formula of (5) holds. 

w(z) =£ [I - C 1(t)]m-
1

ln [I - ((z) C 1(t) ] [I+ Q(t)P 2]11(t) ds 

+ lr M(t) J-L(t)ds + iC, (10) 

where C = Im w(O), Ai(t) = diag [M1(t), ... ,Mn(t)] is a definite real 
continuous diagonal matrix depending only on Q and r; the real vector 
J-L(t) E Lp(r, p) is defined uniquely by the vector w(z). By ln[I -((z) ( - 1 (t)] 
we mean the branch on the plane, cut along the curve lt ( lt connects the 
point t on r with the point z = oo and lies outside of D) which is zero­
matrix at the point z = 0. 

Ern,p(D, Q, A, B , p) is the subclass of the cla.ss Em,>.(D, Q, A, B) for 
some A > 1 containing vectors whose angular boundary values arnw I f}zm 
belong to Lp(r, p). 

The following formula holds [13]: 

N 

w(z) = <I>(z) + L [rl(z, t) <I>(t) + r2(z) <I>(t) ]dt + {; qWk(z) . (ll) 

where <I>(z) is a Q-holomorphic vector, ck are real constants. {Wk(z)} (k = 

1, .. . , N) is a complete system of linearly independent solutions of the 
Fredholm equation 

11 -Kw = w(z)-- V(t , z) [A(t) w(t) + B(t) w(t)] dO't · 
7r D 

(12) 

Mlk(z) turn out to be continuous vectors in the whole plane vanishing at 
infinity; the kernels rl(z , t) and r2(z, t) satisfy the system of integral equa­
tions 

6 
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where vk(z) E Lp(D) (k = 1, ... , N) form a system of linearly independent 
solutions of the Fredholm integral equation 

v(z) + A'(z) { V'( z , t) v(t) dcrt + B'(z) { V'(z, t) v(t) dcrt = 0. (14) 
7r }D 7r }D 

In (13) the curly bracket { v , w} means a diagonal product of the vectors 
v and w, the matrix V(t , z) is generalized Cauchy kernel for the equation 
(4) in case A(z) = B(z) = 0. <I?(z) in (11) has to satisfy the following 
conditions 

Re l<I?(z)vk(z)dcrz=O, k = 1, .. . , N. (15) 

Note that generally speaking, the Liouville theorem in not true for so­
lutions of the equation (4). This explains the appearence of the constants 
Ck in the representation formula (11) and the conditions (15) . 

From (11) we have 
w(z) = <I?(z) + h(z ), (16) 

where <I?(z ) E Em,p(D, Q, p) and h(z ) E Hm(D), Wk( z ) E Hm(D). 
In the section we consider differential boundary value problem of linear 

conjugation type for generalized ana.lytic vectors, i.e. the boundary condi­
tion contains the boundary values of desired vector and its derivatives on 
both sides of jump line. 

Let r be a smooth simple curve. Denote by n+(n- ) the finite (infinite) 
domain which is bounded by r. Suppose 0 E n +. Consider the pair of 
equations 

aw a --
az -Q+(z)az +A+(z)w(z )+B+(z)w(z ) = O in n + (17) 

and 

aw a --
a-z - Q_ (z ) az + A_(z ) w(z ) + B __ (z) w(z) = 0 in v - , (18) 

where Q+ E W~(C), Q_ E w;n(q, A+, B+ E H 1- 1 (D+) , A _, B_ E 

sm-1(D), A_ = B_ = 0 in certain neighborhood of z = oo. By E(m P(r , Q±, 
A±,B±, P) we denote the class of solutions of equations (17) and (18) re­
spectively, belonging to the class El,p(D+, Q+, A-t- , B+, p) [Em,p(D- , Q __ , A_, 
B _ , p)] in the domain n+ [D-J. The classes 
EGn,p(r, Q±, 0. 0, p) will be denoted by Etm,p(r, Q±, p) . 

Problem (V). Find a vector w(z) of the class Etm,p(r, Q±, A±, B±) 
satisfying the boundary condition 

z [ ( ak ) + ( ak ) + J I: ak(t) at: + bk(t) at: 
k=O 

7 
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(19) 

almost everywhere on r, where ak(t), bk(t), ck(t), dk(t) are given piecewise 
continuous square matrices of order k, and f(t) is given vector of the class 
Lp(r, p). 

Boundary condition can also contain integral term, which we omit for 
the sake of simplicity. 

First we consider this problem in case A± = B± = 0, i.e. in the 
class E1± (r, Q ±, p). For vectors of this class the following representation lm,p 
formula 

(20) 

holds, the kernels S+(z, t, l) and S_(z, t, m) are represented by the matrices 
(+[(-] respectively. They are fundamental matrices for Q+(z) [Q-(z)], J.L(t) 
is the solution of the equation 

where 

iJ f(z) = a(z) fz(z) + .B(z) f z(z) , 

a(z) = -(:z(z) [(z(z) (z(z)- [(:z(z) (:z(z)] - l, (22) 

(3(z) = -(z(Z) [ (z(z) (z(z) - [(:z(z) (:z(z) rl. 
Substituting the representation (20) into the boundary condition for 

desired vector J.L(t) we obtain the following system of singular integral equa­
tions 

(23) 

where 

B 8 (t) 1 J.L(T)dT 1 Ksf.l = A 8 (t) J.L(t) + - .- + k8 (t, T) f.l (T) dT 
n2 r T - t r 

(24) 

(s=l , 2), 
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and 

( f) )l (f) )rn 
Al(t) = az(t) 8t (+(t) Ct-1(t) - Cm(t) 8t ( _(t) Cm(t), 

( f) )l l (f) )rn 
A.2(t) = bz(t) ot (+(t) (+ (t)- dm(t) ot (-(t) Cm(t), 

( f) )l (f) )1n 
Bl(t) = az(t) 8t (+(t) C+1(t) + em,(t) 8t (_(t) cm(t), 

(25) 

( 
8 )l l (f) )1n 

B2(t) = bz(t) ot (+(t) (+ (t) + dm(t) ot (_(t) Cm(t), 

ks ( T, t) are certain matrices with weak singularities. 
In general case the problem (19) is to be considered in the class Etn,p(r, 

Q±, A±, B±, p) , and we use the integral formula 

'W±(z) = <P±(z) --1- 1r [ri(z, T) <P±(r) --1- ri(z, r) <P(r)] dcrr 

N± 

+ I:>l W~(z), zEn±, (26) 
k=l 

where the resolvents rl, r 2 and the vector Wk(z) are as introduced above. 
c~ (k = 1, . .. , N±) unknown real constants, <P±(z) are unknown vectors of 
the class Etm,p(r, Q±, p), satisfying additional conditions 

Im 1r <P±(t) dQ±t\l!~(t) = 0, j = 1, ... ,N±, (27) 

where {\II~} form a complete system of linearly independent solutions of 
conjugate equations, they are continuous in whole plane and vanish at 
infinity. 

The formula (16) allows us to reduce the problem (19) to the case of 
Q-holomorphic vectors. Note that the vectors W~(,z) , k = 1, ... , N± have 
continuous derivatives up to the required order because of smoothness of 
the coefficients of the equations ( 17) and ( 18). 

Finally we obtain the following result 

Theorem. On the inequality 

inf [ detD(t) [ > 0 
tEr 

(28) 

holds, then the problem (19) is Noetherian in the class 
E1± (r, Q±, A±, B±, p) if and only if ,1n,p 

1 --1- Vk f- f--L.ik • 
p 

9 

(29) 
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where /Ljk = 1/2n arg Ajk> 0 :S: arg Ajk < 2n, k = 1, . .. , r, j = 1, .. . , n, Ajk 

are the roots of the equation 

and n(t) is the bloek-matrix 

n(t) = (crn(t) brn(t)). 
d1(t) a1(t) 

(30) 

(31) 

Using I. Vekua representations we obtain necessary and sufficient solv­
ability conditions and index formulae for Problem (V) in case when the 
plane is cut along several regular arcs for analytic functions so-called cut 
plane in various functional classes. These problems are important in appli­
cations. We have considered the general differential boundary value prob­
lems for analytic vectors as well as boundary value problems with shift 
complex conjugation on a cut plane [8-11]. 

3 Degenerate Elliptic Systems 

As was mentioned above I. Vekua's seientific interest was concentrated on 
construction of the theory of generalized analytic functions and its applica­
tions in geometry and in the theory of elastic shells. I. Vekua systematically 
indicated the necessity of investigation of irregular equations. Let now con­
sider the following equation 

8w a(z) . b(z) __ 
0 

{)z + f(z) w + g(z) w- ' (32) 

in some domain G of z-plane; a, b E Lp(G), p > 2; f and g are analytic 
functions on G, they may have zeros of arbitrary order and essential sin­
gularities . I. Vekua called these functions as analytic regularizators of the 
coefficients of the equation (32). 

One of the fundamental results (and important tool of investigation of 
this equation) of the theory of generalized analytic functions is the general 
representation of solution by the analytic functions. Precisely for any w(z) 
there exists a function <P(z) analytic in G, such that 

w(z) = <P(z) exp{f2(z)}, (33) 

where 

n(z) = __!!__ j~ ( a(() dG(() + __!!__ j~ ( b(() w(() dG((). (34) 
f(z) Ja (- z g(z) la ( - z w(() 

10 
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For regular coefficients the converse of this relation is given in I. Vekua's 
famous monograph [13] , by the given analytic function <P(z) the solution 
w(z) is constructed. For general case this important result was also gener­
alized by himself. 

In regular case this relation completely reveals the properties of gener­
alized analytic functions however even if one of the functions f and g has 
essentially singular point then nothing containing is known on behavior of 
the solution of the equation (32) in the neighborhood of this point. It is 
unknown how to use the relation in this case too. 

Incomparably more is known in case when f and g have zeros but do 
not have essential singularities. This type of equations are called Carleman­
Vekua equations with polar singularities. 

Consider typical and important in applications the following Carleman­
Vekua equation with polar singularities 

iz iv ~; + a(z) w + b(z) w = 0, (35) 

where the real number v > 0, a, b E Lp( G), p > 2 and G contains some 
neighborhood of z = 0 except this point (perforated neighborhood of z = 0). 
For these equations (differing form the regular case v = 0) it case take place 
very unexpected phenomenas. 

It is very meaningful I. Vekua's emotional attitude to their problematic, 
which he expressed as follows. "Some simple examples show the complicate 
character of these problems" [14]. 

To make it clear let's consider the following examples: 

iziv :z + c(cosrp + isinrp)w = 0, (36) 

where v > 1, c = ±1. 
It is easy to show that the solutions of this equation in the neighborhood 

of z = 0 have essentially different behavior for c = 1 and c = -1. It 
follows that the problem of construction of general theory of such singular 
equations is very different and indeterminable however the validity of the 
following proposition about the structure of solutions of these equations 
under general assumptions for given v. a, b is proved: every solution w(z) 
of the equation (35) satisfying the equation 

w(z) = O(w(z)), z--+ 0 (37) 

for some analytic in domain G function w(z) is identically zero; every func­
tion \If ( z) satisfying condition 

w(z) = O(w(z)), z--+ 0 (38) 

11 
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in domain G is identically zero for some solution w(z). 
From above the following conclusion holds: the structure of solutions 

of Carleman-Vekua equations with polar singularities is principally nonan­
alytic . 

We have obtained correct statement and complete analysis of boundary 
value problems for sufficiently wide class of equations of such type. They are 
first order singular equations. The equations of higher order undoubtly are 
of much theoretical and practical interest. In this connection let's consider 
the following system 

m ;;::.k 

"""""' Vk A ~ - 0 ~ z k 8-zk- ' 
kc=O 

(39) 

where m, v are given natural numbers, Ak (0 ::; k ::; m) are given complex 
square n x n-matrices . Under the solution of this system we mean a vector­
function w = (wl, ... 'Wn) of the class C111 (G) satisfying the system (39) 
in every point of G. Note, that G is as above perforated neighborhood of 
z = 0. Assume that 

det Ao =f. 0, det Am =f. 0, Ak · A j = Aj · A.k, 0 ::; j, k ::; m. ( 40) 

Construct all possible polynomials of the form 

( m (m·- 1 ( 0 Tm + Tm-1 + .. . + T1 +TO= , (41) 

where the coefficients Tk is some eigen-value of the matrix Ak, (0 ::; k ::; m). 
Denote by~ the set of all complex roots of these polynomials and introduce 
a number Oo =min 1(1, obviously Oo > 0. 

(E .6. 

Along with the solution w(z) of the system (39) construct its charac­
teristic function 

n m-1~ {)P . I 
Tw(P) = o~~rrf.; ~ {)zP (pet'P)' p > 0. (42) 

The following theorem holds: 

Theorem. Let v ?: 2 and w(z) be some analytic function in G. Let 
the solution w(z) of the system satisfy the condition 

Tw(z) = 0 (lw(z) l exp { ~~ 0 }) , z--+ 0. (43) 

where o is some number and CJ < v ·- 1. 
Then the solution w(z) is identically zero vector-function. Moreover 

when the equation (43) is fulfilled then w(z) is also trivial if 

(J = v- 1, o < 60 cos 1r.8, { v-- 3} f3 =max v, --- . 
2v - 2 

(44) 

12 
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Note that in particular, where v = 2 for this system we succeeded to state 
correct boundary value problem to make its complete analysis. These re­
sults are particularly published in [5-7]. 

References 

1. Bojarski B. Theory of generalized analytic vectors. Ann. Polan. Mth. 
17, 1966, 281- 320 (Russian). 

2. Gilbert, R. P., Buchanan, J. L. First order elliptic systems. A function 
theoretic approach. Academic Press, New York, London, 1983. 

3. Khvedelidze B. Linear discontuinuous boundary value problems of the 
theory of functions, singular integral equations and some applications. 
Proc. A. Razrnadze Math. Inst. Tbilisi 23, 1957, 3- 158 (Russian). 

4. Khvedelidze B. The method of Cauchy type integrals in discontinuous 
boundary value problems of the theory of holomorphic functions of 
one complex variable. Current problems in mathematics. 7, VINITI, 
Moscow, 1975, 4-162 (Russian) . 

5. Makatsaria G. T. The Behaviour of solutions of the Carleman-Vekua 
equation with polar singularities in the neighbourhood of fixed singu­
lar point . Bv,ll. Acad. Sci . Georyian SSR, 107, No.3, 1982, 473- 476. 

6. Makatsaria G. T. Liouville-type theorems for generalized analytic 
functions. Bull. Acad. Sci. Georgian SSR, 113, No.3, 1984, 485-
488. 

7. Makatsaria G. T. Correct boundary value problems for some classes 
of singular elliptic differential equations on a plane. Mern. Diff. Eq. 
Math. Phys. 34, 2005, 115--134. 

8. Manjavidze G. , Akhalaia G. Boundary value problems of the theory of 
generalized analytic vectors. Complex methods for partial differential 
equations. Kluwer Acad. Publish. 6, 1998. 

9. Manjavidze N. Differential boundary value problems of the theory of 
analytic functions on a cut plane. Complex variables. Theory and 
Applications 46, 3, 2001, 265- 277. 

10. Manjavidze N. Some boundary value prioblems of the theory of ana­
lytic function on a cut plane. Proc 8rd. Intern. Congress ISAAC 2, 
763- 769, Berlin, 2001. 

13 



AMIM Vol.12 No .1, 2007 G. Akhalaia, T . Makatsaria, N. Manjavidze 

11 . T'vianjavidze N. The Riemann Hilbert-Poincare boundary value prob­
lem on a cut plane. Bull. Georgian Acad. Sci. 168, 3, 2003, 441- 444. 

12. Vekua I. On a linear Riemann boundary value problem. Proc. A. 
Razmadze Math. Inst. Tbilisi XI, 1942, 109- 139 (Russian). 

13. Vekua I. Generalized analytic functions. Pergamon, Oxford, 1962. 

14. Vekua I. On one class of the elliptic systems with singularities. Proc. 
Int. Con. on Functional Analysis and Related Topics, Tokyo, 1969. 

14 


