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Part III is dedicated to the memory of Prof. G. Manjavidze

The following Part III was originally written in Russian. It has been translated
and revised by G. Akhalaia and N. Manjavidze.

Preface of G. Akhalaia and N. Manjavidze

Among the most remarkable and important works of the well-known Georgian
mathematician Professor Giorgi Manjavidze (1924-1999) is his monograph “Bound-
ary value problems for analytic and generalized analytic functions”, which was first
published in 1990 by Tbilisi University Press in Russian. This book presents an
original approach to the subject, that has not yet appeared anywhere except Geor-
gia. English version will allow wide mathematical audience to get acquainted with
this approach and apply in problems of mechanics and engineering.

That is why we translated this book and we are eager to dedicate this publica-
tion to the author’s memory. The present addition differs from the original Russian
in one added chapter (Chapter 20), which contains the theory of boundary value
problems for nonlinear systems of partial differential equations on the plane and
is written by the author together with Prof. Wolfgang Tutschke (note that the
references are also enlarged).

Finally, with the most sincere feeling of gratitude we would like to thank all
of them who have helped to turn our expectation into reality for great support
and cooperation. Special thanks to the mastermind of all Prof. W. Tutschke, to
Prof. H. Begehr who encouraged us to keep on with the idea and to our Georgian
colleagues Prof. G. Giorgadze, Prof. G. Khimshiashvili, Prof. A. Tsiskaridze, Prof.
N. Chinchaladze. We are pleased to express our deepest gratitude to Prof. C. C.
Yang and to the “Science Press” Publishing House.

G. Akhalaia and N. Manjavidze

Goal

Part III is devoted to boundary value problems for analytic and generalized an-
alytic functions and vectors. A complete solvability theory for boundary value
problems of linear conjugation with shift for analytic functions and vectors with
piecewise continuous coefficients is developed. Fundamental results on factoriza-
tion of discontinuous matrix functions are systematically developed from scratch.
Connection with the theory of singular integral equations is worked out in great
detail. Explicit conditions of normal solvability and index formulae are obtained.
The classical theory is extended to the case of generalized analytic functions and
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vectors. The theory of boundary value problems for nonlinear systems of partial
differential equations on the plane is presented.

References to all chapters of Part III are given at the end of Chapter 20.

Introduction to the Chapters 17-19

The Chapters 17-19 of Part III of this book are devoted to boundary value prob-
lems of linear conjugation with displacement (or with shift). In these problems
the boundary values of the desired functions are conjugated at points which are
displaced to each other.

The model problem is to find a function Φ(z) holomorphic on the complex plane
z, cut along some simple closed curves, the boundary values of which Φ+(t) and
Φ−(t) are satisfying the condition

Φ+[α(t)] = G(t)Φ−(t) + g(t), t ∈ Γ (∗)

from the both sides of Γ, where G(t), g(t) are given continuous functions on Γ, α(t)
is continuous function mapping Γ onto γ in one-to-one manner.

The first researches concerning the theory of linear conjugation problems with
displacement belong to Haseman C. [59] and to Carleman T. [28].

Complete solution of the problems of the form (*) was given by Kveselava D.
[81], [82], [83], [84].

Several articles were dedicated to the problems of linear conjugation with dis-
placement in case of vectors by Vekua N; his results and also the results of other
authors in this connection are given in the monograph of Vekua N.: “Systems of
Singular Integral Equations”, [136]

Later on the problems of linear conjugation with displacement were studied by
the various authors. In the monograph [88] of Litvinchuk G., “Boundary Value
Problems and Singular Integral Equations with Shift”, are given the articles con-
cerning these problems, published till 1975.

Studies in the theory of boundary value problems of linear conjugation with
displacement are continued; some of them published recently are indicated in the
references of this book.

The present book is divided into three chapters.
In the chapter I short, “concise” presentation of the theory of problems of linear

conjugation for analytic functions and based on it the theory of (one-dimensional)
singular integral equations is given.

Chapter II is devoted to the theory of linear conjugation problems with displace-
ment for analytic functions properly; the main attention is paid to the construction
of the canonical matrices which are used in the construction of the general solutions
of the considered problems.
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The third chapter focuses on the studies of linear conjugation problems with dis-
placement for the generalized analytic functions (vectors). In this chapter the differ-
ential boundary problems i.e., the problems containing the derivatives of boundary
values of the desired vector are also considered.

Basic definitions and notations

We apply the terms and the notations basically from the books [108], [135], [136],
[118], [81] and from the paper [23]. Sometimes there will be some changes in the
definitions and notations.

0.1. Let S be some set in the plane of the complex variable z = x+ iy.

Denote by C(S) the class of all bounded continuous functions f(z) defined in
S. By C(S) also the Banach space with the norm

‖f‖c = sup|f(z)|, z ∈ S (1)

is denoted.
0.2. We say that a function f(z) satisfies a H(µ)- condition (i.e. a Hólder

condition with exponent µ) if f(z) defined on S satisfies the inequality

|f(z1) − f(z2)| � A|z1 − z2|µ, z1, z2 ∈ S, (2)

where A and µ are constants not depending on z1, z2 (where A � 0, 0 < µ � 1).
We shall denote by Hµ(S) the class of the functions satisfying the condition (2)

(the constant A is not fixed). Hµ(S) also denotes the Banach space with the norm

‖f‖Hµ = ‖f‖c + sup
|f(z1) − f(z2)|

|z1 − z2|µ , z1, z2 ∈ S

where ‖f‖c is defined by the equation (1).
The union of the classes Hµ(S), 0 < µ � 1, is denoted by H(S). It is evi-

dent that the functions of the class H(S) are continuous; therefore sometimes the
functions from this class will be referred to Hölder-continuous.

It is easy to generalize the notation of a Hölder-condition to the case of several
variables: the function f(z1, · · · , zm) defined in zk ∈ Sk (k = 1, · · · ,m) satisfies
the H(µ)-condition if

|f(z′1, · · · , z′m) − f(z′′1 , · · · , z′′m)| � A
m∑

k=1

|z′k − z′′k |µ,

where A, µ are constants, A � 0, 0 < µ � 1.
The class of all functions satisfying this condition is denoted by Hµ(S1 × · · · ×

Sm); denote, finally, by H(S1 × · · · × Sm) the union of all Hµ(S1 × · · · × Sm),
0 < µ � 1.
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0.3. If S is a domain, then denote by Cm(S)[Hm
µ (S)] the class of all functions

satisfying the following conditions

f ∈ C(S̄)[f ∈ H(S)],
∂mf

∂xm−k∂yk
∈ C(S)[f ∈ H(S)], k = 0, · · ·m.

Consider, moreover, the class of functions f(z) = f(x, y) defined and measur-
able in S and satisfying the condition∫

S

|f(z)|pdxdy <∞, p � 1.

The class of all functions satisfying this condition is denoted by Lp(S̄); by Lp(S̄)
we denote also the Banach space with the norm

‖f‖Lp =
(∫

S

|f(z)|pdxdy
)1/p

.

Denote by Lp(S) the class of all functions f for which the p−th power of the
absolute value |f | is summable on every subset of the domain S.

0.4. Let Γ be a simple rectifiable curve z = z(s), where s is the arc length,
0 � s � �, and � is the length of Γ.

We say that Γ ∈ Cm if the derivatives of the function z(s) with respect to s up
to and including the orderm are continuous on the segment [0, �] (it is assumed that
if Γ is closed, then z(k)(0) = z(k)(�), k = 1, · · · ,m); if in addition, the derivative
z(m) ∈ Hµ([0, �]) then we say that Γ ∈ Hm

µ . Curves of the class C1 are called the
smooth ones.

Curves consisting of a finite number of smooth curves are called the piecewise
smooth ones.

We say that the curve belongs to the class K, if the relation

s(t1, t2)
|t1 − t2|

is bounded for arbitrary t1, t2 ∈ Γ. By s(t1, t2) is denoted the length of the least
arc connecting the points t1 and t2.

We write D ∈ Cm[D ∈ Hm
µ ] if the boundary of the domain D consists of a

finite number of simple closed curves of the class Cm[Hm
µ ].

0.5. Let Γ be a simple curve, c1, c2, · · · , cr are points of Γ ordered according to
the orientation of Γ. Denote by C0(Γ, c1, · · · , cr) the class of functions which are
continuous on Γ except perhaps the points ck where they may have discontinuities
of the first kind; we call such functions the piecewise-continuous functions.

We shall say that a function f(t) belongs to the class Hµ
0 (Γ, c1, · · · , cr) if

f ∈ C0(Γ, c1, · · · , cΓ) and f satisfies the H(µ)-condition on each closed arc ckck+1
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provided the limits f(ck + 0) and f(ck+1 − 0) are interpreted as the values of f at
the points ck and ck+1 where k = 1, · · · , r and cr+1 = c1.

Denote by C0(Γ) [resp. H0(Γ)] the union of the classes C0(Γ, c1, · · · , cr) [resp.
Hµ

0 (Γ, c1, · · · , cr)], 0 < µ � 1.
We shall say that f(t) ∈ H∗(Γ) if the function f(t) given on Γ admits the

representation

f(t) = f0(t)
r∏

k=1

|t− ck|−α, ck ∈ Γ, f0(t) ∈ H0(Γ), α < 1.

If
∏r

k=1|t− ck|εf(t) ∈ H(Γ) for arbitrary small ε > 0 then we write f(t) ∈ H∗
ε (Γ).

0.6. Let Γ be a rectifiable curve t = t(s), 0 � s � � and f(t) be a function
defined on Γ. We shall say that f(t) is measurable [resp. summable] on Γ if
the function f(t(s)) of the real variable s is measurable [resp. summable] on the
segment [0, �]; if f(t) is summable, we define∫

Γ

f(t)dt =
∫ �

0

f(t(s))t′(s)ds.

Let ρ � 0, f(t) be measurable functions defined on Γ. We shall say that f(t) ∈
Lp(Γ, ρ) if ρ(t)|f(t)|p (p � 1) is a summable function on Γ; we write Lp(Γ) instead
of Lp(Γ, 1).

By Lp(Γ, ρ) also the Banach space with the norm

‖f‖Lp(Γ,ρ) =
(∫

Γ

ρ(t)|f(t)p|dt
)1/p

is denoted.
The spaces Lp(Γ, ρ) and Lq(Γ, ρ1−q), are called conjugate classes if

1
p

+
1
q

= 1

i.e., q = p/(p− 1).
As a rule we assume that the weight function has the form

ρ(t) =
r∏

k=1

|t− tk|νk , tk ∈ Γ, −1 < νk < p− 1, p > 1. (3)

It is clear that in this case Lp(Γ, ρ) ⊂ Lλ(Γ) for some λ > 1.
0.7. Let Γ be a union of simple smooth curves in the complex z−plane.
Let φ(z) be a function given and continuous in a neighborhood of Γ except

perhaps at the points of Γ themselves. Let t be some point of Γ different from the
end points and the points of self-intersection (if there are any). We say that the
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function φ(z) is continuously extendable to the point t from the left [resp. from
the right] if φ(z) tends to a well-defined limit φ+(t) [resp. φ−(t)] when z tends to
t along any path remaining on the left [on the right respectively] on Γ.

If the mentioned limits exist when z tends to t along any non-tangential path
remaining on the left [on the right respectively] on Γ, then we say that φ(z) has
the angular boundary value φ+(t)[φ−(t)].

Under a piecewise-holomorphic function φ we understand a holomorphic func-
tion in the plane cut along Γ (except perhaps at the point of infinity) continuously
extendable to Γ from both sides everywhere except perhaps the finite set of points
ck; near these points ck the function φ(z) is supposed to satisfy the following esti-
mate

|φ(z)| � const
|z − ck|α , 0 � α < 1.

At the point z = ∞ the function may have a pole. An analogous definition can
be given for generalized analytic vectors.

0.8. The notation A ∈ K, where A is a matrix and K is some class of functions,
means that every element Aαβ of A belongs to K. If K is some linear normed
space with the norm ‖ · ‖K , then ‖A‖K = max

α,β
‖Aαβ‖K .

Sometimes an (n× 1)-matrix A is called a vector, and it is convenient to write
it as a row,

A = (A1, · · · , An).

0.9. Let D be a simply connected domain in the extended complex plane
bounded by a rectifiable Jordan curve Γ.

By definition the class Ep(D), p > 0, is the set of all analytic functions in D

for which
sup

∫
ΓK

|f(z)|p|dz| <∞,

where Dk are subdomains of D with rectifiable boundaries ΓK such that

Dk ⊂ D, Dk ⊂ Dk+1,
⋃
k

Dk = D,

i.e., the Dk form an exhaustion of D.
The class Ep(D) can be defined by the requirement that the curves ΓK are

the images of circles |ζ| = r < 1 under the conformal mapping z = ω(ζ) of the
unit disk |ζ| < 1 onto the domain D. Then we may define the class Ep(D) with
the help of the Hardy classes: f(z) ∈ Ep(D) (D is a finite domain) if and only if
f(ω(ζ))[ω′(ζ)]1/p ∈ Hp.

0.10. Let Γ be a rectifiable curve, f(t) ∈ L1(Γ). The expression

φ(z) =
1

2πi

∫
Γ

f(t)dt
t− z

, z ∈ Γ
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is called a Cauchy-type integral, and the function f(t) is called its density.
Different properties of a Cauchy type integral are studied in monographs [55],

[39], [65], [140], [108], [118], [72] and in survey articles [40], [41], [74].
Let Γ be a simple closed rectifiable curve bounding the finite domain D+ and

the infinite domain D− (the domain D+ remains on the left when passing along
Γ in the positive direction); the Cauchy type integral has the angular boundary
values φ+(t) and φ−(t) almost everywhere on Γ from D+ and D− (from both sides
of Γ); these boundary values are given by the formulas

φ±(t) = ±1
2
f(t) +

1
2πi

∫
Γ

f(τ)dτ
τ − t

, (4)

where the integral

Sf ≡ 1
πi

∫
Γ

f(τ)dτ
τ − t

(5)

is to be understood in the sense of Cauchy’s principal value.
The formulas (4) are called Sokhotsky-Plemely formulas.
If Γ is a simple closed smooth curve and f(t) ∈ H(Γ), then φ(z) is continuously

extendable on Γ from both sides and the formulas (4) take place everywhere on Γ
[108], [118].

Denote by R the class of rectifiable curves for which the singular integral (5)
is a linear bounded operator in Lp(Γ), p > 1. The class R contains the piecewise-
smooth curves, the curves of the class K and etc. (see [56], [36], [25], [26], [33],
[81], [83]); geometrically R is described in [36].

Sf is a linear bounded operator in the weighted spaces Lp(Γρ) under some
restrictions imposed on Γ and on ρ(t). When ρ(t) has the form (3) and Γ is a
piecewise smooth curve (or the curve of the class K), then S is a bounded oper-
ator in Lp(Γ, ρ). This problem is studied for more general classes of the weighted
functions (see [35], [75], [76], [123], [60]).

Sf is a linear bounded operator in the space Hµ(Γ), µ < 1, where Γ is a simple
closed smooth curve (see [108], [118]).

Denote by E±
p (Γ), p � 1 (E±

p (Γ, ρ), ρ is a function (3)) the class of the functions
φ(z) representable in the form

φ(z) =
1

2πi

∫
Γ

f(t)dt
t− z

+ P (z), f ∈ Lp(Γ) (Lp(Γ, ρ)) (6)

where P (z) is some polynomial, Γ is a simple closed rectifiable curve.
Denote also by E±

p,0(Γ) (E±
p,0(Γ, ρ)) the class of functions of the form (6) with

P (z) = 0. By E±
∞(Γ) (E±

∞,0(Γ)) we denote the intersection

⋂
p>1

E±
p (Γ)

(⋂
p>1

E±
p,0(Γ)

)



Part III Boundary value problems 505

For the functions of the class E±
p (Γ) the following propositions are valid:

a) E±
p (Γ) ⊂ E±

r (Γ), p > r,
b) If φ(z) ∈ E±

1 (Γ) and φ+(t) = φ−(t) almost everywhere on Γ, then Φ(z) is
some polynomial,

c) If φ(z) ∈ E±
p (Γ) p > 1, Γ ∈ R, then φ(z) ∈ Ep(D+), φ(z) − P (z) ∈ Ep(D−).

It is evident that if

φ1(z) ∈ Ep(D+), φ2(z) ∈ Ep(D−), p � 1,

then the function

φ(z) =
{
φ1(z), z ∈ D+,

φ2(z), z ∈ D−,

belongs to E±
p (Γ).

d) Let φ1(z) ∈ E±
p (Γ, ρ), φ1(z) ∈ E±

q (Γ, ρ1−q), ρ be the function of the form
(3). Then

φ1(z)φ2(z) ∈ E±
1 (Γ).

e) If φ(z) ∈ E±
1 (Γ) then φ(z) ∈ E1−ε(D+), φ(z) ∈ E1−ε(D−), for arbitrary

small positive ε [36], [115].
0.11. Let Γk(k = 1, 2) be the rectifiable Jordan curve bounding finite and

infinite domains D+
k and D−

k .
Let ϕ+(z) and ϕ−(z) be a couple of functions representable in the following

form

ϕ+(z) =
1

2πi

∫
Γ2

f2(t)dt
t− z

, z ∈ D+
2 , ϕ−(z) =

1
2πi

∫
Γ1

f1(t)dt
t− z

+ P (z), z ∈ D−
1 ,

where fk ∈ Lp(Γk, ρk), ρ > 1, ρk are the functions of the form (3), k = 1, 2,
P (z) is some polynomial. The class of such couples of functions we denote by
Ep(Γ1,Γ2, ρ1, ρ2). The class E±

p (Γ1,Γ2, 1, 1) we denote by E±
p (Γ1,Γ2). The sub-

class of the class E±
p (Γ1,Γ2) for which P (z) ≡ 0 is denoted by E±

p,0(Γ1,Γ2). By
E±

∞(Γ1,Γ2) the intersection ⋂
p>1

Ep(Γ1,Γ2)

is denoted.
It is easy to verify that the functions of the class E±

p (Γ1,Γ2, ρ1, ρ2) have the
properties analogous of the properties of functions of the class E±

p (Γ1, ρ) from 0.10.
0.12 Let X and Y be Banach spaces, and A is a linear bounded operator map-

ping X into Y .
The operator A is said to be Noetherian if
a) the image of the operator A in Y is closed (the operator A is normally

solvable according to Hausdorff);
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b) the null spaces N = {x ∈ X, Ax = 0} and N∗{f ∈ Y ∗ : A∗f = 0} are finite
dimensional subspaces (A∗ is the conjugate operator, X∗ and Y ∗ are the conjugate
spaces).

Where � and �∗ denote the dimensions of the subspaces N and N∗, respectively,
is called the index of the Noether operator A.

Let A0 and A1 be Noether operators and A(λ) is a family of Noether operators
depending countinuously on real parameter λ ∈ [0, 1], A(0) = A0, A(1) = A1.
Then the operators A0 and A1 are called homotopic and indA0 = indA1 (see for
example [105], p.27).



Chapter 17

The Problem of Linear Conjugation and

Systems of Singular Integral Equations

by Giorgi F. Manjavidze

17.1 Formulation of the problem

Under the problem of linear conjugation we mean the following problem.
Let Γ be a simple closed piecewise-smooth curve Γ, a(t) and b(t) are given (n×n)

and (n × l) matrices respectively on Γ; a(t) is a piecewise − continuous matrix,
inf|deta(t)| > 0, b(t) ∈ Lp(Γ, ρ), p > 1, the weight function ρ has the form

ρ(t) =
r∏

k=1

|t− tk|νk , tk ∈ Γ, −1 < νk < p− 1. (1.1)

The set {tk} contains all discontinuity points of the matrix a(t), it may contain
also other points of Γ. Find a (n × l)− matrix Φ(z) ∈ E±

p (Γ, ρ) satisfying the
boundary condition

Φ+(t) = a(t)Φ−(t) + b(t) (1.2)

almost everywhere on Γ.
Let c be some point of discontinuity of the matrix a(t); denote by λ1, · · · , λn

the roots of the equation

det[a−1(c+ 0)a(c− 0) − λI] = 0.

Consider the following numbers

τk =
1

2πi
lnλk;

these numbers are defined to within the integer summands. We say that the point
c is singular if Re τk are integers otherwise c is called non − singular (see [138]).

The quadratic matrix χ(z) of order n is called to be normal matrix of the bound-
ary problem (1.2) (or for the matrix a(t)) if it satisfies the following conditions:

χ(z) ∈ E±
q (Γ, ρ), χ−1(z) ∈ E±

p (Γ, ρ1−q), q =
p

p− 1
,

χ+(t) = a(t)χ−(t)
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almost everywhere on Γ.
We call the normal matrix χ(z) canonical if it has normal form at infinity i.e.

lim
z→∞(z−σdetχ(z)) (σ is the sum of columns orders of χ(z)) is finite and nonzero.

In connection that it is possible to consider the different classes E±
p (Γ, ρ), we shall

speak about the canonical (normal) matrices of the classes E±
p (Γ, ρ).

We shall say that the matrix a(t) is factorizable in E±
p (Γ, ρ), if for a(t) there

exists the canonical matrix of the same class E±
p (Γ, ρ) and in this case we shall

write a(t) ∈ Fp(Γ, ρ).
It is easy to prove the following proposition. If χ1(z) and χ2(z) are normal

matrices (in particular canonical) of the problem (1.2) of one and the same class
then

χ1(z) = χ2(z)P (z).

where P (z) is a polynomial matrix with constant and nonzero determinant.
Consequently the determinants of all normal (canonical) matrices of the given

class of the boundary problem (1.2) have the same orders at infinity.

Definition 17.1.1 We call the index (or the total index) of the problem (1.2)
of the class E±

p (Γ, ρ) (or the index of class E±
p (Γ, ρ) of the matrix a(t)) the order

at infinity of the determinant of the normal (canonical) matrix of the given class
E±

p (Γ, ρ) taken with the opposite sign.

Having the normal matrix χ(z) of some class we may obtain the canonical
matrix multiplying χ(z) from the right on corresponding polynomial matrix with
the constant nonzero determinant.

Let χ(z) be a canonical matrix (of the given class) for the matrix a(t). Denote by
−κ1, · · · ,−κn the orders of the columns of χ(z) at infinity. The integers κ1, · · · ,κn

are called the partial indices of the matrix a(t) or of the boundary problem (1.2)
(of the given class). The sum of the partial indices κ1 + κ2 + · · · + κn is equal to
the index of a(t) (or of the problem (1.2) of the given class).

Note that if χ(z) is a canonical matrix of E±
p (Γ, ρ) of the matrix a(t) then the

matrix [χ′(z)]−1 will be a canonical matrix of the class E±
p (Γ, ρ1−q) of the matrix

[a′(t)]−1.
It is easy to prove the following lemmas.

Lemma 17.1.1 Let χ(z) be a normal (canonical) matrix of the class E±
p (Γ, ρ)

of the problem (1.2). If (1.2) is solvable for the given matrix b(t) ∈ Lp(Γ, ρ) then
all solutions of the problem (1.2) of the class E±

p (Γ, ρ) are given by the following
formula

Φ(z) =
χ(z)
2πi

∫
Γ

[χ+(t)]−1b(t)dt
t− z

+ χ(z)P (z),

where P (z) is an arbitrary polynomial (n× l) − matrix. In particular the solutions
of the homogeneous problem (b(t) ≡ 0) have the form
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χ(z)P (z).

Lemma 17.1.2 Let χ(z) be a normal (canonical) matrix of the class E±
p (Γ, ρ)

of the problem (1.2) and let the angular boundary values of the matrix of the form
Φ(z) = f(z)ϕ(z)g(z) (ϕ(z) ∈ E±

p (Γ, ρ), f(z), g(z) be the piecewise-meromorphic
matrices which are continuously extendable from the both sides, everywhere on Γ)
are satisfying the boundary problem (1.2) for the given b(t) ∈ Lp(Γ, ρ); then the
boundary problem (1.2) has the solution of the class E±

p (Γ, ρ).

Let us prove the following propositions.

Lemma 17.1.3 If the boundary problem (1.2) is solvable for an arbitrary b(t) ∈
Lp(Γ, ρ) and there exists the normal (canonical) matrix χ of the class E±

p (Γ, ρ)
then the expressions

L1b ≡ χ+(t)
∫

Γ

[χ+(τ)]−1b(τ)
τ − t

dτ.

L2b ≡ χ−(t)
∫

Γ

[χ−(τ)]−1b(τ)
τ − t

dτ

are the linear bounded operators in the space Lp(Γ, ρ).

Proof Indeed, let bm(t) → b(t) and L1bm → g with respect to the norm of the
space Lp(Γ, ρ). It is known that from bm(t) → b(t) it follows that L1bm → L1b with
respect to the measure (see [114]); therefore g = L1b and the operator L1 is closed
operator; as Lp(Γ, ρ) is a Banach space then L1b will be the bounded operator.

Lemma 17.1.4 The partial indices κ1, · · · ,κn of the problem (1.2) of the class
E±

p (Γ, ρ) are not depending on the choice of a canonical matrix.

Proof (cf.[108], [138]). Let χ(z) be a canonical matrix of the class E±
p (Γ, ρ), D+

and D− are finite and infinite domains bounded by Γ. We have

χ(z) = χ0(z)Λ(z), z ∈ D−,

Λ(z) = diag[(z − c)−κ1 , · · · , (z − c)−κn ], c ∈ D+, detχ0(∞) �= 0,

Rewrite the boundary condition of the homogeneous problem (1.2) in the fol-
lowing form

[χ+(t)]−1Φ+(t) = Λ−1(t)[χ−
0 (t)]−1Φ−(t),

from which it follows that

[χ(z)]−1Φ(z) = P (z), z ∈ D+, [χ0(z)]−1Φ(z) = ξ(z)P (z)

ξ(z) = diag[(z − c)−κ1 , · · · , (z − c−κn)], P (z) = (p1, · · · , pn)
(1.3)
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Pj(z) is an arbitrary polynomial of order j, Pj(z) = 0 when j < 0.
Denoting by λ the number of linear independent solutions of the homogeneous

problem (1.2) of the class E±
p,0(Γ, ρ), from the equalities (1.3) we obtain

λ =
∑

κk�0

κk.

It is evident that the number µ of linear independent solutions of the conjugate
homogeneous problem of the class E±

q,0(Γ, ρ
1−q)

Φ+(t) = [a′(t)]−1Φ−(t)

is equal to
µ = −

∑
κk�0

κk.

Obviously λ and µ are the invariant values.
Let χ1(z) and χ2(z) be the canonical matrices of the problem (1.2) of the class

E±
p (Γ, ρ). Denote by −κ

(i)
k (i = 1, 2, k = 1, 2, · · · , n). the orders of the columns of

χi(z) at infinity. Let

κ
(i)
1 � κ

(i)
2 � · · · � κ(n)

n , κ
(1)
1 � κ

(2)
1 .

Consider the matrix
a0(t) = (t− c)−κ

(2)
1 a(t)

and for this matrix as a canonical matrix we may take the matrix

χ0
i (z) =

⎧⎨⎩ χi(z), z ∈ D+,

(z − c)κ
(2)
1 χi(z), z ∈ D−.

i = 1, 2.

Remarking that the orders of columns of the matrix χ0
1(z) at infinity are equal

to
−κ

(1)
k + κ

(2)
1 ,

we get
κ

(1)
1 − κ

(2)
1 � 0, κ

(1)
1 = κ

(2)
1 .

If we continue the arguments then it occurs that

κ
(1)
k = κ

(2)
k , k = 2, · · · , n.

17.2 Boundary value problem of linear conjugation with con-

tinuous coefficients

Consider the following boundary value problem

Φ+(t) = a(t)Φ−(t) + b(t), t ∈ Γ, (2.1)
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where a(t), b(t) are given (n × n) and (n × l) matrices on Γ, respectively, b(t) ∈
Lp(Γ), p > 1, a(t) ∈ C(Γ), deta(t) �= 0.

For an arbitrary ε > 0 there exists the rational matrix r(z) satisfying the
conditions; r(z) has no poles on Γ, detr(t) �= 0 when t ∈ Γ and

‖a(t)r−1(t) − I‖C(Γ) � ε, ‖a−1(t)r(t) − I‖C(Γ) � ε, (2.2)

where I is a unit matrix.
Let us consider the sequence of matrices

ϕm(z) =
1

2πi

∫
Γ

a0(t)ϕ−
m−1(t)

t− z
dt+

1
2πi

∫
Γ

b(t)dt
t− z

, (2.3)

a0 = ar−1 − I,m = 1, 2, · · · , ϕ−
0 (t) = 0.

It is evident that ϕ−
m(t) ∈ Lp(Γ).

Using the Sokhotsky-Plemely formulas from 2.3 we obtain

ϕ−
m+1(t) − ϕ−

m(t) =
1

2πi

∫
Γ

a0(τ)[ϕ−
m(τ) − ϕ−

m−1(τ)] − a0(t)[ϕ−
m(t) − ϕ−

m−1(t)]
τ − t

dτ.

Hence
‖ϕ−

m+1 − ϕ−
m‖Lp(Γ) � Apε‖ϕ−

m − ϕ−
m−1‖Lp(Γ). (2.4)

From the inequality (2.4) it follows that if Apε < 1 then the sequence ϕ−
m(t)

converges by the norm of Lp(Γ) to some matrix ϕ−(t) ∈ Lp(Γ). Whence it follows
that for every z �∈ Γ there exists the limϕm(z) = ϕ(z) representable by the following
formula

ϕ(z) =
1

2πi

∫
Γ

a0(t)ϕ−(τ)
τ − t

dτ +
1

2πi

∫
Γ

b(t)dt
τ − t

. (2.5)

The matrix ϕ(z) defined by the formula (2.5) belongs to the class E±
p,0(Γ) and

satisfies the boundary value condition

ϕ+(t) = a(t)r−1(t)ϕ−(t) + b(t).

If we take b(t) equal to a(t)r−1(t) then ϕ(z) will satisfy the following boundary
condition

ϕ+(t) = a(t)r−1(t)[ϕ−(t) + I]. (2.6)

Substituting the matrix a(t) onto a′−1(t) and r(t) onto r′−1(t), (it is possible
by virtue of (2.2)) we obtain that there exists the matrix ψ(z) ∈ E±

p,0(Γ) such that

ψ+(t) = a′−1(t)r′(t)[ψ−(t) + I]

or
ψ′+(t) = [ψ′−(t) + I]τ(t)a−1(t). (2.7)
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It follows from (2.6) and (2.7) that

ψ′+(t)ϕ+(t) = [ψ′−(t) + I][ϕ−(t) + I]. (2.8)

Let p � 2; the matrix defined by the following formula

χ(z) =

{
ψ′(z)ϕ(z), z ∈ D+,

(ψ′(z) + I)(ϕ(z) + I), z ∈ D−

belongs to the class E±
1 (Γ) and from (2.8) we have χ(z) ≡ I , i.e.

[ϕ(z)]−1 = ψ′(z), z ∈ D+, [ϕ(z) + I]−1 = ψ′(z) + I, z ∈ D−.

Consider now the matrix

χ(z) =

⎧⎪⎨⎪⎩
ϕ(z)R(z), z ∈ D+,

r−1(z)[ϕ(z) + I]R(z), z ∈ D−,

where R(z) is a rational matrix chosen in the following way: it liquidates the zeros
of detr−1(t) in the domain D− and the poles of r−(z) in the same domain and gives
to χ(z) the normal form at infinity; there exists such a matrix [[15], [16], [44], [108]].
It is easy to see that χ(z) ∈ E±

p (Γ), χ−1(z) ∈ E±
p (Γ); therefore for an arbitrary

continuous nonsingular matrix a(t) there exists a canonical matrix of the class
E±

p (Γ) for an arbitrary p � 2.
Let χ1(z) and χ2(z) be the canonical matrices of the classes E±

p1
(Γ), E±

p2
(Γ)

respectively, 2 � p1 < p2.
We obtain

χ1(z) = χ2(z)P1(z),

[χ′
1(z)]

−1 = [χ′
2(z)]

−1P2(z),

where P1(z), P2(z) are some polynomial matrices. From the last equalities it follows
that

χ1(z) ∈ E±
p2

(Γ), [χ1(z)]−1 ∈ E±
p2

(Γ).

Consequently the canonical matrix of an arbitrary class E±
p (Γ) (p � 2) has the

property:
χ(z) ∈ E±∞(Γ), χ−1(z) ∈ E±∞(Γ).

It is evident that these matrices are the canonical matrices also for 1 < p < 2.
So it comes from these arguments that the boundary value problem (2.1) is solvable
for an arbitrary b(t) ∈ Lp(Γ, ρ) in the class E±

p (Γ) and all solutions of this class
are given by the following formula

Φ(z) =
χ(z)
2πi

∫
Γ

[χ+(τ)]−1b(τ)dτ
τ − t

+ χ(z)P (z),
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where P (z) is an arbitrary polynomial (n× l)− matrix.
Let now the matrix a(t) be a Holder-continuous. Then the canonical matrix

χ(z) is continuously extendable for all points of the curve Γ form the both sides
and the matrices χ+(t) and χ−(t) are Holder-continuous, detχ±(t) �= 0.

Indeed if we construct again the sequence ϕm(Γ) by the formula (2.3), however
the rational matrix χ(z) we take such that the inequalities (2.2) will be fulfilled by
the norm of the space Hβ(Γ), 0 < β < α. (a(t) ∈ Hα(Γ)). Then the sequence
ϕ−

m(t) converges by the norm of Hβ(Γ), ϕ−(t) ∈ Hβ(Γ) and the matrix ϕ(z) defined
by the formula (2.5) will be Holder-continuous in closures D̄+, D̄−. This proves
the above formulated proposition.

17.3 Boundary value problems with piecewise continuous

coefficients

17.3.1 The scalar case

In this subsection we shall consider the case when n = l = 1. First let us consider
the homogeneous problem

Φ+(t) = a(t)Φ−(t), a(t) ∈ C0(Γ; c1, · · · , cm) (3.1)

Now we make the substitution: ([136], [116]).

Φ(z) =
m∏

k=1

χ1
k(z)ϕ(z), z ∈ D+, Φ(z) =

m∏
k=1

χk(z)ϕ(z), z ∈ D−, (3.2)

where

χ1
k(z) = (z − ck)τk , χk(z) =

(
z − ck
z − z0

)τk

, z0 ∈ D+,

τk =
1

2πi
lnλk, λk =

a(ck − 0)
a(ck + 0)

, −1 < Reτk � 0,

where χ1
k, χk are the univalent branches of the elementary multivalued functions

defined as follows: χ1
k(z) is the univalent branch in the plane cut along the line ek

which connects the point ck with the point z = ∞ and lies in the domainD−, χk(z)
is the univalent branch in the plane cut along the line �1k which connects the point
z0 with the point ck and lies in the domain D+, χk(∞) = 1. With respect to the
function ϕ(z) we obtain the following boundary condition

ϕ+(t) = g(t)ϕ−(t),

where

g(t) = a(t)

[
r∏

k=1

χ1+
k (t)

]−1 r∏
k=1

χ−
k (t) = a(t)

r∏
k=1

(t− z0)−τk ,
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g(t) is a continuous function, g(t) �= 0.
In previous section we proved that for the continuous function g(t) there exists

the canonical function A(z) ∈ E±∞(Γ), A−1(z) ∈ E±∞(Γ).
Consider the function

χ0(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A(z)

r∏
k=1

X1
k(z), z ∈ D+,

A(z)
r∏

k=1

Xk(z), z ∈ D−.

It is evident that χ−1
0 (z) ∈ E±∞(Γ), χ0(z) ∈ E±

ε (Γ) for some ε > 1.
Let Φ(z) be some solution of the problem (3.1) of the class E±

δ (Γ), δ > 1.
Consider the following function

Φ1(z) = Φ(z)/χ0(z).

Obviously Φ1(z) ∈ E±
δ1

(Γ), δ1 > 1 and

Φ+
1 (t) = Φ−

1 (t), t ∈ Γ.

Consequently Φ1(z) is the polynomial P (z) and

Φ(z) = χ0(z)P (z).

Let there exists the canonical function of the problem (3.1) of the class E±
p (Γ, ρ),

ρ(t) =
∏r

K=1 |t− ak|νk ,−1 < νk < p− 1. Then it will have the following form

χ(z) = χ0(z)Q(z),

where Q(z) is some polynomial; in addition

χ0(z)Q(z) ∈ E±
p (Γ, ρ), [χ0(z)Q(z)]−1 ∈ E±

q (Γ, ρ1−q). (3.3)

One can see from (3.3) that the polynomial Q(z) may have zeros only in the
points ck and

A+(t)
r∏

k=1

(t− ck)τkQ(t) ∈ Lp(Γ, ρ),[
A+(t)

r∏
k=1

(t− ck)τkQ(t)

]−1

∈ Lq(Γ, ρ1−q).

(3.4)

Denote by mk(mk � 0) order of zero of the polynomial Q(z) at the point ck.
The following relations

|A+(t)|p|Qs(t)|p
r∏

k=1

|t− ck|mkp+νk |(t− ck)τk |p ∈ L1(Γ),
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|A+(t)|q|Qs(t)|q
r∏

k=1

|t− ck|−mkq+νk(1−q)|(t− ck)−τk |q ∈ L1(Γ),

Qk(z) = (z − ck)−mkQ(z).

holds.
From these relations it follows that

r∏
k=1

|t− ck|mkp+νk |(t− ck)τk |p ∈ L1−λ(Γ),

r∏
k=1

|t− ck|−mkq+νk(1−q)|(t− ck)−τk |q ∈ L1−λ(Γ).

(3.5)

where λ is an arbitrary small positive number.
Denoting by τk = αk + iβk, from (3.5) we obtain

r∏
k=1

|t− ck|(αk+mk)p+νk ∈ L1−λ(Γ),

r∏
k=1

|t− ck|−(αk+mk)q+νk(1−q) ∈ L1−λ(Γ),

from which it follows that

(αk +mk)p+ νk > −1,−(αk +mk)q + νk(1 − q) > 1

or
−αk − 1

p
− νk

p
< mk < −αk +

1
q
− νk

p
.

Denote by |αk| = µk and let us call this number the parameter of the function a(t)
at the point ck. The parameter µk may be defined also by the following relations:

µk = Re
1

2πi
a(ck + 0)
a(ck − 0)

, 0 � arg
a(ck + 0)
a(ck − 0)

< 2π.

Denote also by µk − 1 + uk

p
= εk. Evidently −1 + νk

p
< εk < νk and therefore

−1 < εk < 1.

So we have
εk < mk < 1 + εk.

If εk = 0 then the inequality is unrealizable, if εk > 0 then mk = 1; if εk < 0 then
mk = 0. Hence we get the following proposition:
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Theorem 17.3.1 If µkp = 1 + νk for some k then a canonical function of the
corresponding class doesn’t exist.

If µkp �= 1+νk, k = 1, 2, · · · , r, then the canonical function of the class E±
p (Γ, ρ)

exists and is given by the formula

χ(z) = χ0(z)Q(z),

where Q(z) =
∏r

k=1(z − ck)mk

mk =

⎧⎪⎪⎨⎪⎪⎩
1, if µk − 1 + νk

p
> 0,

0, if µk − 1 + νk

p
< 0.

The index of the class of the E±
p (Γ, ρ) of the function a(t) (or the problem (3.1))

is given by the formula κ = ind g(t) −∑r
k=1mk or by the formula

κ =
1
2π

⎡⎢⎢⎣arg
a(t)

r∏
k=1

(t− z0)sk

⎤⎥⎥⎦
Γ

, (3.6)

where sk =
1

2πi
lnλk,

−1 < Re sk � 0 if µk <
1 + νk

p
(i.e. sk = τk),

0 � Re sk < 1 if µk >
1 + νk

p
(i.e. sk = τk+1).

Note that the condition
µkp �= 1 + νk

is trivially fulfilled if the point ck is singular, because in this case µk = αk = 0;
sk = τk, Resk = 0.

Remark If χi(z)(i = 1, 2) are the canonical functions of the classes E±
pi

(Γ, ρi)
(ρi are the functions of the form (1.1)), then χ2(z) = χ1(z)

∏r
k=1(z − ck)mk , where

m = +1,−1 or 0.

In particular if χ1(z) and χ2(z) are the canonical functions of the classesE±
1+ε(r)

and E±
p (r) (ε is a sufficiently small positive number, p is a sufficiently large number)

then in the last equality mk = 0 for singular points and mk = 1 for nonsingular
points. Between the indices of these classes the following relation

κp = κ1+ε − τ0,
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holds, where τ0 is the number of nonsingular points (see [108], p.78).
Consider now the nonhomogeneous problem

φ+(t) = a(t)φ− + b(t), b(t) ∈ Lp(Γ, ρ) (3.7)

and make the substitution (3.2).
Instead of −1 < Re τk � 0 suppose

−1 + νk

p
< Re τk < 1 − 1 + νk

p
. (3.8)

Since Re τk is defined to within an integer, then the inequalities

1 + νk

p
� Re τk < 1 − 1 + νk

p

are always fulfilled.
But the equality

−1 + νk

p
= Re τk

is eliminated, therefore the inequalities (3.7) are satisfiable.
We obtain the nonhomogeneous problem

φ+(t) = g(t)φ−(t) + f(t), f(t) = b(t)

(
r∏

k=1

χ1
k(t)

)−1

. (3.9)

It is evident that f(t) ∈ Lp(Γ, ρ1), ρ1(t) =
∏r

k=1|(t − ck)|ν1
k , ν1

k = αkp + νk, αk =
Reτk. It is easy to see that

−1 < ν1
k < p− 1

as this inequality coincides with (3.7).
We shall construct the solution of (3.8) in the class E±

p (Γ, ρ1).
Take the rational function R(z) such that

‖g(t) −R(t)‖C(Γ) � ε,

where ε is a sufficiently positive number and consider the following sequence

ψm+1(z) =
1

2πi

∫
Γ

g0(t)ψ−
m(t)

t− z
dt+

1
2πi

∫
Γ

f(t)dt
t− z

, ψ−
0 (t) = 0, (3.10)

g0 = gR−1 − I.

It is evident that
ψm(z) ∈ E±

ρ,0(r, ρ1).
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From (3.10) we have

ψ−
m+1(t0)−ψ−

m(t0) = −1
2
g0(t)[ψ−

m(t0)−ψ−
m−1(t0)]+

1
2πi

∫
Γ

g0(t)[ψ−
m(t) − ψ−

m−1(t)]
t− z

dt.

Consequently the sequence ψ−
m(t) converges by the norm of the space Lp(Γ, ρ)

to some function h(t) ∈ Lp(Γ, ρ1).
From (3.10) we have also

h(to) = −1
2
[g0(t0)h(t0) + f(t0)] +

1
2πi

∫
Γ

g0(t)h(t) + f(t)
t− t0

dt.

Hence h(t0) is a boundary value of some analytic function on Γ in the domain
D− vanishing at infinity. Finally we obtain

ψ(z) =
1

2πi

∫
Γ

g0(t)ψ−(t)
t− z

dt+
1

2πi

∫
Γ

f(t)
t− z

dt

(here ψ−(t) denotes h(t)).
From the last equality we get

ψ+(t) − ψ−(t) = g0(t)ψ−(t) + f(t)

or
ψ+(t) = gR−1ψ−(t) + f(t). (3.11)

Comparing (3.8) and (3.10) we can see that the function

φ(z) =

⎧⎨⎩
ψ(z), z ∈ D+,

R−1(z)ψ(z), z ∈ D−

is a solution of the problem (3.9). As far as the problem (3.8) has a canonical
function of the class E±

p (Γ, ρ) then it is solvable in this class for any f(t) ∈ Lp(Γ, ρ)
and the initial problem (3.7) is solvable in E±

p (Γ, ρ) for an arbitrary function b(t) ∈
Lp(Γ, ρ). Whence by virtue of the lemma 1.3 the expressions

χ+(t0)
∫

r

[χ+(t)]−1b(t)
t− t0

dt, χ−(t0)
∫

r

[χ+(t)]−1b(t)
t− t0

dt

are the linear bounded operators in Lp(Γ, ρ).

17.3.2 The case of a triangular matrix

Consider now the following boundary value problem

φ+(t) = a(t)φ−(t) + b(t), t ∈ Γ (3.12)
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where a(t) is a triangular piecewise-continuous nonsingular matrix a = (aik), aik =
0 when i < k, b ∈ Lp(Γ, ρ). Denote by c1, · · · cr all discontinuity points of the
functions aii(t)(i = 1, · · · , n). By µik denote the parameters of the functions aii(t)
at the points ck(k = 1, · · · , r). It is evident that µik = 0 if the function aii(t) is
continuous at the point ck. Let us assume that the inequalities

1 + νk

p
�= µik, k = 1, · · · , r, i = 1, · · · , n (3.13)

are valid and show that in this case there exists a canonical matrix of the problem
(3.12) of the corresponding class. Obviously if the inequalities (3.13) are fulfilled
then every function akk(t) has canonical function of the class E±

p (Γ, ρ). Denote it
by χk(z).

Consider the triangular matrix χ(z) = (χik), i, k = 1, · · · , n;χik = 0 when
i < k, χik(z) = χk(z) and the remaining elements are defined by the formulas

χs1(z) =
χs(z)
2πi

∫
Γ

s−1∑
i=1

asi(t)χ−
i1(t)dt

χ+
s (t)(t− z)

s = 2, · · · , n,

χs2(z) =
χs(z)
2πi

∫
Γ

s−1∑
i=1

asi(t)χ−
i2(t)dt

χ+
s (t)(t− z)

, s = 3, · · · , n,

χn,n−1(z) =
χs(z)
2πi

∫
Γ

s−1∑
i=1

an,n−1(t)χ−
n−1,n−1(t)dt

χ+
n (t)(t− z)

.

It can be easily seen that constructed in this manner matrix belongs to the class
E±

p (Γ, ρ) and satisfies the following relation

χ+(t) = a(t)χ−(t).

Moreover det χ(z) =
∏n

k=1χk(z)
Construct now the same matrix χ∗(z) for the matrix [a′(t)]−1 as above.

χ∗(z) ∈ Eq(Γ, ρ1−q), detχ∗(z) =
n∏

k=1

[χk(z)]−1,

χ+
∗ (t) = [a′(t)]−1χ−

∗ (t).

Consider the matrix χ′∗(t)χ(z) = χ0(z).
We have χ0(z) ∈ E±

1 (Γ), χ′+
∗ (t) = χ′−

∗ ((t)[a(t)]−1, χ′+
∗ (t)χ+(t) = χ′−

+ (t)χ−(t).
Whence χ0(z) = P (z), where P (z) is some polynomial matrix. But det P (z) =

1 and P−1(z) is also a polynomial matrix.
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Thus
P−1(z)χ′

∗(z)χ(z) = I;

χ(z) has a inverse matrix equal to P−1χ
′
∗(z) ∈ E±

q (Γ, ρ1−q). Finally we have
proved, that χ(z) is a normal matrix for a(t) of the class E±

p (Γ, ρ).
It is easy to see that the boundary problem (3.12) is solvable for an arbitrary

vector b(t) ∈ Lp(Γ, ρ) and therefore the operators

χ+(t0)
∫

Γ

[χ+(t)]−1b(t)dt
t− t0

, χ−(t0)
∫

Γ

[χ−(t)]−1b(t)dt
t− t0

are the linear bounded operators in Lp(Γ, ρ).
The index of the problem (3.12) of the class E±

p (Γ, ρ) is equal to the sum of
indices of the boundary problems ϕ+

k (t) = akk(t)ϕ−
k (t), i.e. κ =

∑n
k=1 κk, κk is

calculated by the formula (3.6):

κk =
1
2π

⎧⎪⎪⎨⎪⎪⎩arg
akk(t)

r∏
j=1

(t− z0)skj

⎫⎪⎪⎬⎪⎪⎭
Γ

,

where skj =
1

2πi
lnλkj , λkj =

akk(cj − 0)
akk(cj + 0)

;

−1 < Re skj � 0 if µkj <
1 + νj

p
; 0 � Re skj < 1 if µkj >

1 + νj

p
.

17.3.3 General case

Consider now the following problem

Φ+(t) = a(t)Φ−(t) + b(t), b(t) ∈ Lp(Γ, ρ), (3.14)

where a(t) is an arbitrary piecewise-continuous matrix, inf |deta(t)| > 0. Let us
represent the matrix a(t) in the following form

a(t) = a1(t)Λ(t)a2(t),

where a1(t), a2(t) are continuous nonsingular matrices, Λ(t) is piecewise-continuous
nonsingular triangular matrix. This is possible by virtue of the lemma, proved
in [38].

Take the rational matrices R1(z), R2(z) such that

‖ak(t) −Rk(t)‖ � ε, k = 1, 2,

where ε is a sufficiently small positive number.
Rewrite the boundary condition (3.14) in the following form:

Φ+ = R1(t)Λ(t)R2(t)Φ−(t) + [a(t) −R1(t)Λ(t)R2(t)]Φ−(t) + b(t).
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Introduce the following notations

R−1
1 (z)Φ(z) = ϕ(z), z ∈ D+, R2(z)Φ(z) = ϕ(z), z ∈ D−, R−1

1 (t)b(t) = B(t);

we have ϕ+(t) = Λ(t)ϕ−(t) + [R−1
1 (t)a1(t)Λ(t)a2(t)R−1

2 (t) − Λ(t)]ϕ−(t) +B(t)
It is evident that a0(t) = R−1

1 (t)a(t)R−1
2 (t) − Λ(t) is a piecewise-continuous

matrix and
sup
t∈Γ

|a0(t)| < C1ε, C1 is a constant.

Consider now a sequence of the matrices:

ϕm+1(z) =
χ(z)
2πi

∫
Γ

[χ+(t)]−1a0(t)ϕ−
m(t)

t− z
dt+

χ(z)
2πi

∫
Γ

[χ+(t)]−1B(t)
t− z

dt, (3.15)

where ϕ−
0 (t) = 0, χ(z) is a canonical matrix of the class E±

p (Γ, ρ) of the matrix
Λ(t). It is evident that ϕm(z) ∈ E±

p (Γ, ρ),m � 1. From (3.15) we have

ϕ−
m+1(t) − ϕ−

m(t0) =−1
2
a−1(t)a0(t)[ϕ−

m(t0) − ϕ−
m−1(t0)]

+
χ(t0)
2πi

∫
Γ

[χ+(t)]−1a0(t)[ϕ−
m(t) − ϕ−

m−1(t)]
t− z

dt.

Whence
‖ϕ−

m+1 − ϕ−1
m ‖Lp(Γ,ρ) � C2ε,

where C2 is a constant. Therefore, if C1C2ε < 1 then the sequence ϕ−
m converges

in the space Lp(Γ, ρ). It follows from (3.15) that ϕ+
m also converges in the space

Lp(Γ, ρ). The limit matrix ϕ(z) ∈ E±
p,0(Γ, ρ) and satisfies the following boundary

condition
ϕ+(t) = R−1

1 (t)a(t)R−1
2 (t)ϕ−(t) +R−1

1 (t)b(t).

Consequently the matrix

Φ(z) =

⎧⎨⎩ R1(z)ϕ(z), z ∈ D+,

R−1
2 (z)ϕ(z), z ∈ D−

(3.16)

will be the solution of the boundary problem which may have poles in some points
of the domains D+ and D−.

Consider now the adjoint boundary value problem i.e. the problem.

Ψ+(t) = [a
′
(t)]−1Ψ−(t) + g(t), g ∈ Lq(Γ, ρ1−q). (3.17)

Substituting in previous arguments the matrices R1 and R2 correspondingly by
the matrices R

′−1
1 and R

′−1
2 , we construct the solution of the form:

Ψ(z) =

⎧⎨⎩ [R′
1(z)]

−1ψ(z), z ∈ D+,

R′
1(z)ψ(z), z ∈ D−.
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Take now b = aR−1
2 χ−, g = a

′−1R1
2(χ′−)−1. We obtain

Φ+(t) = a(t)[Φ−(t) +R−1
2 (t)χ−(t)],

Ψ+(t) = [a
′
(t)]−1[Ψ−(t) + R′

2(t)(χ
1−(t))−1].

It follows from these equalities, that

Ψ
′+(t)Φ+(t) = [Ψ

′−(t) + (χ−(t))−1][Φ−(t) + χ−(t)].

Consider the matrix

Q(z) =

⎧⎨⎩ ψ′(z)ϕ(z), z ∈ D+,[
ψ′(z) + χ−1(z)

]
[ϕ(z) + χ(z)] , z ∈ D−.

It is evident that Q(z) ∈ E±
1 (Γ); Q(∞) = I. Therefore Q(z) ≡ I and

[ϕ(z)]−1 = ψ
′
(z), z ∈ D+,

[ϕ(z) + χ(z)]−1 = ψ
′
(z) + χ−1(z), z ∈ D−.

Consequently the matrix

ω(z) =

{
ϕ(z), z ∈ D+,

ϕ(z) + χ(z), z ∈ D−

has the following properties

ω(z) ∈ E±
p (Γ, ρ), ω−1(z) ∈ E±

q (Γ, ρ1−q)

and the matrix

Φ(z) =

⎧⎨⎩ R1(z)ω(z), z ∈ D+,

R−1
2 (z)ω(z), z ∈ D−

(3.18)

is suitable for the “preparation” of the canonical matrix.
Now we shall show this. First cite the following auxiliary propositions.

Lemma 17.3.1 Let ϕ1(z) be a quadratic matrix of order n and has the following
form

ϕ1(z) = P (z)ϕ(z)[ϕ(c)]−1P−1(z), c ∈ Γ,

where P (z) is a diagonal matrix, Pkk(z) = 1, k = 1, · · · , s, Pkk(z) = z − c, k =
s + 1, · · · , n(or all Pkk(z) = z − c), ϕ ∈ E±

p (Γ, ρ), ϕ−1 ∈ Eq(Γ, ρ1−q). Then
ϕ1(z) ∈ E±

p (Γ, ρ), ϕ−1
1 (z) ∈ E±

q (Γ, ρ1−q).
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From the equalities

ϕ1(z) = P (z)[ϕ(z)[ϕ(c)]−1 − I]P−1(z) + I,

ϕ−1
1 (z) = P−1(z)[ϕ(c)ϕ−1(z) − I]P (z) + I,

it follows immediately that the lemma is correct.

Lemma 17.3.2 Let Φ(z) be a matrix defined by the formula

Φ(z) =

{
r1(z)ϕ(z), z ∈ D+,

r2(z)ϕ(z), z ∈ D−

(here rk(z), k = 1, 2 are the rational matrices poles of which aren’t situated on
Γ, detrk(t) �= 0, t ∈ Γ, ϕ(z) ∈ E±

p (Γ, ρ), ϕ−1(z) ∈ Eq(Γ, ρ1−q)). If Φ(z) satisfies the
condition

Φ+(t) = a(t)Φ−(t), t ∈ Γ, (3.19)

where a(t) is a given piecewise-continuous matrix on Γ. Then there exists the
rational matrix R(z) such, that Φ(z)R(z) is a canonical matrix for the matrix a(t)
of the class E±

p (Γ, ρ). The index of the matrix a(t) of the class E±
p (Γ, ρ) is equal

to

κ =
1

2πi

[
arg

detr1(t)
detr2(t)

]
Γ

− s, (3.20)

where s is order of detϕ(z) at infinity.

Proof Let us represent the matrices rk(z), k = 1, 2 in the following form [46]

rk(z) = P
(1)
k (z)Qk(z)P (2)

k (z)/λk(z),

where λk(z) are the polynomials, P (1)
k (z), P (2)

k (z) are the polynomial matrices with
the non-zero, constant determinants. Qk(z) is diagonal polynomial matrix, the
polynomial Qs+1,s+1

k is dividing by the polynomial Qs,s
k .

Represent the polynomial λk and the matrix Qk in the following form

λk(z) = λ
(1)
k (z)λ(2)

k (z), Qk(z) = Q
(1)
k (z)Q(2)

k (z),

where the polynomials λ1
k(z)

(
λ2

k(z)
)

may have the poles only in the domain

D+(D−), the elements of the main diagonal of the matrix Q(1)
k (z)

(
Q

(2)
k (z)

)
may

have the zeros only in the domain D+(D−).
Give to the matrix Φ(z) the following form

Φ(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P

(1)
1 (z)

λ
(1)
1 (z)

q1(z)Ψ(z), z ∈ D+,

P 1
2 (z)

λ
(2)
2 (z)

q2(z)Ψ(z) z ∈ D−,
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where the following notations are introduced

Ψ(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q
(2)
1 (z)P (2)

1 (z)

λ
(2)
1 (z)

ϕ(z), z ∈ D+,

Q
(1)
2 (z)P (2)

2 (z)

λ
(1)
2 (z)

ϕ(z), z ∈ D−,

qk(z) = Q
(k)
k (z) = diag(q1k, · · · , qn

k ), k = 1, 2.

It is evident that Ψ(z) ∈ E±
p (Γ, ρ),Ψ−1(z) ∈ E±

q (Γ, ρ1−q).
Consider the matrix

Φ1(z) =
λ

(1)
1 (z)λ(2)

2 (z)
q′1(z)q

′
2(z)

,

Φ(z) =

⎧⎨⎩ P1(z)[q′1(z)]
−1q1(z)Ψ(z), z ∈ D+,

P2(z)[q′2(z)]
−1q2(z)Ψ(z), z ∈ D−.

P1 = λ2
2P

(1)
1 /q12(z),

P2 = λ1
1P

(1)
2 /q11(z).

It is clear that Φ(z) satisfies the boundary condition (3.19).
Denote by c a zero of the polynomial q21(z)/q11(z) (if such exists) and consider

the matrix

Φ2(z)=Φ1(z)[Ψ(c)]−1M−1(z)=

⎧⎨⎩P1(z)(q′1(z))Ψ(z)[Ψ(c)]−1M−1(z), z ∈ D+,

P2(q′2(z))−1q2(z)Ψ(z)[Ψ(c)]−1M−1(z), z ∈ D−.

where M(z) = diag[1, z − c, · · · , z − c]. It is evident that Φ(z) also satisfies the
boundary condition (3.19). If we continue this process, then we will get the solution
of the homogeneous problem (3.19), the determinant of which is not equal to zero
in the domains D+, D−. Consequently we obtain the normal matrix of the class
E±

p (Γ, ρ). Giving to this matrix normal form at infinity (for this we shall multiple
it on the corresponding polynomial matrix from the right) we get the canonical
matrix.

Tracing the construction of the normal matrix, it is not difficult to be convinced
that the formula (3.20) is valid. If we apply this formula to the matrix (3.16) we will
obtain the index for the problem (3.15) of the class E±

p (Γ, ρ) (if the corresponding
conditions are fulfilled) is equal to

κ =
1
2π

{arg det[a1(t)a2(t)]}Γ + κΛ,

where κΛ is the index of the matrix Λ(t) of the class E±
p (Γ, ρ). Thus we have the

following theorem:
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Theorem 17.3.2 Let a(t) be a piecewise-continuous nonsingular matrix with the
points of discontinuity tk (k = 1, · · · , r) and let λkj (k = 1, · · · r, j = 1, · · · , n) are
the roots of the equation

det[a−1(tk−0)a(tk+0) − λI] = 0

Denote by µkj = argλkj/2π, 0 � argλkj < 2π.
If the inequalities

1 + νk

p
�= µkj , (3.21)

are fulfilled, then there exists the canonical matrix of the problem (3.15) of the class
E±

p (Γ, ρ), and the index of the matrix a(t) is calculated by the formula

κ =
1
2π

⎡⎢⎢⎣arg
deta(t)

r∏
k=1

(t− z0)σk

⎤⎥⎥⎦
Γ

, (3.22)

where σk =
∑r

j=1 ρkj

1 < Re ρkj � 0 if µkj <
1 + νk

p
,

0 � Re ρkj < 1 if µkj >
1 + νk

p
,

ρkj = − 1
2π

lnλkj .

The formula (3.22) is analogous to the formula mentioned in the book of
[136], §18. Consider now the non-homogeneous problem. Denote by χ(z) the
canonical matrix of the class E±

p (Γ, ρ). By virtue of the lemmas 17.1.1 and 17.1.2
the problem (3.14) is solvable in the class E±

p (Γ, ρ) and solutions of this class are
given by the formula

Φ(z) =
χ(z)
2πi

∫
[χ+(t)]−1b(t)dt

t− z
+ χ(z)P (z), (3.23)

where P (z) is an arbitrary polynomial vector.
Now look for the solutions of (3.15) vanishing at infinity. Without the loss

of generality it is possible to assume that the partial indices κ1,κ2, · · · ,κn are
situated in the decreasing order: κ1 � κ2 � · · · � κn. For this purpose it is enough
to change the position of the columns, i.e. to multiply χ(z) from the right on
the constant nonsingular matrix. Let κ1 � · · · � κm � 0 > κm+1 � · · · � κn,

λ = κ1 + κ2 + · · · + κn, µ = −(κm+1 + · · · + κn).
Introduce the following notations

[χ+(t)]−1b(t) = (b1, · · · , bn),
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P (z) = (P1, · · · , Pn);

denote also the columns of the canonical matrix by χ1(z), · · · , χn(z) It is possible
to write the formula (3.12) in the form

Φ(z) =
n∑

k=1

χk(z)
[

1
2πi

∫
Γ

hk(t)dt
t− z

+ Pk(z)
]
, (3.24)

Expanding the Cauchy type integral in (3.24) in the neighborhood of the point
z = ∞: ∫

Γ

hk(t)dt
t− z

= −
∞∑

s=0

1
zs+1

∫
Γ

tshk(t)dt,

we obtain that for the existence of the desired solution it is necessary and sufficient
that the free term b(t) have to satisfy the µ = −∑n

k=m+1 κk conditions∫
Γ

tshk(t)dt = 0, (s = 0, 1, · · · ,−κk−1, k = m+ 1, · · · , n) (3.25)

and when these conditions are fulfilled the general solution of the desired form is
given by the formula (3.23) in which we assume, that

Pk(z) = Pκk−1(z),

where Pα(z) denotes an arbitrary polynomial of order α; Pα(z) ≡ 0 it α < 0. The
union of the conditions (3.24) we may write in the form of one relation:∫

Γ

q(t)h(t)dt = 0 or
∫

Γ

q(t)[χ+(t)]−1h(t)dt = 0, (3.26)

where q(t) is defined by the formula

q(t) = (q−κ1−1, · · · , q−κn−1).

qα are the arbitrary polynomials of order α(qα = 0 in case α < 0). the condition
(3.26) we may rewrite in the form∫

Γ

h′(t)[χ′+(t)]−1q′(t)dt = 0. (3.27)

Note that the expression [χ′+(t)]−1q′(t) in (3.26) is a boundary value of the
general solution from the domain D+ of the adjoint homogeneous problem

Ψ+(t) = [a′(t)]−1Ψ−(t) (3.28)

of the class E±
q,0(Γ, ρ

1−q). Therefore we get the following theorem.
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Theorem 17.3.3 If the conditions (3.18) are fulfilled then for the problem (3.15)
to be solvable in the class E±

p,0(Γ, ρ) it is necessary and sufficient the fulfillment of
the conditions ∫

Γ

h(t)Ψ+(t)dt = 0,

where Ψ(z) is an arbitrary solution of the adjoint homogeneous problem (3.26) of
the class E±

q,0(Γ, ρ
1−q).

Let l(l′) be a number of linear independent solutions of the homogeneous prob-
lem (3.14) (of the homogeneous problem (3.26)) of the class E±

p (Γ, ρ) (of the class
E±

q (Γ, ρ1−q). Then l − l′ = κ, where κ is the index of the matrix a(t) of the class
E±

p (Γ, ρ).

Remark 1 If χ(z) is a canonical matrix of the problem (3.14) of the class E±
p (Γ, ρ),

then χ(z) is a canonical matrix of the same problem of the class Ep+ε(Γ, ρη),
ρη = Π|t− tk|νk+ηk . if ε, ηk are sufficiently small numbers.

Remark 2 For the boundary problem (3.14) the following proposition is valid: if
a(t), b(t) ∈ H(Γ) then the solution of this problem of an arbitrary class E±

p (Γ, ρ) are

the Hölder-continuous in the closures D
+
, D

−
(except perhaps the point z = ∞,

if the solution have the pole there.) If a(t), b(t) ∈ H0(Γ)). then the solution of
the problem of an arbitrary class are the piecewise-holomorphic vectors; they are
continuously extendable on all points of Γ, except perhaps the points of discontinuity
of a(t), b(t).

17.3.4 Stability of partial indices

The partial indices of the continuous matrix are unstable values in general. The
necessary and sufficient stability condition is the following condition

κ1 − κn � 1,

where κ1(κn) is the greatest (the smallest) among the partial indices. [see.[20],
[136], [51]].

Consider the problem of stability of the partial indices of piecewise-continuous
matrix. Let the matrix a(t) ∈ C0(Γ, t1, · · · , t2), inf |deta(t)| > 0.

Let the matrix g(t) of the class C0(Γ, t1, · · · , tr) satisfies the following condi-
tions.

a) g(c± 0) = a(c± 0), c is an arbitrary singular point of the matrix a,
b) sup|a(t) − g(t)| � ε; for small ε we shall say, that g(t) is close to a(t).
It is evident, that if the Noetherity conditions (3.18) for the matrix a(t) are

fulfilled then these conditions are fulfilled also for matrix g(t) and we may speak
about the partial indices of g(t).
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Let χ(z) be a canonical matrix of the class E±
p (Γ, ρ) and let the vector Φ be

some solution of the class E±
p,0(Γ, ρ) of the boundary problem

Φ+(t) = g(t)Φ−(t), t ∈ Γ. (3.29)

Rewrite (3.29) in the form

[χ+(t)]−1Φ+(t) = [χ−(t)]−1Φ−(t) + F (t),

F (t) = [χ+(t)][g(t) − a(t)]Φ(t). (3.30)

If the partial indices of the matrix a(t) are nonpositive then it follows from (3.30)
that

[χ(z)]−1Φ(z) =
1

2πi

∫
Γ

F (t)dt
t− z

,

Φ−(t0) = −1
2
a−1(t0)[g(t0)−a(t0)]Φ−(t0)+

χ−(t0)
2πi

∫
Γ

[χ+(t)]−1[g(t) − a(t)]Φ−(t)dt
t− t0

.

It follows from the last equality that

‖Φ−‖Lp(Γ,ρ) � B sup |g(t) − a(t)|‖Φ−(t)‖Lp(Γ,ρ), (3.31)

where B is constant.
If sup |g(t)− a(t)| is sufficiently small, then from the inequality (3.31) it follows

that Φ−(t) ≡ 0, Φ(z) ≡ 0.
Therefore, if the matrix has the non-positive partial indices then the boundary

problem (3.29) have the nontrivial solutions of the class E±
p,0(Γ, ρ) for close to

matrix a(t) matrix g(t) and hence such matrices g(t) have also non-positive indices.
Let now the matrix a(t) have arbitrary partial indices

κ1 � · · · � κn

and g(t) is the matrix close to a(t) with the partial indices

η1 � · · · � ηk.

It is clear that the matrix a1(t)(t − b)−κ1a(t)[g1(t) = (t − b)−κ1g(t)], where b is a
fixed point inside of Γ, has the numbers κk−κ1 � O(ηk−η1) as the partial indices.

Hence, when the matrices a(t) and g(t) are sufficiently close, then the partial
indices of the matrix g1(t) will be non-positive and therefore η1 � κ1.

Going over from the matrices a and g to the matrices (a′)−1 and (g′)−1 and to
the classes E±

p (Γ, ρ), E±
q (Γ, ρ1−q) we get ηn � κk,

κ1 � η1 � · · · � ηn � κn. (3.32)
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It implies from the relations (3.32) that if the partial indices of the matrix a(t)
satisfies the condition κ1 − κn � 1, then for all sufficiently close matrices

ηk = κk (k = 1, · · · , n).

Due to [20] prove that if κ1 − κn � 2, then the partial indices are unstable.
Let

κ1 = · · · = κs > κs+1 � · · · � κn

be the partial indices of the matrix a(t) of the class E±
p (Γ, ρ).

Consider the case when the matrix a(t) has only one point of discontinuity
c ∈ Γ, this restriction is not essential and is made because of the simplicity of the
formulas.

Construct the sequence of the matrices am(t) ∈ H1
0 (Γ, C), am(c± 0) = a(c± 0)

convergent to the matrix a(t)

sup
t

|am(t) − a(t)| → 0, m→ 0.

Consider two possible cases:
a) the partial indices of am(t) coincide with the partial indices starting from

some m0;
b) when the case a) is not possible.
In the case b) the partial indices are unstable. Therefore, we consider the case

a).
As it is known the partial indices of the matrix a(t) of the class E±

p (Γ, ρ)
(ρ = |t− c|ν) coincide with the partial indices of the Hölder-continuous matrix

Am(t) = Y −1
+ amY−(t),

where
Y+(z) = AU [u1]χ1(z), z ∈ D+,

Y−(z) = BU [u]χ(z), z ∈ D−,

χ1(z) = diag[(z − c)ρ1 , · · · , (z − c)ρn ], χ = χ1χ
−1
0 ,

χ0(z) = diag[(z − z0)ρ1 , · · · , (z − z0)ρn ], z0 ∈ D+,

−1 + ν

p
< Reρn < 1 − 1 + ν

p
, ρk =

1
2πi

lnλk,

A, B are the constant non-singular matrices.
λk are the roots of the equation det(a−1(c+ 0)a(c− 0) − λI) = 0,

u1 =
1

2πi
ln(z − c), u2 =

1
2πi

ln
z − c

z − z0
,
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u(ξ) is definite polynomial matrix of ξ. These matrices are defined in the
book [136] §18.

Represent the matrix Am in the form (see [136], §7)

Am = χ+
mΛχ−,

where χ±
m(t) are the Hölder-continuous matrices

Λ(t) = diag[tκ1 , tκ2 , · · · , tκn−1 ].

(We suppose that O ∈ D+).
Consider the matrix

Aε
m = Am(t) + ε(t− c)q(t),

q(t) =

⎛⎜⎜⎜⎝
0 tκ2 · · · 0

tκ2−2 0 · · · 0
· · · · · · · · · .

0 0 · · · 0

⎞⎟⎟⎟⎠ (3.33)

Let κ̃1 � κ̃2 � · · · � κ̃n be the partial indices of Aε
m. It is not difficult to check

that for sufficiently small ε for the matrix Aε
m(t) we will have

κ̃s = κs − 1.

It follows from (3.33) that

aε
m = Y+A

ε
mY

−1
− = am + ε(t− c)Y+qY

−1
−

and hence
aε

m(c± 0) = am(c± 0),

sup |aε
m − am| → 0, when ε→ 0.

The sequence aεm
m (t) (εm → 0) converges to the matrix a(t) with respect to the

above mentioned norm; therefore the condition κ1 − κn � 1 is not only sufficient
but also necessary condition for the partial indices to be stable.

17.4 Systems of singular Integral equations

Consider first the so called characteristic system of singular integral equations
n∑

β=1

[
Aαβ(t0)ϕβ(to) +

Bαβ(t0)
πi

∫
Γ

ϕβ(t)dt
t− t0

]
= fα(t0), α = 1, · · · , n, (4.1)

where Aαβ , Bαβ are given piecewise-continuous functions on Γ, fα are the given
functions on Γ of the class Lp(Γ, ρ) We look for the solution of the system (4.1) in
the class Lp(Γ, ρ).
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Introducing the examined matrices and vectors

A = (Aαβ), B = (Bαβ), ϕ = (ϕ1, · · · , ϕn), f = (f1, · · · , fn).

we may rewrite (4.1) in the form

K0ϕ ≡ A(t0)ϕ(t0) +
B(t0)
πi

∫
ϕ(t)
t− t0

dt = f(t0). (4.2)

Let ϕ be a solution of the equation (4.2). Denote by

Φ(z) =
1

2πi

∫
ϕ(t)
t− z

dt. (4.3)

We have

ϕ(t) = Φ+(t) − Φ−(t),
1
πi

∫
Γ

ϕ(t)dt
t− t0

= Φ+(t0) + Φ−(t0). (4.4)

If we substitute these values in the equation (4.2) we get

S(t)Φ+(t) = D(t)Φ−(t) + f(t), (4.5)

where S = A+B, D = A−B.

Let
inf|det S(t)| > 0, inf|detD(t)| > 0, t ∈ Γ. (4.6)

Then we may rewrite (4.5) in the following form

Φ+(t) = a(t)Φ−(t) + b(t), (4.7)

where a = S−1D, b = S−1f.

Therefore the equation (4.2) is reduced to the boundary problem (4.7): to every
solution of (4.2) of the class Lp(Γ, ρ) corresponds the solution of the problem (4.3)
of L±

p,0(Γ, ρ) by the formula (4.3), and to every such solution of (4.7) corresponds
the solution of the equation (4.2) of the class Lp(Γ, ρ) by the formula (4.4).

This connection between the equations and boundary problem gives us the
possibility to establish the following proposition (see [136], [108]).

Theorem 17.4.1 Let the conditions (4.6), (3.18) be fulfilled. For the equation
(4.2) to be solvable in the class Lp(Γ, ρ) it is necessary and sufficient that∫

Γ

f(t)ψ(t)dt = 0, (4.8)

where ψ is an arbitrary solution of the class Lq(Γ, ρ1−q) of the adjoint homogeneous
equation

K0′ψ = A′(t0)ψ(t0) − 1
πi

∫
Γ

B′(t)ψ(t)
t− t0

dt = 0. (4.9)
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In case when the conditions (4.8) are fulfilled all solutions of the equation (4.2)
of the class Lp(Γ, ρ) are given by the formula

ϕ(t0) = A∗(t0)f(t0) − B∗(t0)Z(t0)
πi

∫
L

[Z(t)]−1f(t)
t− t0

dt+B∗(t0)Z(t0)P (t0),

A∗(t0) =
1
2
[S−1(t) +D−1(t)], B∗(t) = −1

2
[S−1(t) −D−1(t)],

(4.10)
Z(t0) = S(t)χ+(t) = D(t)χ−(t)

χ(z) is a canonical matrix of the class E±
p (Γ, ρ) for the matrix a(t) = S−1D,P (t)

is a vector
P (t) = (Pκ1−1, · · · , Pκn−1),

Pα(t) denotes the arbitrary polynomials of order not more then α, Pα(t) = 0 when
α < 0.

The difference between the number l linearly independent solutions of the ho-
mogeneous equation K0ϕ = 0(in Lp(Γ, ρ)) and the number l′ linearly independent
solutions of the adjoint homogeneous equation K0′ψ = 0 (in Lq(Γ, ρ1−q)) is equal
to the index of the matrix a = S−1D of the class E±

p (Γ, ρ) :

l − l′ = κ.

Let us consider the equation of more general form

Kϕ = f, (4.11)

where Kϕ = K0ϕ + kϕ, kϕ ≡
∫

Γ

h(t0, t)
|t− t0|αϕ(t)dt, 0 � α < 1, h(t0, t) is a

measurable bounded matrix.
kϕ is a completely continuous operator in any space Lp(Γ, ρ) [79]; basing on the

well-known theorems of functional analysis (see for example [105]), we obtain that
the formulated above theorem 17.4.1 is valid also for the equation (4.10) substitut-
ing the operators K0ϕ and K0′ψ′ by the operators Kϕ and K ′ψ correspondingly.
K ′ψ = K0′ψ + k′ψ,

k′ψ ≡
∫

Γ

h′(t, t0)
|t− t0|αψ(t)dt.

The equation of the form

A1(t0)ϕ(t0) +
s∑

k=1

Bk(t0)
πi

∫
Γ

Dk(t)ϕ(t)
t− t0

dt+
∫

Γ

K1(t0, t)ϕ(t)dt = f(t0) (4.12)

is reducing to the equation of the form (4.9); thus we may obtain for this equation
the theorem analogous to the theorem 17.4.1.
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The equation (4.10) is equivalent to the following equation (see [136], §27):

A(t0)Φ(t0) +
B(t0)
πi

∫
Γ

Φ(t)dt
t− t0

+
∫

Γ

K(t0, t)Φ(t)dt = F (t0), (4.13)

where A,B,K are the block matrices

A =

⎛⎜⎜⎜⎝
A1δ1 0 · · · 0
δ1 δ2 · · · 0
· · · · · · · · · ··
δ1 0 · · · δs

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
B1 B2 · · · Bs

0 0 · · · 0
· · · · · · · · · ··
0 0 · · · 0

⎞⎟⎟⎟⎠ ,

K(t0, t) =

⎛⎜⎜⎜⎝
K1(t0, t)δ1(t) 0 · · · 0

0 0 · · · 0
· · · · · · · · · · · · · · · ··

0 0 · · · 0

⎞⎟⎟⎟⎠ ,

δ1 = D−1
1 , δ1 = −D−1

k , k = 2, · · · , s,
F (t) is (s× n)−dimensional vector

F (t) = (f(t), 0, · · · , 0),

Φ(t) is a desired vector. Reducing the equation (4.12) to (4.13) it is supposed that
Dk are nonsingular matrices but it is not essential; substituting in case of necessity
the matrices Dk(t) on the matrices Dk + cI and −cI (c is sufficiently large with
respect to the modulus constant) and the number s on 2s′ we obtain the equation
of the form (4.11) for which corresponding condition is fulfilled.

In applications it may occur very frequently the following singular integral equa-
tion of the form

K1ϕ+K2ϕ = f, (4.14)

where
Ksϕ ≡ As(t0)ϕ(t0) +

Bs(t0)
πi

∫
Γ

ϕ(t)dt
t− t0

+
∫

Γ

hs(t0, t)
|t− t0|αϕ(t)dt.

As, Bs(s = 1, 2) are given piecewise-continuous quadratic matrices of order n,
hs(t0, t) are measurable bounded matrices, f(t) = (f1, · · · , fn) is given vector of
the class Lp(Γ, ρ), Γ ∈ H1

µ.

We may reduce the equation (4.12) also to the equation of the form (4.10); the
role of the matrix S and D in case of the equation (4.12) play the following block
matrices (

A1 +B1 A2 −B2

A2 +B2 A1 −B1

)
,

(
A1 −B1 A2 +B2

A2 −B2 A1 +B1

)
.

Remark 1 Using the properties of the solutions of the boundary problem of linear
conjugation we get the following proposition: if the coefficients and the free terms
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of the equations mentioned in this section are Hölder continuous then the solutions
of any class are also Hölder-continuous and if the coefficients and the free terms
belong to the class H0(Γ) then the solutions of any class belong to the class H∗(Γ).

Indeed, let in the equation (4.11) A(t), B(t), f(t) ∈ H(Γ), h(t0, t) ∈ H(Γ× Γ),
det(A+B) �= 0, det(A−B) �= 0, ϕ(t) ∈ Lp(Γ)(p > 1) is a solution of this equation
and ϕ(t) satisfies also the equation

K0ϕ = f0,

f0(t0) = f(t0) −
∫

Γ

h(t0), t
|t− t0|αϕ(t)dt.

The vector f0 belongs to the class Lp1(Γ), p1 > p (see [79], §8).
By virtue of the formula (4.10), as

A∗(t), B∗(t), Z(t) ∈ H(Γ),

we obtain ϕ(t) ∈ Lp1(Γ); reasoning in such a manner we may conclude that ϕ(t) ∈
L∞(Γ) and ϕ(t) ∈ H(Γ).

Let now A(t), B(t), f(t) ∈ H0(Γ) and h(t0, t) ∈ H(Γ× Γ) (the last means that
h(t0, t) belongs to the class H0 with respect to t for the fixed t0 and also with
respect to t for the fixed t0); besides, let

inf |det(A+B)| > 0, inf |det(A−B)| > 0

and the inequalities (3.18) are fulfilled. In this case A∗(t), B∗(t) ∈ H0(Γ), Z(t) ∈
H∗(Γ); reasoning as above, we obtain that the solution of the equation of the class
Lp(Γ, ρ) belongs to the class H∗(Γ).

Remark 2 It constitutes no principal difficulty to consider the cases when in sin-
gular integral equations the integration domain is a finite union of simple piecewise-
smooth curves or when in the linear conjugation problems the boundary is the same
union of the curves. Whereas, if we can construct a canonical matrix in the case
of one simple curve then me may construct a canonical matrix for the finite union
of the curves. (see [108] §129).

In fact let Γ =
⋃m

k=1Γk, a(t) be a given piecewise-continuous nonsingular matrix
on Γ and let for every separate curve Γk exists a canonical matrix of the given class.
Denote by χk(z) normal (or canonical) matrix for the problem

Φ+
k (t) = ak(t)Φ−

k , t ∈ Γk,

where
a1(t) = a(t), t ∈ Γ1,

a2(t) = [χ1]−1a(t)χ1(t), t ∈ Γ2,

· · ·
am(t) = [χ1(t) · · ·χm−1(t)]−1a(t)χ1(t) · · ·χm−1(t), t ∈ Γm.
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It is easy to be convinced that the product

χ(z) = χ1(z) · · ·χm(z)

is a normal matrix for the union of the curves Γ =
⋃m

k=1Γk.

17.5 Differentiability of solutions and singular integral equa-

tions

In researching the problems of mathematical physics with the help of singular
integral equations (or with the help of the problems of linear conjugation of the
analytic functions) sometimes it is necessary to study the problem of existence
of the derivatives of the desired solution or the behavior of the solutions in the
neighborhood of the discontinuity points of the coefficients. In the case of one
unknown function this problem is comparatively easily solved because in this case
it is possible to use the effective (explicit) solutions of singular integral equations
or the solutions of linear conjugation problems. But in the case of the systems
of the equations or linear conjugation problems for several unknown functions the
situation is rather different.

Consider the boundary value problem of linear conjugation

Φ+ = a(t)Φ−(t) + b(t). (5.1)

The boundary condition should be fulfilled across the simple smooth curve Γ; a(t)
is a given nonsingular quadratic matrix of order n, b(t) is a given (m × l)-matrix,
a(t), b(t) ∈ Hµ(Γ),Φ(z) is a desired piecewise-holomorphic matrix , it is continu-
ously extendable on Γ from the domains D+, D− (D+ is a finite domain bounded
by Γ, D− is an exterior domain).

The solution of the problem (5.1) belongs to the classes Hµ(D±) for µ < 1
and to the classes H1−ε(D±) for µ = 1, ε is an arbitrary small positive number
(see.[108], §133); it is clear that when Φ(z) has the pole in the point z = ∞ then

Φ(z) − P (z) ∈ Hµ(D−);

where the polynomial matrix P(z) is a principal part of Φ(z) at the point z = ∞.
Let now a(t), b(t) ∈ Hs

µ(Γ), s � 1.
Choose the rational matrix r(z) such that∥∥∥∥dka(t)

dtk
− dkr(t)

dtk

∥∥∥∥
Hν

� ε, k = 0, · · · , s, ν < µ.

Consider the sequence of piecewise-holomorphic matrices

ϕm+1(z) =
1

2πi

∫
Γ

a0ϕ
−
m(t)

t− z
dt+

1
2πi

∫
Γ

b(t)dt
t− z

, a0 = ar−1 − I, ϕ−
0 (t) = 0. (5.2)
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For sufficiently small ε the boundary values ϕ+
m(t), ϕ−

m(t) are converging with
respect to the norm of the space H0(Γ) to the boundary values of piecewise-
holomorphic matrix ϕ(z) which satisfies the boundary condition

ϕt = a(t)r−1(t)ϕ−(t) + b(t).

If we differentiate (5.1), we get

ϕ′
m+1 =

1
2πi

∫
Γ

a0(t)ϕ
′−
m (t) + a′0(t)ϕ−

m(t)
t− z

dt+
1

2πi

∫
Γ

b′(t)
t− z

dt. (5.3)

From the equality (5.3) we conclude that the boundary values ϕ′
m are converging

to the boundary values of the matrix ϕ′(z) with respect to the norm of the space
Hν(Γ); continuing this argument we get that the boundary values of the derivatives
ϕ

(s)
m (z) are also converging to the boundary values ϕ(s)(z). The boundary values

of the matrix

Φ(z) =
{
ϕ(z), z ∈ D+,

r−1(z)ϕ(z), z ∈ D−,

are satisfying the boundary condition (5.1).
The similar argumentation implies, that for an arbitrary solution Φ(z) of the

problem (5.1) the following inclusions:

Φ(z) ∈ Hs
µ(D+),Φ(z) − P (z) ∈ Hs

ν(D−)

are valid. P(z) is a principal part of Φ(z) at the point z = ∞. It is easy to show
that, when µ < 1 in these inclusions we may take ν = µ.

Let now there exist the derivatives das/dts, dsb/dts, satisfying the condition
H(µ) on the open arc σ ⊂ Γ; then for an arbitrary solution of the problem (5.1)
we get

dsΦ±(t)
dts

∈ H(σ).

Take some arc c1c2 ⊂ σ and construct the rational matrix R(z), having the
properties:

detR(t) �= 0 on Γ; R(cj)a(cj) = I, j = 1, 2.

dk

dtk
[R(t)a(t)] = 0 when t = c1, t = c2, k = 1, · · · , s.

Let

a1(t) =
{
R(t)a(t), t ∈ c1c2,

I, t ∈ Γ\c1c2.
It is evident that deta1(t) �= 0, a1(t) ∈ Hs

µΓ.
By virtue of the just proved proposition, dsχ±/dts ∈ H(Γ) (χ1(z) is a canonical

matrix of the matrix a1(t)). Consider the matrix

a2(t) = [χ+
1 (t)]−1R(t)a(t)χ−

1 (t);
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it is easy to see that a1(t) = I when t ∈ c1c2.

Let χ2(z) be a canonical matrix of the matrix a2(t):

χ+
2 (t) = a2(t)χ−

2 (t) (5.4)

when t ∈ c1c2, χ+
2 (t) = χ−

2 (t) and χ2(z) is a holomorphic matrix in the neighbor-
hood of the arc c1c2.

We may rewrite the equality (5.4) in the following form

R−1(t)χ+
1 (t)χ+

2 (t) = a(t)χ−
1 (t)χ−

2 (t).

Hence the matrix

X(z) =

⎧⎨⎩ R−1(z)χ1(z)χ2(z)R1(z), z ∈ D+,

χ1(z)χ2(z)R1(z), z ∈ D−,
(5.5)

where R1(z) is the rational matrix chosen in the corresponding manner, is a canon-
ical matrix of the matrix a(t).

If follows from the formulas (5.4) that

dsχ± (t)/dts ∈ H(Γ).

Consider now the problem (5.1) under the following assumptions a(t), b(t) ∈
H0(Γ, c1, · · · , cr) and on the closed arcs ckck+1 the matrices a(t), b(t) ∈ Hs

µ (a(ck) =
a(ck + 0), a(ck+1) = a(ck+1 − 0), b(ck) = b(ck + 0), b(ck+1) = b(ck+1 − 0)).

It is easy to prove, that a(t) may be represented as the following (see 17.3):

a(t) = R1(t)Λ(t)h(t),

R1(t),Λ(t), h(t) are the nonsingular matrices, R1 is a rational matrix, h(t) ∈
Hs

µ,Λ(t) is a lower triangular matrix, Λ(t) belongs to the class C∞ on the closed
arcs ckck+1.

Construct the rational matrix R2, satisfying the conditions

R2(ck) = h(ck), R′
2(ck) = h′(ck), · · · , R(s)

2 (ck) = h(s)(ck),

‖R2 − h‖e � ε, · · · , ‖R(s)
2 − h(s)‖e � ε.

For a sufficiently small ε, detR(t) �= 0, t ∈ Γ.
Construct the sequence of the matrix ϕm(z) by the formula

ϕm+1(z) =
χ(z)
2πi

∫
Γ

[χ+(t)]−1g(t)ϕ−
m(t)

t− z
dt+

χ(z)
2πi

∫
Γ

[χ+(t)]−1b0(t)
t− z

dt. (5.6)
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where χ(z) is a canonical matrix of the matrix Λ(t) of the class E±
p (Γ) (p is a

sufficiently large number),

b0(t) = R−1
1 (t)b(t), g(t) = Λ(t)[h(t) −R2(t)]R−1

2 (t),

ϕ−
0 (t) = 0.

It is not difficult to see that the norms

‖g‖C, ‖g′‖C , · · · , ‖g(s)(t)|C
are the values of order ε; besides

g(ck) = g′(ck) = · · · = g(s)(ck) = 0.

From the equality (5.5) we can see that the sequences ϕ+
m(t), ϕ−

m(t) for the
sufficiently small ε are converging to the boundary values of the matrix ϕ(z) ∈
E±

p (Γ) under the norm of the space Lp(Γ) and the angular boundary values of
ϕ(z) are satisfying the relation

ϕ+(t) = Λ(t)h(t)R−
2 (t)ϕ−(t) +R−1

1 (t)b(t) (5.7)

almost everywhere on Γ.
Based on the Subsection 17.3.1, we may assert that ϕ+(t), ϕ−(t) are the Hölder-

continuous functions on every arc which is not containing the discontinuity points
ck. But in the case, mentioned below one may assume that ϕ+(t), ϕ−(t) ∈ H(Γ).

Let λkj (k = 1, · · · , r; j = 1, · · · , n) be the roots of the equation

det[a(ck − 0) − λa(ck + 0)] = 0.

Assume that among the numbers

τkj = Re
1

2πi
lnλkj ,

we have no integers. While constructing the canonical matrix χ(z) of the class
E±

p (Γ), corresponding a(t), the numbers

τkj ∈
(
−1
p
,
p− 1
p

)
;

if p is sufficiently large, then τkj > 0. Therefore the sequences ϕ+
m(t), ϕ−

m(t) will
converge with respect to the norm of the space Hδ(Γ), if δ is a sufficiently small
positive number; thus,

ϕ(z) ∈ Hδ(D+), ϕ(z) ∈ Hδ(D−).

The case when some of the numbers τkj = 0, reduces to the case considered
above, if we multiply the matrix by the piecewise-continuous function with the
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discontinuity points c1, · · · , cr chosen in the corresponding manner. That is why
in the general case we have

ϕ+(t), ϕ−(t) ∈ H∗
ε (Γ).

Consider now the case when s � 1.
From the formulas mentioned in Subsection 17.3.3, it is easy to see that for the

sufficiently large p for the arbitrary matrix χ(z) we get:

Π(t)
dχ±(t)
dt

∈ H∗
ε (Γ), Π(z) =

r∏
k=1

(z − zk).

Based on this inclusion we obtain the following formula:

χ′(z) =
χ(z)
2πi

∫
Γ

[χ+(t)]−1Λ1(t)χ−(t)
t− z

dt+
χ(z)
Π(z)

P (z), (5.8)

where P (z) is some polynomial matrix, Λ1(t) = dΛ(t)/dt; it is easy to see that
the matrix Λ(t) may be chosen in such a manner that Λ1(t) = 0 in the neighbor-
hood of the points ck (k = 1, · · · , r). After differentiating the equality (5.6) by z
and multiplying by Π(z) and using the formulas (5.8) one may conclude that for
sufficiently small ε the boundary values of the sequences

Π(t)ϕ
′+
m (t), Π(t)ϕ

′−
m (t)

are converging, with respect to the norm of Lp(Γ), to

Π(t)ϕ
′+(t), Π(t)ϕ

′−(t)

and these matrices belong to the class H∗
ε (Γ). Continuing these arguments, we

obtain analogously that

{Π(t)}k
ϕ(k)+(t), {Π(t)}k

ϕ(k)−(t) ∈ H∗
ε (Γ), k = 2, · · · , s. (5.9)

If for some nonsingular point ck, τkj > 0 (j = 1, · · · , n), then

{Π(t)}s−1 d
sϕ±(t)
dts

∈ H∗(γk), (5.10)

where γk is an arc containing from the points of discontinuity only the point ck.
From the formula (5.7) one can see, that the matrix

Φ(z) =

⎧⎨⎩ R1(z)ϕ(z), z ∈ D+,

R2(z)ϕ(z), z ∈ D−

is a piecewise-meromorphic solution of the problem (5.1) i.e., is a solution which
may have only finite number of the poles (different from the point z = ∞).
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As it was mentioned above, from such a solution it is possible to construct a
piecewise-holomorphic solution. Consequently the relations (5.9), (5.10) are valid
for an arbitrary solution of the class E±

p (Γ) (p is a sufficiently large number) of the
problem (5.1).

Find the necessary and sufficient conditions of the existence of a piecewise-
holomorphic solution φ of the problem (5.1), vanishing at infinity with the deriva-
tives almost bounded up to s order at the points of discontinuity cj(j = 1, · · · , r)
of the matrices a(t) and b(t), i.e., φ(z) satisfies the condition

lim
z→cj

|z − cj |εΦ(s)(z) = 0, j = 1, · · · , r,

for any ε > 0. For the simplicity we’ll assume that ε = 1.
Together with the problem (5.1) we consider the problem of linear conjugation

Ψ+(t) = A(t)Ψ−(t) + F (t), (5.11)

where A(t) is a block matrix, A = (Aik), i, k = 1, · · · , s+ 1,

Aik =
(
i −1
k −1

)
di−ka

dti−k
, k � i, Aik = 0, k > i,

F (t) is a block vector, F = (a, da/dt, · · · , dsa/dt(s)), Ψ(z) is a desired block vector,
Ψ(z) = (Ψ1, · · · ,Ψs+1).

For the formulated problem to be solvable the fulfillment of the following con-
ditions is necessary and sufficient

a) the problem (5.11) has the vanishing at infinity solution Ψ(z), which is almost
bounded in the neighborhoods of the discontinuity points ck;

b) Ψ(z) has the property

dΨk(z)
dz

= Ψk+1(z), k = 1, · · · , s.

Note that the singular (nonsingular) points of the problem (5.1) are the singular
(nonsingular) points of the problem (5.11); besides, if κk (k = 1, · · · , n) and ηk

(k = 1, · · · , n(s + 1)) are the partial indices of some class of the problems (4.14)
and (5.11) respectively then

κ1 = ηk (k = 1, · · · , s+ 1), κ2 = ηk (k = s+ 2, · · · , 2s+ 2),

κn = ηk (k = n(s+ 1) − n, · · · , n(s+ 1)).

The conditions a) are expressed in the following form [136], §19∫
Γ

q(t)[χ+(t)]−1F (t)dt = 0, (5.12)
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where χ(z) is a canonical matrix of the problem (5.11), q(t)is a polynomial vector
of the form q = (q1, · · · , qN ), N = n(s+ 1), qk(z) is an arbitrary polynomial of the
order - ηk − 1(k = 1, · · · , N), ηk are the partial indices of the problem (5.11) of the
considered class.

Change the conditions b) by the conditions

dj+1Ψk

dzj+1
0

=
dνΨk+1

dzν
0

, k = 1, · · · , s; j = 0, · · · ,M, (5.13)

where M is some natural number, z0 is a fixed point, z0 �∈ Γ.
This is weakening the conditions b). Show that if M is sufficiently large num-

ber then the conditions (5.12), (5.13) are sufficient (and therefore necessary and
sufficient) for the existence of the desired solution.

Let the conditions (5.12) be fulfilled then the problem (5.11) has the vanishing
at infinity solution Ψ = (Ψ1, · · · ,Ψs+1).

From the boundary condition (5.11) using the differentiation we get

Ω+
k (t) = a(t)Ω−

k (t), Ωk = Ψk+1 − dΨk/dz, k = 1, · · · , s,

and hence,
Ωk(z) = [Π(z)]−1 χ(z)Pk(z), (5.14)

where Pk(z) is some polynomial vector, χ(z) is a canonical matrix of the problem
(5.1) of the class E±

p (Γ) (p is a sufficiently large number), χ(z) is almost bounded
in the neighborhoods of the points ck.

In the equality (5.14) the left hand side order is not more then (−1), that is
why the order of Pk(z) might be not more then κ1 + r− 1; therefore, if we take in
the conditions (5.13) M � κ1 + r − 1, where κ1 is the maximal among the partial
indices κk then the equality

dΨk

dz
= Ψk+1

is fulfilled.
Note also that if κ1 � −m, then the conditions (5.12) are sufficient for the

existence of the desired solution. If the partial indices κk � 0 then we haven’t
the conditions (5.12); the conditions (5.13) may be fulfilled at the expense of the
arbitrary constants entering in the general solution of the problem (5.11).

In the general case if we substitute the general solution of the problem (5.11) in
the conditions (5.13), we get the linear system of algebraic equations with respect
to the constants entering in the general solution. The necessary and sufficient
conditions for this linear system to be solvable are the following∫

Γ

F (t)Hk(t)dt = 0, k = 1, · · · , L,
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where Hk are definite linearly independent vectors (which are depending only on
the matrix a(t)).

Hence, for the problem mentioned at the beginning of this section to be solvable
it is necessary and sufficient, that∫

Γ

F (t)Qk(t)dt = 0, k = 1, · · · , L∗, (5.15)

where Qk are the linearly independent vectors which are constructed in the above
mentioned manner. When n = 1 the vectors are constructed in quadratures effec-
tively.

Note that if we have the characteristic system of singular integral equations

K0ϕ ≡ A(t0)ϕ(t0) +
B(t0)
πi

∫
Γ

ϕ(t)dx
t− t0

= f(t0), (5.16)

then reducing it to the boundary problem of the linear conjugation of the form
(5.1) we obtain the following conclusion, that for the system (5.16) to have the
solutions, derivatives of which are almost bounded at the points of discontinuity of
the coefficients up to order s inclusively, the fulfillment of the following conditions
is necessary and sufficient:∫

Γ

F (t)Sk(t)dt = 0, k = 1, · · · , δ, (5.17)

where F = (f, df/dt, · · · , dsf/dts), Sk(t) are the linear independent vectors, de-
pending only on the matrices A and B and the vector f satisfies the corresponding
differentiability conditions.

Consider now the system of singular integral equations of the general form

K0ϕ+ lϕ = f,

lϕ ≡
∫

Γ

l(t0, t)ϕ(t)dt,
(5.18)

diA/dti, diB/dti, dif/dti, ∂il/∂ti0 ∈ H0(Γ), i = 0, · · · , s.
Rewriting the system (5.17) in the following form

K0ϕ = f0, f0 = f − lϕ,

we may determine the behavior of the solution and it’s derivatives.
Reasoning as above we get that for the system (5.17) the existence of the solu-

tion derivatives of which are almost bounded up to some order in the neighborhoods
of the discontinuity points it is necessary and sufficient the fulfillment of the con-
ditions of the form (5.15), where the vectors Sk(t) are depending on A,B, l(t0, t).
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Completing the short presentation of basic aspects of the theory of linear conju-
gation problems of analytic functions and one-dimensional singular integral equa-
tions note that at present there are numerous published researches in this the-
ory and its applications in the case of two-dimensional problems of mathematical
physics (see for example the following monographs [108], [134], [137], [45], [136],
[72], [17], [18], [53], [35], [105], [119], [139], [32], [88]).

In this chapter the papers of the author [93], [96], [97] and also the work [101]
were used.



Chapter 18

Linear Conjugation with Displacement for

Analytic Functions

by Giorgi F. Manjavidze

18.1 Introduction and auxiliary propositions

Let Γ1 and Γ2 be simple closed curves on the plane of the complex variable z =
x+iy.Denote byD+

k (D−
k ) the domain situated inside (outside) of the curve Γk (k =

1, 2).
Let

ω+[α(t)] = ω−(t), t ∈ Γ1, (1.1)

where α(t) is a continuous function transferring the curve Γ1 onto Γ2 in one-to-one
manner keeping the orientation, ω−(z) = ω−

0 (z)+Az, A = const �= 0, the function
ω−

0 (z) is holomorphic in D−
1 and is continuous in the closure D̄−

1 , the function
ω+(z) is holomorphic in D+

2 and is continuous in the closure D̄+
2 ; the set of points

of the curve γ : z = ω−(t), t ∈ Γ1 (or the curve z = ω+(t), t ∈ Γ2) has no (inner)
points.

Under these considerations the following statement holds.

Lemma 18.1.1 The functions ω+(z) and ω−(z) are schlicht in D+
2 and in D−

1

respectively.

Proof Denote by n+
a (n−

a ) the number of a-points of the functions ω+(z) (ω−(z))
in the domain D+

2 (D−
1 ) and let a �∈ γ. From the boundary condition (1.1) we have

[arg (ω−(t) − a]Γ1 = [arg (ω+(α(t) − a)]Γ1 = [arg (ω+(t)) − a]Γ2 . (1.2)

If follows from this equality that

1 − n−
a = n+

a (1.3)

and therefore

n+
a = 1, n−

a = 0 or n+
a = 0, n−

a = 1.
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Let now ω+(z1) = ω(z2) = c, z1 �= z2, z1, z2 ∈ D+
2 . then it is evident1 that

c ∈ γ. Take in D+
2 disjoint (non-intersecting) vicinities uk of the points zk, k =

1, 2, the domains ω+(uk) which are containing the point c and the intersection
M = ω+(u1) ∩ ω+(u2) are not empty. It is easy to see that it is possible to find
the point c1 ∈ M such that c1 �∈ γ. The value c1 is assumed by the function
ω+(z) at least at two points, that is impossible. Hence, ω+(z) is schlicht in D+

2

and analogously ω−(z) is schlicht in D−
1 .

Assume that ω+(z2) = ω−(z1) = c, z1 ∈ D−
1 , z2 ∈ D+

2 . Consider disjoint
neighborhoods uk of the point zk and find a point b ∈ w+(u2)∩ ω+(u1), c �∈ γ. We
get

n+
b � 1, n−

b � 1

and it is impossible. The domains δ2 = ω+(D+
2 ) and δ1 = ω−(D−

1 ) are not inter-
secting.

Let c ∈ γ. It is evident that c ∈ δ2∩δ1 because of c = ω−(t1) = ω+(t2), tk ∈ Γk.
Now show that c ∈ Frδ2∩Frδ1 = Γ. Indeed assume c ∈ δ2 and consider some vicinity
u(c) ∈ δ2. Take the sequence zn ∈ D−

1 , zn → t1 then ω−(zn) → ω−(t1) = c. For
large n, ω−(zn) ∈ u(c) and consequently the domains δ2 and δ1 are intersecting.
Obtained contradiction proves that c �∈ δ2, analogously c �∈ δ1.

Let d ∈ Γ, it is evident that d ∈ γ. Therefore the set of the points of the curve
γ coincides with the intersection of the boundaries of the domains δ1 and δ2.

Take an arbitrary point c ∈ Γ. Then one can find the point t1 ∈ Γ1, such that

c = ω−(t1) = ω+(t2), t2 = α(t1) ∈ Γ2.

The point t1(t2) is accessible, from the domain D−
1 (D+

2 ), because Γ1(Γ2) is a
simple closed curve. Take the point z1(z2) in D−

1 (D+
2 ) and connect it with the

point t1(t2) by the Jordan curve γ1(γ2), lying entirely in the domain D−
1 (D+

2 )
except the end point t1(t2). It is evident, that z = ω−(t), t ∈ γ1[z = ω+(t), t ∈ γ2]
will be a Jordan arc, lying in γ1(γ2) and ending in c. Point c is accessible form the
both domains δ1 and δ2 and curve γ is a simple closed curve by virtue of Jordan
inverse theorem [82]. Therefore, ω+(z) and ω−(z) are schlicht in the closures D

+

2

and D
−
1 because the function conformally mapping a Jordan domain onto the

Jordan domain sets determines the one-to-one continuous correspondence between
the boundary points.

If in the Lemma 18.1.1 we remain all conditions except the condition A �= 0
and require A = 0 then the following statement holds:

Lemma 18.1.2 Under mentioned considerations ω+(z) = C,w−(z) = C where
C is constant.

1There exist holomorphic functions for which the mentioned set has interior points; (see [8]).
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Indeed, instead of (1.3) in considered case we shall have

n−
a = n+

a ,

i.e., n−
a = n+

2 = 0 that proves the statement.
In this chapter we often deal with the integral operator∫

Γ

k(t0, t)φ(t)dt, k(t0, t) =
α′(t)

α(t) − α′(t0)
− 1
t− t0

, (1.4)

where α(t) is a continuous function mapping smooth Jordan curve Γ in one-to-one
manner keeping the orientation onto itself or onto another smooth curve.

In case 0 �= α′(t) ∈ H(Γ) the kernel of the operator (1.4) has the form

k(t0, t) =
k0(t0, t)
|t− t0|α , k0(t0, t) ∈ H(Γ × Γ), 0 � α < 1.

In case 0 �= α′(t) ∈ C(Γ) the operator is a completely continuous operator in the
space Lp(Γ, ρ), ρ > 1, ρ(t) =

∏m
k=1 |t − tk|νk , tk ∈ Γ, −1 < νk < p − 1, (see [57],

[58]).

18.2 Linear conjugation with displacement in case of contin-

uous coefficients

Let Γk(k = 1, 2) be a simple smooth curve bounding finite and infinite domains
D+

k and D−
k on the plane of the complex variable z = x+ iy.

Consider the following boundary problem.
Find a vector ϕ(z) = (ϕ1, · · · , ϕn) ∈ E±

p (Γ1,Γ2) satisfying the boundary con-
dition

ϕ+[α(t)] = α(t)ϕ−(t) + b(t) (2.1)

almost everywhere on Γ; where a(t) is a given continuous non-singular quadratic
matrix of order n; b(t) = (b1, · · · , bn) is a given vector on Γ of the class Lp(Γ1), p >
1, α(t) is a function mapping Γ1 onto the Γ2 in one-to-one manner keeping the ori-
entation; α(t) has non-zero continuous derivative α′(t). We call a quadratic matrix
of order n the canonical matrix of the boundary problem (2.1), if the following
properties hold:

1) χ(z), χ−1(z) ∈ E±
∞(Γ1,Γ2),

2) satisfies the homogeneous boundary condition

χ+[α(t)] = χ−(t), t ∈ Γ1;

3) has a normal form at infinity along the columns.
We call the orders at infinity of the columns of the canonical matrix taken with

opposite sign by the partial indices and the sum of the partial indices by the index
(cf. 19.1).
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It is easy to see that if the boundary problem (2.5) is solvable in E±
p,0(Γ1,Γ2)

then the solution admits the following representation (cf. [136]):

ϕ(z) = − 1
2πi

∫
Γ1

µ(t)dt
t− z

, z ∈ D−
1 , µ(t) ∈ Lp(Γ1),

ϕ(z) =
1

2πi

∫
Γ2

α[β(t)]µ[β(t)] + b[β(t)]
t− z

dt, z ∈ D+
2 ,

(2.2)

where β(t) is an inverse function to α(t).
From the boundary condition (2.5) we obtain that the vector µ(t) will satisfy

the following equation

K(a)µ ≡ 1
πi

∫
Γ1

a(t) + a(t0)
t− t0

µ(t)dt+M(a)µ = b̃(t0), t0 ∈ Γ1.

M(a)µ ≡ 1
πi

∫
Γ1

k(t0, t)a(t)µ(t)dt,

b̃(t0) = lb = b(t0) − 1
πi

∫
Γ1

b(t)dt
t− t0

−
∫

Γ1

k(t0, t)b(t)dt.

(2.3)

The operator M(a) is a completely continuous linear operator in Lp(Γ, ρ), l is
a linear bounded operator in Lp(Γ, ρ).

The solvability conditions of the problem (2.5) in Lp(Γ1) have the form∫
Γ1

b̃(t)v(t)dt = 0, (2.4)

where v(t) ∈ Lq(Γ1)(q = p/p− 1) is an arbitrary solution of adjoint homogeneous
equation

K ′(a)v ≡ − 1
πi

∫
Γ1

a′(t) + a′(t0)
t− t0

v(t)dt+
a′(t0)
πi

∫
Γ1

k′(t, t0)v(t)dt = 0. (2.5)

The condition (2.8) we may rewrite in the following form∫
Γ1

b(t)λ(t)dt = 0;

λ(t) = v(t) +
a′(t)
πi

∫
Γ1

v(t1)dt1
α(t1) − α(t)

.

(2.6)

The condition (2.6) is equivalent to the condition∫
Γ2

b[β(t)]ψ+(t)dt = 0, (2.7)

where ψ(z) is an arbitrary solution of the class E±
q,0(Γ1,Γ2) of the homogeneous

problem
α′(t)ψ+[α(t)] = [a′(t)]−1ψ−(t), t ∈ Γ1. (2.8)
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Consider the boundary problem (2.5) for a(t) = I (I is an unit matrix). In this
case the problem (2.12) takes the form

α′(t)ψ+[α(t)] = ψ−(t), t ∈ Γ1. (2.9)

Let us show that the problem (2.13) has the only trivial solution in any class
E±

τ,0(Γ1,Γ2).
It is sufficient to consider the case n = 1. Denote by F+(z) and F−(z) the

primitive functions of the functions ψ+(z) and ψ−(z) in the domains D+
2 and

D−
1 respectively (by virtue of the equality

∫
Γ1

ψ−(t)dt = 0 the primitive F−(z)

is singlevalued in D−
1 ). These primitives are continuous in closed domains and

absolutely continuous on Γ2 and Γ1 with respect to the arc [55], [118].
From (2.9) we have

F+[α−(t)] = F−(t), t ∈ Γ1.

From the last equality by the lemma 18.2.2 we obtain that F (z) = const and
ψ(z) = 0. Consequently the boundary problem (1.1) for a(t) = I is solvable for a
certain vector b(t) ∈ Lp(Γ1)(p > 1) in E±

p,0(Γ1,Γ2).
Now show that the equation (2.1) in case a = 1 has the only trivial solution in

Lp(Γ1)(p > 1). Let v ∈ Lp(Γ1) be a solution of this equation.
Consider the vector

N(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

2πi

∫
Γ1

v(t)dt
t− z

, z ∈ D−
1 .

1
2πi

∫
Γ2

β(t)v[β(t)]dt
t− z

, z ∈ D+
2 .

(2.10)

From (2.10) we have

α′(t)N+[α(t)] = N−(t), t ∈ Γ1, N(z) ≡ 0.

Therefore, there exists the vector q(z) ∈ E±
p,0(Γ1,Γ2) such, that

v(t) = q+(t), t ∈ Γ1, β′(t)ψ[β(t)] = q−(t), t ∈ Γ2.

It follows from the last relations, that

β′(t)f+[β(t)] = f−(t), t ∈ Γ2,

f(z) ≡ 0, v(t) ≡ 0.

Remarking that the index of the operator K(I) is equal to zero for any space
Lp(Γ1), (p > 1), we get, that the operators K(I) and K ′(I) are invertible in space
Lp(Γ1) and also in every space Lp(Γ.ρ).

So we get the following proposition
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Theorem 18.2.1 The boundary problems

ϕ+[α(t)] = ϕ−(t) + b(t), ϕ+[α(t)] =
1

α′(t)
ϕ−(t) + b(t), t ∈ Γ1

have the solution (unique) in Ep,0(Γ1,Γ2) for every b(t) ∈ Lp(Γ1), p > 1.

Remark The solution of the boundary problem

ϕ+[α(t)] = ϕ−(t) + b(t), t ∈ Γ1.

may be constructed also by the following way (see. [81], [84]).

We look for the solution in the class E±
p,0(Γ1,Γ2, ρ) of the following form:

ϕ(z) =
1

2πi

∫
Γ2

µ[β(t)]dt
t− z

, z ∈ D+
2 ,

ϕ(z) =
1

2πi

∫
Γ1

µ(t)dt
t− z

, z ∈ D−
1 .

(2.11)

We obtain the Fredholm integral equation with respect to the function µ(t) ∈
Lp(Γ1, ρ)

Rµ ≡ µ(t0) =
1

2πi

∫
Γ1

K(t0, t)µ(t)dt = b(t0).

Let us show, that the equationRµ = 0 has the only trivial solution. Let µ0(t) be
a solution of this equation; construct the function ϕ0(z) of the class E±

p,0(Γ1,Γ2, ρ)
by the formulas (2.11).

We obtain
ϕ+

0 [α(t)] = ϕ−
0 (t), t ∈ Γ1.

Therefore ϕ0(z) ≡ 0. Then from the formulas (2.15) we have µ(t) = S+(t), t ∈
Γ1, µ[β(t)] = S−(t), t ∈ Γ2, S

+(z) ∈ Eλ(D+
1 ), S−(z) ∈ Eλ(D−) . Since

S+[β(t)] = S−(t), t ∈ Γ2,

we get S = 0, µ0 = 0. Because of why the equation Rµ = b is solvable (by the only
possible way ) for any b(t) ∈ Lp(Γ, ρ) and the operator R has an inverse operator.

Substituting µ = R−1b in the formulas (2.11), we obtain

ϕ−(t) = L1b, ϕ+ = L2b.

where L1, L2 are linear bounded operators in the spaces Lp(Γ1, ρ1) and Lp(Γ2, ρ2), ρ2 =∏m
k=1 |t− α(tk)|νk respectively.
Consider the solution of the boundary problem

α′(t)ϕ+[α(t)] = ϕ−(t) + 1, t ∈ Γ1, (2.12)
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in E±
p,0(Γ1,Γ2), p > 1. Denote by ω+(z)[ω−(z)] the primitive of the function

ϕ+(z)[ϕ−(z) + 1] in D+
2 [D−

1 ].
We may choose the primitives such that

ω+[α(t)] = ω−(t), t ∈ Γ1.

ω+(z) and ω−(z) are Holder-continuous in closuresD
+

2 and D
−
1 (with an exponent

arbitrarily close to 1) and are absolutely continuous on Γ2 and Γ1 with respect to
the arc (see [55], [118]). By virtue of lemma 18.1.1, ω+(z) and ω−(z) are schlicht
in D

+

2 and D
−
1 .

If in addition we require that the derivative α′(t) satisfies the Holder-condition,
then the solution of the problem (2.16) of any class E±

p,0(Γ1,Γ2) as it is easy to see

will be Hölder-continuous in the closures D
+

2 and D
−
1 and hence the derivatives

dω+(z)/dz, dω−(z)/dz will be also Hölder-continuous in these closures.
Thus the following theorem is proved.

Theorem 18.2.2 Let Γ1,Γ2 be a simple closed smooth curves, D+
k (D−

k ) is a
domain lying inside (outside) Γk, α(t) is a function mapping Γ1 onto Γ2 in one-to-
one manner keeping the orientation, α(t) has non-zero continuous derivative α′(t).
There exists the solution of the boundary problem

ω+[α(t)] = ω−(t), t ∈ Γ1 (2.13)

having the following properties: ω+(z)(ω−(z)) is continuous and schlicht function
in D

+

2 (D
−
1 ), ω+(z) is a holomorphic function in D+

2 , ω
−(z) has the form

ω−(z) = z + ω−
0 (z),

where ω−
0 (z) is holomorphic in D−

1 , the curves ω+(Γ2) and ω−(Γ1) are simple closed
rectifiable curves, if additionally is required that α′(t) satisfies Hölder-condition,
then ω+(Γ2), ω−(Γ1) will be smooth curves.

The following proposition holds.

Lemma 18.2.1 Let p be any number more then 2.
It can be found such ε(p) > 0 that if

‖a− I‖c < ε,

then the boundary problem

ϕ+[α(t)] = a(t)ϕ−(t)

has the solution χ(z) ∈ E±
p (Γ1,Γ2) with the property χ−1(z) ∈ E±

p (Γ1,Γ2).
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Take ε small as much as the operators K(a) and K(a
′−1) have the inverse

operators in Lp(Γ1) and using them we construct the solutions of the boundary
problems

ϕ+[α(t)] = a(t)ϕ−(t) + a(t),
ψ+[α(t)] = [a′(t)]−1ψ−(t) + [a′(t)]−1, t ∈ Γ1

(2.14)

in the class E±
p (Γ1,Γ2).

From the equalities (2.18) we have

ψ′(z)ϕ(z) = I, z ∈ D+
2 , [ψ′(z) + I][ϕ′(z) + I], z ∈ (D1).

These equalities show that the desired solution exists.
By virtue of the last lemma one can prove the following proposition.

Lemma 18.2.2 All solutions of the problem

ϕ+[α(t)] = a(t)ϕ−(t) (2.15)

of the class E±
λ (Γ1,Γ2), where λ is an arbitrary number more then 1, a(t) is an

arbitrary continuous non-singular matrix, belongs to the class E±
∞(Γ1,Γ2).

Rewrite (2.15) in the following form

ϕ+[α(t)] = a0(t)r(t)ϕ−(t), a0 = ar−1, (2.16)

where r is a rational matrix chosen such that ‖a0−I‖c < ε(p), p > 2, p > λ/(λ−1);
ε(p) is number mentioned in Lemma 18.2.1 By this lemma there exists the matrix
χ0(z) such that

χ0(z)χ−1
0 (z) ∈ E±

p (Γ1,Γ2), χ+
0 [α(t)] = a0(t)χ−(t), t ∈ Γ1.

We may rewrite (2.20) in the following form{
χ+

0 [α(t)]
}−1

ϕ+[α(t)] = [χ0(t)]−1r(t)ϕ−(t), t ∈ Γ1

or using the function w(t), constructed above, we get{
χ+

0 [ω+
1 (τ)]

}−1
ϕ+[ω+

1 (τ)] =
{
χ−

0 [ω−
1 (τ)]

}−1
r[ω−

1 (τ)]ϕ−[ω−
1 (τ)], (2.17)

where ω+
1 and ω−

1 are the functions inverse of the functions ω+ and ω−; the equality
is valid almost everywhere along the simple closed rectifiable curve γ : r = ω(t),
t ∈ Γ1. Denote by D+ and D− the domains bounded by γ.

As w′(z) ∈ Eλ(D+
2 ) for every λ, it is easy to check, that ϕ+[ω+

1 (ζ)] ∈ Eλ−ε(D+),
where ε is an arbitrary small positive number and{

χ+
0 [ω+

1 (ξ)]
}−1

ϕ+[ω+
1 (ξ)] ∈ E1(D+). (2.18)
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We may set analogously, that{
χ−

0 [ω−
1 (ζ)]

}−1
r[ω−

1 (ζ)]ϕ−[ω−
1 (ζ)] =

ϕ−
1 (ζ)
P1(ζ)

+ P2(ζ), ξ ∈ D−, (2.19)

where ϕ−
1 (ζ) ∈ E1(D−), P1(ζ) is some polynomial having no zeros on γ, and P2(ζ)

is also a polynomial vector. From the last relations it implies that

ϕ(z) = χ0(z)R[ω(z)], z ∈ D+
2 , ϕ(z) = r(z)χ0(z)R[ω(z)], z ∈ D−

1 ,

where R(ζ) is a vector, components of which are rational functions and so ϕ(z) ∈
E±

p (Γ1,Γ2). Since we may take p as large as desired, then ϕ ∈ E±
∞(Γ1,Γ2).

By virtue of Lemmas 18.2.1 and 18.2.2 we conclude, that if the norm of the
difference a(t) − I is sufficiently small then for the boundary problem there exists
the canonical matrix.

Having established this fact we may prove the following proposition.

Theorem 18.2.3 There exists a canonical matrix for the boundary problem (2.5)
for every continuous non-singular matrix a(t).

First choose the rational matrix r(t) such that for the matrix α0(t) = a(t)r(t)
there exists a canonical matrix; denote it by χ0(z).

Then construct the matrix

χ(z) =
{
χ0(z)R[ω(z)], z ∈ D+

2 ,

r(z)χ0(z)R[ω(z)], z ∈ D−
1 ,

(2.20)

where R(ξ) is correspondingly chosen rational matrix. R[ω(z)] will liquidate the
zeros of det r(z) in D−

1 and the poles in the same domain; moreover, it will give
the normal form to χ(z) at infinity with respect to the columns; such matrix exists
[108]. The formula (2.16) gives one of the canonical matrices.

If χ(z) is one of the canonical matrices of the problem (2.5) then all canonical
matrices of this problem are given by the formula

χ(z)P [ω(z)],

where P (ζ) is a polynomial with non-zero constant determinant which is con-
structed by the special way [see [136] §5)].

The following statement holds:

Theorem 18.2.4 All solutions of the class E±
p (Γ1,Γ2) of the problem (2.5) are

given by the formula
ϕ(z) = χ(z)[ϕ0(z) + P (ω(z))], (2.21)

where χ(z) is a canonical matrix, P (z) is an arbitrary polynomial vector, ϕ0(z) is
a solution of the class E±

p−ε,0(Γ1,Γ2)(ε is a small positive number) of the boundary
problem

ϕ+
0 [α(t)] = ϕ−

0 (t) + b0(t), t ∈ Γ1,
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b0(t) =
{
χ+[α(t)]

}−1
b(t); (2.22)

the solutions vanishing at infinity are given by the same formula (2.25) in which

P (ζ) = (Pκ1−1(ζ), · · · , Pκn−1(ζ));

κ1 � · · · � κn are the partial indices of the problem (2.5), Pj(ζ) denotes an arbi-
trary polynomial of order j, Pj(ζ) = 0 if j < 0. If all partial indices are non-negative
then such solutions exist for every b(t) ∈ Lp(Γ1); if

0 > κs+1 � · · · � κn.

then the vector b(t) will satisfy the condition (2.10), which we may write in the
form ∫

Γ1

tkρ0
j(t)dt = 0, j = s+ 1, · · · , n; k = 0, · · · , |κj | − 1, (2.23)

where the vector (ρ0
1, · · · , ρ0

n) = ρ0 is a solution of the equation K(I)ρ0 = b̃0
(or ρ0 = L1b0).

Proof Let ϕ∗(z) be some solution of the homogeneous problem of the class
E±

p (Γ1,Γ2), then the vector

ϕ1(z) = χ−1(z)ϕ∗(z)

will belong to the class E±
s (Γ1,Γ2), 1 < s < p and

ϕ1[α(t)] = ϕ−
1 (t), t ∈ Γ1.

From the last equality it follows that

ϕ+
2 (τ) = ϕ−

2 (τ), τ ∈ γ,

where ϕ+
2 (ζ) = ϕ1[ω+(ζ)], ζ ∈ D+, ϕ−

2 (ζ) = ϕ2[ω−
1 (ζ)], ζ ∈ D−, ϕ2(ζ) ∈ E±

s1
(γ),

1 < s1 < p; and so
ϕ2(ζ) = P (ζ),

where P (ζ) is an arbitrary polynomial vector

ϕ∗(z) = χ(z)P [ω(z)].

Now show, that non-homogeneous boundary problem is solvable for b(t) ∈
Lp(Γ1) in the class E±

p (Γ1,Γ2).
Choose the rational matrix r(z) in such a way that ‖a0(t) − I‖c will be small

(a0(t) = a(t)r−1(t)) and consider the boundary problem

ψ+[α(t)] = a0(t)ψ−(t) + b(t), t ∈ Γ1.



554 Chapter 18 Linear Conjugation with Displacement for Analytic Functions

This problem is solvable in the class E±
p,0(Γ1,Γ2) if the above mentioned norm

is sufficiently small.
A vector of the form

ϕ̃(z) =
{
ψ(z), z ∈ D+

2 ,

r(z)ψ(z), z ∈ D−
1

satisfies the boundary condition (2.5).
Consider the following vector

ψ̃(ζ) = χ−1[ω−
1 (ζ)]r[ω−

1 (ζ)]ψ[ω−
1 (ζ)]

in the domain D− and denote by Rk(ζ) (k = 1, · · · ,m) the principal parts of this
vector for the singular points ζk (or poles) different from the point z = ∞. Then
the vector

ψ̃(ζ) +R(ζ), R(ζ) = −
m∑

k=1

Rk(ζ)

will not have poles in the domain D− (except possibly the point z = ∞); the vector

r(z)ψ(z) + χ(z)R[ω(z)]

will not have poles in D− (except possible the point z = ∞); the vector

ϕ(z) = ϕ̃(z) + χ(z)R[ω(z)] (2.24)

will be a solution of the problem (2.5) of the class E±
p (Γ1,Γ2). On the other hand

from the boundary condition (2.1) we have

ϕ0[α(t)] = ϕ0(t) + b0(t),

where
ϕ0(z) = χ(z)ϕ(z),

b0(t) =
{
χ+[α(t)]

}−1
b−(t) ∈ Lp1(Γ1); 1 < p1 < p.

It is evident, that the vector

ϕ∗(z) = χ(z)ϕ0(z) (2.25)

is a solution of the problem (2.1) of the class E±
p2

(Γ1,Γ2), 1 < p2 < p.
The difference between the vector defined by the formulas (2.24) and (2.25)

ϕ∗(z) − ϕ(z)

is a vector of the class E±
p (Γ1,Γ2) and satisfies the homogeneous boundary con-

dition; so ϕ∗(z) = ϕ(z) + χ(z)Q(ω(z)), Q is a polynomial vector, the vector
ϕ∗(z) ∈ E±

p (Γ1,Γ2) and the formula (2.21) gives us the general solution of the
problem (2.5) of the class E±

p (Γ1,Γ2). Other statements of the theorem we may
obtain from the formulas (2.21) by the well-known way (see [136] §5)

The following lemma we need in the sequel.
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Lemma 18.2.3 Let ck ∈ Γk, k = 1, 2. For the function ω(z) the following relations
are valid

ω+(z) − ω+(c2) = (z − c2)Ω+(z), z ∈ D+
2 ,

ω−(z) − ω−(c1) = (z − c1)Ω−(z), z ∈ D−
1 ,

Ω+(z), 1/Ω+(z) ∈ E∞(D+
2 ), Ω−(z), 1/Ω−(z) ∈ E∞(D−

1 ).

(2.26)

Proof From the boundary condition

ω+[α(t)] = ω−(t), (2.27)

we have
Ω+[α(t)] = h(t)Ω−(t), t ∈ Γ1, (2.28)

where Ω±(z) are defined by the formula (2.30), c2 = α(c1),

h(t) =
t− c1

α(t) − α(c1)
,

h(t) is a continuous function with the index 0.
We have from (2.28), taking into account the equality Ω−(∞) = 1,

Ω(z) = χ(z), (2.29)

where χ(z) is a canonical function of the problem

χ+[α(t)] = h(t)χ−(t).

The equality (2.29) proves the validity of the lemma.

18.3 Linear conjugation with displacement in case of piece-

wise continuous coefficients

In this section preserving the above mentioned notations, we consider the problem

ϕ+[α(t)] = a(t)ϕ−(t) + b(t), t ∈ Γ1, (3.1)

but we shall assume that a(t) is a piecewise-continuous matrix

inf |det a(t)| > 0,

b(t) ∈ Lp(Γ1,Γ2, ρ) p > 1, ρ(t) =
∏m

k=1|t− t0|νk , tk ∈ Γ1, −1 < νk < p− 1, the set
{tk} contains all points of discontinuity of the matrix a(t).

Begin with the consideration of the case n = 1 and first consider the homoge-
neous problem

ϕ+[α(t)] = a(t)ϕ−(t), a(t) ∈ C0(Γ1, c1, · · · , cm). (3.2)
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Make the substitution

ϕ(z) =
m∏

k=1

χ1
n(z)Φ(z), z ∈ D2,

ϕ(z) =
m∏

k=1

χk(z)Φ(z), z ∈ D1, (3.3)

χ1
k(z) = [z − α(ck)]τk , χk(z) =

(
z − ck
z − z0

)τk

, z0 ∈ D+
1 ,

τk =
1

2πi
lnλk, λk =

a(ck − 0)
a(ck + 0)

, −1 � Reτk � 0,

χ1
k(z) is a single-valued branch, defined on the whole plane cut along the curve
lk which connects the point α(k) with the point ∞ and lies in D−

2 , χk(z) is a
singlevalued branch, defined on the whole plane, cut along the curve l′k which
connects the point z0 with the point ck and lies in D+

1 , χk(∞) = 1.
With respect to Φ(z) we obtain the following boundary condition

Φ+[α(t)] = g(t)Φ−(t), t ∈ Γ1, (3.4)

g(t) = a(t)

(
m∏

k=1

χ1
k(α(t))

)−1 m∏
k=1

χ−
k (t) = a(t)

m∏
k=1

(t− z0)−τk

m∏
k=1

(
t− ck

α(t) − α(ck)

)τk

,

g(t) is a continuous function, g(t) �= 0.
Let A(z) be a canonical function of the problem (3.4), A(z), A−1(z) ∈ E±

∞
(Γ1,Γ2).

Consider the function χ0(z) constructed by the formula (3.2)

χ0(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A(z)

m∏
k=1

χk(z), z ∈ D+
2 ,

A(z)
m∏

k=1

χk(z), z ∈ D−
1 .

It is evident, that χ−1
0 (z) ∈ E±

∞(Γ1,Γ2), χ0(z) ∈ E±
λ (Γ1,Γ2) for some λ > 1.

Any solutions of the problem (3.35) of the class E±
s (Γ1,Γ2), s > 1 has the form

ϕ(z) = χ0(z)Q[ω(z)],

where Q(z) is some polynomial. By virtue of the lemma 18.2.3 and applying the
scheme of proving the theorem 18.2.3 we obtain the theorem analogous to this
theorem.
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Theorem 18.3.1 Let µk = |Reτk|. If µkp = 1 + νk for some k then the canonical
function of the corresponding class doesn’t exist. If µkp �= 1 + νk, k = 1, · · · ,m
then the canonical function of the class E±

p (Γ1,Γ2, ρ) exists and is defined by the
formula

χ(z) = χ0(z)Q[ω(z)], (3.5)

where

Q(z) =
m∏

k=1

[z − ω−(ck)]mk ,

mk =

⎧⎪⎪⎨⎪⎪⎩
1, if µk >

1 + νk

p
,

0, if µk <
1 + νk

p
;

(3.6)

the index of the class E±
p (Γ1,Γ2, ρ) of the problem (3.2) is given by the formula

κ = indg(t) −∑m
k=1mk or by the formula

κ =
1

2πi

⎧⎪⎪⎨⎪⎪⎩arg
a(t)

m∏
k=1

(t− z0)sk

⎫⎪⎪⎬⎪⎪⎭
Γ1

, (3.7)

where sk =
1

2πi
λk, −1 < Resk � 0, if µk <

1 + νk

p
, (i.e. sk = τk), 0 � Resk < 1, if

µk >
1 + νk

p
(i.e sk = τk+1)

On the basis of the formulas (3.5), (3.6) it is easy to see that the following
proposition is valid

Lemma 18.3.1 Let χ(z) be a canonical function of some class E±
p (Γ1,Γ2, ρ).

Then the operators {χ+[α(t)]}−1b(t) and [χ−(t)]−1b(t) are the linear bounded op-
erators from the space Lp(Γ1, ρ) into the space Lr(Γ1) for some r > 1.

Consider now the non-homogeneous problem

ϕ+[α(t)] = a(t)ϕ−(t) + b(t), t ∈ Γ1, (3.8)

b(t) ∈ Lp(Γ1, ρ), ρ(t) =
m∏

k=1

|t− tk|νk

and make the substitution (3.3), subordinating Reτk by the following restriction

−1 + νk

p
< Reτk < 1 − 1 + νk

p
. (3.9)

We obtain the following problem

Φ+[α(t)] = g(t)Φ−(t) + f(t),
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f(t) = b(t)

(
m∏

k=1

χ1
kΦ(t)

)−1

= b(t)

(
a(t)

m∏
k=1

χk(t)

)−1

, (3.10)

f(t) ∈ Lp(Γ1, ρ1), ρ1 =
m∏

k=1

|t− ck|ν1
k , ν1

k = αkρ+ νk, αk = Reτk.

We look for the solution of this problem in E±
p (Γ1,Γ2, ρ).

Take the rational function R(z) such that

‖g(t) −R(t)‖C < ε,

where ε is a sufficiently small positive number.
Construct the sequence of the functions Φm(z) as follows: Φm+1(z) is a solution

of the class E±
ρ (Γ1,Γ2, ρ) of the following problem

Φ+
m+1[α(t)] − Φ−

m+1(t) = bm(t), t ∈ Γ1,

g0(t) = g(t)R−1(t) − 1, bm(t) = g0(t)Φ−
m(t) + f(t),Φ−

0 (t) = 0.

Convergence of this sequence for sufficiently small ε one can prove similarly as
the convergence of the sequence (3.21) from section 19.3 the limit function will
satisfy the boundary condition

Φ+[α(z)] = gR−1Φ−(t) + f(t).

The boundary values of the function

ϕ(z) =
{

Φ(z), z ∈ D+
2 ,

R−1(z)Φ(z), z ∈ D−,

will satisfy the boundary condition (3.10). Since the problem (3.10) has a canon-
ical function of the class E±

p (Γ1,Γ2, ρ)then it is solvable in this class for any
f(t) ∈ Lp(Γ, ρ) and the considered problem is solvable in E±

p (Γ1,Γ2, ρ) for any func-
tion b(t) ∈ Lp(Γ1, ρ). Consequently, the expressions χ−(t0)L1[(χ+(α(t)))−1b(t)],
χ−(t0)L1[(χ−1(t))−1b(t)], are the linear bounded operators in Lp(Γ, ρ).

Consider now the following problem

ϕ+[α(t)] = a(t)ϕ−(t) + b(t), t ∈ Γ1, (3.11)

where a(t) is a triangular piecewise-continuous matrix a = (aik), aik = 0 , when
i < k, inf |det a(t)| > 0, b(t) ∈ Lp(Γ1, ρ). Denote the discontinuity points of the
function aii(t), i = 1, · · · , n , by c1, · · · , cr. By µik denote the parameter of the
function aii in the point ck(k = 1, · · · , r). Assume that the inequalities

1 + νk

p
�= µk, k = 1, · · · , r, i = 1, · · · , n (3.12)
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are fulfilled.
Let us show that there exists the canonical matrix for the problem (3.11) of the

corresponding class.
It is evident that when the inequalities (3.12) are fulfilled, then every function aii

has the canonical function of the class E±
p (Γ1,Γ2, ρ); denote it by χi(λ). Consider

the triangular matrix χ(z) = (χik), i, k = 1, · · · , n;χik = 0, when i < k, χkk(z) =
χk(z) and other elements are defined by the formulas

χ−
s1 = χ−

s L1

[
fs

s−1∑
i=1

asiχ
−
i1

]
, s = 2, · · · , n,

χ−
s2 = χ−

s L1

[
fs

s−1∑
i=2

asiχ
−
i2

]
, s = 3, · · · , n,

.......

χ−
n,n−1 = χ−

nL1[fnan,n+1χ
−
n−1,n−1], fs = {χ+

s [α(t)]}−1.

(3.13)

It is clear that the constructed matrix belongs to the class E±
p (Γ1,Γ2, ρ) and

χ+[α(t)] = a(t)χ−(t), t ∈ Γ1. (3.14)

Construct now the analogous matrix χ∗(z) for the matrix [α′(t)a′(t)]−1 of the
class E±

q (Γ1,Γ2, ρ
1−q):

χ+
∗ [α(t)] = [α′(t)a′(t)]−1χ−

∗ (t), t ∈ Γ1.

We have
α′(t)χ′+

∗ [α(t)]χ+[α(t)] = χ′−
∗ (t)χ−(t). (3.15)

Integrating this equality , we get

χ0[α(t)] = χ−
0 (t), t ∈ Γ1,

where χ0(z) is a primitive for χ′
∗(z)χ(z). Therefore

χ0(z) = P [ω(z)],

where P is a polynomial matrix and

χ′
∗(z)χ(z) = ω′(z)Q[ω(z)], Q(z) = dP (z)/dz. (3.16)

From the equalities (3.15) and (3.16) we have

{ω′+[α(t)]}−1χ′+
∗ [α(t)]χ+[α(t)] = {ω′−(t)}−1χ′−

∗ (t)χ−(t) = Q[ω−(t)].

It follows from the last equality, that

det Q[ω(z)] ≡ 1
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and thus χ(z) has an inverse matrix of the class E±
q (Γ1,Γ2, ρ

1−q) and χ is a normal
matrix of the class E±

p (Γ1,Γ2, ρ) .
It is easy to see that the boundary problem (3.11) is solvable for any b(t) ∈

Lp(Γ, ρ) and that’s why the operators

χ−(t0)L{[χ+(α(t))]−1b(t)}, χ(t0)L{[χ−(t)]−1b(t)}
are the linear bounded operators in Lp(Γ, ρ).

Index of the problem (3.11) is equal to the sum of the indices of boundary
problems

ϕ+
k [α(t)] = akk(t)ϕ−

k (t), t ∈ Γ1,

i.e. κ =
∑n

k=1 κk,κk is calculated by the formula (3.9) of chapter 19.1.
Now consider the problem in general case.
Represent the matrix a(t) as in chapter 1 in the following form

a(t) = a1(t)Λ(t)a2(t),

where a1(t), a2(t) are nonsingular continuous matrices, Λ(t) is a piecewise-continuous
triangular matrix, inf |det Λ(t)| > 0.

Take the rational matrices R1(z) and R2(z) such that

|a1(t) −R1(α(t))|C � ε, |a2(t) −R2(t)|C � ε,

ε is sufficiently small positive number.
Introduce the following notations

R−1
1 (z)Φ(z) = ϕ(z), z ∈ D+

2 , R2(z)Φ(z) = ϕ(z), z ∈ D−
1 ,

R−1
1 [α(t)]b(t) = b0(t),

We obtain

ϕ+[α(t)] = Λ(t)ϕ−(t) + a0(t)ϕ−(t) + b0(t), t ∈ Γ1.

It is clear that
sup |a2(t)| < cε, c− is a constant.

Consider a sequence of matrices of the class E±
p (Γ1,Γ2, ρ), defined by the for-

mulas

ϕ+
m+1[α(t)] = Λ(t)ϕ−

m+1(t) + a0(t)ϕ−
m(t) + b0(t), t ∈ Γ1, ϕ−

0 (t) = 0,
ϕ−

m+1(t0) = χ−(t0)L1{[χ+(α(t))]−1[a0(t)ϕ−
m(t) + b0(t)]},

where χ(z) is a canonical matrix of the matrix Λ(t) of the class E±
p (Γ1,Γ2, ρ). One

can prove the convergence of the sequence ϕm(z) ; the limit matrix will satisfy the
boundary condition (cf.19.3).

ϕ+[α(t)] = R−1
1 [α(t)]a(t)R−1

2 (t)ϕ−(t) +R−1
1 (α(t))b(t),

ϕ(z) ∈ E±
p (Γ1,Γ2, ρ)
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Thus the boundary values of the matrix

Φ(z) =
{
R1(z)ϕ(z), z ∈ D+

2 ,

R−1
2 (z)ϕ(z), z ∈ D−

1

will satisfy the considered problem.
Behave similarly with the adjoint problem

Ψ+[α(t)] = [α′(t)a′(t)]−1Ψ−(t) + g(t),
g ∈ Lq(Γ1, ρ

1−q), Ψ(z) ∈ E±
q (Γ1,Γ2, q

1−ρ).

Substituting the matrix R1 and R2 by the matrices R′−1
1 and R′−1

2 , in above
arguments, we construct the solution of the problem in the following form

Ψ(z) =

{
[R′

1(z)]
−1
ψ(z), z ∈ D+,

R′
2(z)ψ(z), z ∈ D−.

Take now b = aR−1
2 χ−, g = [α′a′]R′

2[χ
′−]−1. We have

Φ+[α(t)] = a(t)[Φ−(t) +R−1
2 (t)χ−(t)],

α(t)Ψ+[α(t)] = [a′(t)]−1[Ψ−(t) +R′
2(t)(χ

′−(t))−1].

It follows from these equalities, that

α′(t)ψ′[α(t)]ϕ−(t) = [ψ′−(t) + (χ−(t))−1][ϕ−(t) + χ−(t)].

Integrating this equality we get

χ+[α(t)] = χ−(t), t ∈ Γ1, (3.17)

where χ(z) is a primitive matrix; it follows from (3.17) that

χ(z) = P [ω(z)].

Reasoning similarly as in the above Section 17.3, we establish the existence of
a canonical matrix and obtain analogously to Theorem 17.3.2.:

Theorem 18.3.2 Let a(t) be a piecewise - continuous matrix with the discontinuity
points tk(k = 1, · · · , r), inf |det a(t)| > 0 and let λkj(k = 1, · · · , r, j = 1, · · · , n) be
the roots of the equation

det [a−1(tk − 0)a(tk + 0) − I] = 0,

µkj = argλkj/2π, 0 � argλkj < 2π.

If the inequalities
1 + νk

p
�= µkj
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are valid, then there exists the canonical matrix of the problem (3.11) of the class
E±

p (Γ1,Γ2, ρ); the index of this class is calculated by the formula

κ =
1
2π

{
arg

[
r∏

k=1

(t− z0)−σkdet a(t)

]}
Γ1

,

where σk =
∑n

j=1 ρkj , ρkj = − 1
2πi

lnλkj ;

−1 < Reρkj � 0 when µkj < (1 + νk)/p,
0 � Reρkj < 1 when µkj > (1 + νk)/p.

All solutions of the class E±
p (Γ1,Γ2, ρ) of the problem (3.11) are given by the for-

mula
Φ(z) = χ(z)[ϕ0(z) + P (ω(z))], (3.18)

where P is an arbitrary polynomial vector, ϕ0(z) is a solution of the class E±
1+ε,0(Γ1,

Γ2)(ε is a sufficiently small positive number) of the problem

ϕ+
0 [α(t)] = ϕ−

0 (t) + b0(t), t ∈ Γ1, b0(t) = {χ+[α(t)]}−1b(t).

The solutions vanishing at infinity are given by the same formula (3.18) in which
P = (Pκ1−1,, · · · , Pκn−1), κ1 � · · · ,� κn are the positive indices of the problem
(3.11) of the class E±

p (Γ1,Γ2, ρ), Pj(z) is an arbitrary polynomial of order j (Pj = 0
in the case j < 0). If all partial indices are non-negative, then vanishing solutions
exist for any b(t) ∈ Lp(Γ1, ρ); if 0 > κs+1 � · · · � κn, then the vector b(t) will
satisfy the following conditions∫

Γk

tkρ0
j(t)dt = 0, k = 0, · · · , |κj | − 1, j = s+ 1, · · · , n,

where the vector (ρ0
1, · · · , ρ0

n) = ρ0 is a solution of the equation K(I)ρ0 = b̃0 of
the class Lq(Γ, ρ1−q) (or ρ0 = L1b0).

Note some properties of the solution of the problem (3.11).

Lemma 18.3.2 If l is an arc of the curve Γ not containing the discontinuity
points of a(t) and Φ(z) is a solution of homogeneous problem (3.11) of some class
E±

p (Γ1,Γ2, ρ) then
Φ−(t), Φ+[α(t)] ∈ L∞(l).

In particular, for the canonical matrix of any class

χ−(t), [χ−(t)]−1 ∈ L∞(l).
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Proof Construct the matrix a0(t) continuous and nonsingular on Γ1 which coin-
cides with the matrix a(t) on l. Let χ0(t) be a canonical matrix for a0(t). Consider
the vector χ−1

0 Φ(z) = Φ0(z). It is evident, that Φ0(z) ∈ E±
λ (Γ1,Γ2) for some λ > 1.

Then
Φ+

0 [α(t)] = [χ−
0 (t)]−1a1(t)Φ−(t), t ∈ Γ1, (3.19)

a1 = a−1
0 a, a1(t) = I, t ∈ l.

By changing of variables

τ = ω−(t) = ω+[α(t)], t = ω−
1 (τ), α(t) = ω+

1 (τ)

the equality (3.19) turns into the equality

Φ+
0 [ω+

1 (τ)] = [χ−
0 (ω−

1 (τ))]−1a1[ω−
1 (τ)]Φ−[ω−

1 (τ)], τ ∈ γ.

On the arc l0 = ω−(l) this equality has the form Φ+
0 [w+

1 (τ)] = Φ−
0 [w+

1 (τ)].
Thus

Φ+
0 [ω+

1 (τ)] = Φ−
0 [ω−

1 (τ)] = A(τ), τ ∈ l0,

A(τ) is a holomorphic vector in the vicinity of the arc l0,

Φ+
0 (α(t)) = Φ−(t) = A(ω−(t)), t ∈ l.

Consequently, Φ−
0 (t) is Hölder-continuous on the arc l. Hence the following

lemma holds

Lemma 18.3.3 If in the problem a(t), b(t) and α′(t) ∈ H(Γ), then every solution
of (3.11) is a Hölder-continuous in the closures D

+

2 and D
−
1 (except perhaps the

point z = ∞).

Proof follows from the equality Φ+[ω+
1 (τ)] = a[ω−

1 (τ)]Φ−[ω−
1 (τ)], where γ is

smooth curve.

18.4 Boundary value problems with displacement containing

complex conjugate values of the desired functions

Consider the problem which contains the complex conjugate values of the desired
vector:

Find a vector
ϕ(z) = (ϕ1, · · · , ϕn) ∈ F±

p (Γ, ρ),

satisfying the boundary condition

ϕ+[α(t)] = a(t)ϕ−(t) + b(t)ϕ−(t) + f(t), (4.1)
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on simple closed Liapunov curve Γ, where a(t), b(t) are given piecewise-continuous
(n × n)-matrices on Γ, inf |det a(t)| > 0, f(t) is a given vector, f(t) ∈ Lp(Γ, ρ),
α(t) is a function, mapping Γ onto Γ in one-to-one manner keeping the orientation

0 �= α′(t) ∈ C(Γ), ρ(t) =
r∏

k=1

|t− tk|νk , tk ∈ Γ, −1 < νk < p− 1, p > 1,

F±
p (Γ, ρ) denotes the subclass of the class E±

1 (Γ), for which ϕ−(t) ∈ Lp(Γ, ρ).
We seek the solution of the problem (4.53) in the following form [81], [84]

ϕ(z) =
1

2πi

∫
Γ

µ(β(t))dt
t− z

, z ∈ D+,

ϕ(z) = ϕ0(z) + P (z), ϕ0(z) =
1

2πi

∫
Γ

µ(t)dt
t− z

, z ∈ D−,
(4.2)

D+, D− are domains, bounded by Γ, β(t) is an inverse function to α(t), P (z) is a
polynomial vector - the principal part of the vector ϕ(z) at infinity.

In order to define the vector µ(t) ∈ Lp(Γ, ρ) we obtain the following singular
integral equation

Lµ≡ [I + a(t0)]µ(t0) +
I − a(t0)

πi

∫
Γ

µ(t)dt
t− t0

+
1
πi

∫
Γ

k(t0, t)µ(t)dt

+b(t0)

[
µ(t0) +

1
2πi

∫
Γ

µ(t)dt
t− t0

+
1
πi

∫
Γ

k(t0, t)µ(t)dt

]
= f0(t0), (4.3)

f0(t) = 2
[
f(t) + a(t)P (t) + b(t)P (t)

]
;

k0(t0, t) =
t− t0
t̄− t̄0

∂

∂t

t̄− t̄0
t− t0

.

The Noetherity condition for the equation (4.3) in the space Lp(Γ, ρ) is defined by
the matrix

G = S−1D,

where S and D are block matrices:

S =
(
I b

0 ā

)
, D =

(
a 0
b̄ I

)
;

Index of the operator Lµ (of the class Lp(Γ, ρ)) is equal to the index of the
matrix G(t) (of the class E±

p (Γ, ρ)).
Consider the following homogeneous problem:
Find a vector ψ(z) ∈ E±

q,0(Γ, ρ
1−q) satisfying the boundary condition

ψ−(t) = α′(t)a′(t)ψ+[α(t)] + α′(t) t′2 b′(t) ψ+[α(t)], (4.4)
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which we call the adjoint problem of the problem (4.1)
Suppose that the problem (4.1) is solvable for the given P (z) and compose the

following expression

Re
∫

Γ

f0(β(t))ψ+(t)dt=Re
∫

Γ

f0(t)ψ+[α(t)]dα(t)

=Re
∫

Γ

{
ϕ+[a(t)] − a(t)ϕ−

0 (t) − b(t)ϕ0(t)
}
ψ+[α(t)]dα(t)

=−Re
∫

Γ

ϕ−
0 (t)

[
α′(t)a′(t)ψ+(α(t))+α′(t) b(t) t′2 ψ+(α(t) )

]
dt

=−Re
∫

Γ

ϕ−
0 (t)ψ−(t)dt = 0

and hence for the problem (4.1) to be solvable it is necessary and sufficient the
fulfillment of the following condition

Re
∫

Γ

f0(β(t))ψ+(t)dt = 0 or Re
∫

Γ

f0(t)ψ+[α(t)]dα(t) = 0, (4.5)

where ψ(z) is an arbitrary solution of the problem (4.4) of the class E±
q,0(Γ, ρ

1−q).
The equation (4.3) is solvable in Lp(Γ, ρ) if and only if

Re
∫

Γ

f0(t)ωk(t)dt = 0, (4.6)

where ωk (k = 1, · · · , l′) is a complete system of linearly independent solutions of
the adjoint homogeneous equation

L′ω = 0 of the class Lq(Γ, ρ1−q).

It is clear, that we mean the linear independence over the real number field. The
conditions (4.6) will be fulfilled automatically if the vector f0(t) has the form

f0(t) = ϕ+[α(t)] − a(t)ϕ−(t) − b(t)ϕ−(t),

where ϕ(z) is an arbitrary vector of the class E±
p,0(Γ, ρ).

From here it is easy to deduce that ωk(t) will have the form

ωk(t) = α′(t)ψ+
k (α(t)),

the vector ψk(z) ∈ E±
q,0(Γ, ρ

1−q) is the solution of the problem (4.4). Therefore,
the number l′ coincides with the number of linearly independent solutions of the
homogeneous equation (4.4) of the class E±

q,0(Γ, ρ
1−q); because of the uniqueness of

the representation the number of linearly independent solutions of the homogeneous
problem Lµ = 0 (of Lp(Γ, ρ)) and the homogeneous problem of the problem (4.1)
(of E±

p,0(Γ, ρ)) are also coinciding.
If we summarize these arguments then we get the following theorem.
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Theorem 18.4.1 The problem (4.1) is solvable if and only if

Re

∫
Γ

f0(t)ψ+
k [α(t)]α′(t)dt = 0, k = 1, · · · , .l′,

where ψk(z)(k = 1, · · · , l′) is a complete system of linear independent solutions of
the homogeneous problem (4.4) of the class E±

q,0(Γ, ρ
1−q);

l − l′ = κ,

where l denotes the number of linear independent solutions of the homogeneous
problem (4.1) of the class E±

p,0(Γ, ρ),κ is the index of the operator Lµ of the class
Lp(Γ, ρ).

Consider the set of following problems:

ϕ+[αλ(t)] = a(t)ϕ−(t), t ∈ γ, (4.7)

γ : t = eiθ, 0 � θ � 2π is a unit circle,

αλ(t) = exp[iνλ(θ)], νλ(θ) = (1 − λ)θ + λν(θ), λ ∈ [0, 1],

ν(θ) is strongly increasing continuous function on [0, 2π], ν(0) = 0, ν(2π) =
2π, ν(θ) has a continuous derivative ν′(θ) > 0, ν′(0) = ν′(2π); a(t) is given
quadratic matrix of order n on γ,

a(t) ∈ C0(γ, c1, · · · , cr), inf |det a(t)| > 0.

Denote by κk[a, λ], k = 1, · · · , n the partial indices of the class E±
p (Γ, ρ) of

the problem (4.7); ρ(t) =
∏r

k=1 |t− ck|νk , −1 < νk < p− 1.
The sum of non-negative (non-positive) partial indices denote by

N+[a, λ](N−[a, λ]).

We are looking for the solution of the problem (4.7) in the class E±
p (Γ, ρ) in the

following form

ϕ(z) =
1

2πi

∫
γ

µ[βλ(t)]
t− z

dt, z ∈ D+, ϕ(z) =
1

2πi

∫
γ

µ(t)dt
t− z

, z ∈ D−, (4.8)

where D+ and D− denote the domains |z| < 1 and |z| > 1, βλ(t) is a function
inverse to αλ(t).

In order to define the vector µ ∈ Lp(Γ, ρ) we get the following equation

Lλµ ≡ [I + a(t)]µ(t0) +
I − a(t0)

πi

∫
γ

µ(t)dt
t− t0

+Mλµ = 0,

Mλµ =
1
πi

∫
γ

[
α′

λ(t)
αλ(t) − αλ(t0)

− 1
t− t0

]
µ(t)dt.

(4.9)
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The operator Mλ is completely continuous operator in any space Lp(γ, ρ). The
operator Kλ is the Noetherian operator in the specific spaces Lp(γ, ρ) , for which
p > 1 and νk will satisfy the condition

1 + νk

p
�= µik, (4.10)

where the numbers µik are defined by the matrix a(t) (see, 19.4). We assume that
the conditions (4.10) are fulfilled. It is possible to rewrite the operator Mλ in the
following form

Mλµ =
1
2

∫ 2π

0

M(θ0, θ, λ)µ(eiθ)dθ,

M(θ0, θ, λ) =
[
ctg

νλ(θ) − νλ(θ0)
2

+ i

]
ν′λ(θ) − ctg

θ − θ0
2

− i.

The function M(θ0, θ, λ) is defined on [0,1] with respect to λ, however we may
consider this function as the analytic function in some domain Dλ which contains
this segment. Therefore, Lλ is linear bounded operator in the space Lp(γ, ρ);
analytically depending on λ; Lλ will be Noetherian operator for all λ ∈ Dλ. Hence,
the equation (4.9) has the same number of linear independent solutions in Lp(γ, ρ)
for all λ ∈ Dλ\D′

λ, whereD′
λ ⊂ Dλ is the isolated set [36, 75]. The intersectionD′

λ∩
[0, 1] will be either empty or finite set; the number of linear independent solutions
of the equation (4.9) in the case λ ∈ [0, 1] is bounded, so that N+[a, λ], N−[a, λ]
and the partial indices κk[a, λ] are bounded.

Let the maximal partial index κ1, [a, λ] takes the values η1 and η2 on two infinite
subsets E1 and E2 of the segment [0,1], η1 � η2.

Consider the matrix a1(t) = tη1a(t); we get:

κ1[a1λ] = 0, λ ∈ E1,κ1[a1, λ] = η2 − η1, λ ∈ E2,

N+[a1, λ] = 0, λ ∈ E1, N
+[a1, λ] > η2 − η1, λ ∈ E2 η2 − η1 = 0.

Carrying out the analogous arguments with respect to other partial indices. We
obtain the following theorem.

Theorem 18.4.2 The partial indices κk[a, λ] are constant values for all λ ∈ [0, 1]
except the points of some finite set.

Consider the set of the following problems:

ϕ+[αλ(t)] = a(t)ϕ−(t) + b(t)ϕ−(t), t ∈ γ, (4.11)

where a(t), αλ(t) satisfy the conditions mentioned in above item, b(t) is an arbitrary
piecewise-continuous matrix, Φ(z) is desired vector of the class E±

p,0(Γ, ρ).
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We seek the solution of the problem (4.63) in the following form

ϕ(z) =
1
πi

∫
γ

µ[βλ(t)]dt
t− z

, z ∈ D+, ϕ(z) =
1
πi

∫
γ

µ(t)dt
t− z

, z ∈ D−. (4.12)

We get the following equation with respect to µ ∈ Lp(γ, ρ)

[I + a(t0)]µ(t0) +
I − a(t0)

πi

∫
γ

µ(t)dt
t− t0

+Mλµ

+b(t0)

[
µ(t0) +

1
2πi

∫
γ

µ(t)dt
t− t0

+
1

2πi

∫
γ

k0(t0, t)µ(t)dt

]
= 0. (4.13)

Together with this equation consider the following equation

A(t0)Ω(t0) +
B(t0)
πi

∫
γ

Ω(t)dt
t− t0

+NλΩ = 0, (4.14)

where Ω is a desired 2n-dimensional vector,

A =
(
I + a, b

b̄, I + ā

)
, B =

(
I − a, b

−b̄, ā− I

)
,

NλΩ =
1
πi

∫
γ

N(t0, tλ)Ω(t)dt,

N(t0, t, λ) =
(
N11 N12

N21 N22

)
,

N12 =
α′

λ(t)
αλ(t) − αλ(t0)

− 1
t− t0

, N12 = b(t0)k0(t0, t),

N21 = −b(t0)[k0(t0, t) + t′2 k0(t0, t)],

N22 = [a(t0) − I]k0(t0, t) − t0
(t− t0)t

+
ν′λ(θ)αλ(t0)

t[αλ(t0) − αλ(t)]
.

If the vector µ = (µ1, · · · , µn) ∈ Lp(γ, ρ) is a solution of the equation (4.13),
then the vector Ω = (µ1, · · · , µn, µ̄1, · · · , µ̄n) is a solution of the equation (4.14)
and if Ω = (Ω1, · · · ,Ω2n) ∈ Lp(γ, ρ) is a solution of the equation (4.14), then
µ = (Ω1 + Ωn+1, · · · ,Ωn + Ω2n) is a solution of the equation (4.13).

Carrying out the arguments analogous to 18.4.2, we obtain the following theo-
rem

Theorem 18.4.3 The number of linear independent solutions (over the real num-
ber field) of the problem (4.11) of the class E±

p (Γ, ρ) is constant for all λ ∈ [0, 1]
except perhaps the points of some finite set.
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As it was mentioned in the introduction the systematic researches in the theory
of linear conjugation with displacement for analytic functions has been started af-
ter the appearance of works of Kveselava [81]-[84]. At present numerous researches
concerning of many aspects of this theory are published. Referring only to works
[21], [38], [141], [143], [62], [123], [82], [31], note that the main part of these re-
searches are reflected in the monographs [136], [45], [88], [105], [108], in the survey
papers [141], [88], [142] and in [30] is given the survey of works concerning the
problems of linear conjugation with displacement on Riemann surfaces.

In the recent years many researches were published, but among them we refer
to the following works [2], [20]- [25], [66]-[67], [86], [87], [128], [129].

Application of the problems of linear conjugation with displacement in the
theory of elasticity one can find in [9], [10], [94], [126]-[127].

In this chapter there were used the works of the author [95], [99], [100] and also
[101], [102].

In the present book we do not consider the closely related problem of singular
integral equations with shift; in this connection we shall indicate only some works
[133], [136], [61], [69], [77], [78], [80], [29] and shall note, that the corresponding
references one may find in the monographs [88], [66], and in the survey paper [70].



Chapter 19

Linear Conjugation with Displacement for

Generalized Analytic Functions and

Vectors

by Giorgi F. Manjavidze

19.1 Definitions and notations

In the theory of generalized analytic functions the following integral operators

(Tf)[z] = − 1
π

∫∫
D

f(ζ)dσζ

ζ − z
, (Πf)[z] = − 1

π

∫∫
D

f(ζ)dσζ

(ζ − z)2

play an important role, where D is some domain in the z−plane, z = x + iy, and
f(ζ) is a function of the class Lp(D̄), p � 1. The main properties of the operators
T,Π are the following.

The generalized derivatives satisfy

∂z̄Tf = f, ∂zTf = Πf.

If D is a bounded domain, then Tf is a linear completely continuous operator
from the space Lp(D̄), p > 2 , into the space Hα(D), α = (p− 2)/p.

If the boundary Γ of D is the union of a finite number of piecewise-smooth
contours, then the operator T is a linear bounded operator from Lp(D̄), 1 < p � 2,
into Lj(Γ), 1 < j < p/(2 − p).

LetD ∈ Hm+1
α , f(z) ∈ Hm

α (D), 0 < α < 1,m � 0. Then Tf ∈ Hm+1
α (D), ∂zTf =

Πf ∈ Hm
α (D).

Πf is a linear bounded operator in the spaces Hα(D) and Lp(D̄), p > 1.
Let q(z) be a measurable bounded function in the whole plane C, |q(z)| � q0 <

1, q(z) = 0 in a neighborhood of z = ∞, and let f be a solution of the equation

f − qΠf = q

belonging to the class Lp(C), p > 2. Then the function

ω(z) = z + Tf
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is a fundamental homeomorphism of the Beltrami equation

∂z̄ω − q(z)∂zω = 0.

These and other properties of the operators T and Π are formulated and proved
in the monograph [139].

A vector w(z) = (w1, · · · , wn) is called a generalized analytic vector in the
domain D if it is a solution of an elliptic system of the form

∂z̄w −Q(z)∂zw +A(z)w +B(z)w̄ = 0, (1.1)

whereA(z), B(z) are given quadratic matrices of order n of the class Lp0(D), p0 > 2,
and Q(z) is a matrix of the following special form: it is quasidiagonal and every
block Qr = (qr

ik) is a lower (upper) triangular matrix satisfying the conditions

qr
11 = · · · = qr

mr,ms
= qr, |qr| � q0 < 1,

qr
ik = qr

i+s,k+s (i+ s � n, k + s � n).

Moreover, we suppose Q(z) ∈ W 1
p (C), p > 2, and Q(z) = 0 outside of some

circle.
The equation

∂z̄w − ∂z(Q′w) −A′(z)w −B′(z)w = 0 (1.2)

is called conjugate to the equation (1.1), an accent′ denotes a transposition of a
matrix.

If A(z) ≡ B(z) ≡ 0, the equation (1.1) and (1.2) passes into

∂z̄w −Q(z)wz = 0, (1.3)

∂z̄w − ∂z(Q′w) = 0. (1.4)

Solutions of the equation (1.3) are called Q− holomorphic vectors.
The equation (1.3) has a solution of the form

ζ(z) = zI + Tω, (1.5)

where I is the unit matrix and ω(z) is a solution of the equation

ω(z) +Q(z)Πω = Q(z)

belonging to Lp(C), p > 2.
The solution (1.5) of the equation (1.3) is analogous to the fundamental home-

omorphism of the Beltrami equation.
The matrix

V (t, z) = ∂tζ(t)[ζ(t) − ζ(z)]−1 (1.6)



572 Chapter 19 Linear Conjugation with Displacement for Generalized Analytic

is called the generalized Cauchy Kernel for the equation (1.3) and the following
assertions are true [23], [110]:

V (t, z) =
1

t− z

[
I +Q(z)

t̄− z̄

t− z

]−1

+
R1(t, z)
|t− z|α ,

V (t, z) =
1

t− z

[
I +Q(z)

t̄− z̄

t− z

]−1

+
R2(t, z)
|t− z|α , α � 1,

R1(t, z), R2(t, z) ∈ H(C × C), R− 1(z, z) = 0,

|Vik(t, z)| � const

|t− z| .

Next consider a generalized Cauchy-type integral defined by the matrix (1.6)

Φ(z) =
1

2πi

∫
Γ

V (t, z)dQtµ(t), (1.7)

where Γ is a closed simple smooth curve, µ(t) ∈ L1(Γ) and

dQt = Idt+Q(t)dt̄.

If the density µ(t) in (1.7) is Hölder-continuous on Γ, the integral (1.7) is Hölder-
continuous in D̄+ and D̄− (D+ and D− are the domains bounded by Γ); the
boundary values of Φ on Γ are given by

Φ±(t) = ±1
2
µ(t) +

1
2πi

∫
Γ

V (τ, t)dQτµ(τ). (1.8)

If µ(t) ∈ Lp(Γ), p > 1, then the formulas (1.8) are fulfilled almost everywhere
on Γ, provided Φ± are now understood as angular boundary values of the vector
Φ(z). The analogies of the integral operators T and Π,

(T̃ f)[z] = − 1
π

∫∫
D

V (t, z)f(t)dσt,

(Π̃f)[z] = − 1
π

∫∫
D

∂zV (t, z)f(t)dσt

(1.9)

play an important role while studying generalized analytic vectors.
LetQ ∈ Hα0(C). Then (T̃ f)is a completely continuous operator from Lp(D̄), p >

2, into Hα(D), α = min{α0, (p − 2)/p}. (see [103], [112]). Moreover the operator
Π̃ is a linear bounded operator from Lp(D̄) in Lp(D̄), and the relations

(∂z̄ −Q∂z)T̃ f = f, ∂zT̃ f = Π̃f (1.10)
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are true.
Using Q− holomorphic vectors, generalized analytic vectors can be represented

as follows (see [23])

w(z) = Φ(z) +
∫∫

D

Γ1(z, t)Φ(t)dσt +
∫∫

D

Γ2(z, t)Φ(t)dσt +
N∑

k=1

ckwk(z), (1.11)

where Φ(z) is a Q− holomorphic vector, and wk(z)(k = 1, · · · , N) is a complete
system of linearly independent solutions of the Fredholm equation

Kw ≡ w(t) − 1
π

∫∫
D

V (t, z)[A(t)w(t) +B(t)w(t)]dσt = 0.

the wk(z) turn out to be continuous vectors in the whole plane vanishing at infinity,
and the ck’s are arbitrary real constants; the kernels Γ1(z, t) and Γ2(z, t), finally,
satisfy the system of the integral equations

Γ1(z, t) +
1
π
V (t, z)A(t) +

1
π

∫∫
D

V (τ, z)[A(τ)Γ1(τ, t) +B(τ)Γ2(τ, t)dσt

= −1
2

N∑
k=1

{vk(z), v̄k(t)},

Γ2(z, t) +
1
π
V (t, z)A(t) +

1
π

∫∫
D

V (τ, z)[A(τ)Γ2(τ, t) +B(τ)Γ1(τ, t)dσt

= −1
2

N∑
k=1

{vk(z), v̄k(t)},

(1.12)

where the vk(z) ∈ Lp(D̄)(k = 1, · · · , N) form a system of linearly independent
solutions of the Fredholm integral equation

v(z) +
A′(z)
π

∫∫
D

V (z, t)v(t)dσt +
B′(z)
π

∫∫
D

V ′(z, t)v(t)dσt = 0.

In the formulas (1.12) curly bracket {v, w} means a diagonal product of the vectors
v and w: {v, w} is a quadratic matrix of order n, whose elements {v, w}ik are
defined by {v, w}ik = viwk, i, k = 1, · · · , n.

Notice that in formula (1.11) Φ(z) is not an arbitrary Q− holomorphic vector.
It has to satisfy the conditions

Re
∫∫

D

Φ(z)vk(z)dσz = 0, k = 1, · · · , N. (1.13)
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Finally it should be mentioned that, generally speaking, the Liouville theorem
is not true for solutions of (1.1) . This explains the appearance of the constants ck
in the representation formula (1.11) and the fact that the condition (1.13)has to
be satisfied (cf [23] and [49]).

19.2 Relation between linear conjugation with displacement

and generalized analytic functions

In the present section we shall set the relation between the problem of linear conju-
gation with displacement and the theory of generalized analytic functions, this will
give us the possibility to consider the problem of linear conjugation in somehow
different formulation.

Let Γ1 and Γ2 be the Liapunov curves, α(t) is a function mapping Γ1 onto Γ2 in
one-to-one manner preserving the orientation, α(t(s)) is an absolutely continuous
function, M � |α′(t)| � m > 0 (M,m are constants) a(t), b(t) are given matrices of

the classHµ(Γ1)
(
µ >

1
2

)
, a(t) is a nonsingular quadratic matrix of order n, b(t) is

a (n× l)− matrix; we have to find a piecewise-holomorphic matrix ϕ(z), having the
finite order at infinity, ϕ+(t), ϕ−(t) ∈ H(Γ) and satisfying the boundary condition

ϕ+[α(t)] = a(t)ϕ−(t) + b(t), t ∈ Γ1. (2.1)

We call the piecewise-holomorphic matrix χ(z) with a finite order at infinity the
canonical matrix of the problem (2.1) if det χ(z) �= 0 everywhere except perhaps
at the point z = ∞;χ(z) has a normal form at infinity with respect to columns and

χ+[α(t)] = a(t)χ−(t), t ∈ Γ1.

Mapping conformally D+
2 and D−

1 into interior and exterior parts of the unit
circle Γ respectively we get the same problem as (2.1), where α(t) has to map Γ
onto Γ; the matrices a(t), b(t) and the function have the same properties. We shall
consider the problem in the case Γ1 = Γ2 = Γ.

First prove the following lemmas.

Lemma 19.2.1 Let α(t) be a function satisfying the same conditions as men-
tioned above and ω(z) is a piecewise-holomorphic function (bounded at infinity)
ω+[α(t)] = ω−(t) on Γ, ω−(t) ∈ H∗(Γ). Then ω(z) is a constant function.

Consider the following function which is continuous on the whole plane

Ω(z) =

{
ω(α(z)), z ∈ D

+
,

ω(z), z ∈ D−,

where

α(z) = |z|α
(
z

|z|
)
. (2.2)
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On the basis of one Hardy-Littlewood theorem (see [24], [39]) we have

|ω′(z)| � A(1 − |z|)µ−1, z ∈ D+,

|ω′(z)| � A(|z| − 1)µ−1, z ∈ D−,

A is a constant.
Therefore,

∂zΩ, ∂z̄Ω ∈ Lp(C), 1 < p < (1 − µ)−1.

Denoting by w0(z) the fundamental homeomorphism of Beltrami equation

∂z̄w − q(z)∂zw = 0,

q(z) = ∂z̄α/∂zα, z ∈ D+, q = 0, z ∈ D−, (2.3)

we obtain (see [137])
Ω(z) = Φ(w0(z)),

where Φ(z) is a holomorphic function on the whole finite plane. Ω(z) is a bounded
function, that’s why Φ(z) = const, Ω(z) = const and the lemma is proved1.

Lemma 19.2.2 Let Γ be a simple closed smooth curve, a(t) is nonsingular
quadratic matrix of order n, a(t) ∈ Hµ(Γ), µ < 1. If a(t) is sufficiently close
to the unit matrix I, i.e. if

‖ak‖Hµ � ε <
1

n(1 + sµ)
, k = 1, 2, a1 =

1
2
(a− I), a2 =

1
2
(a′−1 − I),

sµ is a norm of the operator
1
πi

∫
γ

ϕ(t)(t − t0)−1dt in the space Hµ(Γ), then for

a(t) there exists the canonical matrix χ(z) close to the unit matrix:

χ+(t) = a(t)χ−(t), χ(z) = I + ζ1(z), χ−1(z) = I + ζ2(z),

ζ1(∞) = ζ2(∞) = 0, |ζ+
k (t)|µ � Cε,

where the constant C depends only on n and µ and on the curve Γ.

Proof Consider singular integral equations in Hµ(Γ):

(I + ak)ϕk − akSϕk = I + 2ak, k = 1, 2.

1If we replace the boundedness condition at infinity by the following condition

ω(z) = z +O(z−1),

then we get the piecewise-holomorphic function univalent in the domains D+ and D− (cf. 20.2).
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It is easy to see, that these equations are solvable and also

ϕk = I + ϕk, ‖ϕk‖Hµ � ε+
nε(1 + ε)(1 + sµ)
2 − nε(1 + sµ)

= η.

Introducing the piecewise-holomorphic matrices

χk(z) =
{
ρk(z), z ∈ D+,

ρk(z) + I, z ∈ D−,

ρk =
1

2πi

∫
Γ

ϕk(t)dt
t− z

, k = 1, 2,

where D+, D− are finite and infinite domains, bounded by Γ.
We have

χ+
1 (t) = a(t)χ−

1 (t), χ+
2 (t) = [a′(t)]−1χ−

2 (t),

det χ+
1 χ

+
2 = det χ−

1 χ
−
2 , det [χ1χ2] ≡ 1, χ−1

1 = χ1
2.

Hence χ1(z)is a canonical matrix for a(t), assuming

χ1 − I = ζ1, χ−1
1 − I = ζ2,

we obtain
|ζ±k (t)| � 1

2
(1 + sµ)

Corollary In particular case when γ is a unit circle on the bases of Hardy-
Littlewood theorem under the conditions of lemma 19.2.1 for the canonical matrix
χ(z) = χik(z), constructed above we’ll have∣∣∣∣dχik(z)

dz

∣∣∣∣ � M1ε

(1 − |z|)1−µ
, z ∈ D+,

∫∫
D+

∣∣∣∣dχik(z)
dz

∣∣∣∣ dxdy � M2ε
p,

1 < p < (1 − µ)−1, i, k = 1, · · · , n,
where the constants Mk depend only on n and µ.

Lemma 19.2.3 If the matrix a(t) is sufficiently close to the unit matrix, then
there exists a canonical matrix for the problem (2.1).

Proof First show that one of the canonical matrices χα(z) we may construct by
the formulas

χα[α(z)] = χ(z)[If + I], z ∈ D+, χα(z) = χ(z)[If + I], z ∈ D−,

where χ(z) is a canonical matrix when α(t) = t, χ(∞) = I and f is a solution
(unique) of two-dimensional singular integral equation

f(z) − q(z)Πf −ATf = A, f ∈ Lp(D+); (2.4)
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A = qχ−1 ∂χ

∂z
, α(z) and q(z) are defined by the formulas (2.2) and (2.3)

If ‖a − I‖Hµ = ε is a small quantity, then there exists the matrix χ(z) with

the properties from lemma 19.2.1. Since µ >
1
2

we may take p from the interval

(2, (1 − µ)−1).
The operator ATf is a linear bounded operator transferring Lp(D) into itself

and also it’s norm is not more then Mε, the constant M depends only on n and µ.
If we take ε sufficiently small then the equation (2.4) has the unique solution

f ∈ Lp(D).
The matrix w(z) = Tf is Hölder-continuous on the whole plane, vanishes at

infinity and satisfies the following equation

∂z̄w − q(z)∂zw −A(z)w = A(z).

Assuming w1(z) = χ(z)[w(z) + I], z ∈ D+ we obtain that w1(z) satisfies the
equation

∂z̄w1 − q(z)∂zw1 = 0,

in D+ and therefore
w1(z) = ϕ1[α(z)], z ∈ D+,

where ϕ1(z) is a holomorphic matrix in D+.
If we define the holomorphic matrix in D− by the formula

ϕ1(z) = χ(z)[w(z) + I],

then we have
ϕ+

1 [α(t)] = a(t)ϕ−
1 (t), t ∈ Γ, ϕ1(∞) = I.

We are able to construct the solution of the boundary problem

ϕ+
2 [α(t)] = a−1(t)ϕ−

2 (t), t ∈ Γ, ϕ2(∞) = I,

analogously as we have

det [ϕ+
1 (α(t))ϕ+

2 (α(t))] = det [ϕ−
1 (t)ϕ−

2 (t)], t ∈ Γ

det [ϕ1(z)ϕ2(z)] ≡ 1.

and ϕ1(z) is a canonical matrix for the problem (2.1).

Lemma 19.2.4 There exists a canonical matrix of the problem (2.1) for the
arbitrary matrix a(t) (satisfying the above indicated conditions); it is possible to
construct one of them by the formulas

χα[α(z)] = χ0
α[α(z)]R(w0(z)), z ∈ D+, (2.5)

χα(z) = r(z)χ0
α(z)R(w0(z)), z ∈ D−,
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where r(z) and R(z) are respectively chosen matrices, χ0(z) is a canonical matrix
of the boundary condition

ϕ+[α(t)] = a0(t)ϕ−(t), a0 = ar,

w0(z) is the fundamental homeomorphism of the Beltrami equation

∂z̄w − q(z)∂zw = 0.

Proof Let us choose the rational matrix r(z) such that the matrix a0(t) = a(t)r(t)
will be close to the unit matrix; denote by χ0(z) a canonical matrix of the problem

ϕ+[α(t)] = a0(t)ϕ−(t), t ∈ Γ.

Consider the piecewise-meromorphic matrix defined in the form

χα[α(z)] = χ0
α[α(z)]R(w0(z)), z ∈ D+,

χα(z) = r(z)χ0
α(z)R(w0(z)), z ∈ D−,

(2.6)

where R(z) is a rational matrix.
The boundary values of this matrix are satisfying the homogeneous boundary

condition; it is possible to choose the matrix R such that the matrix defined by
(2.6) has to be a canonical matrix of the problem (2.1).

The following theorem holds from these propositions:

Theorem 19.2.1 All solutions of the problem (2.1) are given by the formulas

ϕ[α(z)] = χα[α(z)][Tf + h(z) + P (w0(z))], z ∈ D+,

ϕ(z) = χα(z)[Tf + h(z) + P (w0(z))], z ∈ D−,
(2.7)

where P (z) is an arbitrary polynomial vector and the vector f ∈ Lp(D̄+), (p > 2)
is a solution (unique) of the equation

Kf =: f(z) − q(z)Πf = g(z);

h(z) =
1

2πi

∫
γ

[χ+
α (α(t))]−1b(t)

t− z
dt, g(z) = (g1, · · · , gn) = q(z)h′(z) ∈ Lp(D̄+).

The solutions vanishing at infinity are given by the formulas (2.7) in which

P (z) = (Pκ1−1, · · · , Pκn−1)

κ1 � · · · � κn
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are the partial indices of the problem (2.1), Pj(z) is an arbitrary polynomial of
order j (Pj(z) = 0) if j < 0); if 0 � κs+1 � · · · � κn, then the vector b(t) has to
satisfy the following conditions:

2i
∫∫

D

gj(ζ)L(ζk)dζdη =
∫

γ

tk{[χ+
α (α(t))]−1b(t)}jdt,

j = s+ 1, · · · , n; k = 0, · · · , |κj | − 1,

where L is operator adjoint to the K−1;

Lf = f(z) − Π(qf).

Consider the set of problems along with the problem (2.1):

ϕ+[αλ(t)] = a(t)ϕ−(t) + b(t), t ∈ Γ.

αλ(t) = exp[iVλ(θ)], Vλ(θ) = (1 − λ)θ + λV (θ) 0 � λ < 1.
(2.8)

a(t), b(t) are satisfying the conditions of the problem (2.1), V (θ) is a continuous
strongly increasing function on [0, 2π], satisfying the conditions mentioned above.

Denote the partial indices of the problem (2.8) by

κ1(λ) � · · · � κα(λ),

the sum of non-negative (non-positive) partial indices by n+(λ)(−n−(λ)) and also
by

δ1 � · · · � δs � 0 > δs+1 � · · · � δn,

the partial indices of the problem (2.8) in case when λ = 0.
We obtain

n+(λ) − n−(λ) =
1
2π

[arg δ(t)]Γ.

Introduce the following vector

W (z) =
{
χ−1(z)ϕ[αλ(z)] − h(z), z ∈ D+,

χ−1(z)ϕ(z) − h(z), z ∈ D−,

where χ(z) denotes a canonical matrix of the problem (2.8) when λ = 0,

h(z) = (h1, · · · , hn) =
1

2πi

∫
γ

[χ+(t)]−1b(t)
t− z

dt,

αλ(z) = αλ(eiθ).



580 Chapter 19 Linear Conjugation with Displacement for Generalized Analytic

The vector W (z) is continuous on the whole plane is (holomorphic in D− and
may have a pole at infinity); W (z) satisfies the equation

∂(z)w − q(z, λ)∂zw +A(z, λ)w = B(z, λ),

q(z, λ) = λe2πθ 1 − V ′(θ)
2 − λ+ λV (θ)

, z ∈ D+, q(z, λ) = 0, z ∈ D−,

A(z, λ) = −q(z, λ)χ−1(z)
dχ

dz
, B(z, λ) = q(z, λ)

[
h′(z) + χ−1(z)

dχ

dz
h(z)

]
.

(2.9)
We have to find a solution of the problem (2.9) vanishing at infinity; according

to this suppose the solution of the problem (2.9) in the form:

W (z) = P (z) + Tf,

f = (f1, · · · , fn) ∈ Lp((D)), p > 2, P (z) = (P1, · · · , Pn), Pj(z) is an arbitrary
polynomial of order n (Pj(z) = 0, if j < 0).

With respect to f we obtain the equation

Kλf ≡ f(z)−q(z, λ)Πf+A(z, λ)Tf = B(z, λ)+q(z, λ)P (z)−A(z, λ)P (z), (2.10)

and the following conditions∫∫
D+

ξkfj(ξ)dξdη + πajk = 0, j = s+ 1, · · · , ; k = 0, · · · , |δj | − 1, (2.11)

where ajk are the coefficients of the expansion of hj(z) in the neighborhood of the
point z = ∞

hj(z) =
∞∑

k=0

ajkz
−k−1.

In case when the partial indices δj are non-negative the conditions (2.11) are
eliminated.

If for given λ the operator Kλ has the inverse operator K−1
λ then the conditions

(2.11) one may rewrite in the following form:∫∫
D+

ξkgj(ξ, λ)dξdη + πajk = 0, (2.12)

where gj(ζ, λ) denotes j-th component of the vector K−1
λ [B + qP ′ −AP ].

The equality (2.12) is a linear algebraic system with respect to the coefficients
of the polynomials Pj(z).
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It is easy to see that there exists the domain Dλ of the plane λ containing
the segment [0, 1] of the real axis in which q(z, λ) is a holomorphic function with
respect to λ and in which the inequality

|q(z, λ)| � q0 < 1

is fulfilled. The operator Kλ is analytically depended on λ in Dλ. As Tf is a
completely continuous operator, therefore Kλ has an inverse operator for an arbi-
trary λ ∈ Dλ except may be the points of some isolated set D1

λ [50], [113]. For
λ ∈ Dλ\D1

λ the coefficients of the linear system (2.12) are the analytic functions
of λ; consequently the corresponding homogeneous system has the same number of
linear independent solutions for all λ ∈ Dλ\D1

λ, except possibly the points of some
isolated set.

Hence, the following result takes place.

Theorem 19.2.2 n+(λ) and n−(λ) have the same values for all λ ∈ [0, 1] except
possibly the points of some finite set.

Corollary The partial indices κi(λ) are admitting constant values for all λ ∈
[0, 1] and

δ1 � κ1(λ) � · · · � κn(λ) � δn.

If δ1 − δn � 1, then for all λ ∈ [0, 1] except possibly the points of some finite
set κi(λ) = δi, i = 1, · · · , n.
Remark As the following example shows there exists the exceptional set.

Suppose a(t) has the form

a(t) =
(

1 + 2t2 + 4t 4t2

−2t 1 − 2t

)
,

α1(t) = eiν(θ) is defined by the equality

ω[α1(t)] = t+ 1/4t,

where ω(z) conformally maps the circle |z| < 1 onto the interior of the ellipse

x2

25
+
y2

9
=

1
16
.

It is easy to verify that

δ1 = δ2 = 0, κ1(1) = 1, κ2(1) = −1.

Remark 2 Let the partial indices of the problem ϕ+(t) = a(t)ϕ−(t), t ∈ γ(γ is a
simple closed smooth curve) are equal to zero and the function z = ω(ζ) is mapping
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conformally the domain, exterior to γ onto the exterior of simple closed smooth
curve γ1. Then generally speaking as the mentioned results show the partial indices
are not equal to zero; but it is possible to find the analytic function ω0(ζ) arbitrarily
close to ω(ζ) such that the partial indices of the problem ϕ+

0 (τ) = a[ω0(τ)]ϕ−
0 (τ)

have to be equal to zero (cf. [22], p.71).

19.3 Boundary value problem of linear conjugation with dis-

placement for generalized analytic vectors

First let us define the classes for the generalized analytic vectors.
Let D+, (D−) be finite (infinite) domain which is bounded by a simple closed

smooth Liapunov curve Γ.
Denote by Es,p(D,Q), s � 0, , p � 1, Q(z) = (qik) ∈ W s

p0
(C), p > 2 (D is one of

the domains D+, D−,W s
p0

is a Sobolev space) the class of Q− holomorphic vectors
Φ(z) = (Φ1, · · · ,Φn) in the domain D satisfying the following conditions∫

δkr

∣∣∣∣∂sΦk

∂zs

∣∣∣∣p |dz| � C, k = 1, · · · , n, (3.1)

where C is a constant, δkr is an image of the circle |ξ| = r, r < 1 while quasi-
conformal mapping ξ = ωk(Sk(z)) of the unit circle |ξ| < 1 onto D, ωk is an
analytic function in the domain Sk(D), Sk is a fundamental homeomorphism of
the Beltrami equation

∂z̄S − qkk(z)∂zS = 0.

If D is infinite domain , then for the simplicity of notation we suppose that
W (∞) = 0 (remind that Q− holomorphic vectors are the analytic functions in
vicinity of the point z = ∞, because Q = 0 in this vicinity). By Es,p(D,Q, S)
denote the class of the vectors Φ, belonging to the class Es,λ(D,Q) for some λ > 1,
for which the angular boundary values are belonging to Lp(Γ, ρ),

ρ(t) =
r∏

k=1

|t− tk|νk , tk ∈ Γ, −1 < νk < p− 1, p > 1. (3.2)

Let Q+(z) and Q−(z) are two given matrices, satisfying the conditions men-
tioned above in §1, Q+ ∈ W l

p0
(C), Q− ∈ Wm

p0
(C), l,m � 0, p0 > 2. (Q+, Q− ∈

W 1
p0

(C) when l = m = 0). Let ρ+(t), ρ−(t) are the functions of the form (2.12).
By E±

l,m,p(Γ, Q
±, ρ±) we denote the class of the vectors defined on cut along Γ

plane, belonging to the class (El,p(D+, Q+, ρ+)) (E−
m,p(D

−, Q−, ρ−)), in the do-
main D+(D−), E0,p(D,Q) ≡ Ep(D,Q).

Now introduce the classes of the generalized analytic vectors, satisfying the
equation of the form

Mw ≡ ∂z̄w −Q∂zw +Aw +Bw̄ = 0; (3.3)
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in case of infinite domain we suppose that Q,A,B are equal to zero in certain
vicinity of z = ∞.

By El,p(D,M), l � 0, p � 1, denote a class of the solutions of the equation
(3.3) satisfying the conditions∫

δkr

∣∣∣∣∂lwk

∂zl

∣∣∣∣p |dz| � C,

∣∣∣∣∂swk

∂zs

∣∣∣∣ � C, k = 1, · · · , n, s = 0, · · · , l − 1,

the curve δkr is defined above, C is a constant; if D is an infinite domain, then
w(∞) = 0. When we define this case we consider, that Γ ∈ Hm

α , Q(α) ∈ W l
p0

(C),
p0 > 2 (in case when l = 0 Q ∈W 1

p0
(C), A,B ∈ L∞(D̄)). A(z), B(z) ⊂ H l−1

α (D̄).
By El,p(D,M, ρ), l � 0, p > 1, ρ(t) is a function of the form (2.12), denote

the class of the vectors w(z), belonging to the class El,λ(D,M) for some λ > 1, for

which the angular boundary values of the vector
∂lw

∂zl
∈ Lp(Γ, ρ).

E±
l,m,p(Γ,M

±, ρ±) denotes the class of the vectors defined on the plane cut along
the Γ and belonging to the class El,p(D+,M+, ρ+)[Em,p(D−,M−, ρ−)] in D+(D−).
The vectors of these classes have the following basic properties (see [103], [111]).

A vector of the class Ep(D,Q)(p > 1) has the angular boundary values Φ(t) ∈
Lp(Γ) almost everywhere on Γ and admits the representation by the generalized
Cauchy integral

Φ(z) =
1

2πi

∫
Γ

V (t, z)dQtΦ(t).

A vector of the form

Φ(z) =
1

2πi

∫
Γ

V (t, z)dQtf(t), f(t) = Lp(Γ), p > 1,

belongs to the class E±
p (D±, Q±).

The vector Φ(z) ∈ Em,p(D,Q), p > 1 belongs to the class Hm−1
α (D) for some

α, ∂mΦ/∂zm has the angular boundary values of the class Lp(Γ).
The vector Φ(z) of the class Em,p(D,M), p > 1 admits the representation of

the form
w(z) = Φ(z) +R(z),

Φ(z) ∈ Em,p(D,Q), R(z) ∈ Hα(D).

Consider the following boundary problem.
Find a vector Φ(z) = (Φ1, · · · ,Φn) of the class E±

p (Γ, Q±, ρ±) satisfying the
boundary condition

Φ+[α(t)] = a(t)Φ−(t) + b(t)Φ−(t) + f(t), t ∈ Γ; (3.4)

Γ is a simple closed Liapunov curve, α(t) is a function mapping Γ onto Γ in one-
to-one manner keeping the orientation , a(t), b(t) are given piecewise-continuous
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(n × n)− matrices on Γ, inf |det a(t)| > 0, f(t) is a given vector of the class
Lp(Γ, ρ), ρ = ρ− is a function (19.1.1), ρ+(t) =

∏r
k=1 |t− α(tk)|νk .

The following proposition holds (cf. 20.5).

Lemma 19.3.1 The arbitrary vector Φ(z) of the class E±
p (Γ±, Q±, ρ±) is uniquely

representable in the form

Φ(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2πi

∫
Γ

V+(τ, z)dQ+τµ[β(τ)], z ∈ D+,

1
2πi

∫
Γ

V−(τ, z)dQ−τµ(τ), z ∈ D−,

(3.5)

where µ(t) ∈ Lp(Γ, ρ) is a solution of the Fredholm integral equation

Nµ ≡µ(t) +
1

2πi

∫
Γ

[
V+(α(τ), α(t))dQ+α(τ) − V−(τ, t)dQ+τµ(τ)

]
=Φ+[α(t)] − Φ−(t),

(3.6)

β(t) is inverse function to α(t).

Proof Let µ0 ∈ Lp(Γ, ρ) be a solution of the equation Nµ = 0. Composing the
vector Φ0(z) by the formulas (3.5), and assuming µ = µ0 we obtain

Φ+
0 [α(t)] = Φ−

0 (t), t ∈ Γ,

from which it follows (cf. 19.2) that Φ0(z) ≡ 0.
Then we get

µ0(t) = F+(t), µ0[β(t)] = F−(t), (3.7)

where the vector F (z) ∈ E±
λ (Γ, Q±) for some λ > 1.

From (3.7) it follows the inequality

F+[β(t)] = F−(t),

therefore F (z) ≡ 0, µ0(z) ≡ 0, the equation (3.6) is solvable for every right - hand
side value and lemma is proved.

Now begin to solve the problem (3.4) . Substituting the representation (3.5) into
the boundary condition (3.4) for the desired vector µ(t), we obtain the following
singular integral equation

Lµ ≡ [I + a(t1)]µ(t) + b(t)µ(t) +
1
πi

∫
Γ

M1(τ, t)µ(τ)dτ

+
1
πi

∫
Γ

M2(τ, t)µ(τ)dτ = 2f(t),

M1(τ, t)µ(τ)dτ =
[
V+(α(τ), α(t))dQ+α(τ) − a(t)V−(τ, t)dQ−τ

]
µ(τ),

M2(τ, t)µ(τ)dτ = b(t)V−(τ, t)dQ−τµ(τ).

(3.8)
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The Noetherity of the equation (3.8) is determined by the same matrix G,
introduced in the chapter 18,

G = S−1D, S =
(
I b

0 ā

)
, D =

(
a 0
b̄ I

)
.

Suppose the Noetherity conditions of (3.8) are fulfilled. In order to solve the
equation (3.8) in Lp(Γ, ρ) it is necessary and sufficient, that

Re

∫
Γ

f(t)ψk(t)dt = 0, k = 1, · · · , �′, (3.9)

where ψk(t)(k = 1, · · · , �′) is a complete system of linearly independent solutions
of conjugate homogeneous equation L′ψ = 0 of the class Lq(Γ, ρ1−q).

And so as the representation (3.5) is unique we obtain the following result.

Theorem 19.3.1 If the equation (3.8) is Noetherian in the space Lp(Γ, ρ), then
the boundary problem (3.4) is Noetherian in E±

p (Γ, Q±, ρ±); the necessary and suf-
ficient solvability conditions have the form (3.4); the index of the problem (3.4)
of the class E±

p (Γ, Q±, ρ±) is equal to the index of the equation (3.8) of the class
Lp(Γ, ρ).

Consider now the problem (3.4) for generalized analytic vectors satisfying the
equations of the form (3.3): we have to find the vector w(z) ∈ E±

p (Γ,M±, ρ±),
satisfying the boundary condition

w+[α(t)] = a(t)w−(t) + b(t)w−(t) + f(t), t ∈ Γ. (3.10)

The solution of (3.10) will be found by the formula (1.9) in the following form

w±(z) = Φ±(z)+
∫ ∫
D±

[
Γ±

1 (z, t)Φ±(t) + Γ±
2 (z, t)Φ±(t)

]
dσt +

N±∑
k=1

c±k w
±
k (z), (3.11)

where Φ±(z) ∈ E±
p (Γ, Q±, ρ±), c±k (k = 1, · · · , N±) are desired real numbers, w±

k

is a solution of the corresponding integral equations.
The vectors Φ±(t) have to satisfy the conditions

Im

∫
Γ

Φ±(t)dQ± tψ±
k (t) = 0, k = 1, · · · , N±,

where Ψ+
k ,Ψ

−
k are the complete systems of the homogeneous conjugate equations.

With respect to the vector Φ±(z) we obtain the following boundary problem

Φ+[α(t0)] = a(t0)Φ−(t0) + b(t0)Φ−(t0) + L+Φ+ + L−Φ− + f0(t0),

f0(t) = f(t) +
N−∑
k=1

c−k
[
ak(t)w−

k (t) + bk(t)w−
k (t)

]
−

N+∑
k=1

c+k wk[α(t)];
(3.12)
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the operators L+ and L− are defined by the formulas

L+Φ+ = −
∫ ∫
D+

[
Γ+

1 (α(t0, t))Φ+(t) + Γ2(α(t0), t)Φ+(t)
]
dσt,

L−Φ+ = α(t0)F (t0) + b(t0)F (t0),

F (t0) =
∫ ∫
D−

[
Γ1(t0, t)Φ−(t) + Γ−

2 (t0, t)Φ−(t)
]
dσt.

Substituting in these formulas the following representations

Φ+(t) =
1

2πi

∫
Γ

V+(τ, t)dQ+τΦ+(τ), t ∈ D+,

Φ−(t) = − 1
2πi

∫
Γ

V−(τ, t)dQ−τΦ−(τ), t ∈ D−,

we obtain that the operators L+ and L− are the completely continuous operators
in the spaces Lp(Γ, ρ+), Lp(Γ, ρ−) with respect to the angular boundary values
Φ+(τ), Φ−(τ).

Searching the solution of the problem (3.12) again in the form (3.5) we get the
singular integral equation with respect to the vector µ(t)

Ωµ ≡ (Ω0 + Ω1)µ+ Ω2µ̄ = 2f(t) +
N∑

k=1

dkηk(t), (3.13)

where Ω0 is a completely continuous operator, Ω1 and Ω2 are the singular integral
operators

Ωkµ ≡ ak(t)µ(t) +
bk(t)
πi

∫
Γ

µ(τ)dτ
τ − t

,

a1 = I + a, b1 = I − a, a2 = b2 = b,

ηk(t) are continuous linearly independent vectors, represented by w±
k (t), dk(k =

1, · · · , N,N � N+ +N−) are desired real constants.
Besides the equation (3.13) the vector µ has to satisfy the conditions

Im
∫

Γ

µ(t)ωk(t)dt = 0, k = 1, · · · , P, (3.14)

where ωk(t)(k = 1, · · · , P ) are the linearly independent vectors, represented by the
vectors Ψ±

k (t).
Using the theorem indicated in [119], we imply that necessary and sufficient

solvability conditions of the problem (3.10) in the class E±
p (Γ,M±, ρ±) have the

form
Re

∫
Γ

f(t)γk(t)dt = 0, k = 1, · · · , R, (3.15)
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where the linearly independent vectors γk(t)(k = 1, · · · , R) belong to the class
Lp(Γ, ρ1−q), are representable by the vectors Ψ+

k ,Ψ
−
k and by the vectors, composing

the basis of subspace of the solutions of the adjoint homogeneous equation Ω′v = 0;
the index of the problem (3.10) is equal to

κ +N − R, (3.16)

where κ is the index of the operator Ω of the class Lp(Γ, ρ). Now show that actually
in the formula (3.16) N = R.

Let X± are the sets of defined vectors w±(z) in the domains D± representable
in the form

w±(z) = Φ±(z) + h±(z),

Φ±(z) ∈ E±
p (Γ, Q±, ρ±), h±(z) ∈ Hα(D±).

(3.17)

A pair of sets X±, because of the properties indicated at the beginning of the
chapter, coincides with the class E±

p (Γ,M±, ρ±).
Introduce the norms

|w±|X± = inf
{|Φ±|Lp(Γ,ρ±), |h±|Hα(D±)

}
, (3.18)

where the infimum runs over all possible representations (3.17). Then the sets
X± are Banach spaces. Let X = (X+, X−) be a new Banach space with the
norm |w|χ = max[|w+|X+ , |w−|X− ], Consequently we have introduced the norm in
E±

p (Γ,M±, ρ±) which evidently doesn’t depend on A±, B±.
Consider the set of the operators

M±
λ w

± = ∂z̄w
± −Q±∂zw

± + λ
[
A±w± +B±w±

]
,

where λ ∈ [0, 1]; we have to come to the conclusion, that in order to calculate
the index of the problem (3.10) we may take the differential operators of the form
∂z̄w

± − Q±∂zw
± and for such operators the numbers N+, N− are equal to zero

and hence N = R in the formula (3.16).
Therefore we obtain the following result

Theorem 19.3.2 The necessary and sufficient solvability conditions of the prob-
lem (3.10) in the class E±

p (Γ,M±, ρ±) are the conditions (3.15); the index of the
problem (3.10) is equal to the index κ of the operator Ω.

Note that if the matrices a(t) and b(t) are continuous, then the index of any
class is given by the formula

κ =
1
π

[arg det a(t)]Γ .
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19.4 The problem of linear conjugation with displacement

for an elliptic system of differential equations

Consider the following equation

∂z̄w −Q1(z)∂zw −Q2(z)∂zw +A(z)w +B(z)w = 0, z ∈ D, (4.1)

D is finite or infinite domain bounded by the Liapunov curve Γ. w(z)=(w1, · · · , wn)
is a desired vector, A(z), B(z) are given quadratic matrices of order n, belonging
to the class Lr(D̄), r > 2, Qk = (qk

ij) are given lower triangular matrices where
qk
ij are bounded measurable functions in D; moreover the elliptic conditions

|q1kk| + |q2kk| � q0 < 1, k = 1, · · · , n

are fulfilled. We assume that the matrices A,B,Q1, Q2 are equal to zero outside
of some circle with the sufficiently large radius in case of infinite domain.

Consider the boundary problem: let Γk(k = 1, 2) be simple Liapunov curves,
bounding the domains D±, α(t) is a function, mapping Γ1 onto Γ2 in one-to-
one manner keeping the orientation, 0 �= α′(t) ∈ H(Γ); find the vectors w+ ∈
W 2

p [D̄+
2 ], w− ∈ W 1

p (D̄−
2 ), (p > 2,W l

p are the Sobolev spaces), w(∞) = 0, satisfy-
ing the equations

∂z̄w
± −Q1(z)∂zw

± −Q2(z)∂zw± +A±(z)w± +B±(z)w± = 0 (4.2)

in the domains D+
2 and D−

1 respectively and the boundary condition

w+[α(t)] = a(t)w−(t) + f(t), t ∈ Γ1, (4.3)

where f(t) is a given vector, a(t) is given nonsingular lower triangular matrix,
a(t), f(t) ∈ Hµ(Γ1), µ > 1/2.

Since the equation (4.2) is not changing it’s form while conformal mapping,
using the function ω(z) , constructed in chapter 21, it is possible to reduce the
problem (4.3) to the case, when α(t) = t, Γ1 = Γ2 = Γ, D±

1 = D±
2 = D± and so

we consider the boundary condition

w+(t) = a(t)w−(t) + f(t), t ∈ Γ. (4.4)

Let χ(z) be a canonical matrix for the matrix a(t); we assume that χ(z) has a
lower triangular form

χ±(t) ∈ H(Γ), χ′(z) ∈ Lδ(D̄+), χ′(z) − P (z) ∈ Lδ(D̄−), δ > 2,

where P (z) is some polynomial vector.
Introducing the notations

w±(z) = χ±(z)w±
0 (z),
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for the vectors w±
0 (z) we obtain boundary condition

w+
0 (t) = w−

0 (t) + h(t), h(t) = [χ+(t)]−1f(t), t ∈ Γ. (4.5)

The equations for the vectors w±
0 have the form (4.2), where the matrices

Q±
1 , Q

±
2 , A

±, B± are changed by the matrices

R±
1 = [χ±]−1Q±

1 χ
±, R±

2 = [χ±]−1Q±
2 χ

±,

A±
0 = [χ±]−1A±χ± − [χ±]−1Q1χ

′±, B±
0 = −[χ±]−1Q±

2 χ
′± + [χ±]−1Bχ±.

Note that the matrices R1 and R2 are satisfying the elliptic conditions. Represent
the vectors w±

0 in the form

w±
0 (z) = Φ±(z) + TD±ω±, ω±(z) ∈ Lγ(D̄±), γ > 2; (4.6)

Φ±(z) is a piecewise-holomorphic vector, having finite order at infinity, principal
part of Φ−(z) is the polynomial vector P (z) = (P1, · · · , Pn); Pk(z) is a polynomial
of order δk, δ1 � · · · � δn are the partial indices of the matrix a(t) (Pk(z) = 0 when
δk < 0).

Substituting (4.7) in the boundary condition (4.6) we obtain

Φ+(t) − Φ−(t) = h1(t), t ∈ Γ,
h1 = h+ Tω− − Tω+.

(4.7)

From the boundary condition (4.7) we have

Φ(z) =
1

2πi

∫
Γ

h(t)dt
t− z

+ Φ1(z) + P (z), (4.8)

where Φ(z) is a piecewise-holomorphic vector, defined by the formula

Φ1(z) = − 1
π

∫∫
D−

ω−(ξ)dσξ

ξ − z
, z ∈ D+, Φ1(z) = − 1

π

∫∫
D+

ω−(ξ)dσξ

ξ − z
, z ∈ D−.

In order to define w±
0 (z), substituting the formulas (4.7), (4.8) in the differential

equation we get the two dimensional singular integral equation

EΩ ≡ Ω(z) −R1(z)ΠΩ − R2(z)ΠΩ + V Ω = F (z), (4.9)

where Ω is desired vector

Ω(z) =
{
ω+(z), z ∈ D+,

ω−(z), z ∈ D−,

the matrices R1, R2 and the vector F are defined by the formulas

Rk(z) =
{
R+

k (z), z ∈ D+,

R−
k (z), z ∈ D−,
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F±(z) = −R±
1 (z)H ′(z) −R±

2 (z)H ′(z) +A±(z)H(z) +B±(z)H(z),

H(z) = P (z) +
1

2πi

∫
Γ

h(t)dt
t− z

;

and the operator V is determined by the formulas

V Ω =
{
A+(z)TΩ + B+(z)TΩ, z ∈ D+,

A−(z)TΩ +B−(z)TΩ, z ∈ D−,

V is a completely continuous operator in the space Lδ(C), δ > 2.
The equation (4.9) is the Fredholm equation in L2+ε(C) for sufficiently small

ε > 0 (see [20], [137]) and for it’s solvability it is necessary and sufficient the validity
of the conditions

Re
∫∫

C

F (z)Ψk(z)dσz = 0, k = 1, · · · , �′,

where {Ψk(z)} is a complete system of linearly independent solutions in Lq(C)
(q = (2 + ε)/(1 + ε)) of the adjoint equation E′Ψ = 0.

Considering the set of equations

∂z̄w
±
0 − λ[R±

1 ∂zw0 +R±
2 ∂zw0 −A±

0 w
±
0 −B±

0 w
±
0 ] = 0,

where the real parameter λ ∈ [0, 1], we are convinced, that the index of the for-
mulated problem (4.3), (4.6) is equal to the index of the same problem when the
equation (4.3) is replaced by the equation

∂z̄w = 0.

Consequently the index is defined by the formula

κ =
1
π

[arg det a(t)]Γ.

19.5 Differential boundary value problems for generalized

analytic vectors

We begin with some auxiliary propositions:

Lemma 19.5.1 Let Φ(z) be a vector of the class E±
�,m,p(Γ, Q

±, ρ±), p > 1, m = 0
or 1,Φ(0) = 0, Γ ∈ H1

α is a simple closed curve (O ∈ D+ = intΓ), ρ−(t) = ρ(t) =∏p
k=1 |t−tk|νk , ρ+(t) =

∏p
k=1 |t−α(tk)|νk , tk ∈ Γ,−1 < νk < p−1, α(t) is mapping

Γ onto itself in one-to-one manner keeping the orientation, 0 �= α′(t) ∈ C(Γ). Then
we may represent the vector Φ(z) by the formula

Φ(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ+(z)
2πi

∫
Γ

S+(z, τ)dQ+τµ[β(τ)], z ∈ D+,

(−1)m−1

2πi

∫
Γ

S−(z, τ,m)dQ−τµ(τ), z ∈ D−,

(5.1)
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where µ(t) ∈ Lp(Γ, ρ) is a solution of the Fredholm integral equation

Nµ ≡ µ(t) +
1

2πi

∫
Γ

[V+(α(τ), α(t))dQ+α(τ) − V−(τ, t)dQ−τ ]µ(t)

= [ζ+(ξ)Φ′
+(ξ) + ζ′+(ξ)Φ′

+(ξ)]ζ=α(t) − fm(t), (5.2)

f0(t) = Φ−(t), f1(t) = ζ−(t)Φ′
−(t), Φ′(t) = ∂Φ/∂t,

S+(z, t) = −ζ−1
+ (z) ln[I − ζ+(z)ζ−1

+ (t)], (5.3)

S−(z, t, 1) = −ζ−1
− (t) ln[I − ζ−(τ)ζ−1

− (z)], S−(z, t, 0) = V−(t, z).

β(t) is an inverse function to α(t), V±(t, z) and ζ±(t) is the generalized Cauchy ker-
nel and the principal solution with respect to the coefficient Q±(z); in the formulas
(5.3) ln[I − ζ+(z)ζ−1

+ (t)]{ln[I − ζ−(t)ζ−1
− (t)]} means the branch which is univalent

in the plane cut along the curve �+t {�−t } connecting the point t ∈ Γ with the point
z = ∞ and lying in the domain D− (connecting the point t ∈ Γ with the point
z = 0 and lying in the domain D+ and is equal to zero at infinity).

Proof Let µ0 ∈ Lp(Γ, ρ) be a solution of the homogeneous equation Nµ = 0.

Assume

ϕ(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2πi

∫
Γ

V+(τ, z)dQ+τµ0(β(τ)), z ∈ D+,

1
2πi

∫
Γ

V+(τ, z)dQ−τµ0(τ), z ∈ D−.

(5.4)

It is easy to see that ϕ(z) is a vector of the class E±
p (Γ, Q±, ρ±). From (5.4) it

follows that
ϕ+[α(t)] − ϕ−(t) = Nµ0 = 0. (5.5)

The first components ϕ+(z), ϕ−(z) are satisfying the Beltrami equation

∂zϕ
± − q11∂zϕ

± = 0

and therefore
ϕ±

1 (z) = Φ±
1 (s±1 (z)),

where s±1 (z) are the fundamental homeomorphisms, Φ±
1 (s) are the holomorphic

functions in the corresponding domains. From (5.5) we obtain

Φ+
1 [s+1 (α(t))] = Φ−

1 [s−1 (t)], t ∈ Γ,

from which Φ1 = 0, ϕ1 = 0. Continuing this argument we get, that

ϕ2 = 0, · · · , ϕn = 0, ϕ = 0.
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It follows from the equalities (5.4), that

µ0[β(t)] = F−(t), µ0(t) = F+(t),

where F± are the angular boundary values of the vector F (z) ∈ E±
p (Γ, Q±, ρ±).

By virtue of the last formulas

F+[β(t)] = F−(t), t ∈ Γ.

Therefore F (z) = 0 and the homogeneous equation Nµ = 0 has the only trivial
solution in Lp(Γ, ρ). That’s why for the given vector Φ(z) ∈ E±

�,m,p(Γ, Q
±, ρ±) the

equation (5.2) has the unique solution. Using the solution µ(t) construct the vector
Ψ(z) by the formula (5.1); let us show, that Ψ(z) = Φ(z).

We have

[∂zζ+(z)]−1
∂zΨ(z) =

1
2πi

∫
Γ

V+(τ, z)dQ+τµ[β(τ)], z ∈ D+,

ζm
− (z)

∂mΨ
∂zm

=
1

2πi

∫
Γ

V−(τ, z)dQ−τµ(τ), z ∈ D−.
(5.6)

From (5.6) we obtain

[∂ξζ+(ξ)]−1∂ξΨ+(ξ)]ξ=α(t) − ζm
− (t)

∂mΨ−(t)
∂tm

= Nµ.

Hence {
[∂ξζ+(ξ)]−1∂ξω+(ξ)

}
ξ=α(t)

= ζm
− (t)

∂mω−(t)
∂tm

, ω = Φ − Ψ (5.7)

If follows from (5.7), that ω = 0, Φ(z) = Ψ(z).

Corollary Let ϕ(z) is a vector of the class Ee,m,p(Γ, Q±, ρ±), m = 0 or 1. Then
Φ(z) is representable by the formula

Φ(z) =

⎧⎪⎪⎨⎪⎪⎩
1

2πi

∫
Γ

S+(τ, z)dQ+τµ[β(τ)], z ∈ D+,

1
2πi

∫
Γ

S+(τ, z)m)dQ−τµ(τ), z ∈ D−,
(5.8)

where µ(t) ∈ Lp(Γ, ρ) is a solution of the equation

Nµ = [ζ+(ξ)Φ′
+(ξ) + ζ′+(ξ)Φ+(ξ)]ξ=α(t) − fm(t).

Compose the vector

Φ0(z) =

{
ζ+(z)Φ(z), z ∈ D+,

Φ(z), z ∈ D−.
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By the lemma 19.5.1 it is possible to represent Φ0(z) in the form (5.1), conse-
quently Φ(z) admits the representation (5.8).

Consider the following boundary problem:
Find a vector Φ(z) of the class E±

e,m,p(Γ, Q
±, ρ±) (m = 0 or 1,Γ, ρ±, α(t) are

defined in lemma 19.5.1 satisfying the boundary condition:

HΦ≡
m∑

k=0

{ak(t)Φ(k)
+ [α(t)] + bk(t)Φ(k)

+ [α(t)] +N+
k Φ(k)

+ } (5.9)

+
m∑

k=0

{ck(t)Φ(k)
− (t) + dk(t)Φ(k)

− (t) +N−
k Φ(k)

− } = f(t),

where ak(t), bk(t), ck(t), dk(t) are given piecewise-continuous matrices, N±
k are the

operators of the form

N±
k Φ =

∫
Γ

[H±
1k(t, τ)Φ(τ) +H±

2k(t, τ)Φ(τ)]dτ,

where the kernels H±
ik have the form

H±
ik(t, τ) = h±ik(t, τ)|t − τ |η, −1, < η � 0;

h±ik(t, τ) is a measurable bounded matrix, f(t) is a given vector of the class Lp(Γ, ρ),
Φ(k)

+ (t),Φ(k)
− (t) are the singular boundary values of the vectors ∂kϕ/∂zk from the

domains D+ and D−.
Searching the solution of the problem (5.9) in the form (5.8) in order to deter-

mine the vector µ(t) we get the following system of singular integral equations

Kµ ≡ K1µ+K2µ = 2g(t), (5.10)

Ksµ ≡ As(t)µ(t) +
Bs(t)
π

∫
Γ

µ(τ)dτ
τ − t

+
∫

Γ

ks(t, τ)µ(τ)dτ,

A1(t) = a1(t)q(t) − cm(t)qm(t), A2(t) = b1(t)q(t) − dm(t)qm(t),

B1(t) = a1(t)q(t) + cm(t)qm(t), B2(t) = b1(t)q(t) + dm(t)qm(t),

q(t) = ζ−1
+ [α(t)], qm(t) = ζ−m

− (t)

ks(t, τ) are the certain matrices with weak singularities.
Note, that the problem (5.9) in the class E±

l,m,p(Γ, Q
±, ρ±) and the equation

(5.10) in the class Lp(Γ, ρ) are equivalent. They are either simultaneously solvable
or not and their indices coincide (it is clear, that the equation (5.10) is Noetherian
in Lp(Γ, ρ); then the problem (5.9) is Noetherian in the class E±

l,m,p(Γ, Q
±, ρ±)).

In order to clarify the Noetherity problem for the equation (5.10) we have to
compose the following block matrices
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A =
(
A1, A2

A2, A1

)
, B =

(
B1, −B2

B2, −B1

)
,

and have to require that

inf |detS(t)| > 0, inf |det D(t)| > 0, t ∈ Γ, (5.11)

S = A+B, D = A−B.

It is easy to see, that
det S(t) = det D(t),

and therefore it is sufficient to require the fulfillment of one of the (5.11) inequalities.
It is easy to establish the following formula (see [46])

det D(t) = (−1)ndet Ω(t),

where

Ω =
(
cm b1
d̄m a1

)
.

As det ζ(t) �= 0, det [∂tζ(t)] �= 0, t ∈ Γ1 then the necessary and sufficient
conditions for the inequalities (5.11) to be valid is the following condition

inf
t∈Γ

|det Ω(t)| > 0. (5.12)

Suppose that (5.12) holds, denote S−1D ≡ G and consider the equation

det [G(tk − 0) − λG(tk + 0)] = 0, k = 1, · · · , τ. (5.13)

Let λkj (k = 1, · · · , τ, j = 1, · · · , 2n) are the roots of the equation (5.13) and

µkj =
1
2π

arg λkj , 0 � arg λkj < 2π;

If the inequalities

1 + νk

p
�= µkj (k = 1, · · · , r, j = 1, · · · , 2n) (5.14)

are fulfilled, then the equation (5.10) is Noetherian in Lp(Γ, ρ).
Consequently we obtain the following result.

Theorem 19.5.1 The boundary value problem (5.9) under the consideration of
inequalities (5.12) and (5.14) is solvable in the class E±

l,m,p(Γ, Q
±, ρ±) if and only

if

Re
∫

Γ

f(t)Ψk(t)dt = 0, k = 1, · · · , l′,
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where Ψk(t) (k = 1, · · · , l′) is a complete system of linear independent solutions of
the adjoint homogeneous equation K ′Ψ = 0 of the class Lq(Γ, ρ1−q), the index of
(5.9) of the class E±

l,m,p(Γ, Q
±, ρ±) is calculated by the formula

κ =
1
2π

⎡⎢⎢⎣arg
det G(t)

r∏
k=1

(t− z0)σk

⎤⎥⎥⎦
Γ

, (5.15)

the numbers σk are defined by the formulas (3.22), (chapter 19).

Remark If ak, bk, ck, dk are continuous matrices then the conditions (5.14) are
automatically fulfilled and when the condition det Ω(t) �= 0 (t ∈ Γ) holds, then
the problem (5.9) is Noetherian in certain class E±

l,m,p[Γ, Q
±, ρ±] and the index

formula takes the following form:

κ =
1
2π

[arg det G(t)]Γ.

If all coefficients ak, bk, ck, dk of the matrix hik(t, τ) and the right hand side
function f(t) are Hölder-continuous then the solutions of the problem (5.9) of an
arbitrary class will belong to the class H1(Hm) in the closed domain D+(D−).

In this section we consider the boundary problem of the form (5.9) for general-
ized analytic vectors.

We have to find the generalized analytic vector w(z) belonging to the class
E±

l,m,p(Γ,L±, ρ±) and satisfying the condition

Hw = f(t), t ∈ Γ, (5.16)

where H is the operator of the form (5.9).
Let us represent the vector w(t) by the Q-holomorphic vectors

w±(z) = Φ±(z) +
∫ ∫
D±

Γ1(z, τ)Φ(τ) + Γ2(z, τ)Φ(τ)]dστ +
N±∑
k=1

c±k w
±
k (z), (5.17)

c±k (k = 1, · · · , N±) are the real constants, Φ(z) is a vector of the class E±
l,m,p(Γ,

Q±, ρ±), satisfying the conditions

Im

∫
Γ

Φ±(t)dQ′
± tΨk(t) = 0, k = 1, · · · , N±

0 , (5.18)

where Ψ±
k (k = 1, · · · , N±

0 ) is a complete system of linearly independent solutions
of the equation, conjugate to the equation M±w = 0, which are continuous on the
whole plane and are equal to zero at infinity.
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Substituting the representations (5.16) into the boundary condition (5.9) for
the desired vector Φ(z) we obtain the following boundary condition

H1Φ = f(t) +
N∑

i=1

civi(t), t ∈ Γ; (5.19)

Moreover the vector Φ(z) has to satisfy also the conditions (5.17).
The linear independent vectors vi(t) are representable by w+

k , w
−
k , ci are un-

known real constants.
The operator H1 in the boundary condition (5.16) has the form of the opera-

tor H, the difference between H1 and H2 may be only the completely continuous
operators.

The problem (5.17),(5.18) is Noetherian. When the operator K is Noetherian
and the indices are connected by the following formula

κ̃ = κ +N −N0, N0 = N+
0 +N−

0 ,

where κ is the index of the operator K of the class Lp(Γ, ρ).
Using the method of homotopy one can prove that N = N0(cf.19.3).
It is possible to study the boundary problems containing the derivatives of

higher order analogously [112].
In this chapter we apply the author’s articles written together with Ngo V.L.

[103].
Differential boundary problems for analytic and generalized analytic functions

were investigated in [7], [13], [14], [134], [136], [34], [62], [91], [92], [130], [122]
and also in several (other) monographs. The representation of generalized analytic
vectors indicated in §5 is the generalization of the representation constructed in
[62].

The boundary problems of linear conjugation with displacement for generalized
analytic functions were investigated in [4] and (see also [89]).

The boundary problems for elliptic system of the general form was studied in
the article [138] and in other works.

In Chapter 19 we often apply the results and terminology from [23]. Various
aspects of the theory of generalized analytic vectors are illuminated in [55], [49],
[37]. The references concerning this problem one can found in the monograph [49]
in detail.

Investigation of the theory of differential equation of elliptic type using the com-
plex analysis methods has old history. This problem is studied in the monographs
of [1], [11], [17], [18], [19], [134], [135], [139], [49], [42], [43], [107], [117] and in many
other monographs.



Chapter 20

On Boundary Value Problems for

Non-Linear Systems of Partial

Differential Equations in the Plane

by Giorgi F. Manjavidze and Wolfgang Tutschke

20.1 Introduction

Let G be a bounded domain on the plane of the complex variable z, the boundary
Γ of which consists of one or finite number of simple closed Liapunov curves (i.e.
the angle, between the tangent towards them and a constant direction is Hölder-
continuous). Consider the following system of differential equations in G:

∂wk

∂z̄
= Fn

(
z, w1, · · · , wn,

∂w

∂z
, · · · , ∂wn

∂z

)
, k = 1, · · · , n.

We shall write this system in the short form as the equation

∂w

∂z̄
= F

(
z, w,

∂w

∂z

)
. (∗)

In this paper some boundary value problems for the system (*) are studied.
These problems have unique solution in holomorphic case (F ≡ 0). The desired
solution is constructed as a solution of the system of nonlinear integral equations

w(z) = ψ(z) + Φ(w,h)(z) − 1
π

∫∫
G

F (ζ, w(ζ), h(ζ))
ζ − z

dξdη,

h(z) = ψ′(z) + Φ′
(w,h)(z) −

1
π

∫∫
G

F (ζ, w(ζ), h(ζ))
(ζ − z)2

dξdη,

(∗∗)

ζ = ξ + iη.

The vector ψ is a holomorphic solution of the considered boundary problem,
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Φ(w,h) is the holomorphic vector, such that

Φ(w,h)(z) − 1
π

∫∫
G

F (ζ, w(ζ), h(ζ))
ζ − z

dξdη

satisfies the corresponding homogeneous boundary condition1. Due to the nota-
tions of the book Vekua I. [134], denote the integral operators on the right-hand
sides of the equations (**) by TG and ΠG correspondingly.

In this paper all considered boundary functions are supposed to belong to the
space Cα(Γ). Therefore, it is provided, that the holomorphic solution ψ (in case
of F ≡ 0) belongs to the space Cα(G). It is well-known that from ψ ∈ Cα(G) it
follows that ψ′ ∈ Lp(G) if

p <
1

1 − α
. (1.1)

In order to ensure the existence of the number p > 2 such that ψ′ ∈ Lp(G), in

the sequel we shall suppose that
1
2
< α � 1.

On the right-hand side we assume, that F (z, w, h) is defined when z ∈ G,
|w| � R and for all h. For all considered boundary problems it is required that F
satisfies the following two conditions:

F (z, 0, 0) ∈ Lp(G), (I)

|F (z, w, h) − F (z, w̃, h̃)| � L1|w − w̃| + L2|h− h̃|, (II)

where L1, L2 are non-negative constants, |w| = max
k

|wk|. Moreover, sometimes we

will need the following assumptions

|F (z2, w, h) − F (z1, w, h)| � l|z2 − z1|γ

for all z1, z2 ∈ G,
p− 2

2
< γ < 1 and

|F (z, 0, 0)| � m

for all z ∈ G; m, l, γ - are constants.
By virtue of the assumptions (I), (II) the composite vector-function (when it is

measurable)
f(z) = F (z, w(z), h(z)) (1.2)

belongs to the space Lp(G), if h ∈ Lp(G) and w = w(z) is continuous in G; on the

other hand the operator TG is mapping the space Lp(G) into Cβ(G), β =
p− 2
p

< α.

1cf. [131]. In case F is not depending on ∂w/∂z, the system (**) consists only of the first line

(see [12]). More references may be found for example in [139].
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Hence, naturally we look for the solution of the equation (*) with the property

w ∈ Cβ(Ḡ),
∂w

∂z
∈ Lp(G).

Consider a Banach space consisting of the pairs of vectors (w, h), in which the
norm is defined in the following way:

||(w, h)|| = max(‖w‖Cβ(G), ‖h‖Lp(G))

From Φ(w,h) ∈ Cβ(G) it does not follow that Φ′
(w,h) belongs to each space

Lp(G) (p > 2). In order to avoid this difficulty the assumptions are intensified
usually: we shall take the given boundary values from the class C1

µ, and the right-
hand side of the equation will satisfy the additional condition, such assumptions
provide the existence of the solution in C1

µ (see [131], [132]). The second possibility
is to seek the solution in the Sobolev Space W 1

p (C); this will allow us to construct
the solution if only the Lipshitz condition (II) is fulfilled; with respect to the given
boundary functions it is sufficient to suppose, that they belong to the Slobodetski
Space W1− 1

p
(Γ) (see [121]).

In this paper using one property of the operator TG we will prove that Φ′
(w,h) ∈

Lp(G) . This will permit the corresponding a-priori estimate, when the following
assumptions hold:

a) the given boundary functions are Hölder-continuous (with an exponent larger
than 1/2);

b) the right-hand side of the equation (*) satisfies the conditions (I), (II). The
constructed solution will turn out to be Hölder-continuous in G.

20.2 Dirichlet problem in simply connected domains

20.2.1 Formulation of the problem

Let G be a simply connected domain and g = (g1, · · · , gn) is a given real vector
on Γ, g ∈ Cα(Γ), α > 1/2. Let z0 be a fixed point in G and c = (c1, · · · , cn) is a
given vector with constant real components.

We have to find a solution w continuous in G of the differential equation (*)
satisfying the conditions

Re w = g on Γ,

Im w(z0) = c.

(2.1)

Without loss of generality we may assume that G is the unit circle since it
is possible to map conformally every simply connected domain (bounded by a
Liapunov curve) onto the disk, and also the mapping functions z = z(ζ), ζ = ζ(z)
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belong to C1
µ (see for example [108]). After changing the variables the differential

equation (*) takes the form

∂w

∂ζ̄
=
(
dz

dζ

)
F

(
z(ζ), w,

(
dz

dζ

)−1
∂w

∂ζ

)
;

and consequently the form of differential equation remains.
It is easy to see that the right-hand side is also satisfying the condition (II)

where L1 and L2 are to be replaced by

L1 sup
∣∣∣∣dzdζ

∣∣∣∣ and L2 sup
∣∣∣∣dzdζ

∣∣∣∣ (inf
∣∣∣∣dzdζ

∣∣∣∣ )−1

correspondingly. Therefore, we may suppose from the very beginning, that the
given domain G is the unit disk.

20.2.2 About one property of the TG-operator in case of the disk

Let G denote an arbitrary circle {z :| z − a |< r} and let t ∈ Γ, Γ is the boundary
of the domain G, as above.Let the function f ∈ Lp(G), p > 1. Let us show, that
the boundary values of the function TGf are the boundary values of a function
holomorphic in G. We have

(TGf)(t) = − 1
π

∫∫
G

f(ζ)dξdη
ζ̄ − ā− r2

t−a

=
t− a

π

∫∫
G

f(ζ)dξdη
r2 − (ζ̄ − ā)(t− a)

. (2.2)

One can see immediately, that (TGf)(t) are the boundary values of the holo-
morphic in G function ϕ0:

ϕ0(z) =
z − a

π

∫∫
G

f(ζ)dξdη
r2 − (ζ̄ − ā)(z − a)

. (2.3)

Then

ϕ′
0(z) =

r2

π

∫∫
G

f(ζ)dξdη
(r2 − (ζ̄ − ā)(z − a))2

. (2.4)

The operators defined by the right-hand sides of the formulas(2.2),(2.3) have the
analogous properties of the operators TG and ΠG (see [20]):

‖ϕ0‖Cβ(G) � c1‖f‖Lp(G),

‖ϕ′
0‖Lp(G) � c2‖f‖Lp(G),

(2.5)

where c1, c2 are constants depending only on p and G.
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Later on it will be necessary to consider the case when G is an infinite domain
{z : |z − a| > r}, f ∈ Lp(G), where f ≡ 0 in some neighborhood of the point
z = ∞. It is easy to see that in this case the formulas (2.2)-(2.5) will take place.
The functions ϕ0 and ϕ′

0 will be holomorphic in the infinite doman G, the function
ϕ′

0 vanishes at the point z = ∞ and

lim
z→∞ϕ0(z) = − 1

π

∫∫
G

f(ζ)dζdη
ζ̄ − ā

.

20.2.3 An a-priori estimate of the holomorphic solution of the bound-
ary value problem

Let now G be the unit disk. As in Section 20.1, we denote by ψ the holomorphic
solution of the considered boundary problem, i.e. the problem (2.1). By virtue of
the Privalov theorem we have the following estimate

‖ψ‖Cα(G) � c3‖g‖Cα(Γ) + |c|,

where the constant c3 depends only on α, o < α < 1. In case o < β < α < 1 we
obtain

‖ψ‖Cβ(G) � 2‖ψ‖Cα(G) � 2(c3‖g‖Cα(Γ) + |c|). (2.6)

The statement of the Hardy-Littlewood theorem (see for example [48]) can be
written in the form

|ψ′(z)| � c4‖ψ‖Cα(G)

1
(1 − |z|)1−α

,

where c4 depends only on α. From the last inequality it follows that

‖ψ′‖Lp(G) � c5‖ψ‖Cα(G),

c5 depends on α and p. It is possible to estimate ‖ψ′‖Lp(G) by ‖g‖Cα(Γ) and |c|,
namely the following a-priori estimate

‖ψ′‖Lp(G) � c5(‖g‖Cα(Γ) + |c|) (2.7)

holds. We need also the following a-priori estimate of the holomorphic function
Φ(w, h) defined in Section 20.1. For this purpose let us consider the boundary
value problem

Re ϕ = Re TGσ on Γ

Im ϕ(z0) = Im [(TGσ)(z0)];
(2.8)

ϕ(z) is the desired holomorphic function in G which is continuous in G, σ is a given
function in G, σ ∈ Lp(G), p > 2.
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Rewrite the first condition of (2.8) in the form

Re ϕ = Re TGσ = Re ϕ0 on Γ.

Taking the second condition of (2.8) into account, we have

ϕ(z) = ϕ0(z) − 2iImϕ0(z0)

From the formulas (2.5) we get

‖ϕ‖Cβ(G) � 3c1‖σ‖Lp(G),

‖ϕ′‖Lp(G) � c2‖σ‖Lp(G).

The arguments show that for the vector Φ(w, h) defined above the same esti-
mates

‖Φ(w,h)‖Cβ(G) � 2c1‖f‖Lp(G),

‖Φ′
(w,h)‖Lp(G) � c2‖f‖Lp(G)

(2.9)

hold where the vector f is defined by (1.2).

20.2.4 Estimation of the operators on the right-hand side of the system
(**)

Let (w, h) be an element of the space (Cβ(G), Lp(G)). It is supposed that |w(z)| �
R everywhere in G (concerning the number R see Section 20.1); with the help of
the right-hand sides of the system (**) define the following operator: to each pair
(w, h) corresponds the pair (W,H):

W = ψ + Φ(w,h) + TGF (·, w, h)

H = ψ′ + Φ′
(w,h) + ΠGF (·, w, h).

(2.10)

Let (w, h), (w̃, h̃) be two pairs from (Cβ(G), Lp(G)) and (W,H), (W̃ , H̃) are
their images. Let then

f̃(z) = F (z, w, h) − F (z, w̃, h̃).

By virtue of the condition (II), we have

‖f̃‖Lp(G) � L1‖w − w̃‖Lp(G) + L2‖h− h̃‖Lp(G)

� L1π
1/p‖w − w̃‖Cβ(G) + L2‖h− h̃‖Lp(G).

(2.11)
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On the other hand, Φ(w,h) − Φ(w̃,h̃) turns out to be a holomorphic solution of
the boundary problem

Re [Φ(w,h) − Φ(w̃,h̃) + TGf̃ ] = 0 on Γ,

Im [Φ(w,h) − Φ(w̃,h̃) + TGf̃ ](z0) = 0.

If we apply the estimate (11), then we obtain

‖Φ(w,h) − Φ(w̃,h̃)‖Cβ(G) � 3c1‖f̃‖Lp(G),

‖Φ′(w, h) − Φ′(w̃, h̃)‖Cp(G) � c2‖f̃‖Lp(G).

Therefore, we may estimate the distance of the images (W,H) and (W̃ , H̃) of
the pairs (w, h) and (w̃, h̃):

‖(W,H) − W̃ , H̃)‖ � max(3c1 + ‖TG‖Lp(G),Cβ(G), c2 + ‖ΠG‖Lp(G),Lp(G))

(L1π
1/p + L2)‖(w, h) − (w̃, h̃)‖.

(2.12)
From the last inequality immediately follows the following lemma.

Lemma 20.2.1 The operator defined by the formulas (2.10) is continuous.

Now let us consider in the space (Cβ(G), Lp(G)) a polycylinder

D = {(w, h) : ‖w‖Cβ(G) � R1, ‖h‖Lp(G) � R2},
where R1 � R. By virtue of the assumptions (II), we have

|F (z, w, h)|� |F (z, 0, 0)|+ |F (z, w, h) − F (z, 0, 0)|
� |F (z, 0, 0)|+ L1|w| + L2|h|. (2.13)

Taking into account (I), from this inequality follows that as we have already
noted in §1, the composed function f , defined by the equality (1.2) belongs to the
space Lp(G) (if it is measurable). From (2.13) it follows that

‖f‖Lp(G) � M +L1‖w‖Lp(G) +L2‖h‖Lp(G) � M +L1π
1/p‖w‖Cβ(G) + L2‖h‖Lp(G),

M = ‖F (z, 0, 0)‖Lp(G).

Consequently
‖f‖Lp(G) � M + L1π

1/pR1 + L2R2, (2.14)

for all (w, h) ∈ D. Taking into account (2.7) and (2.14), we obtain finally the
following estimate

‖W‖Cβ(G) � ‖ψ‖Cβ(G) + (3c1 + ‖TG‖Lp(G),Cβ(G))(M + L1π
1/pR1 + L2R2),

‖H‖Lp(G) � ‖ψ′‖Lp(G) + (c2 + ‖ΠG‖Lp(G),Lp(G))(M + L1π
1/pR1 + L2R2),

for all (w, h) ∈ D.



604 Chapter 20 On Boundary Value Problems for Non-Linear Systems of Partial

20.2.5 Solution of the boundary problem (2.1)

Applying the Banach fixed-point theorem, from the inequalities (2.11) and (2.15)
it follows immediately:

Theorem 20.2.1 Let g ∈ Cα(Γ), α > 1/2 and 2 < p <
1

1 − α
. It is assumed, that

the right-hand side F (z, w, h) of the differential equation (∗) satisfies the conditions
(I) and (II). Suppose, that there exist numbers R1(� R) and R2 such that the
following inequalities2

‖ψ‖Cβ(G) + (3c1 + ‖TG‖Lp(G),Cβ(G))(M + L1π
1/pR1 + L2R2) � R1,

‖ψ′‖Lp(G) + (c2 + ‖ΠG‖Lp(G),Lp(G))(M + L1π
1/pR1 + L2R2) � R2

(III)

are fulfilled and

max
(
3c1 + ‖TG‖Lp(G),Cβ(G), c2 + ‖ΠG‖Lp(G),Lp(G)

)
(L1π

1/p + L2) < 1. (2.15)

Then there exists one and only one solution w of the boundary problem (2.1)

for which the pair
(
w,
∂w

∂z

)
belongs to the polycylinder D.

20.3 Dirichlet problem in multiply connected domains

20.3.1 Formulation of the problem

Let now G be a bounded (m + 1)–connected domain, m � 1, with the boundary
Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm. It is assumed, that Γ0 contains all other boundary curves.
Let g = (g1, · · · , gn) be a given real vector on the boundary, g ∈ Cα(Γ), α > 1/2.
Let also c = (c1, · · · , cn) be a given vector with the constant real components. Let,
finally, z0 be a fixed point in G.

We have to find a solution w of the differential equation (∗) in G continuous in
G and satisfying the boundary conditions

Re w = g + k(j) on Γj , j = 0, 1, · · · ,m, (3.1)

Im w(z0) = c,

where k(j) are real constant vectors, which are not given beforehand, one of them
can be fixed arbitrarily; assume, that k(0) = (0, · · · , 0); then all remaining k(j)

are defined uniquely by g, c and F . As for the solution of the modified Dirichlet

2These conditions provide, that the operator (2.10) maps D into itself. In these inequalities we

may replace ‖ψ‖Cβ(G) and ‖ψ′‖Lp(G) by the right-hand sides of the inequalities (2.6) and (2.7).
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problem for the holomorphic function (F ≡ 0) (see [121]), it is shown that there
exist a unique solution3.

It follows from the choice k(0) = (0, · · · , 0) that in case when m = 0 the problem
(3.1) coincides with the problem (2.1).

Without loss of generality we may assume that the curves Γj are circles, because
it is possible to map each (m + 1)-connected domain onto a domain of such form.
From above formulated assumptions about the boundary curves it follows that
the conformally mapping function z = z(ζ) ∈ C1

µ. Everything that was said in
Subsection 20.2.1 about the form of the differential equation (*) is also valid after
the mapping.

20.3.2 An a-priori estimate of the holomorphic solution

Let ϕ be a holomorphic solution4 of the problem (3.1). Rewrite (3.1) in the follow-
ing form.

ϕ(t) + ϕ(t) = g̃(t), g̃(t) = 2(g(t) + k(j)) on Γj . (3.2)

Multiplying both sides of (3.2) by
1

2πi
dt

t− z
, z ∈ G and integrating along Γ, we

obtain

ϕ(z) +
1

2πi

∫
Γ

ϕ(t)dt
t− z

= h(z) , (3.3)

where

h(z) =
1

2πi

∫
Γ

g̃(t)dt
t− z

.

The limiting process z → t0, t0 ∈ Γ, in (3.3) yields

ϕ(t0) +
1
2
ϕ(t0) +

1
2πi

∫
Γ

ϕ(t)dt
t− t0

= h(t0), (3.4)

h(t0) =
1
2
g̃(t0) +

1
2πi

∫
Γ

g̃(t)dt
t− t0

.

Then we have

1
2πi

∫
Γ

ϕ(t)dt
t− t0

=
1

2πi

∫
Γ

ϕ(t)dt
t− t0

+
1

2πi

∫
Γ

ϕ(t)
[

dt

t− t0
− dt

t− t0

]
=−1

2
ϕ(t0) +

∫
ΓH(t0, t)ϕ(t)dt

3The constant vectors k(j) = (k
(j)
1 , · · · , k(j)

n ) are uniquely defined by the vector g , they have

the form k
(j)
s =

∫
Γj

ρ
(s)
j (t)g|s|(t)dt, (s = 1, · · · , n), where ρ

(s)
j are some real functions depending

only on the contours Γ = Γ0,Γ1, · · · ,Γm.
4In the holomorphic case the components of the desired vector do not depend on each other.

Consequently, it is sufficient to consider the case n = 1.
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where H(t0, t) is an infinitely differentiable function of the variables t0 and t which
depends only on the circles Γk. The equation (3.4) takes the form

ϕ(t0) +
∫

Γ

H(t0, t)ϕ(t)dt = h(t0) , (3.5)

which is a Fredholm equation; its generalized resolvent will have the form

Rh = h(t0) +
∫

Γ

R1(t0, t)h(t)dt+
∫

Γ

R2(t0, t)h(t)dt; (3.6)

we may consider that R1(t0, t), Re(t0, t) are infinitely differentiable functions de-
pending only on the circles Γk. The equation (3.5) is solvable and its general
solution has the form

ϕ(t0) = h(t0) + h1(t0) + id, (3.7)

where
h1(t0) =

∫
Γ

R1(t0, t)h(t)dt+
∫

Γ

R2(t0, t)h(t)dt

and d is a real constant. Taking into account that

h(t) =
1
2
g̃(t) +

1
2πi

∫
Γ

g̃(τ)dτ
τ − t

= g(t) +
1
πi

∫
Γ

g(τ)dτ
τ − t

,

we obtain
h1(t0) =

∫
Γ

R3(t0, t)g(t)dt ≡ Kg, (3.8)

where R3(t0, t) is infinitely differentiable function depending only on the circles Γk.
From (3.7) we have

ϕ(z) =
1
πi

∫
Γ

g(t)dt
t− z

+
1

2πi

∫
Γ

h1(t)dt
t− z

+ id, (3.9)

where h1(t) = Kg is given by the formula (3.8). Finally the desired solution ϕ has
the form

ϕ(z) =
1
πi

∫
Γ

g(t)dt
t− z

+
1

2πi

∫
Γ

Kg(t)dt
t− z

+ id, (3.10)

where one may choose the real constant d from the condition

d = c− Imϕ̃(z0), (3.11)

ϕ̃(z) =
1
πi

∫
Γ

g(t)dt
t− z

+
1

2πi

∫
Γ

Kg(t)dt
t− z

.

The second term in (3.10),

1
2πi

∫
Γ

Kg(t)dt
t− z

=
1

2πi

∫
Γ

h1(t)dt
t− z

= ϕ2(z)
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is by virtue of (3.8) together with its derivatives of any order a continuous function
in the closure of the domain, where

‖ϕ(n)
2 (z)‖Cα(G) � Mα

n

∫
Γ

|g(t)| · |dt| , (3.12)

Mα
n are some constants, depending only on α, n and the circles Γk. As for the

term
1
πi

∫
Γ

g(t)dt
t− z

= ϕ1(z)

if g ∈ Cα(Γ), α >
1
2
, then

‖ϕ1‖Cα(G) � Mα‖g‖Cα(Γ),

‖ϕ′
1‖Lp(G) � Np‖g‖Cα(Γ),

(3.13)

where 2 < p <
1

1 − α
, and Mα and Np are constants depending only on the circles

Γk and on α and p.
Let now ψ be a holomorphic solution of the boundary problem (3.1). Taking

into account, that ϕ̃ = ϕ1 + ϕ2 from the formulas (3.11) and from the estimations
(3.12) and (3.13) we get immediatly

‖ψ‖Cβ(G) � c5‖g‖Cα(Γ) + |c|,

‖ψ′‖Lp(G) � c6‖g‖Cα(Γ);

c5, c6 are constants, they do not depend on g and c (they depend only on Γk, α
and p).

Let then g has the form
2g = TGσ + TGσ,

where σ ∈ Lp(G), p > 2. As the boundary values of the function TGσ are the
boundary values of a function, which is holomorphic outside G and vanishes at
infinity, we have

ϕ1(z) =
1
πi

m∑
k=0

∫
Γk

g(t)dt
t− z

=
1

2πi

m∑
k=0

∫
Γk

(Tσ)(t)dt
t− z

.

According to an above mentioned statement (see §2, section 2), one has ϕ ∈
Cβ(G), β =

p− 2
p

, ϕ′
1 ∈ Lp(G), and also

‖ϕ1‖Cβ(G) � Ap‖σ‖Lp(G), (3.14)

‖ϕ′
1‖Lp(G) � Bp‖σ‖Lp(G),
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where the constants Ap, Bp depend only on Γk and p. Applying these estimates in
case of the vector σ = −f , where f is defined by (1.2), we obtain for the vector
Φ(w, h) the following estimates

‖Φ(w,h)‖Cβ(G) � c7‖f‖Lp(G), (3.15)

‖Φ′
(w,h)‖Lp(G) � c8‖f‖Lp(G),

where c7, c8 are constants not depending on (w, h) (they depend only on Γk and
p).

20.3.3 Estimates of the operators on the right-hand sides of the system
(**)

As in Subsection 20.2.4, consider the operator (2.10). Let

σ(z) = −(f(z, w(z), h(z)) − f(z, w̃(z), h̃(z))).

Since Φ(w, h) − Φ(w̃, h̃) is a solution of the boundary value problem

Re [Φ(w, h) − Φ(w̃, h̃)] = Re σ on Γ,

Im [Φ(w, h) − Φ(w̃, h̃)](z0) = 0,

one obtains from (3.11), (3.12) and (3.14) the following estimates analogous to
(3.15):

‖Φ(w, h) − Φ(w̃, h̃)‖Cβ(G̃) � c7‖F (·, w, h) − F (·, w̃, h̃)‖Lp(G),

‖Φ′(w, h) − Φ′(w̃, h̃)‖Lp(G) � c8‖F (·, w, h) − F (·, w̃, h̃)‖Lp(G).

Due to the estimate (2.12), we have

‖(W,H) − (W̃ , H̃)‖ �max(c7 + ‖TG‖Lp(G),Cβ(G), c8 + ‖ΠG‖Lp(G),Lp(G))

× (
L1(mG)1/p + L2

) ‖(w, h) − (w̃, h̃)‖ .

Hence, the following lemma is valid (cf. §2, section 4).

Lemma 20.3.1 In case of the modified Dirichlet problem the operator (2.10) is
continuous.

Consider as in Subsection 20.2.4 the polycylinder D. In this case the estimates
(2.15) hold if 3c1, c2 are replaced by c7 and c8 correspondingly.

20.3.4 Solution of the modified Dirichlet problem

Taking (3.14), (2.15) (where 3c1, c2 are replaced by c7 and c8) and (3.15) into
account, we may prove the following theorem.
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Theorem 20.3.1 Assume that the right-hand side F (z, w, h) satisfies the condi-
tions (I), (II). Let us suppose, that there exist numbers R1(� R) and R2 such that
the following inequalities1.

‖ϕ‖Cβ(G) + (c7 + ‖TG‖Lp(G),Cβ(G))(M + L1(mG)1/pR1 + L2R2) � R1,

‖ϕ′‖Lp(G) + (c8 + ‖ΠG‖Lp(G),Lp(G))(M + L1(mG)1/pR1 + L2R2) � R2

(V)

are fulfilled.
Let

max(c7 + ‖TG‖Lp(G),Cβ(G), c8 + ‖ΠG‖Lp(G),Lp(G))(L1(mG)1/pR1 + L2) < 1. (VI)

Then there exists the unique solution w of the modified Dirichlet problem (∗), (3.1)

for which the pair
(
w,
∂w

∂z

)
belongs to the polycylinder D.

20.4 Riemann-Hilbert problem for simply connected domains

20.4.1 Formulation of the problem

Let G be a simply connected domain on the plane z. Without loss of generality
(cf. Subsection 20.2.1), we may assume that G is the unit disk. We have to
consider the differential equation (*) for the vector w = (w1, · · · , wn). Let A(t) be
a nonsingular quadratic matrix of order n given on Γ, A(t) ∈ Cα(Γ), α > 1/2. We
assume κk � −1 (k = 1, · · · , n) for the partial indices of the matrix A−1(t)A(t).
Let, further, g ∈ Cα(Γ) α > 1/2, be a given vector on Γ.

Find a solution satisfying the boundary condition

Re [A(t)w(t)] = g(t) on Γ (4.1)

and also some normalization condition.
First of all we shall establish the normalization for the Riemann-Hilbert problem

in case of holomorphic vectors (see the next section) and then the same normaliza-
tion will be applied for the problem (4.1) for the equation (*).

20.4.2 Normalization of Riemann-Hilbert problem in the holomorphic
case

Assume, that the partial indices of the matrix a(t) = −A−1(t)A(t) are satisfying
the condition

κ1 � · · · � κn � −1.
1In these inequalities ‖ψ‖Cβ (G) and ‖ψ′‖Lp(G) may be replaced by the right-hand sides of

(30)
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Then the homogeneous Riemann-Hilbert problem (4.1) has l =
∑n

k=1 κn + n

linear independent solutions over the real number field (see [136]).
The general solution of Riemann-Hilbert problem (4.1) is given by the formula

Φ(z) = Φo(z) + χ(z)P (z), (4.2)

where Φo(z) is a partial solution of the problem of the following form

Φo(z) = 1/2[w(z) + w∗(z)], (4.3)

w(z) =
χ(z)
2πi

∫
Γ

[χ+(t)]−1A−1(t)g(t)
t− z

dt, w∗(z) = w(z̄ − 1)

and χ(z) is the canonical matrix of the boundary value problem ϕ+(t) = a(t)ϕ−(t)
satisfying the condition χ∗(z) = χ(z)diag[zκ1, · · · , zκn] and the polynomial vector
P (z) has the form

P (z) = (p(1), · · · , p(n)), p(s)(z) = 0, when κs = −1,

p(s)(z) = cs0z
κs + · · · + csκs

is an arbitrary polynomial whose coefficients are con-
nected by the relations

cs
κs−k = csk, k = 0, · · · ,κs, s = 1, · · · , n. (4.4)

The relations (4.4) contain 2κs + 2 real constants Re csk, Im csk; using these
relations it is possible to express κs + 1 of them by the remainings; denoting them
by ds

0, · · · , ds
κs

, the polynomial P (s)(z) has the form

P (s)(z) =
κs∑

k=0

ds
kλ

s
k(z),

where λs
k(z) are linearly independent functions.

For simplicity, let us suppose that

κ1 > κ2 > · · · > κn−1 > κn > −1.

Consider the matrix
B(t) = A(t)χ+(t).

This matrix is nonsingular for all t ∈ Γ. Therefore, it is possible to find different
points tn−1

k ∈ Γ (k = 1, · · · ,κn−1 − κn) and quadratic matrices of order (m − 1)
composed from the first n−1 columns of the matrix B(t) such that the determinant
of this matrix is not equal to zero at the points tn−1

k . Take one of such matrices
and denote it by Bn−1

ν1
if the ν1-th row of the B(t) matrix is not contained in it.
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Then choose distinct points tn−2
k ∈ Γ (k = 1, · · · ,κn−2 − κn−1) (different from

the points tn−1
k ) and the quadratic matrix Bn−2

ν1,ν2
of order n−2 composed of the first

n− 2 columns of the matrix B(t) such that det Bn−2
ν1,ν2

(tn−2
k ) �= 0; the lower indices

ν1, ν2 denote that the ν1- and ν2-th rows of the matrix B(t) are not contained in
Bn−2

ν1,ν2
.

Continuing in such a way, we shall choose distinct points t1k, k = 1, · · · ,κ1−κ2)
(different from the points chosen earlier) and the elements bν1,··· ,νn−1(t) from the
first column of the matrix B(t), satisfying the conditions

Bν1,··· ,νn−1(t
1
k) �= 0.

Besides, take also the distinct points tnk ∈ Γ, k = 1, · · · ,κn+1, different from
the points chosen earlier.

Prescribe the vector Im [A(t)Φ(t)] at the points tnk :

Im [A(tnk )Φ(tnk )] = cnk , k = 1, · · · ,κn + 1, (4.5)

where cnk are arbitrary fixed real n-dimensional vectors.
Take now in the general solution (4.2) the last component Pn(z) ≡ 0; we get

the vector, which we denote by Φn−1(z) and put the condition

Im [A(tn−1
k )Φn−1(tn−1

k )]}(ν1) = cn−1
k , k = 1, · · · ,κn−1 − κn, (4.6)

cn−1
k is an arbitrary fixed real (n− 1)-dimensional vector.

Here we use the following notation: if W = (W1, · · · ,Wn) is some n-dimensional
vector, then

{W}(ν1,··· ,νs)

denotes the (n− s)-dimensional vector, which is obtained from the vector W if we
omit the components with the numbers ν1, · · · , νs.

Then take in the general solution (4.2) P (n−1)(z) ≡ 0, P (n)(z) ≡ 0; the obtained
vector is denoted by Φn−2(z), and put the condition

{Im [A(tn−2
k )Φn−2(tn−2

k )]}(ν1,ν2) = cn−2
k , k = 1, · · · ,κn−2 − κn−1, (4.7)

cn−2
k are fixed real (n− 2)-dimensional vectors.

If we continue further, in the last step we have to put the condition

{Im [A(t1k)Φ(t1k)]}(ν1,··· ,νn−1) = c1k, k = 1, · · · ,κ1 − κ2, (4.8)

c1k are fixed real constants. The relations (4.5)-(4.8) are a linear algebraic system
for the real unknown ds

k, k = 0, · · · ,κs, s = 1, · · · , n; the number of unknowns
coincides with the number of the equations of the system and is equal to l =∑n

k=1 κk + n.
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Let us prove that this system is solvable. For this purpose consider the ho-
mogeneous system, which we get if we suppose that g(t) ≡ 0, all csk = 0. Let
ds

k0 (k = 0, · · · ,κs, s = 1, · · · , n) be some solution of the homogeneous system.
We shall prove, that all ds

k0 = 0.
Indeed, using the equalities

Re [A(tnk )Φ(tnk )] = 0, k = 0, · · · ,κn + 1,

in the homogeneous case we may rewrite the equation (4.5) as follows

A(tnk )χ(tnk )P (tnk ) = 0;

from here we have
P (tnk ) = 0, k = 0, · · · ,κn + 1

and in particular P (n)(tnk ) = 0, P (n)(z) ≡ 0, dn
k0 = 0.

In the second step we get, analogously,

P (n−1)(tn−1
k ) = 0, k = 0, · · · ,κn−1 − κn,

from which we obtain P (n−1)(z) ≡ 0, dn
k0 = 0 and etc.

Hence, the homogeneous system has only the trivial solution.
We may carry out an analogous normalization if among the partial indices κk

(k = 1, · · · , n) some are equal to each other and some are equal to −1.
As it is easy to see, for the solution of the system (4.5)-(4.8) we shall have the

estimate
|d| � H1‖g‖Cα(Γ) +H2 max

i,j
|cij |. (4.9)

where the constants H1 and H2 depend on the matrix A(t).

20.4.3 An a-priori estimate for the Riemann-Hilbert problem in the
holomorphic case

First we prove an estimate, which we will need further.
Let G be a domain bounded by a simple closed smooth curve Γ and let ϕ(t) ∈

Cµ(Γ) and let ρ(t) be the boundary values of some function ρ(z), analytic in G and
continuously extendable to Γ.

Consider the Cauchy-type integral

Φ(z) =
1

2πi

∫
Γ

ϕ(t)ρ(t)
t− z

dt

and its derivative

Φ′(z) =
1

2πi

∫
Γ

ϕ(t)ρ(t)
(t− z)2

dt.
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Denote by R0 = R0(α0) the standard radius for the curve Γ, corresponding to
some arbitrarily fixed acute angle α0 [108].

Let t0 be an arbitrarily fixed point on Γ and δ0 be a positive constant, δ0 > R0.
In the following we shall always assume, that the distance δ of the point z and

t0 is not larger than δ0:
δ = |z − t0| � δ0,

and that the non-obtuse angle between the interval t0z and the tangent Γ at t0 is
not less than some fixed β0 > α0.

Consider the circle γ0 with the radius R0, and denote by l = ab the part of Γ
inside γ0. Represent Φ′(z) in the form

Φ′(z) =
1

2πi

∫
Γ−l

ϕ(t) − ϕ(t0)
(t− z)2

ρ(t)dt+
1

2πi

∫
l

ϕ(t) − ϕ(t0)
(t− z)2

ρ(t)dt+ ϕ(t0)ρ′(z).

From the last equation we have:

|Φ′(z)|�M max |ρ(t)|max |ϕ(t)| (4.10)

+N sup
|ϕ(t1) − ϕ(t2)|

|t1 − t2|µ max |ρ(t)|δµ−1 + max |ϕ(t)||ρ′(z)|.

In the estimate (4.10) the constant M depends only on the curve Γ, and the
constant N depends on Γ and the exponent µ.

From this estimate one can see that if µ > 1/2 and ρ′(z) ∈ Ls(G), s > 2, then
Φ′(z) ∈ Lp(G) for some p > 2, namely p has to satisfy the inequalities

2 < p <
1

1 − µ
, p � s.

If G is the unit disk, then the estimate (4.10) will have the form

|Φ′(z)| �M max |ρ(t)|max |ϕ(t)|+

N sup
|ϕ(t1)−ϕ(t2)|

|t1 − t2|µ max |ρ(t)|(1 − r)µ−1+max |ϕ(t)||ρ′(z)|. (r = |z|).
(4.11)

When |z| < ε < 1, it takes place the estimate

|Φ′(z)| � 1
(1 − ε)2

max |ϕ(t)|max |ρ(t)|,

hence an estimate of the form (4.10) is fulfilled.
The analogous estimates are valid in case when ϕ(t) and ρ(t) are matrices.
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As it was mentioned above, one of the solutions of the Riemann-Hilbert problem
(when the partial indices of the problem κk � −1) is given by the formulas (4.3).
From these formulas we have

Φ+(t0) = A−1(t0)g(t0) +
A−1(t0)
πi

∫
Γ

g(t)dt
t− t0

+R(t0) + χ−(t0)B, (4.12)

where
B =

1
2πi

∫
Γ

[χ+(t)]−1A−1(t)g(t)t̄dt,

R(t0) =
χ+(t0)

2πi

∫
Γ

[χ+(t)]−1A−1(t) − [χ+(t0)]−1A−1(t0)
t− t0

g(t)dt

−χ
−(t0)
2πi

∫
Γ

[χ+(t)]−1A−1(t) − [χ+(t0)]−1A−1(t0)
t− t0

g(t)dt

Consider the representation

ϕ(t0) =
∫

Γ

H(t) −H(t0)
t− t0

ψ(t)dt,

where the matrix H(t) ∈ Cµ(Γ), ψ(t) is a measurable bounded vector, Γ0 here
denotes a simple close smooth curve.

We obtain

||ϕ||Cµ−ε(Γ) � E||H ||Cµ(Γ) max(sup |ψ1(t)|, · · · , sup |ψn(t)|),

where the constant E depends only from Γ0, ε, µ (see [108], §5).
Therefore (if A ∈ Cα(Γ)),

‖R‖Cα−ε(Γ) � Qmax(max |g1(t)|, · · · ,max |gn(t)|), (4.13)

where the constant Q depends only from the matrix A, α and ε; if α > 1/2, then
we may suppose that in the estimate (4.13) α− ε > 1/2.

If now we are solving the Riemann-Hilbert problem for the holomorphic vector,
then the vector g has the form

g(t) = TG(σ) + TG(σ),

where σ(z) ∈ Lp(G) (p > 2) is some given vector. Hence in this case

g(t0) ≡ A−1(t0)g(t0) +
A−1(t0)
πi

∫
Γ

g(t)d(t)
t− t0

= 2A−1(t0)TG(σ).

Define by

S(z) =
1

2πi

∫
Γ

g(t)dt
t− z

.
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Note that TG(σ) are the boundary values of a vector holomorphic in G. Using
(4.11), we get

‖S′‖Lp(G) � K1‖σ‖Lp(G), (4.14)

where the constant K1 depends only on p and the matrix A(t).
Besides, it is evident that

‖S‖Cβ(G) � K2‖σ‖Lp(G), (4.15)

where the constant K2 depends on p and the matrix A(t).
Now we consider the case that the given vector has the form

g = g0 + TGσ + TGσ,

g0 ∈ Cα(Γ), σ ∈ Lp(G). Let Φ be a normed holomorphic solution of the problem
(4.1).

As it is easy to see from the formulas (4.9), (4.13)-(4.15), this holomorphic
solution admits an estimate of the form

‖Φ‖Cβ(G) � c9‖g‖Cα(Γ) + c10‖σ‖Lp(G) + c11 maxk,ν ‖cνk‖,

‖Φ′‖Lp(G) � c12‖g0‖Cα(Γ) + c13‖σ‖Lp(G) + c14 maxk,ν ‖cνk‖.

In the sequel the estimates (4.13) will be applied in the following two cases:
First they give us the possibility to estimate the norm ‖ψ‖Cβ(G) and ‖ψ′‖Lp(G) of
the holomorphic solution ψ of the considered problem (4.1) by the given datas g
and Cν

k (σ ≡ 0):

‖ψ‖Cβ(G) � c9‖g‖Cα(Γ) + c11 maxk,ν |cνk|,

‖ψ′‖Lp(G) � c12‖g‖Cα(Γ) + c14 maxk,ν |cνk|.

Second, for the vector Φ(w, h) defined in §1 we have g0 = 0, ck = 0, σ = −f and,
consequently, by virtue of (4.13)

‖Φ(w,h)‖ � c10‖f‖Lp(G),

‖Φ′
(w,h)‖ � c13‖f‖Lp(G).

20.4.4 An a-priori estimate of the operators on the right-hand sides of
the system (**)

The holomorphic vector Φ(w, h)−Φ(w̃, h̃) satisfies the normed boundary condition
(4.1), and

σ = −(F (·, w, h) − F (·, w̃, h̃)).
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By virtue of (2.12), we have

‖σ‖Lp(G) � (L1π
1/p + L2)‖(w, h) − (w̃, h̃)‖.

Taking into account (49), we get

‖Φ(w,h) − Φ(w̃,h̃)‖Cβ(G) � c10(L1π
1/p + L2)‖(w, h) − (w̃, h̃)‖,

‖Φ′
(w,h) − Φ′

(w̃,h̃)
‖Lp(G) � c13(L1π

1/p + L2)‖(w, h) − (w̃, h̃)‖.
Finally we obtain

‖(W,H) − (W̃ , H̃)‖ �max(c10 + ‖TG‖Lp(G),Cβ(G), c13 + ‖ΠG‖Lp(G),Lp(G))
×(L1π

1/p + L2)‖(w, h) − (w̃, h̃)‖.

From here it follows immediately that analogously to the lemmas 4.1, 4.2 the
following lemma holds.

Lemma 20.4.1 The operator (2.10) corresponding to the Riemann-Hilbert bound-
ary value problem (4.1) is continuous.

Analogous to the arguments in the Subsections 20.2.4 and 20.3.3, the operator
(2.10) can be estimated in the polycylinder D. The estimates (2.15) are also valid
if 3c1, c2 are replaced by c10, c13.

20.4.5 Solution of the Riemann-Hilbert problem (4.1)

On the basis of the estimate (4.16) and the inequalities (2.15) (in which 3c1, c2 are
replaced by c10, c13) one may prove the following theorem:

Theorem 20.4.1 Assume that the rigth-hand side F (z, w, h) of the equation (∗)
satisfies the conditions (I) and (II). Suppose, further, that there exist non-negative
numbers R1(� R) and R2 such, that the following inequalities are fulfilled

‖ψ‖Cβ(G) + (c10 + ‖TG‖Lp(G),Cβ(G))(M + L1π
1/pR1 + L2R2) � R1,

‖ψ′‖Lp(G) + (c13 + ‖ΠG‖Lp(G),Lp(G))(M + L1π
1/pR1 + L2R2) � R2.

(4.16)

Finally, let the following condition be fulfilled

max(c10 + ‖TG‖Lp(G),Cβ(G), c13 + ‖ΠG‖Lp(G),Lp(G))(L1π
1/p + L2) < 1. (VIII)

Then the normalized Riemann-Hilbert problem (4.1) for the equation (∗) is (uniquely)
solvable in the polycylinder D.
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20.5 Application of the Schauder principle

20.5.1 Proof of the existence of solutions of the boundary value prob-
lems (2.1), (3.1) and (4.1) on the basis of the Schauder principle

In the paragraphs 2, 3 and 4 the solution of above mentioned boundary value
problems was constructed in the space (Cβ(G), Lp(G)) using the succesive approx-
imations method. For this purpose we impose on the Lipshitz constants L1, L2

the restrictions (IV), (VI) and (VIII) correspondingly. On the other hand, from
the lemmas 4.1-4.3 it follows that the operator (2.10) is continuous with respect
of the metric of the space (Cβ(G), Lp(G)). The last assertion is valid also without
any restrictions on the constants L1, L2. But in the definition of the operator
(2.11) the operator ΠG is contained, which is not compact. Therefore the second
version of the Schauder principle is not applicable in this case. Consequently, the
application of the Schauder principle requires to consider the operator (12) on a
compact subset of the space (Cβ(G), Lp(G)).

As mentioned above, the polycylinder D is not compact. In order to construct
a compact set, first of all note that the ball

{w ∈ Cβ(G) : ‖w‖ � R′
1}

is compact in C′
β(G) if β′ < β. Let γ and r be given numbers, 0 < γ < 1 and

r > 1. The norm in the space Lγ
r (G) is usually defined by

‖h‖Lγ
r (G) = ‖h‖Lr(G) + sup

z,∆z

‖f(z + ∆z) − h(z)‖Lr(G)

|∆z|γ .

It is quite enough to consider increments ∆z for which |∆z| < 1. Besides Lγ
r (G)

the space Lγ
r (G) ∩ L2r(G) is considered, which is normed by the formula

‖ · ‖Lγ
r (G)∩L2r(G) = ‖ · ‖Lγ

r (G) + ‖ · ‖LL2r(G).

For a given r > 1 we choose a number p such that r < p < 2r. Note secondly, that
the ball

{h ∈ Lγ
r (G) ∩ L2r(G) : ‖h‖Lγ

r (G)∩L2r(G) � R′
2}

is compact in Lp(G). Therefore we get that the polycylinder

D′ = {(w, h) : w‖)Cβ(G) � R′
1, ‖h‖Lγ

r (G)∩L2r(G) � R′
2}

is compact in (Cβ(G), Lp(G)) if β′ < β and 2 < p < 2r; it is supposed that R′
1 � R.

The Schauder Principle requires that the operator (2.10) maps the polycylinder D
into itself. Thus for the solution ψ of the boundary problems (2.1), (3.1) or (4.1)
in the holomorphic case (F ≡ 0) one has to demand that ψ′ ∈ Lγ

r (G). In order
to fulfill this, let us suppose additionally that dg/ds ∈ Lα

r (G), s is the arc length,
0 < α < 1, (see the next section).
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20.5.2 Solution of the boundary problems (2.1), (3.1) and (4.1) in the
holomorphic case with derivatives in Lγ

r(G)

Let r and α be given numbers, r > 1, 0 < α < 1. As in the above section, the
number p is chosen from the interval 2 < p < 2r. The numbers β, µ and γ are
defined by β = 1 − 2/p, µ = 1 − 1/r, γ = min(α, 1/r). We have to find the
solution ψ of the boundary problem (33) in the holomorphic case (F ≡ 0). About
the vector-function g (more precisely its components) in the considered boundary
conditions, it is assumed that

a) gk is absolutely continuous,
b) dgk/ds ∈ Lα

r (Γ), s is the arc length 5

From these assumptions it follows, in particular, that g ∈ Cµ(Γ) and hence
ψ ∈ Cµ(G). Since µ > β the function ψ belongs to the space Cβ(G) too. The other
properties of the holomorphic function ψ are proved in the Subsections 20.2.3,
20.3.2 and 20.4.3 correspondingly. Additionally we need estimates of the derivative
ψ′ in the spaces Lγ

r (G) and L2r(G). Next we outline these estimates.
In order to solve the Dirichlet type problem (2.1) we have (for our purpose it

is sufficient to consider the case n = 1):

ψ′(z) =
1
πi

∫
Γ

dg/dt

t− z
dt,

ψ′(eis0) = −ie−is0dg/ds0 − 1
2π

∫ 2π

0

e−is0dg/ds ctg
s− 1

2
ds+

1
2πi

∫ 2π

0

e−isdg(s);

ψ′(eis0 ) denotes the boundary value of the function ψ′(z) at the point t0 = eis0 .
From these formulas one can see that ψ′(z) belongs to the Hardy class Hr(G),

ψ′(t) ∈ Lα
r (Γ) ([48], [24], [140]). On the other hand, from ψ′(z) ∈ Hr(G) it follows

that ψ′(z) ∈ L2r(G), ‖ψ′‖L2r(G) � ‖ψ′‖Hr(G) [55]. Using the arguments mentioned
in the book [24] (pp. 78-79) it is possible to show that

ψ′(z) ∈ Lγ
r (Γ), γ = min(α, 1/r), ‖ψ′‖Lγ

r (Γ) � const‖g‖Lα
r (Γ).

Turn now to the Riemann-Hilbert Problem. The canonical matrix of the cor-
respoding problem of linear conjugation may be constructed in the following way
([96], [108]).

Consider the sequence of the matrices

ϕm(z) = 1
2πi

∫
Γ

b0(t)ϕ−
m−1(t)

t− z
dt+

1
2πi

∫
Γ

a0(t)
t− z

dt,

m = 1, 2, · · · , ϕ−
0 = 0,

(5.1)

5In case of the Riemann-Hilbert problem an analogous condition will be imposed on the matrix

A(t).
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where a0(t) = I + b0(t) = a(t)R(t), R(z) is a rational matrix, such that the norm
of the matrix b0(t) will be sufficiently small.

The matrix defined by the equalities

χ0(z) lim
m→∞ϕm(z), z ∈ G, χ0(z) = I + lim

m→∞ϕm(z), z �∈ G ∩ Γ,

will be a canonical matrix for the matrix a0(t).
The canonical matrix for the initial matrix a(t) is constructed by the formula

χ(z) =

⎧⎨⎩ χ0(z)Q(z), z ∈ G,

R(z)χ0(z)Q(z), z �∈G ∪ Γ,

where Q(z) is the correspondingly chosen rational matrix.
If a′(t) ∈ Lα

r (Γ), 0 < α < 1, then b′0(t) ∈ Lα
r (Γ) and we have

ϕ′
m(z) =

1
2πi

∫
Γ

b0(t)ϕ′−
m−1(t)

t− z
dt+

1
2πi

∫
Γ

b′0(t)ϕ
−
m−1(t)

t− z
dt+

1
2πi

∫
Γ

a′0(t)
t− z

dt,

m = 1, 2, · · · , ϕ−
0 = 0,

(5.2)
From the formulas (5.1), (5.2) we get χ

′+
0 (t), χ

′−
0 (t) ∈ Lα

r (Γ) and hence χ
′+(t),

χ
′−(t) ∈ Lα

r (Γ); then from the formulas (4.2), (4.3) we obtain that all solutions of
the Riemann-Hilbert problem have the corresponding properties.

The mentioned arguments (and also the analogous arguments, which we may
carry out with respect to the modified Dirichlet problem) show that the following
proposition is valid.

Lemma 20.5.1 The solution of the boundary value problems (2.1) and (3.1) and
of the normalized boundary value problem (4.1) in the holomorphic case (F ≡ 0)
admits the a-priori estimates

‖ψ‖Cµ(G) � c15‖g‖Cµ(Γ) + c16N(c),

‖ψ′‖Lγ
r (G) � c17‖g‖Cα

r (Γ) + c18N(c),

‖ψ′‖L2r(G) � c19‖g‖Lr(Γ) + c20N(c).

In case of the boundary problems (2.1) and (3.1) c16 = 1, c18 = c20 = 0, for all
these problems N(c) = |c|, and for the problem (4.1) N(c) = max

|k,ν|
|cνk|.

20.5.3 Behaviour of the operator (2.10) in the space Lγ
r (G)

Let |∆z| � 1. We have

(ΠGh)(z + ∆z) − (ΠGh)(z) = − 1
π

∫∫
G0

h(ξ + ∆z) − h(ξ)
(ξ − z)2

dξdη,
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where G0 is a disk with the center at the point z = 0 and with the correspondingly
chosen fixed radius (G0 ⊃ G, h ≡ 0 outside of G).

Taking into account the definition of the norm in the space Lγ
r (G), it follows

from the last formula that the operator ΠG is a bounded operator in the space
Lγ

r (G) with the norm ‖ΠG0‖Lr(G0),Lr(G0).
The same is valid for the operator on the right-hand side of the inequality (2.4),

since this operator may be reduced to the operator ΠG (see. [20]).

20.5.4 Existence theorem on the basis of the Schauder principle

Strengthening the formula (I), require that F (z, 0, 0) ∈ L2r(G). Denote by M the
norm ‖F (z, 0, 0)‖L2r(G). For all (w, h) ∈ D′ we have

‖w‖L2r(G) � ‖w‖Cβ(G)(mG)1/2r � R′
1(mG)1/2r , ‖h‖L2r(G) � R′

2;

it follows from (II) that

‖f‖L2r(G) � M + L1(mG)1/2rR′
1 + L2R

′
2,

where f is defined by (1.2).
We have analogously

‖h‖Lr(G) � ‖h‖Lγ
r (G) � R′

2,

‖F (z, 0, 0)‖Lr(G) � M(mG)1/2r;

from (II) if follows

‖f‖Lr(G) � M(mG)1/2r + L1(mG)1/rR′
1 + L2R

′
2.

In order to estimate the Lγ
r (G)- norm of the element f , we consider the expres-

sion
|F (z + ∆z), w(z + ∆z), h(z + ∆z) − F (z, w(z), h(z))|

�L1|w(z + ∆z) − w(z)| + L2|h(z + ∆z) − h(z)|

+|F (z + ∆z, w(z), h(z)) − F (z, w(z), h(z))|.
Since the first summand on the right-hand side may be estimated by L1‖w‖Cβ(G)

|∆z|β � L1R
′
1|∆z|β, from this inequality it follows

‖F (z + ∆z, w(z + ∆z), h(z + ∆z)) − F (z, w(z), h(z))‖Lr(G)

�L1R
′
1|∆z|β(mG)1/r + L2‖h(z + ∆z) − h(z)‖Lr(G)

+‖F (z + ∆z, w(z), h(z)) − F (z, w(z), h(z))‖Lr(G).
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Now assume additionally that

‖F (z2, w, h) − F (z1, w, h)‖Lr(G) � l|z2 − z1|τ (0 < τ � 1). (IX)

Dividing the last inequality by |∆z|γ , we get the following result:
If γ � min(β, τ), then f ∈ Lγ

r (G) and

‖f‖Lγ
r (G) � M + L1((mG)1/2r + (mG)1/r)1/rR′

1 + 2L2R
′
2 + l.

Let now
c21 = 3c1, c22 = c̃2, c23 = ĉ2

in case of the boundary problem (2.1),

c21 = 3c7, c22 = c̃8, c23 = ĉ8

in case of the boundary problem (3.1) and

c21 = 3c10, c22 = c̃13, c23 = ĉ13

in case of the Riemann-Hilbert problem (4.1). The constant c1, c7, c10 are corre-
sponding to the space Lp(G), the constants c̃2, c̃8, c̃13 - to the space Lr(G), and the
constants ĉ7, ĉ8, ĉ13 to the space L2r(G).

Note that
‖f‖Lp(G) � ‖f‖L2r(G)(mG)1/p−1/2r .

Taking into account the arguments of the above section, we get the following
estimates

‖W‖Cβ(G) �‖ψ‖Cβ(G) +
(
c21 + ‖TG‖Lp(G),Cβ(G)

)
×(M + L1(mG)1/2rR′

1 + L2R
′
2)(mG)1/p−1/2r ,

‖H‖Lγ
r (G) �‖ψ′‖Lγ

r (G) +
(
c22 + ‖ΠG0‖Lr(G0),Lr(G0)

)
×(M(mG)1/2r + 2L1(mG)1/rR′

1 + 2L2R
′
2 + l),

‖H‖L2r(G) �‖ψ′‖L2r(G) +
(
c23 + ‖ΠG‖L2r(G),L2r(G)

)
×(M + L1(mG)1/2rR′

1 + L2R
′
2)

instead of (2.15).
On the other hand, due to the lemmas 4.1-4.3, the operator (2.10) is continuous

in (Cβ(G), Lp(G)) and hence also in (Cβ′(G), Lp(G)), β′ < β. Using the Schauder
principle one can prove the following theorem.
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Theorem 20.5.1 Let r and α be given numbers, r > 1, 0 < α < 1. Suppose, that
the right-hand side F (z, w, h) of the equation (∗) satisfies the conditions (I) (where
p is to be replaced by 2r), (II) and (IX).

We consider one of the boundary value problems (2.1), (3.1) or (4.1) where it
is assumed that the given boundary functions are absolutely continuous and their
derivative dgk/ds ∈ Lα

r (Γ), s is the arc length1

The number p is chosen in the interval 2 < p < 2r, and β = 1− 2/p. Define the
number γ, which is contained in the definition of the polycylinder D′ by2

γ = min(1/r, α, β, τ).

Assume then that there exist the non-negative numbers R′
1(� R) and R′

2 such
that the following inequalities are fulfilled3

‖ψ‖Cβ(G) +
(
c21 + ‖TG‖Lp(G),Cβ(G)

)
×
(
M + L1(mG)1/2rR′

1 + L2R
′
2

)
(mG)1/p−1/2r � R1,

‖ψ′‖Lγ
r (G)∩L2r(G) +

(
c22 + ‖ΠG0‖Lr(G0),Lr(G0)

)
(X)

×
(
M(mG)1/2r + 2L1(mG)1/rR′

1 + 2L2R
′
2 + l

)
+
(
c23 + ‖ΠG‖L2r(G),L2r(G)

) (
M + L1(mG)1/2rR′

1 + L2R
′
2

)
� R2.

Then there exists at least one solution w of the differential equation (∗) satis-
fying the boundary condition (2.1), (3.1) or (4.1) and such that (w, ∂w/∂z) belongs
to the polycylinder D′.

20.5.5 Concluding remarks

a) Using the Schauder principle (instead of the Banach fixed point theorem),
the conditions (IV), (VI) and (VIII) are superfluous, and the conditions (III), (V)
or (VII) are to be replaced by the modified condition (X). On the other hand,
the Schauder principle needs the additional assumptions (IX) with respect to the
right-hand side (this requirement together with the condition (II) provides the
measurability of the function (1.2)). Moreover, we shall assume that the given
boundary values g have derivatives dg/ds ∈ Lα

r (Γ), s is the arc length.

1In case of the Riemann-Hilbert problem an analogous condition is to be satisfied by the matrix

A(t)−.
2Lγ1

r ⊃ Lγ2
r , if γ1 < γ2.

3This condition provides that the operator (2.10) maps D′ into itself. Using the lemma 4, we

may estimate the norms of ψ, ψ′ by the norms of the given boundary function g.



b) In case when r > 2 we may take p = r. Additionally, it is sufficient to
consider the space Lγ

r (G) intead of Lγ
r (G) ∩ L2r(G). Hence, the second condition

(X) is simplified.
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