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Thus the number of linearly independent solutions of the problem (6.21) in the class Lq(Γ, ρ
1−q)

over the �eld of real numbers and the number of linearly independent solutions of the problem (6.2)
in the class E±q,o(Γ, ρ

1−q) are the same.

Theorem 6.1. If Q(t) 6= 0 then the index of the problem (6.1) in the class E±p,o(Γ, ρ) is equal

to the index of the equation (6.15) of the class Lp(Γ, ρ) (under the condition, that 1 + αk 6= p µ
(k)
j ,

where µ
(k)
j =

arg λ
(k)
j

2π , 0 6 arg λ
(k)
j < 2π, λ

(k)
j are the roots of the equations: det[H(ak) − λI] = 0

or det[H−1(bk) − λI] = 0 for odd and even k correspondingly; H(t) = [a(t) + b(t)]−1[a(t) − b(t)], the
necessary and su�cient solvability conditions for the problem (6.1) in the class E±p,o(Γ, ρ) have the form
(6.11).

Remark 6.1. If A+(t) = A−(t) = A(t), then Q(t) ≡ 0. In this case instead of the representation
(6.13) we shall use the following representation

Φ(z) =
1

2πi

∫
Γ

A−1(t)µ(t)

t− z
dt+ F (z), where µ = µ+ + µ−.

The equation (6.15) will have the form:

1

πi

∫
Γ

K(t0, t)µ(t)

t− t0
dt = g(t0),

where

K(t0, t) =
i

2

[
A(t0)A−1(t) +A(t0)A−1(t0)h(t0, t)

]
.

Analogously we obtain the following result

Theorem 6.2. If A+(t) = A−(t) then the index of the problem (6.1) coincides with the index of

the operator
∫
Γ

µ(t)
t−t0 dr of the class Lp(Γ, ρ) under the condition that 2(1 + αk) 6= p. In this case the

necessary and su�cient solvability conditions have the form (6.11).

Remark 6.2. If Q(t) = 0 in some points of Γ then introduce a new desired vector by the formula

Φ(z) = Λ(z)ϕ(z), where Λ = diag[eω1(z), . . . , eωk(z)],

ωk(z) =
1

2πi

∫
Γ

hk(t)

t− z
dt, hk(t) ∈ H(Γ), hk(aj) = hk(bj) = 0.

It is evident,that ϕ(z) ∈ E±p,0(Γ, ρ). The matrices A±(t) are replaced by the matrices A±(t)Λ±(t).

Under the ful�llment of some conditions one may select the functions hk(t) such that the function
Q(t) 6= 0 on Γ.

7. Riemann�Hilbert�Poincar�e Type Problems on a Cut Plane

In the theory of di�erential value problems for analytic functions, i.e. boundary value problems
containing boundary values of the derivatives of desired functions, very important role plays the integral
representation of the analytic functions constructed by I. Vekua [78]. Using this representation we can
investigate the Riemann�Hilbert�Poincar�e boundary value problem and some of its generalizations.
We perform our investigation in two steps: �rst we consider the Riemann�Hilbert�Poincar�e problem
on a cut plane and then a general di�erential boundary value problem.

7.1. Riemann�Hilbert�Poincar�e problem on a cut plane. Let S be a complex plane cut along
simple arc c1c2 ≡ Γ of the class C2

α. First consider the following problem: �nd a vector Φ(z) =
(Φ1, . . . ,Φn) holomorphic in S and satisfying the boundary condition

Re
[
a±(t)Φ

′
±(t) + b±Φ±(t)

]
= f±(t), t ∈ Γ, (7.1)
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where assume that the given matrices a±(t), b±(t) ∈ H(Γ), the given real vectors f±(t) ∈ H∗(Γ). (Note,
that the notation A ∈ K, where A is a matrix and K is some class of functions, means that every
element Aαβ of A belongs to K.)

The unknown vector Φ(z) and its derivative Φ′(z) are continuously extendable from both sides on
Γ, Φ′(z) is supposed to satisfy the following estimate

|Φ′j(z)| 6 const|z − ck|−α, 0 6 α < 1 (j = 1, 2, . . . , n) (7.2)

in a neighbourhood of each point ck.
Let

z = ω(ξ) (7.3)

be conformal mapping of the domain S onto the unit circle D(|ξ| < 1) with the boundary γ, let the
points ck turn into the points dk of the circumference γ, one side of Γ onto the part of circumference
γ1 and another side onto γ2. Using results of S.Warshavski [80] about the properties of the function
(7.3) and its inverse function ξ = η(z), we get with respect to a new function

Ψ(ξ) ≡ Φ[ω(ξ)] (7.4)

the Riemann�Hilbert�Poincar�e boundary value problem with the boundary condition

Re
[
A(σ)Ψ′(σ) +B(σ)Ψ(σ)

]
= F (σ), σ ∈ γ, (7.5)

where A(σ), B(σ), F (σ) ∈ H ∗ (γ) and they are expressed with the help of given matrices a±(t), b±(t)
and the vectors f±(t).

Applying the integral representation of I. Vekua [78] (see also [53, 55]) we seek solution Ψ(ξ) in the
following form

Ψ(ξ) =

∫
γ

µ(σ) ln
(

1− ξ

σ

)
ds+

∫
γ

µ(σ) ds+ iC, (7.6)

where C = (C1, . . . , Cn) is a real constant vector, µ(σ) is a real vector from classH∗(γ), under ln(1− ξ
σ )

we mean the branch of this function which is equal to zero at point ξ = 0, µ(σ) and C are uniquely
de�ned by Φ(z).

Inserting the representation (7.6) in the boundary condition (7.5) we get for vector µ the following
singular integral equation

E(σ0)µ(σ0) +

∫
γ

H(σ0, σ)µ(σ) ds = F (σ0)− k(σ0)C, (7.7)

where

k(σ) = Re [iB(σ)], E(σ) = Re
[
A(σ)σ

]
,

H(σ0, σ) =
Im[A(σ0)σ]

Π(σ − σ0)
+
H0(σ0, σ)

|σ − σ0|δ
, H0(σ0, σ) ∈ H(γ × γ), 0 6 δ < 1. (7.8)

From here we have

S = A(σ0)σ0, D = A(σ0)σ0, G = S−1D = σ2
0[A(σ0)]−1A(σ0).

For the equation (7.7) to be Fredholm the following condition has to be ful�lled

inf |detA(t)| > 0
(

det a+(t) 6= 0, det a−(t) 6= 0
)
. (7.9)

If we denote by g(σ) matrix [A(σ)]−1A(σ) and by λkj the roots of equation det[g−1(dk + 0)g(dk− 0)−
λI] = 0, then the index of equation (7.7) in the class h0 is equal to 2n+ κ, where

κ =
1

2π

[
arg

det g(σ)
2∏

k=1

det
k
X
0

(σ)

]
Γ

(7.10)
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(see [52]), where

det
k
X
0

(σ) = (σ − ξ0)qk , qk =
n∑
j=1

ρkj , ρkj =
1

2πi
lnλkj , −1 < Re ρkj 6 0. (7.11)

The necessary and su�cient solvability conditions for the equation (7.7) in the class h0 have the
following form ∫

γ

[F (σ)− k(σ)]c
j
ν(σ) ds = 0, j = 1, 2, . . . , l′, (7.12)

where
j
ν(σ) is a complete system of almost bounded linearly independent solutions of the adjoint

homogeneous equation.
In order to calculate the index of the problem (7.1) we may assume that B ≡ 0. Then k(σ) ≡ 0 and

therefore the index will be

n+ l − l′ = n+ (2n+ κ) = 3n+ κ, (7.13)

where κ is being calculated by the formula (7.10). Thus we get the following result.

Theorem 7.1. If the condition (7.9) is ful�lled then the problem (7.1) is normally solvable in the
class H∗(Γ). In this case the necessary and su�cient solvability conditions in the class h0 are (7.12)
and the index in this class is calculated by (7.13).

Problems of such kind were the subject of investigations of B. Khvedelidze [38], N. Vekua [79] and
others (see, e.g., [2, 3]). The considered problem in more general case will be solved below but not in
the same way. We manage reduction to singular integral equation without using conformal mapping.

Before passing to the general case let us consider the case when the boundary condition contains
derivatives up to second order. In this case the problem is formulated as follows (for the sake of visuality
we only consider the scalar case):

1◦. Let S denote the plane of the complex variable z = x+ iy, cut along simple are a1a2 ≡ Γ of the
class c2

α.
Consider the following boundary value problem.
Find the function ϕ(z), holomorphic in S satisfying the boundary condition

Re

2∑
k=0

[
ak±(t)ϕ

(k)
± (t)

]
= f±(t). (7.14)

Assume the given functions ak±(t) (k = 0, 1, 2) belong to the class H(Γ), the given real functions
f+(t), f−(t) ∈ H∗(Γ) with the points of discontinuity a1 and a2.

Let the desired function ϕ(z) satis�es the following properties: ϕ′′(z), ϕ′(z), ϕ(0) = ϕ(z) are
continuously extendable from the left and from the right or Γ, except the points a1, a2, the boundary
values ϕ′±(t) will have the form

ϕ′′±(t) = λ±(t) ·
[
|t− a1| |t− a2|

]−δ
, 0 6 δ < 2, λ+(t), λ−(t) ∈ H(Γ). (7.15)

First we seek the solution of the problem (7.14) which may have a pole of the �rst order at in�nity.
Mapping conformally S onto the unit circ D (|ζ| < 1) with the boundary γ, the points ck turn into

the points dk ∈ γ, one side of the arc Γ turns in to the part of circumference γ1 and the another side
in to the part γ2 ∈ γ.

According to B. Warshavwski [80], the function Z(ζ) = ω(ζ) and the inverse function ζ = η(z) have
the following properties: the function

ηk(z) = (z − ak)−1/2[η(z)− η(ak)] (7.16)

is continuous in the neighbourhood of the points ak, ηk(ak) 6= 0, and

η′k(z) = (z − ak)−1/2η0
k(z), (7.17)
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where η0
k(z) is continuous function in the neighbourhood of the points ak and also η0

k(ak) 6= 0, the
function

ωk(ζ) = (ζ − ck)−2[ω(ζ)− ω(ck)] (7.18)

is continuous function in the neighbourhood of the points ck, ωk(ck) 6= 0 and

ω′(ζ) = (ζ − ck)ω0
k(ζ), (7.19)

here ω0
k(ζ) is continuous function in the neighbourhood of the points ck and also ω0

k(ck) 6= 0.

Let ω(ζ) = A
ζ + ω∗(ζ), where ω∗(ζ) is holomorphic function in D (ω(ζ) will have a simple pole in

some point of D which corresponds to the point z =∞ while the mapping z = ω(ζ)).
Denote

ϕ[ω(ζ)] = ψ(ζ). (7.20)

ψ(ζ) is holomorphic function in D except possibly at the point ζ = 0, where it may have a pole of the
�rst order. Taking into account the formulas:

dy

dz
=
ψ′(ζ)

ω′(ζ)
,

d2y

dz2
=

ψ′′(ζ)

[ω′(σ)]2
− ω′′(ζ)

[ω′(ζ)]3
ψ′(ζ) (7.21)

with respect to the new function ψ(ζ), we get the following boundary value problem

Re
2∑

k=0

[
bk(σ)ψ(k)(σ)

]
= F (σ), σ ∈ γ. (7.22)

From the formulas (7.21), (7.18), (7.19) we have

ψ′′(σ) =
λ1(σ)

|σ − c1|ρ|σ − c2|ρ
, where λ1(σ) ∈ H(γ), 0 6 ρ < 2, (7.23)

and on the conversely, if the formula (7.23) holds then(d2Y (t)

dz2

)
±

=
λ±2 (t)

|t− a1|ν |t− a2|ν
, where λ±2 (t) ∈ H(Γ), 0 6 ν < 2, (7.24)

we may rewrite the boundary condition (7.22) in the following way:

Re
2∑

k=0

[
bk(σ)h(σ)ψ(k)(σ)

]
= F (σ)h(σ), (7.25)

where h(σ) = |σ − c1|3|σ − c2|3.
It is easy to see that b0(σ)h(σ) ∈ H(γ), b1(σ)h(σ) and b2(σ)h(σ) ∈ H0(γ).
Consider the problem (7.25) �rst in case, when a1

±(t) = a0
±(t) = 0 then the boundary condition

(7.25) takes the form:

Re

{
A0

2(σ)h(σ)

[ω′(σ)]3
[
ω′(σ)ψ′′(σ)− ω′′(σ)ψ′(σ)

]}
= G(σ), (7.26)

where A0
2(σ) = a2

±[ω(σ)], σ ∈ γ1 and σ ∈ γ2, G(σ) = F (σ)h(σ).
Denote

ω′(ζ)ψ′′(ζ)− ω′′(ζ)ψ′(ζ) =
Ω(ζ)

ζ5
. (7.27)

Then Ω(ζ) is holomorphic function in D the boundary values of which on γ is the function of the
class H∗(γ). With respect to the function Ω(ζ) we obtain the Riemann�Hilbert problem:

Re
[
A(σ)Ω(σ)

]
= G(σ), (7.28)

where

A(σ) =
A0

2(σ)h(σ)

σ5[ω′(σ)]3
∈ H0(γ) (if a2

±(t) 6= 0, then A(σ) 6= 0).
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Note that, if f±(t) =
f0±(t)

|t−a1|ε|t−a2|ε , then

G(σ) =

{
f0

+[ω(σ)] |σ − c1|3−2ε|σ − c2|3−2εh0
+(σ), σ ∈ γ1,

f0
−[ω(σ)] |σ − c1|3−2ε|σ − c2|3−2εh0

−(σ), σ ∈ γ2.

Assume that the points c1, c2 are non-singular. If we solve the problem (7.28), we get (in case when
index κ of the class h0 is non-negative)

Ω(ζ) =
χ(ζ)

2πi

{∫
γ

G(σ)

A(σ)χ+(σ)(σ − ζ)
dσ + ζκ

∫
γ

σ−κG(σ)

A(σ)χ+(σ)(σ − ζ)
dσ

}
−

− ζκχ+(σ)

2πi

∫
γ

σ−κG(σ)

A(σ)χ+(σ)
· dσ
σ

+ χ(ζ)
κ∑
k=0

ckζ
κ−k, (7.29)

where ck are arbitrary complex constants connected by the condition ck = cκ−k, χ(z) is canonical
function of the class h0.

When κ 6 −1 the solution has the analogous form in case, when κ 6 −2 the solution's existence
condition appears:

Re

∫
γ

g(σ)νk(σ) dσ = 0 (k = 0, . . . , κ− 1),

where νk(σ) are de�nite linearly independent functions (over the real numbers �eld).
From (7.27) we have

ψ(ζ) = D1 +D2ω(ζ) + ω(ζ)ν1(ζ)− ν2(ζ), (7.30)

where ν1(ζ) is primitive of the holomorphic function Ω(ζ)
ζ5[ω′(ζ)]2 , ν(ζ) is primitive of the holomorphic

function ω(ζ)Ω(ζ)
ζ5[ω ′(ζ)]2 , D1, D2 are arbitrary complex constants.

2◦. Consider now the problem (7.25) in general case.
It is easy to verify, that the boundary values of the function Φ′′(ζ) holomorphic in D, where

Φ(ζ) = ζ(ζ − c1)(ζ − c2)Ψ(ζ) (7.31)

will be the functions of the class H∗(γ) Therefore, it is possible to represent the function φ(ζ) by
I. Vekua formula:

Φ(ζ) =

∫
γ

µ(σ)
(

1− ζ

σ

)
ln
(

1− ζ

σ

)
ds+

∫
γ

µ(σ) ds+ iC, (7.32)

where µ(σ) is real function of the class H∗(γ), c is real constant µ(σ) and C are de�ned uniquely.
From (7.31) we have

Ψ(ζ) =
Φ(ζ)

ζ(ζ − c1)(ζ − c2)
. (7.33)

It is necessary from here, that Φ(c1) = Φ(c2) = 0 and therefore∫
γ

µ(σ)
(

1− ck
σ

)
ln
(

1− ck
σ

)
ds+

∫
γ

µ(σ) ds+ iC = 0 (k = 1, 2). (7.34a)

In order for the boundary values Ψ′′(σ) to have the form (7.15) it is necessary, that Φ′(c1) = Φ(c2) =
0, i.e. ∫

γ

µ(σ)

σ

[
ln
(

1− ck
σ

)
+ 1
]
ds = 0 (k = 1, 2). (7.34b)

Hence we obtain, that the desired function

Ψ(σ) =
1

ζ(ζ − c1)(ζ − c2)

[ ∫
γ

µ(σ)
(

1− ζ

σ

)
ln
(

1− ζ

σ

)
ds+

∫
γ

µ(σ) ds+ iC

]
, (7.35)
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where µ(σ) is real function of the class H∗(γ), C is real constant, µ(σ) and C are de�ned uniquely, in
addition µ(σ) and C will satisfy the conditions (7.34a) and (7.34b).

If we require, that ϕ(z) be holomorphic at z =∞+ then should be:∫
γ

µ(σ) ds = C = 0. (7.36)

Due to N. Muskhelishvili [4] it follows the formula (7.32), that µ(σ) satis�es Fredholm equation, which
in case when γ is unit circle is the equation with degenerate (singular) kernel and it has the form:

µ(σ0)− 1

2π

∫
γ

(σ0

σ
+

σ

σ0
+ 1
)
µ(σ) ds =

1

π
Re
(
σ2Φ′′(σ0)

)
. (7.37)

The solution of this equation will have the form

µ(σ0) = g(σ0) +
3∑

k=1

dkgk(σ0), (7.38)

g1(σ) = 1, g2(σ) = σ + σ, g3(σ) = iσ − iσ, dk are arbitrary real constants, g(σ) = 1
π Re (σ2Φ/(σ)).

Denote

Lµ =

∫
γ

µ(σ)
(

1− ζ

σ

)
ln
(

1− ζ

σ

)
ds, (7.39)

then the formula (7.33) will take the form:

ψ(ζ) =
Lµ

ζ(ζ − c1)(ζ − c2)
. (7.40)

Substitute this expression in the boundary condition (7.16). With respect to the function µ we get
the singular equation, the coe�cients of its principal part are equal to zero in the points c1 and c2.

We know how to solve it in case a1
± = a0

± = 0 actually. We can construct the solution in this case
according lay the arguments mentioned above.∫

γ

µ(σ)(1− ζ
σ ) ln(1− ζ

σ )

ζ(ζ − c1)(ζ − c2)
ds =

= D1 +D2w(ζ) + ω(ζ)

ζ∫
ζ0

Ω(τ)

τ5[ω′(τ)]2
dτ −

ζ∫
ζ0

ω(τ)Ω(τ)

τ5[ω′(τ)]2
dτ, 0 6= ζ0 ∈ D, (7.41)

Ω(ζ) is the solution of Riemann�Hilbert boundary value problem (7.28). It is easy to check, that in
order for the right-hand side of the formula (7.41) to be single-valued it is necessary and su�cient the
ful�llment of the following conditions:

Ω(0) = 0, Ω′(0) = 0. (7.42)

First from these conditions in case of κ > 0, has the form:

1

2πi

∫
γ

G(σ)

σA(σ)χ+(σ)
dσ + C0 = 0,

the analogous form has the second one also.
Therefore we may rewrite the formula (7.41) in the following form:

Lµ
ζ(ζ − c1)(ζ − c2)

= D1 + ω(ζ)

ζ∫
ζ0

Ω(τ)

τ5[ω′(τ)]2
dτ −

ζ∫
ζ0

ω(τ)Ω(τ)

τ5[ω′(τ)]2
dτ. (7.43)

It is evident that D2 = 0.
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It follows from the last formula, that

µ(σ) = KG+
3∑

k=1

dkgk(σ), (7.44)

where K is linear operator.
Everything till have was related to the case when a1

± = a0
± = 0. Consider now general case. In

general case we get the equation of the following form:

Re

{
B2(σ0)

[
πσ−2

0 µ(σ0) +

∫
γ

µ(σ)

σ(σ − σ0)
dσ

]
+Nµ

}
= H(σ0), (7.45)

where

B2(σ) =
b2(σ)h(σ)h1(σ)

σ(σ − c1)(σ − c2)
,

H(σ) = G(σ)h1(σ), h1(σ) = |σ − c1|2|σ − c2|2,
Nµ is Fredholm type operator, transforming the functions of the class H∗ into the functions with
derivatives from the class H∗. The equation (7.45) will be regulated by the Carleman�Vekua method.
We get the equation the solvability condition of which has the following form∫

γ

(
KG+

3∑
k=1

dkgk

)
ρj(t) ds = 0 (j = 1, . . . ,M), (7.46)

where {ρj} is a system of linearly independent solutions of conjugate homogeneous equation. Thus we
come to the conclusion, that the considered problem is Noetherian in case, when a2

±(t) 6= 0.

Remark 7.1. The steps of reduction work when the boundary condition contains the derivatives of
arbitrary high order. It is however, more complicated technically. Analogously one may consider the
above problems in case of several cuts by applying conformal mapping on an appropriate multiply
connected domain.

Ãëàâà 3

GENERALIZATIONS AND APPLICATIONS

8. General Differential Boundary Value Problem on a Cut Plane

Assume D denotes a plane of the complex variable z = x + iy, cut along Lyapunov-smooth arcs

akbk (k = 1, . . . , p). Denote Γ = akbk and Γ =
p⋃

k=1

Γk. Let us consider the following boundary value

problem: Find an analytic vector

φ(z) = (φ1(z), . . . , φn(z))

satisfying the boundary condition:

Re

m∑
k=0

[
a

(k)
± (t)φ

(k)
± (t)

]
= f±(t), t ∈ Γ, (8.1)

where a
(k)
+ (t), a

(k)
− (t) (k = 0, . . . ,m) are given quadratic matrices of n order on Γ, f+(t),= (f1

+, . . . , f
n
+),

f−(t) = (f1
−, . . . , f

n
−) are given real vectors on Γ, a

(k)
+ (t), a

(k)
− (t) are H�older-continuous matrices, f+(t),

f−(t) are satisfying the following condition.

f(t) ·Π(t) ∈ H∗(Γ), Π(t) =

p∏
k=1

(t− ak)m−1(t− bk)m−1.


