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Thus the number of linearly independent solutions of the problem (6.21) in the class Ly (T, p'79)
over the field of real numbers and the number of linearly independent solutions of the problem (6.2)
in the class E(fo(l“, p'~9) are the same. O

Theorem 6.1. If Q(t) # O then the index of the problem (6.1) in the class E;O(F,p) is equal
to the index of the equation (6.15) of the class Ly(I',p) (under the condition, that 1 + oy, # pu(k),

J
ar, (k> 3
where ,ug-k) = g;j , 0 < arg )\gk) < 2m, )\g-k) are the roots of the equations: det[H (ar) — N] = 0
or det[H 1 (by) — M| = 0 for odd and even k correspondingly; H(t) = [a(t) + b(t)] t[a(t) — b(t)], the
necessary and sufficient solvability conditions for the problem (6.1) in the class E;EO(F, p) have the form

(6.11).

Remark 6.1. Tt Ay(t) = A_(t) = A(t), then Q(t) = 0. In this case instead of the representation
(6.13) we shall use the following representation

1 ALt p(t
P(z) = 2_/()’u()d?H—F(z), where = p" +p.
T t—=z

r
The equation (6.15) will have the form:

Iy t—to
r

dt = g(to),

where

i _
K(to,1) = 5 |Alta) A7 (1) + Alto) A (to)h(t0.) .
Analogously we obtain the following result

Theorem 6.2. If A, (t) = A_(t) then the index of the problem (6.1) coincides with the index of

the operator f%dr of the class Ly(T', p) under the condition that 2(1 + ay) # p. In this case the
r

necessary and sufficient solvability conditions have the form (6.11).

Remark 6.2. It Q(t) = 0 in some points of T' then introduce a new desired vector by the formula
®(2) = A(2)p(2), where A = diag[e*1?) ... e=x(?)],

[ g(t) _ _

(@) = 5 [Tt (e) € HED), buday) = hnlby) = 0.
r

It is evident,that ¢(z) € E;%O(F, p). The matrices A4(t) are replaced by the matrices Ay (t)A*(2).

Under the fulfillment of some conditions one may select the functions hg(t) such that the function

Q(t)#0onT.

7. RIEMANN-HILBERT-POINCARE TYPE PROBLEMS ON A CUT PLANE

In the theory of differential value problems for analytic functions, i.e. boundary value problems
containing boundary values of the derivatives of desired functions, very important role plays the integral
representation of the analytic functions constructed by I. Vekua [78]. Using this representation we can
investigate the Riemann—Hilbert—Poincaré boundary value problem and some of its generalizations.
We perform our investigation in two steps: first we consider the Riemann—Hilbert—Poincaré problem
on a cut plane and then a general differential boundary value problem.

7.1. Riemann—Hilbert—Poincaré problem on a cut plane. Let S be a complex plane cut along
simple arc cicg = I' of the class C2. First consider the following problem: find a vector ®(z) =
(®1,...,9P,) holomorphic in S and satisfying the boundary condition

Re [ax(t)®) (1) +be®i(t)] = fo(t), T, (7.1)
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where assume that the given matrices a4 (t),b4(t) € H(T'), the given real vectors f1(t) € H*(T'). (Note,
that the notation A € K, where A is a matrix and K is some class of functions, means that every
element A,g of A belongs to K.)

The unknown vector ®(z) and its derivative ®’(z) are continuously extendable from both sides on
T, ®'(z) is supposed to satisfy the following estimate

9%(2)] < const|z — |7, 0<a<l (j=1,2,...,n) (7.2)

in a neighbourhood of each point c.
Let

z=w() (7.3)
be conformal mapping of the domain S onto the unit circle D(|¢| < 1) with the boundary -, let the
points ¢ turn into the points dj of the circumference -, one side of I' onto the part of circumference

~1 and another side onto 2. Using results of S.Warshavski [80] about the properties of the function
(7.3) and its inverse function £ = n(z), we get with respect to a new function

U (§) = Plw(§)] (7.4)
the Riemann—Hilbert—Poincaré boundary value problem with the boundary condition
Re [A(0)V'(0) + B(0)¥(o)] = F(o), o€, (7.5)

where A(o), B(o), F (o) € H * () and they are expressed with the help of given matrices a(t), by (¢t)
and the vectors fi(t).

Applying the integral representation of I. Vekua [78] (see also [53,55]) we seek solution W(&) in the
following form

V() = /u(a) In (1 - g) ds + /u(a) ds + iC, (7.6)
8! gl
where C' = (C14,...,C,) is areal constant vector, (o) is a real vector from class H*(v), under In(1 — g)

we mean the branch of this function which is equal to zero at point £ = 0, u(o) and C are uniquely
defined by ®(z).

Inserting the representation (7.6) in the boundary condition (7.5) we get for vector u the following
singular integral equation

E(oo)ulo0) + / H(0o, o)) ds = F(o0) — K(o0)C, (7.7)

where
k(o) =ReliB(0)], E(o)=Re [A(0)7],
Im[A(O'())E] " Ho(UQ,U)

H(op,0) = Hy(op,0) € H(y x7), 0<6<1. (7.8)

From here we have

S = A(oo)zo, D= A(o0)oo, G=S""D =05[A(00)] " A(oo).
For the equation (7.7) to be Fredholm the following condition has to be fulfilled
inf |det A(t)] > 0 (detay(t) #0, deta_(t) #0). (7.9)

If we denote by g(o) matrix [A(c)] ' A(c) and by Ag; the roots of equation det[g™! (d), +0)g(dx —0) —
Al = 0, then the index of equation (7.7) in the class hg is equal to 2n + s, where

= L arg _detglo) (7.10)

2 2 k
" I] detX(0)"F
k=1 0
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(see [52]), where

k - 1
det}o((a) = (0 —&)%*, q = Zpkd’ PR =5 InAg;, —1<Rep, <O0. (7.11)
j=1
The necessary and sufficient solvability conditions for the equation (7.7) in the class hg have the
following form

/[F(a) ~ko)eb(o)ds =0, j=1,2,...,0, (7.12)

where IZ(O') is a complete system of almost bounded linearly independent solutions of the adjoint
homogeneous equation.

In order to calculate the index of the problem (7.1) we may assume that B = 0. Then k(o) = 0 and
therefore the index will be

n+l—0'=n+2n+k)=3n+k, (7.13)
where k is being calculated by the formula (7.10). Thus we get the following result.

Theorem 7.1. If the condition (7.9) is fulfilled then the problem (7.1) is normally solvable in the
class H*(T'). In this case the necessary and sufficient solvability conditions in the class ho are (7.12)
and the index in this class is calculated by (7.13).

Problems of such kind were the subject of investigations of B. Khvedelidze [38]|, N. Vekua [79] and
others (see, e.g., [2,3]). The considered problem in more general case will be solved below but not in
the same way. We manage reduction to singular integral equation without using conformal mapping.

Before passing to the general case let us consider the case when the boundary condition contains
derivatives up to second order. In this case the problem is formulated as follows (for the sake of visuality
we only consider the scalar case):

1°. Let S denote the plane of the complex variable z = x + iy, cut along simple are ajas = I of the
class c2.
Consider the following boundary value problem.

Find the function ¢(z), holomorphic in S satisfying the boundary condition

2
Re > [abh(t) o ()] = f2(0). (7.14)
k=0

Assume the given functions a% (t) (k = 0,1,2) belong to the class H(I'), the given real functions
f+(t), f—(t) € H*(T") with the points of discontinuity a; and as.

Let the desired function ¢(z) satisfies the following properties: ¢”(2), ¢'(2), ¢© = @(z) are
continuously extendable from the left and from the right or I', except the points a1, as, the boundary
values ¢/, (t) will have the form

PLI = AL() - [t —arl[t—ao ] °, 08 <2, Ault), A_(t) € H(T). (7.15)

First we seek the solution of the problem (7.14) which may have a pole of the first order at infinity.

Mapping conformally S onto the unit circ D (|| < 1) with the boundary =, the points ¢; turn into
the points dy, € v, one side of the arc I' turns in to the part of circumference v; and the another side
in to the part vo € 7.

According to B. Warshavwski [80], the function Z(¢) = w(¢) and the inverse function ¢ = 7(z) have
the following properties: the function

me(2) = (z = ax) "2 [n(z) — n(ar)] (7.16)

is continuous in the neighbourhood of the points ag, ni(ax) # 0, and

Me(2) = (z — ax) " 2n(2), (7.17)
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where n)(z) is continuous function in the neighbourhood of the points ax and also n?(ax) # 0, the
function

wi(¢) = (¢ — ) w(¢) — w(er)] (7.18)
is continuous function in the neighbourhood of the points ¢, wi(cx) # 0 and
W'(¢) = (¢ = er)wi(©), (7.19)

here w{(¢) is continuous function in the neighbourhood of the points ¢; and also w(cy,) # 0.

Let w(¢) = % + w4 (¢), where w,(¢) is holomorphic function in D (w(¢{) will have a simple pole in
some point of D which corresponds to the point z = oo while the mapping z = w(()).

Denote

plw(Q)] = ¥(0). (7.20)

¥(¢) is holomorphic function in D except possibly at the point ¢ = 0, where it may have a pole of the
first order. Taking into account the formulas:

dy Q) dy_ ¥ W)

WO &2 WP W)
);

with respect to the new function (¢

5 ¥'(¢) (7.21)

we get the following boundary value problem

2
Z = F(o), o0€n. (7.22)

From the formulas (7.21), (7.18), (7.19) we have

P (0) = Mi(o) >, where M(o) e H(y), 0<p<2, (7.23)

’J — Cllp’J — 02’

and on the conversely, if the formula (7.23) holds then

d*Y (t) Ay (1) +
- here \E(t) € H(T), 0< v <2, 7.24
( dz? );i: |t — a1t —as|”’ where Ay (t) € H(T), v < ( )
we may rewrite the boundary condition (7.22) in the following way:
2
Re 3 [br(0)h(0)6® ()] = F(o)h(o), (7.25)
k=0

where h(o) = |0 — c1?|o — ca|?.

It is easy to see that bo(o)h(c) € H(7), bi(o)h(o) and ba(o)h(o) € Ho(y).

Consider the problem (7.25) first in case, when al(t) = a%(t) = 0 then the boundary condition
(7.25) takes the form:

e MW/UUU—OJ”U’U _ o
. { Wi WO o) @ )]} G(o), (7.26)
whf)re AY(0) = d%|w(o)], 0 € y1 and o € 79, G(o) = F(o)h(0).
enote
%)

W (OY"(Q) = (O (¢) = 5 (7.27)

Then Q(() is holomorphic function in D the boundary values of which on ~ is the function of the
class H*(7). With respect to the function Q({) we obtain the Riemann-Hilbert problem:

Re [A(0)Q(0)] = G(0), (7.28)
where

Ao) = Ay(0)hlo) € Ho(y) (if a3.(t) #0, then A(c) #0).
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L)

= Ft=ailflt—azf

Note that, if fi(t) then

fw(o)] o —aP"*lo — o> *h8(0), oem,
G(o) =1 "0 3-2¢ 3-2670
fllw(o)]|o —c|>7* o — c2|*"*h1(0), o € 2.

Assume that the points c¢;, co are non-singular. If we solve the problem (7.28), we get (in case when
index k of the class hg is non-negative)

O o) [ oG
U= 5w {/ Ao (o) 7T / Ao 0) }

¢"x*(o) [ 07"G(o) do ek
- : c— +x(Q) ), (7.29)
2mi /A(J)X+(J) s X = g

Y

where ¢ are arbitrary complex constants connected by the condition ¢ = Cx_k, x(z) is canonical
function of the class hyg.

When k < —1 the solution has the analogous form in case, when £ < —2 the solution’s existence
condition appears:

Re /g(a)vk(o)da =0 (k=0,...,k—1),
gl
where v (o) are definite linearly independent functions (over the real numbers field).
From (7.27) we have

¥(¢) = D1+ Daw(C) + w(r1(¢) — v2(¢), (7.30)
where v1(() is primitive of the holomorphic function %, v(¢) is primitive of the holomorphic

function % , D1, Do are arbitrary complex constants.

2°. Counsider now the problem (7.25) in general case.
It is easy to verify, that the boundary values of the function ®”(¢) holomorphic in D, where

D(C) = ¢(¢ — e1)(¢ — 2)¥(¢) (7.31)

will be the functions of the class H*(y) Therefore, it is possible to represent the function ¢(¢) by
I. Vekua formula:

B(¢) = /M(0)<1 . g) In (1 - g) ds + /u(a) ds +iC, (7.32)

v v
where (o) is real function of the class H*(7), ¢ is real constant u(o) and C are defined uniquely.
From (7.31) we have
®(¢)

YO= oo

It is necessary from here, that ®(c1) = ®(c2) = 0 and therefore

/u(a)(l - %’“) In <1 . %’f) ds + /,u,(a) ds+iC =0 (k=1,2). (7.34a)

Y Y

(7.33)

In order for the boundary values U”(o) to have the form (7.15) it is necessary, that ®'(¢1) = ®(c2) =

0, i.e.
/”(0") [m (1-%"6) +1} ds=0 (k=1,2). (7.34b)

Hence we obtain, that the desired function

V(o) = c(g—cli(c—cg) [!u(a)(l—g) In (1—%) ds—l—W/u(U)ds—kiC}, (7.35)
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where p(o) is real function of the class H*(vy), C is real constant, p(o) and C are defined uniquely, in
addition pu(o) and C will satisfy the conditions (7.34a) and (7.34b).
If we require, that ¢(z) be holomorphic at z = ooy then should be:

/u(a) ds=C=0. (7.36)

5

Due to N. Muskhelishvili [4] it follows the formula (7.32), that (o) satisfies Fredholm equation, which
in case when ~ is unit circle is the equation with degenerate (singular) kernel and it has the form:

w(og) — % / (? + oio + 1>u(0) ds = % Re (a2®"(0y)). (7.37)

gt
The solution of this equation will have the form

3
u(o0) = g(o0) + > digr(oo), (7.38)
k=1
gi1(0) =1, g2(0) = 0 +7, g3(0) = ioc — iT, dj, are arbitrary real constants, g(c) = L Re (0@ /(0)).
Denote ¢ ¢
Ly = /u(a)(1 - g) In (1 - E) ds, (7.39)
then the formula (7.33) will take the foﬂ;m:

9(Q) = ok (7.40)

(C—e)(C—e2)
Substitute this expression in the boundary condition (7.16). With respect to the function p we get
the singular equation, the coefficients of its principal part are equal to zero in the points ¢; and ca.
We know how to solve it in case al = a%. = 0 actually. We can construct the solution in this case
according lay the arguments mentioned above.

/ plo)(1 = %) (1 - 5)

(e —a) =7

Y
¢ ¢
— Dy + Dow(C) + w(Q) / %dr _ / m dr, 04 eD, (741)
o o

Q(¢) is the solution of Riemann—Hilbert boundary value problem (7.28). It is easy to check, that in
order for the right-hand side of the formula (7.41) to be single-valued it is necessary and sufficient the
fulfillment of the following conditions:

Q(0) =0, Q'(0)=0. (7.42)
First from these conditions in case of k > 0, has the form:
1 G(o)

2mi | o Alo)x (o)
/

do + Cpy =0,

the analogous form has the second one also.
Therefore we may rewrite the formula (7.41) in the following form:

¢ ¢
L p o [ L8O [e@0m)
Tl =) =D + (C)/T5[w,(7)]2d /7’5[w’(7)]2 dr. (7.43)

o o
It is evident that Dy = 0.
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It follows from the last formula, that
3
p(o) = KG+ Y digi(o), (7.44)
k=1
where K is linear operator.
Everything till have was related to the case when al = a% = 0. Consider now general case. In
general case we get the equation of the following form:

o(oc — oo

Re {BQ(O‘()) [FUOQM(Jo) + / N(U)) da] + Nu} = H(0y), (7.45)
v
where
Bl — _L2loh(@)n(a)
o(loc—c1)(o—c2)
H(o) = G(o)hi(0), hi(0) = |o —c1’|o — eaf?,
Ny is Fredholm type operator, transforming the functions of the class H* into the functions with

derivatives from the class H*. The equation (7.45) will be regulated by the Carleman—Vekua method.
We get the equation the solvability condition of which has the following form

3
/ (KG+ degk)pj(t) ds=0 (j=1,..., M), (7.46)
5 k=1

where {p;} is a system of linearly independent solutions of conjugate homogeneous equation. Thus we
come to the conclusion, that the considered problem is Noetherian in case, when a2 (t) # 0.

Remark 7.1. The steps of reduction work when the boundary condition contains the derivatives of
arbitrary high order. It is however, more complicated technically. Analogously one may consider the
above problems in case of several cuts by applying conformal mapping on an appropriate multiply
connected domain.

I'71ABA 3
GENERALIZATIONS AND APPLICATIONS

8. GENERAL DIFFERENTIAL BOUNDARY VALUE PROBLEM ON A CUT PLANE
Assume D denotes a plane of the complex variable z = = + iy, cut along Lyapunov-smooth arcs

P
agbr (k=1,...,p). Denote I' = aiby and ' = |J I'y. Let us consider the following boundary value
k=1

¢(2) = (¢1(2), -, dn(2))

problem: Find an analytic vector

satisfying the boundary condition:

m

Re Y [l ()01 (1)] = fo(t). te€T, (8.1)

k=0
where agf) (1), o) (t) (k=0,...,m) are given quadratic matrices of n order on I, f (¢),= (f1,..., f}),
f-(t) = (fL,..., f") are given real vectors on T, agf) (1), at®) (t) are Holder-continuous matrices, fi (),

f—(t) are satisfying the following condition.

F)-T(t) € HAT), TI(t) =[]t —an)™ (¢ — o)™ "
k=1



