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Preface 

According to the observation made by I. Vekua and L. Bers in the 1950s, it is 
possible to extend the main theorems of analytic functions to a wider class of 
functions than the space of analytic functions. Such different and unique 
approach of Vekua and Bers towards the issue gave us a new function space 
attributed with the best properties, the elements of which are today known as the 
generalized analytic functions (И.Векуа, Обобщенные аналитические функ-
ции. Москва, 1959) or the pseudo-analytic functions (L.Bers, Theory of Pseudo-
Analytic Functions, New York, 1953).    
 
I. Vekua’s concept which is based on the theory of first order linear elliptic 
systems on a complex plane has proved to be fruitful not only in terms of the 
theory of functions, but for its application in the related fields of science. 
Rewriting of elliptic systems in a complex form and presenting of the solution  
analytically as proposed by Vekua, widened the range of application of the 
boundary value problems of the analytic function theory, threw new light on the 
possibility of extending the theory on vector functions; using the generalized 
analytic functions it became also possible to make a complete analysis of the 
Beltrami equation, which in its turn is an important tool of classification of 
analytic manifolds, classical theory of mathematical physics - theory of shells 
and the modern branches, conformal and topological field theories and Yang-
Mills theory.       
 
Nowadays many leading mathematical centers conduct processing and extension 
of the generalized analytic functions theory or its methods, as well as the study 
of mathematical physics using this theory. Among them is the I. Vekua Institute 
of Applied Mathematics of the Tbilisi State University, where in various periods 
outstanding researches were carried out in the department of “Complex Analysis 
and Applications” founded by I.Vekua himself, which was chaired by G.Manja-
vidze later. Currently the scientific group of complex analysis of the Institute (G. 
Akhalaia, G. Giorgadze, E. Gordadze, V. Jikia, N. Kaldani, G. Makatsaria, N. 
Manjavidze)  is focusing on irregular elliptic systems on Riemann surfaces and 
Riemann-Hilbert  boundary value problem for such systems, namely: the qualita-
tive research of systems of singular elliptic differential equations; the study of  
local and global influence of isolated and nonisolated singularities of Carleman-
Bers-Vekua systems in corresponding spaces, the investigation of  the space  of 
solutions of elliptic systems (pseudo-analytic, polyanalytic) in the neighborhood 
of the singular point, including the case, when the singular point of the equation 
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is a branched point of the solution;  classification of  elliptic systems with respect 
to the singular points;  obtaining analogs of  Riemann-Hurwitz formula on com-
pact Riemann surfaces.  
 
In case of Fuchsian systems, the invariants (total Chern number, splitting type) of 
induced holomorphic bundles with meromorphic connections are naturally 
related to the numerical invariants (index, partial indices) of Riemann-Hilbert 
boundary value problem. In this context it is interesting to investigate elliptic 
systems with the first order poles together with factorization of piecewise 
constant matrix-function in various weighted spaces and boundary value problem 
of linear conjugation for general open curves in Lebesgue spaces with variable 
exponent. Note that the boundary values of Cauchy-type integral may have 
different behavior in different points of curve, which is better pointed by the 
variable exponent than by the constant one. The boundary value problem of 
linear conjugation for Q-holomorphic vector-functions in particular case when Q 
matrix satisfies the so-called commutative condition has not been studied until 
now. The investigation space of holomorphic sections of an induced 
holomorphic bundles as well as the space of solutions of the boundary value 
problem of linear conjugation applying sheaf theory methods is also a very 
attractive and perspective problem. 
 
It is well known that the matrix Riemann-Hilbert boundary value (linear 
conjugation) problem is naturally connected with the problem of factorization of 
matrix-functions. The latter leads to an important geometric interpretation of the 
holomorphic vector bundle on the Riemann sphere. The space of solutions of 
boundary value problems coincides with the space of holomorphic sections of 
the bundle. The partial indices of matrix functions and the index of the problem 
correspondingly, represent the splitting type and the total Chern number of 
holomorphic bundle. Such an approach allows one to state the Riemann-Hilbert 
problem and to solve it on compact Riemann surfaces, to replace the matrix 
function by a loop in a Lie group, to calculate the partial indices in two- and 
three-dimensional cases in terms of numerical invariants of deformation of the 
holomorphic bundle. 
 
The Riemann-Hilbert monodromy problem (the Hilbert 21st problem) is to 
construct the Fuchsian system by the marked points and given non-degenerate 
matrices, for which the marked points are the poles of the system and the 
monodromy matrices coincide with given matrices. This problem was first posed 
by Riemann in one of his last works and was solved by Hilbert in one particular 
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case. He inserted the general problem in his famous problems list. Till the 1990-s 
it was considered that Plemelj solved the 21st Hilbert problem. Despite the fact 
that some authors observed the mistake in the solution proposed by Plemelj, it 
was considered that this inaccuracy could be rectified and the final result would 
be correct. A.Bolibruch constructed the counter example and showed that this is 
not true and the solution of the 21st Hilbert problem strongly depends on the 
apriori given matrices, i.e. on the monodromy representation. This means that 
solution of the problem depends on the complex/conformal structure of Riemann 
surface with marked points. In turn the complex structure of Riemann surface is 
defined by the Beltrami equation. For these reasons we believe describing the 
solvability of Riemann-Hilbert monodromy problem in terms of the Beltrami 
differential is an interesting problem.  
 
As is well known, the complex functions on punctured Riemann sphere can be 
described in terms of moduli space of polygonal linkages. The arising interplay 
between the Riemann-Hilbert monodromy problem and moduli spaces of 
linkages seems interesting and promising.  
 
The Riemann-Hilbert boundary value problem (the problem of linear 
conjugation) was posed by Riemann in the same work as one of the methods for 
solving of the monodromy problem. Plemelj followed the same way. He reduced 
the boundary value problem with piecewise constant boundary matrix to the 
problem with continuous boundary matrix-function and after solving this 
problem he constructed the desired system of equations. Likely the inaccuracy 
made by Plemelj was the result of his insufficient manipulation techniques on 
matrix differential and integral equations. Later on such techniques were 
developed by I.Lappo-Danilevski for the 21st Hilbert problem and by N.Mus-
khelishvili and N. Vekua in their joint work for the problem of linear conjuga-
tion. Since then these two problems are studied independently. 
 
In spite of the fact that the problem of linear conjugation was studied for the 
generalized analytic functions and vectors and the progress achieved in research 
of singular elliptic systems, the connection between Riemann-Hilbert problem 
with singular elliptic systems has not been noted until now. In our view this is a 
very important problem of the theory of generalized analytic functions. 
 
The Riemann-Hilbert monodromy problem induces holomorphic bundle with 
meromorphic connections and permits to give the necessary and sufficient 
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solvability conditions for the 21st Hilbert problem. In some weak form the 
analogous result applies to Riemann surfaces and functions with values in 
complex Lie groups. In our opinion, the statement and investigation of the 
monodromy problem for some subclasses of elliptic systems is one of the most 
relevant and important problems for the study of solution space of elliptic 
systems, as well as for constructing the ܮ௣-connections and investigation of the 
moduli spaces. The results obtained in this direction make it possible to extend 
the range of application of elliptic systems in mathematical physics and 
technique: elasticity theory, conformal, gauge, topological field theories and 
quantum computation. 
 
Leading scientists of the field worldwide have been invited to discuss the above 
stated problems in the framework of the conference organized by the complex 
analysis group at the I. Vekua Institute of Applied Mathematics. This book 
completely covers the subjects of the conference. Here are presented the authors 
of four generations, among them are the students of the Tbilisi State University. 
The collection of works was ready to be published when we learned about the 
tragic decease of Prof. A. Timofeev. His last work is included in the proceedings 
in memory of our dear colleague and friend. 
 
We would like to particularly underline the great contribution of the author of 
classical works in the theory of generalized analytic functions Prof. B. Bojarski 
to the support and promotion of the conference. The book contains one of his 
works representing one of the best models of transparency of statements, history 
of the flow of scientific thinking in time and didactics.   
 
We would like to thank the distinguished experts, authors of important contribu-
tions to the topic V.Adukov,  H. Begehr, V. Kravchenko,  S.Krushkal, V.Pala-
modov,  S.Plaksa, S.Rogosin,  R.Saks, W. Tutschke  for kind consideration and 
moral support.  
 

G.Giorgadze,  G.Khimshiashvili 
Tbilisi, September 2011  



Functional classes for generalized
Beltrami systems∗

G. Akhalaia1 and N. Manjavidze2

Abstract

The functional classes of generalized analytic vectors for general-
ized Beltrami systems are introduced and investigated. Some prop-
erties of these classes which turned to be useful in order to solve the
discontinuous boundary value problems are established.

In the work of Bojarski [3] was shown that the methods of generalized
analytic functions are admitting further generalization on case of the first
order elliptic systems the complex form of which is the following

∂z ω −Q(z) ∂z ω + Aω + B ω = 0, (1)

∂z ≡ 1
2
(∂x − i∂y), Q(z), A(z), B(z) are given square matrices of order n,

Q(z) is a matrix of the special quasi-diagonal form, Q(z) ∈ W 1
p (C), p > 2,

|qii| ≤ q0 < 1, Q(z) ≡ 0 outside of some circle, A, B are bounded measurable
matrices.

In these works by the full analogy with the theory of generalized analytic
functions are given the formulas of general representation of regular solutions
of the system (1), the so-called generalized analytic vectors. On this basis the
boundary value problems of Riemann-Hilbert and linear-conjugation in case
of Holder-continuous coefficients are considered. These results and some fur-
ther development of the theory of generalized analytic vectors are presented
in the monograph [4].

∗The work was supported by the Shota Rustaveli National Science Foundation, Grant
N 1-3/85
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Consider the first order system of partial differential equations in the
complex plane C

wz = Q(z) wz , (2)

where Q is abovementioned matrix.
Following Hile [5] if Q is self-commuting in C, which means

Q(z1) Q(z2) = Q(z2) Q(z1),

for any z1, z2 ∈ C and Q(z) has eigenvalues with the modulus less than
1then the system (2) is called generalized Beltrami system. Solutions of
this equation are called Q-holomorphic vectors. Under the solution in some
domain D we understand so-called regular solution [7]. Equation (2) is to be
satisfied almost everywhere in D.

The matrix valued function Φ(z) is a generating solution of the system
(2) if it satisfies the following properties [5]:

(i) Φ(z) is a C1 solution of (2) in C;
(ii) Φ(z) is self-commuting and commutes with Q in C;
(iii) Φ(t)− Φ(z) is invertible for all z, t in C, z 6= t;
(iv) Φ(z) is invertible for all z in C.

We call the matrix

V (t, z) = ∂tΦ(t)
[
Φ(t)− Φ(z)

]−1

the generalized Cauchy kernel for the system (2).
Let now Γ be a union of simple closed non-intersecting Liapunov-smooth

curves, bounding finite or infinite domain. If Γ is one closed curve then
D+ denotes the finite domain; if Γ con-sists of several curves then by D+

we denote the connected domain with the boundary Γ, on these curves the
positive direction is chosen such, that when moving to this direction D+

remains left; the complement of open set D+ ∪ Γ in the whole plane denote
by D−.

Consider the following integral

Φ(z) =
1

2πi

∫

Γ

V (t, z) dQ t ϕ(t), (3)

where ϕ(t) ∈ L(Γ), dQ(t) = Idt + Qdt, I is an identity matrix. It is evident,
that (3) is Q-holomorphic vector everywhere outside of Γ, Φ(∞) = 0. We

10



call the integral (3) the generalized Cauchy-Lebesgue type integral for the
system (2) with the jump line Γ.

The boundary values of Φ(z) on Γ are given by the formulas:

Φ± = ±1

2
ϕ(t) +

1

2πi

∫

Γ

V (τ, t) dQ τ µ(τ). (4)

The formulas (4) are to be fulfilled almost everywhere on Γ, provided that
Φ± are angular boundary values of the vector Φ(z) and the integral in (4) is
to be understood in the sense of Cauchy principal value.

Theorem 1 Let Φ(z) be a Q-holomorphic vector on the plane cut along Γ,
Φ(∞) = 0. Let Φ(z) have the finite angular boundary values Φ±. The vector
Φ(z) is represented by the Cauchy-Lebesgue type integral (3) if and only if
the following equality

1

πi

∫

Γ

V (t, t0) d
[
Φ+(t)− Φ−(t)

]
= Φ+(t0) + Φ−(t0) (5)

is fulfilled almost everywhere on Γ.

Introduce some classes of Q-holomorphic vectors. Let

ρ(t) =
r∏

k=1

|t− tk|ρk , −1

p
< ρk <

1

p∗
p∗ =

p

p− 1
, (6)

k = 1, . . . , r.

tk are some fixed points on Γ.
We say that the Q-holomorphic vector Φ(z) belongs to the class

Ep(D
+, ρ, Q)|Ep(D

−, ρ, Q)|, p > 1,

if Φ(z) is represented by generalized Cauchy-Lebesgue type integral in the
domain D+ (D−) with the density from the class Lp(Γ, ρ) = 〈ϕ|ρϕ ∈ Lp(Γ)〉.
It follows from (6) that Ep(D

±, ρ, Q ⊆ E1+ε(D
±, Q)) for sufficiently small

positive ε.
The following theorems are valid [1,2]:

Theorem 2 If Q ∈ Ep(D
±, ρ, Q) then it can be represented by generalized

Cauchy-Lebesgue integral with respect to its angular boundary values.
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Theorem 3 Let Q-holomorphic vector Φ(z) is represented by generalized
Cauchy-Lebesgue type integral in the domain D+ (D−) with the summable
density. If the angular boundary values Φ+ (Φ−) belong to the class Ln

p (Γ, ρ, Q)
for some weight function (6) then Φ(z) ∈ Ep(D

+, ρ, Q) (Φ(z) ∈ Ep(D
−, ρ, Q)).

Theorem 4 Let D be a domain of the complex plane bounded by the union
of simple closed non-intersecting Liapunov curves Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm,
Γ1, . . . , Γm are situated outside of each other but inside of Γ0. If Q ∈
Ep(D, ρ, Q) then it admits the following representation

Φ(z) =
1

πi

∫

Γ

V (t, z) dQ t µ(t) + i C, (7)

where µ(t) ∈ Lp(Γ, ρ) is real vector, is real constant vector. The vector µ(t)
is defined on Γj, j ≥ 1, uniquely within the constant vector, µ(t) on Γ0 and
the constant vector C are defined by Φ(z) uniquely.

Theorem 5 Let D be the domain defined as in above theorem. If Φ(z) ∈
E1+ε(D, Q) and Re Φ+(t)(Im Φ+(t)) belongs to the class Lp(Γ, ρ), p > 1, ρ
has the form (6), then Im Φ+(t)(Re Φ+(t)) also belongs to the class Lp(Γ, ρ).

On the basis of introduced and investigated weighted Cauchy-Lebesgue
classes for the generalized analytic vectors can be considered the discontin-
uous boundary value problems of generalized analytic vectors since they are
natural classes for such problems. Similarly, as in case of analytic func-
tions[6], we mean the problems when the desired vectors in considered case
have the angular boundary values almost everywhere on boundary Γ and the
boundary conditions are fulfilled almost everywhere on Γ. In this connec-
tion given coefficients of the boundary conditions are piecewise-continuous
non-singular matrices.

For example in our view the Riemann-Hilbert type discontinuous bound-
ary value problems can be solved by means of these classes. Reducing these
problems to the corresponding singular integral systems one can establish the
solvability criterions and index formulas of corresponding functional classes.
While the investigation of such problems are appearing some difficulties con-
nected with the fact that the Liouville theorem is not valid in general as
well as the unique-ness theorem. In most cases these difficulties may be
successfully avoided.
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On a principle in the theory of
complex polynomials implying

Gauss-Lucas theorem

Barsegian G.

Institute of mathematics of NAS of Armenia

Abstract

A phenomenon for an arbitrary complex polynomial P is revealed
showing that any cluster of zeros of P (even of very few zeros) attracts,
in a sense, zeros of P (k). The results imply Gauss-Lukas theorem and
are closely connected with Crace-Heawood’s theorem and Walsh’s two
circle theorem.

In what follows D is a given convex domain whose boundary ∂D has
continuos curvature.

We define the following distance ∆ ≡ ∆(D, z1, z2, ..., zN) of a given set of
points z1, z2, ..., zN ∈ C with respect to D̄ := D ∪ ∂D as

∆ := N − 1

2π

N∑
i=1

α (zi) ,

where α (zi) = 2π for any zi ∈ D̄ and for any zi /∈ D̄ the magnitude α (zi) is
two time the angle under which the domain D is seen from the point zi.
Comment 1. First we observe that ∆ ∈ [0, N) meanwhile ∆ = 0 means that
all points z1, z2, ..., zN lie in D̄, (that is these points are ”maximally close”
to D̄) and ∆ → N means that all these points z1, z2, ..., zN tend to infinity
(that is these points are ”maximally far from D̄). In general the closer is (in
average) the set z1, z2, ..., zN to the domain D the smaller is ∆.

In terms of this distance we establish a phenomenon for arbitrary complex
polynomial P (z) which, speaking qualitatively, can be expressed as follows:
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the clusters of zeros of P (z) attracts the sets of zeros of the derivatives
P (k)(z).

Let P (z) be polynomial of degree n. Speaking about zeros of P and
P (k) we always count them according to their multiplicity. Denote by nD

the number of zeros of P in D̄, by z
(k)
2 , ..., z

(k)
n−k the zeros of P (k)(z) and by

∆(k)(P ) the magnitude ∆ written for these zeros.

Theorem 1 (on mutual locations of zeros of P and P (k)). For an
arbitrary polynomial P (z) of degree n, arbitrary integer k ∈ [1, ..., n−1] and
arbitrary convex domain D whose boundary has continuos curvature and does
not pass through any zero of P (k), k = 0, 1, ..., n− 1, we have

∆(k) ≤ n− nD. (1)

Theorem 1 gives an upper bounds for ∆(k), what, in turn, means that

for the zeros z
(k)
1 , z

(k)
2 , ..., z

(k)
n−k are, to certain extend, close to the domain D

provided that k ≥ n − nD, see Comment 1. Speaking qualitatively we can
express the observed phenomenon as follows: zeros of polynomials attract
zeros of its derivatives. In the extremal case when nD = n we have ∆(k) = 0
(see comment 1) so that inequality (1) implies the following
Corollary 1 (Gauss-Lukas’ theorem). Any D̄ involving all zeros of P
involves also all zeros of P ′ 1.

We see that the Gauss-Lucas theorem reveals in fact the same phe-
nomenon (closeness of the zeros of P ′ to the zeros of P ) but in the mentioned
extremal case merely, when nD = n

In another particular case we have the following well known Grace-Heawood
theorem asserting that any polynomial P of the degree n satisfying P (−1) =
P (1) = 0 has a zero of P ′ in |z| ≤ cot(π/n). Notice that cot(π/n) ≥ 5 in
the case when n > 4. Thus in this main case ( n > 4) the Grace-Heawood
theorem deals ”silently” with the polynomials non admitting on the segment
J := {(x, y) : x ∈ [−1, 1], y = 0} multiple zeros of P in −1 and 1 and also
non admitting zeros of P ′ on J .

We put now the following much wider problems of the same spirit.
Problem 1. Assume P has nJ zeros on J and P (k) has n

(k)
J zeros on J . How

close to J will be other zeros of P (k)?

1In the Gauss-Lukas’ theorem D is the convex hull of all zeros of P (unlike our case
when D is simply arbitrary convex domain). We will not touch anymore this negligible
difference.
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Notice that Problem 1 widens in different directions the previous Grace-
Heawood’s setting: k ≥ 1, J may imvolve more than two zeros of P and J
may imvolve also zeros of P (k).

In turn this problem is a very particular case of the following
Problem 2. Assume P has nD zeros on D̄ and P (k) has n

(k)
D zeros on D̄.

How close to D̄ will be other zeros of P (k)?
Notice that we can take as D an ellips whose small diameter tends to zero

and respectively D tends to J so that the Problem 2 is a much wider version
of the Problem 1.

Theorem 1 permits gives solution of the Problem 2. Indeed. Assume that
nD−n

(k)
D −k > 0, where n

(k)
D stands clearly for the number of points z

(k)
i ∈ D̄.

Due to inequality (1) we have n− k− 1
2π

∑n−k
i=1 α

(
z

(k)
i

)
≤ n− nD or, taking

into account that 1
2π

∑n−k
i=1 α

(
z

(k)
i

)
= n

(k)
D + 1

2π

∑n−n
(k)
D −k

i=1 α
(
z

(k)
i (∗)

)
, where

z
(k)
i (∗) stands for z

(k)
i /∈ D̄. From here

1

2π

n−n
(k)
D −k∑

i=1

α
(
z

(k)
i (∗)

)
≥ nD − n

(k)
D − k. (2)

Consider the domain G := G(nD, n
(k)
D , k) determined by

α (z) ≤
2π

[
nD − n

(k)
D − k

]

n− n
(k)
D − k

(3)

and observe that either all z
(k)
i (∗) /∈ D̄ lie on the boundary ∂G (then we have

equality both in (3) and in (2)) or we have a point z
(k)
i (∗) /∈ D̄ which lies

inside G. Thus in any case we have a point z
(k)
i (∗) /∈ D̄ which lies in Ḡ and

we obtain the following
Corollary 2 (solution of the Problem 2). Assume that nD−n

(k)
D −k > 0.

Then there is a zero of P (k) lying in G(nD, n
(k)
D , k)\D̄.

Now if we assume that our domain Dh is an ellipse centered at the origin
whose large diameter is the above defined segment J with endpoints at (−1, 0)

and (1, 0) and whose small diameter is equal to h. Assume that nDh
−n

(k)
Dh
−

k > 0. Notice that when h tends to zero the ellipse Dh tend to J . Then nDh

and n
(k)
Dh

become respectively the number nJ of zeros of P and the number
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n
(k)
J of zeros of P (k) lying on the diameter J . The corresponding domain Gh

tends then to a limit domain G∗ := G∗(nJ , n
(k)
J , k) (which is of view in the

right figure). Notice that this case (zeros lie on a segment) is widely studied
in the theory of polynomials.

Corollary 2 implies then
Corollary 3 (solution of the Problem 1). Assume that nJ−n

(k)
J −k > 0.

Then there is a zero of P (k) lying in G∗(nJ , n
(k)
J , k)\J .

Now we show that a very particular case this corollary closely relates to
the above mentioned Grace-Heawood theorem. Indeed as it explaned above
Grace-Heawood theorem deals with the case when k = 1, nJ = 2 and n

(k)
J = 0

which determines corresponding particular type domain G∗(2, 0, 1). Corol-
lary 3 implies then the following corollary in the spirit of Grace-Heawood
theorem.
Corollary 31. Any polynomial P of the degree n with P (1) = P (−1) = 0
has a zero of P ′ in the closure of G∗(2, 0, 1).

It should be stressed however, that unlike Grace-Heawood theorem deal-
ing with the case nJ = 2, n

(k)
J = 0, k = 1, Corollary 3 deals with much larger

combination of values nJ , n
(k)
J and k.

Comments. Thus we see, that both Gauss-Lucas theorem and Grace-
Heawood theorem also show a closeness of locations of the zeros of P ′ to
certain cluster of the zeros of P : maximal cluster of the zeros (n zeros)
in the case of Gauss-Lucas theorem and minimal cluster of zeros (two zeros
merely) in the case of Grace-Heawood theorem. Of the same nature is known
Walsh’s two circle theorem, which deals with the case when all zeros of P
lie in two different disks. However it shold be stressed that Theorem 1 and
Corollaries 2 and 3 deal with arbitrary clusters of zeros and thus we have a
general phenomenon which can be expressed as follows: any cluster of some
zeros of a given complex polynomial P attracts, in a sense, zeros of P (k).

Theorems 1 we derive from the following result related to arbitrary mero-
morphic functions.
Theorem 2. For an arbitrary meromorphic function w(z) in a given simply
connected domain d with continuos curvature c(s), s ∈ ∂D, and arbitrary
integer k we have

n(D, 0, w)− n(D,∞, w) ≤ 1

2π

∫ 1

0

∣∣∣
(
arg(w(k)(z(t))

)′
t

∣∣∣ dt +
k

2π

∫

∂D

|c| ds, (3)
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Proofs of Theorems 1-2. We derive first Theorems 1 and 2 from Theorem
3. It is known that for any convex D with continuos curvature

∫

∂D

|c| ds = 2π. (4)

Also when w is a polynomial P we have n(D,∞, P ) = 0 and under the
hypotheses of Theorem 1 we have also

∫ 1

0

∣∣∣
(
arg(P (k)(z(t))

)′
t

∣∣∣ dt ≤
n−k∑
i=1

∫

∂D

∣∣∣d arg
(
z − z

(k)
i

)∣∣∣ .

so that applying (3) we have

nD := n(D, 0, w) ≤ 1

2π

n−k∑
i=1

∫

∂D

∣∣∣d arg
(
z − z

(k)
i

)∣∣∣ +
k

2π

∫

∂D

|c| ds =

1

2π

n−k∑
i=1

∫

∂D

∣∣∣d arg
(
z − z

(k)
i

)∣∣∣ + k.

This can be rewritten as

n− k − 1

2π

n−k∑
i=1

∫

∂D

∣∣∣d arg
(
z − z

(k)
i

)∣∣∣ ≤ n− nD

and observing that the left hand side here is ∆(k) we obtain Theorem 1.

To prove Theorem 2 we make use the argument variation principle:

n(D, 0, w)− n(D,∞, w) =
1

2π

∫

w∈∂D

d arg w.

If the boundary curve of ∂D is written in the form z(t) = x(t) + iy(t),
t ∈ [0, 1), we have

1

2π

∫

w∈∂D

d arg w ≤ 1

2π

∫ 1

0

∣∣(arg w(z(t)))′t
∣∣ dt.

The last integral (total variation of arg z on ∂D) can be estimated by the total

boundary rotation on ∂D, that by
∫ 1

0

∣∣(arg(w(z(t))′t)
′
t

∣∣ dt: due to Theorem
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11.5.6 in [3] (2002), see pages 387-389, for any smooth loop γ in C\0 the total
variation of arg z on γ does not exceed the total boundary rotation on γ 2.
Applying this to the curve w(z(t)), t ∈ [0, 1), after some simple calculations
we get Theorem 3.
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On the proximity property of
meromorphic functions.

Initiating some novel studies in the complex
analysis

G. Barsegian

Institute of mathematics of NAS of Armenia

Abstract

The classical Nevanlinna theory (1920s) and Ahlfors theory (1935)
describe numbers of a-points of meromorphic functions. These the-
ories are considered as some culminations of numerous other studies
related to the numbers of a-points of different classes of meromor-
phic functions. The next stage was obviously studying of geometric
locations of these a-points. At the end of 1970s so called proximity
(closeness) property of a-points of meromorphic functions has been es-
tablished describing the locations of the a-points (instead of numbers
merely). Moreover, it turned out that this property implies the key
conclusions of Nevanlinna-Ahlfors theories. In the present paper we
give a new simplified wording of this property.

1 Introduction

In what follows we denote by w(z) a given meromorphic function in the plane.
The proximity property a-points of w has been established in different forms:
first in 1978 as a consequence of some results related to Gamma-lines [2], and
then as a further development of Ahlfors’ theory [3] (1983), [4], (1985). The
property describes the geometry of a-points of w by revealing the following
phenomenon: for a given set of pairwise different values a1, a2, . . . , aq, q > 2,
the a1, a2, . . . , aq-points of w locate mainly close to each other for different

20



ai 6= aj. Notice that the classical Nevanlinna-Ahlfors theories ([5], [1], ) deal
with the numbers of a-points merely and their key conclusion looks rather
similar: the numbers of a1, a2, . . . , aq-points of w are mainly close for different
ai 6= aj. By the way this conclusion follows also from the proximity property.
Thus the proximity property initiates investigations of locations of a-points
and implies the known results related to the numbers of a-points.

However, the version of this property presented in [3] is much more com-
plicated than the key conclusions of Nevanlinna-Ahlfors theories which this
property implies. This is why we offer here another simplified (but more
weak) version of this property which is easy to understand even for the very
beginners.

2 The key results of Ahlfors theory

Let w(z) be a meromorphic function in C and let a1, a2, . . . , aq, be distinct
complex values. We make use standard notations: n̄(r, aν) is the number
of a-points (multiplicities are not counted) in D(r) := {z : |z| < r} and
n0(r, aν) is the number of simple a-points in D(r), A(r) is Ahlfors-Shimizu
characteristic, that is

A(r) =
1

π

∫ ∫

D(r)

|w′|2
(1 + |w|2)2dσ.

In what follows we denote by E some sets of finite logarithmic measure on
axis; they are different in different cases.
Theorem A (Ahlfors’ second fundamental theorem, [1]). For any
meromorphic function w(z) in C and distinct complex values a1, a2, . . . , aq,
q > 2, we have

q∑
ν=1

n̄(r, aν) ≥ (q − 2)A(r)− o (A(r)) , r →∞, r /∈ E. (1)

For q > 4 we have

q∑
ν=1

n0(r, aν) ≥ (q − 4)A(r)− o (A(r)) , r →∞, r /∈ E. (2)

Integration of (1) and (2) gives corresponding key results in Nevanlinna
theory, see [1] or [5], chapter 13.
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Below we give a new
Simplified version of the proximity property a-points of meromorphic func-

tions.
This is simply an extraction from [3].
We refer the set ci, i = 1, 2, ... as a set of proper cluster of a1, a2, . . . , aq-

points of w if different ci have no common points, any ci consists of a1, a2, . . . , aq-
points and involves each aν-point for any ν = 1, 2, ..., q not more that one
time; here multiple points are counted only one time. For any cluster c we
denote by n(c) the number of elements in c; here multiple points are counted
only one time. Notice that due to the definition n(c) ≤ q for any c. Denote
by d(c) the diameter of c, that is maximal distance between elements in c.
Notation [x]′ stands for the greatest integer not exceeding x,
Theorem 1 (Simplified proximity phenomenon). Let w(z) be a mero-
morphic function in C, a1, a2, . . . , aq ∈ C, q > 2, be a set of distinct complex
values, ϕ(r) be a monotone function tending to +∞ (as slowly as we please).
Then in any D(r) there are [A(r)]′ proper clusters ci(r) of a1, a2, . . . , aq-
points of w, i = 1, 2, .., [A(r)]′, such that

[A(r)]′∑
i=1

n(ci(r)) ≥ (q − 2)A(r)− o (A(r)) , r →∞, r /∈ E (3)

and for any i == 1, 2, .., [A(r)]′

d(ci(r)) ≤ ϕ(r)
A1/2(r)

r
. (4)

Sharpness. Notice that
∑[A(r)]′

i=1 n(ci) ≤
∑q

ν=1 n̄(r, aν), consequently (3)
implies (∗), that is implies Ahlfors’ second fundamental theorem which is
sharp. Sharpness of (4) (up to the multiplier ϕ(r)) can be easily checked for
the double periodic functions.

3 A new aspect in distribution of a-points.

Notice that Theorem B deals with essentially new aspects which were not
touched in Nevanlinna-Ahlfors’ theories. In inequality (3) we deal with es-
sentially the same a1, a2, . . . , aq-points (as in the classics) but regrouped into
some clusters, which have, in average from q − 2 till q points. In addition
inequality (4) shows that all a1, a2, . . . , aq-points occurring in each cluster
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should be close to each other. Thus we obtain the proximity (or closeness)
phenomenon for meromorphic functions which qualitatively can be expressed
as follows: these set a1, a2, . . . , aq-points consists of [A(r)]′ proper clusters of
close to each other different a1, a2, . . . , aq-points. Notice that for w with lower
order greater than 2 the diameters d(ci(r)) of the clusters occurring in D(r)
tend to zero when r tend to infinity. Respectively tend to zeros distances
between a1, a2, . . . , aq-points occurring in each of these clusters. The more
large is characteristic of w (or what is the same the lower order of w) the
more stronger tend to zero these distances.

Theorem 1 generalizes inequality (1) of Theorem A. The following result
generalizes similarly inequality (2) dealing with simple a-points merely.
Theorem 2 (Simplified proximity phenomenon for simple a-points

merely). Let w(z) be a meromorphic function in C, a1, a2, . . . , aq ∈ �C,
q > 4, be a set of distinct complex values, ϕ(r) be a monotone function
tending to +∞ (as slowly as we please). Then in any D(r) there are [A(r)]′

proper clusters c0
i (r) of simple a1, a2, . . . , aq-points of w, i = 1, 2, .., [A(r)]′,

such that

[A(r)]′∑
i=1

n(c0
i (r)) ≥ (q − 4)A(r)− o (A(r)) , r →∞, r /∈ E

and for any i == 1, 2, .., [A(r)]′

d
(
c0
i (r)

) ≤ ϕ(r)
A1/2(r)

r
.
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On the Beltrami equation∗

B.Bojarski

Institute of Mathematics of PAN

Abstract

We prove that the quasiregular mappings given by the (normal-
ized) principal solution of the linear Beltrami equation (1) and the
principal solution of the quasilinear Beltrami equation are inverse to
each other. This basic fact is deduced from the Liouville theorem
for generalized analytic functions. It essentially simplifies the known
proofs of the measurable Riemann mapping theorem and its holomor-
phic dependence on parameters.

The first global, i.e. defined in the full complex plane C and expressed
by an explicit analytical formula, solution of the Beltrami equation

wz − q(z)wz = 0 (1)

was given by Vekua in the years 1953-54 and it appeared in the first issue of
Doklady for 1955 [33]. Vekua in [33] was given by Vekua in the years 1953-54
and it appeared in the first issue of Doklady for 1955 [33].

Vekua in [32] considered the equation (1) with compactly supported q(z),
q(z) ≡ 0 for |z| > R, for some finite R, satisfying the uniform ellipticity
condition

|q(z)| ≤ q0 < 1, q0 constant. (2)

In [33] he considers the class of solutions of (1) represented by the Cauchy
complex potential Tω in the form

ω(z) = − 1

π

∫

C

ω(z)dσζ

ζ − z
+ φ(z) ≡ Tω + φ(z) (3)

∗Editor comment: this paper is short version author’s work [4]
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where ω(ζ) is a complex density, ω ∈ Lp(C), p > 1, and φ(z) is an entire
function.

The function w = w(z) is a W 1,p
loc (C) solution of (1) iff the density ω is a

solution of the singular integral equation

ω − q(z)Sω = q(z)φ′(z) ≡ h(z), (4)

with the singular integral

Sω = − 1

π

∫

C

ω(z)

(ζ − z)2
dσζ (5)

understood in the sense of the Cauchy principal value.
It was probably Vekua who first introduced the singular integral operator

S to the study of elliptic equations in the plane. It appeared as early as
1952-53 in connection with the study of general boundary value problems,
specifically the Poincaré boundary value problem, in the theory of general-
ized analytic functions (GAF-for short), which was defined and developed in
Vekuas famous paper [31]. See also [32] and the Ph.D. dissertation [5], [6],
prepared in 1953-54.

Later the operator S was called the Hilbert transform.
The main role of the operator S in the Vekua school was to transform the

derivative wz into wz for compactly supported smooth functions w ∈ C∞
0 (C),

S(wz) = wz =
∂

∂z
T (wz).

Since for w ∈ C∞
0 (C), the entire function φ(z) in (3) reduces to φ(z) ≡ 0,

integration by parts then gives ||wz||L2 = ||wz||L2 and

||Swz||L2 = ||wz||L2 (6)

where ||.||L2 denotes the L2 norm of square integrable functions. In conse-
quence S extends as a unitary isometry to the Hilbert space L2(C).

For further reference we also note the equivalent description in terms of
the Fourier transform

Ŝω(ξ) =
ξ

ξ
ω̂(ξ) for every ξ ∈ C− {0}. (7)

The uniform ellipticity condition (2) gives the L2 norm estimate for the
operator qS,

||qS||L2 ≤ q0 < 1 (8)
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and immediately leads to the unconditional solvability of the integral equa-
tion (4) in the space L2(C) by the Neumann series or successive approxima-
tions.

Lemma 1 For arbitrary measurable dilatation q(z), satisfying (2), the inte-
gral equation (4) has a unique solution in L2(C) given by the formula

ω = (1− qS)−1h. (9)

This means that the differential Beltrami equation (1) with the compactly
supported coefficient q = q(z) has a unique solution in the Sobolev space
W 1,2

loc (C), admitting a holomorphic extension of the form (3) outside the sup-
port of q. Actually, by [32], any generalized (weak) solution of (1) in the
space W 1,2

loc (C), can be obtained by the described process. However, below,
for the purposes of the theory of quasiconformal mappings, we are inter-
ested in very special solutions of (1) only. As a convolution type operator
S commutes with differential operators. Moreover, it preserves the Hölder-
Zygmund classes Ck,α with 0 < α < 1 and C∞(C) ∩ L2(C). In particular,
this implies that for q(z) and h C∞-smooth, or of the class Ck,α the uniquely
determined L2 solutions of the integral equation (4) are as smooth as the
data q and h allow. We formulate this as

Lemma 2 For compactly supported C∞-smooth dilatation q(z) the weak W 1,2
loc (C)

solutions of the Beltrami equation (1) are C∞-smooth.

The proof of Lemma 2 is rather direct, relying on the classical tools of stan-
dard potential theory and is described in detail in Vekua’s book [34].

By the Calderón-Zygmund theorem [16] the operator S acts also as a
bounded operator in Lp(C) for each p, 1 < p < 1, and its norm Ap is
continuous at p = 2. Thus

Apq0 < 1 for 2 ≤ p < 2 + ε (10)

and the equation ω − qSω = h is uniquely solvable:

ω = (I − qS)−1h, ω ∈ Lp, (11)

for any h ∈ Lp and p satisfying (10), what we henceforth assume. In par-
ticular, for any measurable dilatation q(z) the L2 solution ω of equation
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(4) is actually in some Lp, p > 2. Thus, in other words, the W 1,2
loc (C) so-

lutions of (1) belong to W 1,2
loc (C), p > 2. In particular, they are continuous

(α-Hölder,α = 1− 2
p

> 0).

For φ(z) ≡ z, h(z) ≡ q(z), formula (3) gives a particular solution of the
Beltrami equation (1)

w ≡ z − 1

π

∫

C

ω(ζ)

ζ − z
dσζ , (12)

where ω is the unique solution of the equation

ω − q(z)SΩ = q(z). (13)

Following Vekua [33], see also [7], we call (12) the principal solution of the
Beltrami equation. A fundamental issue of the theory of elliptic equations
and planar quasiconformal mappings was the understanding that the for-
mulae (12)-(13) give a univalent solution of the uniformly elliptic Beltrami
equation (1)-(2) realizing a homeomorphic quasiconformal mapping of the
complex plane with the assigned measurable complex dilatation q(z) (the
Measurable Riemann Mapping Theorem). This was achieved in 1954, and
published in the first months of 1955 in [7], [8], [33], by the collaborative
efforts of Vekua and the author. Let us briefly recall the main steps. The
existence of W 1,2

loc (C) solutions was clear from the outset and the problem
essentially reduced to the L2 isometry of the operator S and the classical
properties of the complex potential T : L2 → W 1,2

loc (C), described in [31], [32].
The idea of applying the Calderón-Zygmund theorem [16] and, thus, extend-
ing the range of admissible parameters p to the interval 2 − ε < p < 2 + ε
for some positive ε, due to the author [7], [34], immediately allowed us to
consider W 1,2

loc (C) solutions, p > 2, and, by the Sobolev imbedding theorems,
or classical properties of the complex potentials Tω, α-Hölder continuous
solutions with α = 1− 2

p
> 0.

This we formulate in

Proposition 1 The Beltrami equation (1) with an arbitrary measurable di-
latation q(z), satisfying (2) and compactly supported, always admits the so-
lution of the form (12) in the Sobolev class W 1,2

loc (C), p > 2. Moreover, the
norms ||wz − 1||Lp , ||wz||Lp of this solution are uniformly bounded by quanti-
ties depending only on q0 in (2) and ||q||Lp (or the support of |q|).
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Not necessarily homeomorphic solutions of the Beltrami equations are known
as quasiregular mappings. By formulas (3) and (4) above they are relatively
easy to construct. The proof that univalent solutions exist at all, the more
so, that the solutions (12) are homeomorphisms onto, is much more subtle.
In the papers [7], [33] it splits into

Proposition 2 If the dilatation q(z) is sufficiently smooth, then the mapping
(12) is a homeomorphism onto, i.e., it is a quasiconformal mapping of the
complex plane.

and

Proposition 3 For arbitrary measurable dilatation q(z), satisfying condition
(2), the formulae (12)-(13) realize a quasiconformal mapping of the complex
plane with the assigned dilatation almost everywhere.

In the context of papers [7], [33], Proposition 2 was proved by Vekua in [33]
for the class of Hölder continuous dilatations, though for the purposes of [7],
where the first complete proof of Proposition 3 was given, it is enough to
have Proposition 2 for dilatations of much higher regularity, say of class C∞,
only.

In [33] a local version of Proposition 2 is proved first (Proposition 4 be-
low). The global version of Proposition 2 is obtained by some general, global,
geometric monodromy type argument recalled below.

The idea of the present paper is to prove Proposition 2 without appealing
to Proposition 4, but by direct construction of a quasiregular mapping, i.e.
W 1,2

loc (C), p > 2, solution of some other Beltrami equation, a quasilinear one,
and such that the constructed mapping is actually the two-sided inverse to
the mapping given by formula (12).

The proof of the implication Proposition 2 ⇒ Proposition 3 proceeds
as in [7] (it was repeated in [9], [34]).

In view of the approximating procedure described in [7] it is, obviously,
enough to consider the Beltrami equation (1) with dilatation q(z) of arbitrary
high smoothness (even C∞). To this aim we consider, parallel to equation
(1), the quasilinear equation for the mappings z = z(w) of the image plane
Cw in (1) to the source plane Cz

∂z

∂w
+ q(z)

∂z

∂w
= 0. (14)
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We call it the conjugate (quasilinear) Beltrami equation. Now we are inter-
ested in a particular solution of (14) of the form

ψ(w) = w + T ω̃ ≡ w − 1

π

∫

C

ω̃(ζ)

ζ − w
dσζ (15)

with ω̃ ∈ Lp for some p > 2.
(15) is a solution of (14) of the Sobolev class W 1,2

loc (C) iff the complex
density ω̃ is a solution of the singular integral equation

ω̃ + q̃(w)Sω̃ = −q̃(w) (16)

with q(w) ≡ q(ψ(w)). Hence ψ(w) − w is in the class W 1,p and ψ(w) is the
solution of the conjugate Beltrami equation

∂ψ

∂w
+ q̃(w)

∂ψ

∂w
= 0 (17)

with q̃(w) at least Hölder continuous with exponent α = 1 − 2
p

> 0. In the

terminology adopted above the mapping ψ(w) is a quasiregular mapping of
the complex plane Cw into the plane Cz.

Considered as an operator equation for the unknown density ω̃(w), (16)
is a highly nonlinear operator equation. However, its solvability in Lp spaces
is easily controlled.

Lemma 3 The quasilinear conjugate Beltrami equation with smooth dilata-
tion q(z) always admits a solution of type (15) in some W 1,2

loc (C). Equivalently,
the nonlinear equation (16) always admits a solution ω̃ in Lp(Cw) (compactly
supported) for some p > 2.

The solution (15) of (14) is unique. We will comment on the proof of Lemma
3 later. Here we remark only that in [7], [8] and [9] there is a plentiful of
theorems of the type of Lemma 3 and their proofs are constructed along,
the, now standard, procedure based on Banach or LeraySchauder fixed point
theorems and a priori estimates directly deduced from the linear uniformly
elliptic equations (4) and (16) written in the form

ω̃ + q̃(w)Sω̃ = h, h ∈ Lp. (18)

For our proof of Proposition 2 we shall need the Liouville theorem for gen-
eralized analytic functions (GAF) of Vekua, introduced in [31], and in his
earlier works and thoroughly described in [9] and [34].
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Lemma 4 Let w = w(z), in W 1,2(C) be a (generalized) solution of the equa-
tion

wz − q(z)wz = Aw (19)

with the coefficient q(z) : measurable, compactly supported and satisfying
uniform ellipticity condition (2), and A ∈ Lp(C) for some p > 2. For sim-
plicity assume also that A is compactly supported. If w vanishes at ∞, i.e.
|z||w(z)| < C for all z, then w ≡ 0.

For details see [9] and [34].

Corollary 1 The conclusion of Lemma 4 holds also for mappings w = w(z)
in W 1,2(C), w(∞) = 0, satisfying the inequality

|wz − q1(z)wz − q2(z)wz| ≤ A(z)|w(z)| (20)

if the coefficients q1, q2 have compact support and satisfy the uniform ellip-
ticity condition

|q1(z)|+ |q2(z)| ≤ q0 < 1, q0-const. (21)

and A ∈ Lp(C), p > 2, vanishes for |z| big enough.

Lemma 4, the Corollary and the proof above, are given here only for the
completeness of the presentation. They could be simply referred to Theorems
4.1 and 4.2 and the remark in Sections 4.1 and 4.2 in [9].

The important concept of GAF, corresponding to the system (19), and
discussed in [31] and [34] under the term: generalized constants (or gener-
alized units), is also useful in the global theory of the Beltrami equation
(1).

Lemma 5 In the conditions of Lemma 4 the equation (19) has a unique
solution defined in the full complex plane v = v(z), z ∈ C, regular at z →∞,
and such that v(∞) = ∞. This solution does not vanish for any z ∈ C,

v(z) 6= 0.

Lemma 5, as Lemma 4 above, could be also referred to [9].

Corollary 2 The derivative wz of the principal solution (12) of the Beltrami
equation with smooth dilatation q(z) (q(z) ∈ W 1,p, p > 2, is enough) is a
generalized constant for equation (19). In particular,

wz ≡ 1 + Sω 6= 0, for all z ∈ C (22)
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Corollary 2 immediately implies the following

Proposition 4 In the conditions of Proposition 2 the principal (quasiregu-
lar) solution (12) is a local homeomorphism.

In [33] Vekua deduced Proposition 2 from Proposition 4 by appealing to
the ”argument principle” for local homeomorphisms of the complex plane. It
was also well known that the monodromy theorem for open mappings of the
Riemann sphere S2 or the closed plane Ĉ may also be used to deduce Propo-
sition 2 from Proposition 4. Even reference to the famous uniformization
theorem was exploited sometimes!

Though all the above statements are ”well known”, ”well understood” and
”intuitively obvious” for geometers and practicing complex analysts, neither
of them can be considered ”elementary”.

Lemma 6 and Proposition 5 below reduce the proof of Proposition 2 to the
Liouville theorem for Vekua’s generalized analytic functions in the extended
complex plane Ĉ: our Lemma 4 and Corollary 1.

Let us now consider the Beltrami equation (1) with a smooth compactly
supported dilatation q(z) and the conjugate Beltrami quasilinear equation
(14).

Lemma 6 Let χ = χ(z) be the normalized (principal) solution (12) of equa-
tion (1) and ψ = ψ(w) the principal solution (15) of the quasilinear equation
(14). Consider the composed mappings

φ̃(w) = χ ◦ ψ(w), φ̃ : Cw → Cw, φ(w) = χ ◦ ψ(w), φ : Cw → Cw, (23)

Then φ̃ = φ̃(w) is a solution of the Cauchy-Riemann equation

∂φ̃

∂w
= 0 (24)

and φ satisfies the inequality

|φz − q̃(z)(φz − φz)| ≤ A(z)|φ(z)− z| (25)

with a bounded, compactly supported function A(z) and

q̃(z) ≡ q(z)

1 + |q(z)|2 .
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Lemma 6 and its proof have a nice geometric interpretation in terms of
Lavrentiev fields (characteristics), see below, and also [13] and [35], [28].

Lemmas 4 and 6 lead to Proposition 2 with a completely new direct proof.
We formulate it as

Proposition 5 The normalized solutions (12) and (15) of the smooth Bel-
trami equation and the conjugate quasilinear equation are homeomorphisms
of the complex planes Cz → Cw inverse to each other, i.e. the formulas hold

χ(w) ◦ ψ(w) ≡ w and ψ ◦ χ(z) ≡ z. (26)

We also have an important corollary.

Corollary 3
Jχ · Jψ ≡ 1 (27)

where Jχ = |χz|2 − |χz|2 and Jψ = |ψw|2 − |ψw|2 are the Jacobians. In
particular,

Jχ 6= 0 and Jψ 6= 0 (28)

at every point. Actually Jχ ≥ cχ > 0 and Jψ ≥ cψ > 0 for positive constants
(in general, dependent on the mapping).

(28) is also a direct consequence of Lemma 5 above.
In the foundational study of Vekua and the author on Beltrami equations

described in [33], [34] and [7], [9] formulas of the type (26) and (15) play
an important role. However there, given χ = χ(z) defined by (12), for a
sufficiently smooth dilatation q(z), it is first proved (Proposition 2) that
χ = χ(z) is a homeomorphism and the formulas (26) are used to define
ψ = ψ(w). Only in the next step ψ(w) is shown to be a solution of the
conjugate Beltrami quasilinear equation (14) which may be represented in
the form (15).

These facts are the cornerstones of the theory of Beltrami equations in
the plane as developed and described in detail in [33] and [7]. In [7], [9] there
are also established the basic a priori estimates in the Lp and W 1,p norms,
for 2 < p < 2 + ε, for normalized solutions of the Beltrami equation (1)
and their inverses ψ = ψ(w) in terms of the dilatation q(z). These estimates
are preserved under various limiting processes, qn → q for n → ∞, even in
the space of bounded measurable functions with topology defined by almost
everywhere convergence as long as the uniform ellipticity condition (2) is
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uniformly fulfilled: supz,n|qn| ≤ q0 < 1. For the proofs of all these facts and
their important consequences we refer to [7]. See also [9] and [34].

After 1955-57, most of the numerous publications (and all monographs)
on the generalized Riemann mapping theorem and the existence problems for
quasiconformal mappings were repeating, with rather slight modifications,
the analytical methods of Vekua and his school or, at least, were essentially
relying on these arguments. In many cases, embarassingly enough, these
works contain only marginal, if any, references to the sources.

Douady’s latest proof in [17] relies on the L2 solution, expressed in terms
of the Fourier transform (7) above, of the singular integral equation (4),
(13) and on the the Lp, p > 2, a priori estimates as above, he returns to
the Grötzsch-Lavrentiev-Morrey-Ahlfors results on the uniform Hölder esti-
mates for QC-maps-reappearing in all compactness arguments of the elliptic
theory of p.d.e.’s and quasiconformal mappings with bounded dilatation-and
proposes a rather long way to go, with many references to exterior results,
before achieving the existence theorem. See also the comments of Kra &
Earle in the second edition of [1].

In contrast, the deep theory of Lavrentiev [21], [22] and his followers:
Volkovyskii [35], Belinskii [3], Pesin [27], using mainly direct geometric meth-
ods, contains many far reaching new ideas, so far only partially exploited and
waiting, see [13], [28], for a modern, up-to-date presentation.

We leave aside the extensively growing and important research on map-
pings of finite distortion and their various generalizations.

The work of Vekua and his school on the solutions of the Beltrami equa-
tion yielded much more than the previous methods due to Lichtenstein [25],
Lavrentiev [21] or Morrey [26], where, in various forms, the Riemann map-
ping theorem for QC-maps was proved.

The explicit representation formulas of Vekua’s school and related a priori
estimates for global mapping problems, created a powerful and flexible tool
and a method to attack many local and global problems, inaccessible in any
preceding theory. The study of quasiconformal extensions of holomorphic
univalent functions and of the theory of deformations of planar quasiconfor-
mal mappings is hardly conceivable without these tools. They serve as a
solid foundation for the development of important applications of the the-
ory inside as well as outside the planar elliptic p.d.e. theory. The long list
of the first ones starts with the deep results of Vinogradov and Danilyuk
on basic boundary value problems for general elliptic equations and general-
ized analytic functions described in Vekua’s monograph [34]. For the latter,
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i.e. applications outside the GAF, it is enough to mention the deep and
beautiful ideas and constructions of the Ahlfors-Bers school in the theory
of Teichmüller spaces, moduli spaces and Kleinian groups or the results in
complex holomorphic dynamics [19], [1] (the 2006 edition).

It is necessary to stress here that the explicit formulas (12) and (22)
written in the form

wz = ω = (1− qS)−1q

and
wz − 1 = Sω = S(1− qS)−1q

show that the derivatives wz and wz of the principal solution (12) depend
holomorphically, in the general functional sense, on the complex dilata-
tion q. This functional dependence, naturally, implies that, if the dilatation
q(z) itself depends on some parameters t, holomorphically, real analytically,
smoothly or just continuously, then the principal solutions (12) depend holo-
morphically, smoothly. . . etc., as the case may be, on these parameters.
We will give some more comments on this topic later.

In [34] the existence of homeomorphic solutions of the complex Beltrami

equation is also discussed in the compactified complex plane Ĉ, identified
with the Riemann sphere S2. In this case, for the general measurable dilata-
tion satisfying the condition (2) only, the homeomorphic solution cannot be in
general represented by formula (12). However, as shown in [34], the principal
homeomorphism can be constructed by the composition of two homeomor-
phisms of type (12) obtained by splitting the complex dilatation q(z) = q1+q2

with q1(z) and q2(
1
z
) compactly supported, and a simple natural change of

variables.
Also the behaviour of the complex dilatation qw = wz

wz
under composition

of quasiconformal mappings f = w ◦ v−1 is discussed in [9] and the simple,
but important, formula

qf = { qw − qv

1− qvqw

vz

vz

} ◦ v−1

appears and is used, at some crucial points, in [9].
Let us return to comments on the proof of Lemma 3: Consider the convex

set
∑

of mappings of the form (15) parametrized by the densities ω̃ ∈ Lp(Cw)
for some fixed admissible p > 2. For z = z(w) ∈ ∑

consider the principal
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solution ψ(w) of the conjugate linear Beltrami equation

∂ψ

∂w
+ q̃(z)

∂ψ

∂w
= 0. (29)

with q̃(w) ≡ q(z(w))
This defines the nonlinear map ψ = F (z) of

∑
into

∑
. Since (29) is

again a Beltrami equation in the w-plane, with the same uniform ellipticity
estimate as (1), Lemma 1 and Proposition 1 hold and a priori estimates
follow. Hence F is compact and the fixed point of F is the required solution
of the quasilinear equation (14). For many analogous arguments see [9], [10],
[11].

It follows also from the above a priori estimates (Proposition 1) that the
iteration process

∂zn+1

∂w
+ q(zn(w))

∂zn+1

∂w
= 0 (30)

defined on the class of principal (quasiregular) solutions defines uniquely the
compact sequence of mappings in

∑
converging in W 1,p

loc (Cw) to the required
solution of the quasilinear equation (14)

zn(w) → z(w) (31)

converge locally uniformly and weakly in W 1,p
loc to the (unique) solution of the

equation (14). Summing up, we can state that, with the proof of Lemma 3
reduced to (30) and (31), our Lemmata 1-6 and Propositions 1-5 described
above, together with the paper [7], give a complete, fully self-contained (i.e.,
not requiring references to any earlier analytical or geometrical results), de-
tailed and thus ”elementary” proof of the basic theorems on the existence and
structural properties of solutions of the planar measurable Beltrami equation.

ADDITIONAL COMMENTS. The concept of the principal solution
of form (12) or its slight generalization

w(z) = az − 1

π

∫

C

ω(z)

ζ − z
dσζ , a-complex constant, (32)

is meaningful for the general Beltrami equation

wz + q(z)wz − q1(z)wz = 0 (33)

with the uniform ellipticity condition

|q(z)|+ |q1(z)| ≤ q0 < 1, q0- const. (34)
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These equations correspond to Lavrentiev’s quasiconformal mappings [21],
[22], with ”two pairs of characteristics” [35], [29], [9], [13], and in Vekua’s
school they have been considered from the outset [8], [9], [34], [28].

The infinitesimal geometric meaning of a differentiable transformation
w = w(z) at a point z0 is defined by the linear tangent map

Dw(z)(ξ) = wz(z0)ξ + wzξ (35)

It transforms ellipses in the tangent plane at z0 into ellipses in the tangent
plane at the image point w(z0).

Ellipses centred at z are defined up to a similarity transformation by the
ratio p ≥ 1 of their semiaxes and, if p > 1, the angle θmodπ between majoraxis
and the positive z-axis, and denoted by E(p, θ, z) or Eh(p, θ, z) where h is the
length of the minoraxis. The pair (p, θ) is called the characteristic of the
infinitesimal ellipse, and the family Eh(p, θ, z), h > 0, z ∈ G, is a field of
infinitesimal ellipses (Lavrentiev field). A homeomorphism w = w(z) is said
to map the infinitesimal ellipse E(p, θ, z) onto E(p1, θ;z) if the tangent map
Dw(z) transforms E(p, θ; z) onto E(p1, θ1; z).

Analytically this is described in terms of the components wz and wz in
the tangent map Dw (35) by the general Beltrami equation (33) where the
coefficients q and q1 are determined by the invertible formulas

q(z) = − p− p−1

p + p−1 + p1 + p−1
1

e2iθ, q1(z) = − p1 − p−1
1

p + p−1 + p1 + p−1
1

e2iθ1 . (36)

In particular the solutions of the Beltrami equation (1) (q1 ≡ 0) map
the field of ellipses E(p1, θ;z) into infinitesimal circles (p1 ≡ 1) whereas the
conjugate Beltrami equations (14), (17) map the infinitesimal discs (p ≡ 1)
into ellipses (p1 ≥ 1).

We should stress that the clue of the Lavrentiev idea is that the source
characteristic (p, θ) is mapped into the ”target” characteristic (p1, θ1) inde-
pendently of the considered particular solution of the general Beltrami equa-
tion (33) as long as the relation source ztarget w = w(z) is preserved. The
formulae (36) describe then a pair of distinguished or canonical Lavrentiev
fields intrinsic for the Beltrami system considered and a selected, pointwise
correspondence w = w(z). Of course any chosen solution w = w(z) at every
differentiability point trannsforms an arbitrary Lavrentiev field of infinitesi-
mal ellipses into ”some’ Lavrentiev field whose characteristics (p1, θ1) at the
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image point w(z) depend on the behaviour of the map at neighbouring points,
i.e., on the values of the derivatives wz, wz at z.

Lavrentiev in his seminal paper of 1935 [21] defined QC-mappings as
homeomorphic mappings of the unit disc D onto itself such that at every point
z ∈ D the infinitesimal ellipse E(p(z), θ(z); z) is mapped onto an infinitesimal
circle in the sense defined above. He also proved the existence theorem for
such mappings by a direct geometric construction without referring to any
classical solutions of boundary value problems, e.g. in the Lichtenstein paper
[25]. Thus Lavrentiev is probably to be credited for the first direct, self-
contained proof of the global Riemann mapping theorem for a rather general
class of complex Beltrami equations with continuous coefficients.

The density ω(ζ) of the principal solution (32) satisfies the singular inte-
gral equation

ω − qSω − q1Sω = aq + aq1 (37)

which is uniquely solvable and its L2 solutions are necessarily in Lp for some
p > 2. Equations of type (37) are linear over the real field only and were
widely applied in [8], [9], [34] and many later works. We state here a direct
corollary of the above theory of Beltrami equation (1) which we formulate as

Proposition 6 The equation (33) has always a unique principal solution of
the form (32). If a 6= 0 then the principal solution realizes a homeomorphic
quasiconformal mapping of the full complex plane C.

For a = 0 the principal solution is identically ≡ 0 (Liouville theorem).
We stress the fact that, after the theory of Beltrami equations (1) is

available as formulated above, no work at all is needed to prove Proposition
6. However, there would be a long way, though that is possible, see [11],
before one could construct an analytical inverse mapping to (32) with the
help of global solutions of some quasilinear general Beltrami equations (of
type (14)). See also [11]. An important class of Beltrami equations (33)
appears when the identity mapping w(z) = z is a solution of (33). These are
characterized by the formula

q(z) + q1(z) ≡ 0 (38)

and already appeared in [35] and [9]. In view of (36) the relation (38) reduces
to the formulas p ≡ p1 and θ ≡ θ1 and have the beautiful geometric charac-
terization in terms of Lavrentiev characteristics (Lavrentiev fields), see [35],
[9] and [13]. In terms of the linear tangent map Dw of the given pointwise

38



mappings w = w(z) the Lavrentiev field (see [13]) associated with system
(33) at point z (in TzC) is parallel translated to the tangent plane Tw at
the image point w = w(z). In [9] the systems (33)-(38) appeared in connec-
tion with the uniqueness problem for Riemann mapping corresponding to
the general Beltrami system (33). The study of principal solutions (32) as a
function of the parameter a in this formula is an interesting topic and should
be continued.

The study of the genuinely nonlinear Beltrami equations

wz = H(z, w, wz) (39)

for some complex valued function H(z, w, ξ) has also been started by the
author [11] in connection with the programme of introducing complex ana-
lytic methods to the Lavrentiev theory of fully nonlinear (implicit) first order
systems (e.g. [22] and many other papers). Lavrentiev’s geometric ellipticity
concept was interpreted as the Lipschitz condition

|H(z, w, ζ1)−H(z, w, ζ2)| ≤ q0|ζ1 − ζ2| (40)

with q0 = const. < 1. Global existence and structure theorems for solutions
of principal type (12) were proved, see [11] and [15].

As is well known, the principal solution (12) generates all solutions of the
Beltrami equations (1). This is described in the famous so called Stoilow
factorisation theorems [30]. This fact is crucial in establishing important
structural properties of quasiconformal mappings, like homotopy, factoriza-
tion into mappings with arbitrary small dilatations, differentiability (though
the obtained differentiability results are far from the subtle results of Men-
shov (1931) on the differentiability of open mappings), etc., etc., see [9], [34],
[24]. It gives also the parametrization of planar QC-mappings by Lp solu-
tions of the integral equation (13) (by densities in Lp, which also allows us
to introduce the Banach manifold structure into the set of all QC-maps).

Formulas (12) and other related formulas give us a convenient tool to
study the dependence of quasiconformal mappings f(t, z) on parameters t ∈
P, P denoting some parameter space. In the simplest case the parameter
t may vary in some interval of the real line. Representation formulas (12)
allow us to reduce the problem to the study of parameter families of the
corresponding complex densities ω(t) ≡ ω(t, z) ≡ ∂f(t,z)

∂z
in their behaviour

under small variations of the parameter, differentiation, etc.
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The parameter derivatives ω̇, q̇, ḣ are then the partials ω̇ = ∂ω
∂t

etc., and
are seen to be the solutions of the integral equation

ω̇(t)− q(t)S(ω̇) = q̇Sω + ḣ, (41)

obtained from the integral equation (4) by differentiation with respect to the
parameter t ∈ P. Naturally, it is assumed that the coefficient q and the right
hand side h in equation (4) are differentiable with respect to the parameter
t (see 11, 13).

If the parameter space is, e.g., an open subset of Rn or Cn, the partials
∂
∂t

may be replaced by some ”total” Fréchet type differential operators, in
general denoted by the symbol Dt. Then the equation (41) takes the ”general”
form

ω̇(t)− q(t)S(ω̇) = DtqSω + Dth. (42)

In the literature there are many examples of this type of studies [2], [12], [14].
They all rely on the a priori estimates of the solutions of integral equations
of type (4), which are, essentially, consequences of our assumptions (10).

In the particular case when t is the complex structure parameter and
Dt ≡ ∂

∂t
(41) together with the assumption ∂q

∂t
= ∂h

∂t
= 0 leads to the equation

∂ω

∂t
≡ 0

which implies ∂f
∂t
≡ 0 and is interpreted as holomorphic dependence of QC-

maps on holomorphic parameters. Note that the complex conjugate Beltrami
equations (14) and (16) are linear only over the reals and the general differ-
entiations Dt should take this into account. This refers in particular to
equations (30), (37) and implies that even for holomorphic in t complex di-
latations q(t, z), the inverse mappings f−1(t, z) are holomorphic in t instead
of t.

For normalized quasiconformal mappings of the complex plane, the unit
disc and other ”model” domains, explicit formulas of the type (12) allow
us to calculate the Gateaux differential of the normalized mappings in their
dependence on the infinitesimal variation of the complex dilatation (see [1],
[14], and many other papers by Gutlyanskii), revealing the connections of the
analytic theory of Beltrami equations with the study of deformations of con-
formal structures in the geometric function theory of Goluzin and Kufarev.

Some historical remarks scattered in this paper do not pretend to give,
in any sense, a full and satisfactory account of the history of research in the
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area. It is also clear that in any sufficiently rich and mature mathematical
theory progress is, generally speaking, the result of the collective effort of
many researchers throughout the years. However, some landmarks can, and
perhaps, even should be highlighted and it is proper and useful that this be
done responsibly. I am convinced that the Beltrami equations and their ap-
plications lack a serious historical presentation though they certainly deserve
one, with a view into the past as well as the future.
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The periodicity of the space of
generalized analytic functions

Buliskeria G.

Tbilisi State University

Abstract
In this paper the spaces of generalized analytic functions Ω(a, b),

a, b ∈ Lp, 2 are considered and it is shown that this spaces as vector
spaces on R have different structures.

Let F (z), G(z) be two complex valued Holder continuous functions de-
fined in some domain such that Im(FG) > 0. A function w = φF + ψG,
where φ and ψ are real,is called (F,G) pseudoanalytic, if φzF + ψzG = 0.
The function ẇ = φzF + ψzG is called the (F, G) derivatives of w. Every
generating pair (F, G) has a successor (F1, G1) such that (F,G) derivatives
are (F1, G1) pseudoanalytic. The successor is not uniquely determined. A
generating pair (F,G) is said to have minimum period n if there exists gen-
erating pairs (Fi, Gi) such that (F0, G0) = (F, G), (Fi+1, Gi+1) is a successor
of (Fi, Gi) and (Fn, Gn) = (F0, G0). If such an n does not exist, (F, G) is said
to have minimum period ∞.

It is known, that w is pseudonalytic iff w satisfies the following Carleman-
Bers-Vekua equation

wz = aw + bw, (1)

where the function a(z, z), b(z, z) expressed by the generating pair (F, G) by
the following identity

a =
GFz − FGz

FG− FG
, b =

FGz −GFz

FG− FG
. (2)

Define also the the quantities

A =
GFz − FGz

FG− FG
, B =

FGz −GFz

FG− FG
. (3)
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The (F, G)-derivative ẇ satisfies the following Carlemnn-Bers-Vekua equa-
tion

ẇz = aẇ −Bẇ (4)

The functions a, b, A,B are called the characteristic coefficients of the
generating pair (F, G).

Proposition 1 [3] Given functions a, b, A, B are characteristic coefficients
of the generating pair if and only if they satisfy the system of differential
equations

Az = az + bb−BB, Bz = bz + (a− A)b + (a− A)B. (5)

Proposition 2 [3] 1) The space Ω(a, b) have period one iff there exist a
Function A0 satisfying the equation

A0z = a0, (A0 − A0) = a− a +
1

b
(bz + bz) (6)

2)The space Ω(a, b) have period two iff there exist a Functions A0, A1, B0

satisfying the system of equations

A0z = az + bb−B0B0, B0z = bz + (a− A0)b + (a− A0)B0, (7)

A1z = az + bb−B0B0, B0z = bz + (A1 − a)B0 + (A1 − a)b. (8)

Proposition 3 Let (F,G) generating pair of (1), then generating pair of the
adjoint equation

wz = −aw −Bw, (9)

is

F ∗ =
2G

FG− FG
, G∗ =

2F

FG− FG
, (10)

We prove, that the characteristic coefficient induced from adjoint generating
pair (F ∗, G∗) are equal to −a and −b.

Indeed,

G
∗
F ∗

z − F
∗
G∗

z

F ∗G
∗ − F

∗
G∗ =

2F
D

(2G
D

)z − 2G
D

(2F
D

)z

2G
D

2F
D
− 2G

D
2F
D

=
4F
D

(Gz

D
− G

D2 Dz)− 4G
D

(F z

D
− F

D2 Dz)
4

DD
(FG− FG)

=
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=
FGz −GF z

D
− FG− FG

D2
Dz, (11)

where D = FG− FG, D = −D, Dz = FzG + FGz − F zG− FGz. From (11)
we have

a1 =
−FzG− FGz − F zG− FGz + F zG + FGz

D
= −FzG− FGz

D
=⇒ a = −a1

Analogically to above

b1(F ∗,G∗) =
F ∗G∗

GZ
−G∗F ∗

z

F ∗G
∗ − F

∗
G∗ =

G
D

G(F
D

)z − G
D

F (G
D

)z

G
D

=

=
D

D
(
GF z

D
− GF

D2
Dz − FGz

D
+

GF

D2
Dz) = −GF z − FGz

D
,

therefore

b1 = −GFz − FGz

D
=⇒ b1 = −B.

By definition [2] the pseudoanalytic functions corresponding to (1) satisfies
the following holomorphic disc equation

ωz = q(z)ωz, where q(z) =
F + iG

F − iG
(12)

Proposition 4 Holomorphic disc equation, corresponding to (9) is

ωz = −q(z)ωz.

Indeed, coefficient of holomorphic disc equation, corresponding to (9) ex-
pressed by the generating pair (F ∗, G∗) of (9) as

q1 =
F ∗ + iG∗

F ∗ − iG∗ ⇒ q1 =
2G
D

+ i2F
D

2G
D
− i2F

D

=
G + iF

G− iF
⇒ q1 = −q.

Proposition 5 If system (1) has the period one, then the system (9) also
has period one.

The proof immediately follows from the proof of the preceding proposition.

Proposition 6 The generating pair of the space Ω(a, 0) is (f, if), where
f 6= 0 and is solution of the equation fz = −af.
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Indeed,

Im(fif) = i|f |2; (FG− FG) = f(−if)− f(if) = −2i|f |2.

a(f,if) =
fifz − fz(−if)

−2i|f |2 = −fz

f
, b(f,if) =

fifz − fzif

−2i|f |2 = 0.

Consider the particular cases of this theorem. When f is constant, or is
complex analytic, we obtain the space of holomorphic functions Ω(0, 0).

Proposition 7 If f is real and f 6= 0, then (f, i
f
) generates the space Ω(0, b).

The proof obtained from directly computation:

Im(f
i

f
) = 1 > 0, because f = f ; a(f, i

f
) =

−f( ifz

f2 )− fz(− i
f
)

−2i
= 0;

b(f, i
f
) = −

−f( ifz

f2 )− fz(
i
f
)

−2i
=

fz

f
;

Proposition 8 From ω ∈ Ω(a, 0) follows, that ω̇ ∈ Ω(a, 0).

By proposition 6 the generating pair of the space Ω(a, 0) is (f, i
f
). The

function ω̇ satisfies the equation (9), therefore it is necessary to compute B
from (3). It is easy, that B = 0.

In case, when the function F,G are complex analytic, then from (2) fol-
lows, that we obtain the space of holomorphic function Ω(0, 0), but this space
not ”isomorphic” to induced from (1, i) generating pair space space of holo-
morphic functions, because at follows from (3), B not equal to zero. From
this follows, that this space have period N > 1. In [3] shows, that period this
space is equal to 2.

Proposition 9 [?] 1)There exist real analytic function b in the a neighbor-
hood of the origin, such that the space Ω(0, b) has minimum period infinity.

2) For each positive integer N there exists a real analytic function b in the
neighborhood of the origin, such that the space Ω(0, b) has minimum period
N .
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A necessary and sufficient condition that Ω(a, b) generated by (F,G) have
the period one, obtained by Bers, and proved, that this conditions is identity
F
G

= τ(y). Bers proved also, that if F
G

= σ(x), then the minimum period is
at most two.

Remark. Markushevich observed that every system of linear partial
differential equations

ciux + divx = aiuy + bivy, i = 1, 2 (13)

with sufficiently smooth coefficients a1(x, y), ..., d2(x, y) can be written in a
form such that ∂ci

∂x
= ∂ai

∂y
, ∂di

∂x
= ∂bi

∂y
, i = 1, 2. In this case the integrals

U =

∫
(a2u + b2v)dx + (c2u + d2v)dy, V =

∫
(a1u + b1v)dx + (c1u + d1v)dy

are path-independent and (u, v) satisfy a system (131) which is of the same
form as (13)(see [6]) system (13) is said to be embedded into a cycle if there
exists a sequence of systems (13), (131), (132), ... such that (13i) is related
to (13i+1) as (13) was related to (131). The cycle is called of finite order
n if (13n) is equivalent to (13), of infinite order if there is no such n. In
[4] Lukomskaya (a) proves that every (13) can be embedded into a cycle of
infinite order, and (b) gives necessary and sufficient conditions in order that
the minimum order nmin of a cycle beginning with (13) be 1. In [2] states
as an open problem the question on the existence of systems with nmin > 2.
We remark that for elliptic systems the natural setting for this problem is
the theory of pseudo-analytic functions [2] and finely result in this direction
gives Protter [3] solving the so called periodicity problem for pseudoanalytic
functions.
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On the Darboux transformation for
Carleman-Bers-Vekua system

Garuchava Sh.

Tbilisi State University

Abstract

In this paper we used Darboux transformation technique for inves-
tigation of stationary Schrödinger two dimensional equation and s.c.
main Vekua equation.

1 The basic fact and definitions.

The theory of pseudoanalytic functions have the goal of applying complex
analysis methods to systems of partial differential equations which are more
general that Cauchy-Riemann systems [1], [2]. Recently in [4] give new ap-
plication of the theory of pseudoanalytic functions to differential equations
of mathematical physics.

The canonical form of a uniformly elliptic linear first-order system for two
desired real-valued functions in a domain of the complex plane has the form

wz = a(z)w + b(z)w, (1)

which is known as Carleman-Bers-Vekua system. If f is a real valued func-
tion, then

wz =
fz

f
w (2)

is called the corresponding main Vekua equation. In ([4]) author’s applica-
tions of pseudoanalytic functions to differential equations of mathematical
physics are based on the factorization of a second order differential opera-
tor in a product of two first order differential operators whose one of these
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two factors leads to a main Vekua equation. In particular it is shown, that
if f, h, ψ are real-valued functions, f, ψ ∈ C2(Ω), Ω ⊂ C and besides f is
positive particular solution of the two dimensional stationary Schrödinger
equation

(−∆ + h)f = 0 (3)

in domain Ω ⊂ C, where ∆ = ∂2

∂x2 + ∂2

∂y2 is two dimensional Laplace operator,
then

(∆− h)ψ = 4(∂z +
fz

f
C)(∂z − fz

f
C)ψ = 4(∂z +

fz

f
C)(∂z − fz

f
C)ψ, (4)

where C denotes the operator of complex conjugation.
Let w = w1 + iw2 be a solution of the equation (2). Then the functions

u = f−1w1 and v = fw2 are the solutions of the following conductivity and
associated conductivity equations

div(f 2∇u) = 0, and div(f 2∇u) = 0, (5)

respectively. The real and imaginary part of the solution of the equation
(2) w1 and w2 are solutions of the stationary Schrodinger and associated
stationary Schrodinger equations

−∆w1 + r1w1 = 0 and −∆w2 + r2w2 = 0, (6)

respectively, where r1 = ∆f
f

, r2 = 2(∇f)2

f2 − r1, ∇f = fx + fy and (∇f)2 =

f 2
x + f 2

y .
In other hand it is known that the elliptic equation

∂z∂zψ + hψ = 0 (7)

is covariant with respect to the Darboux transformation [3]

ψ → ψ[1] = θ(ψ, ψ1)ψ
−1
1 , θ(ψ, ψ1) =

∫ (z,z)

(z0,z0)

Ω, (8)

h[1] = h + 2∂z∂zlnψ1, (9)

where ψ1 is a fixed solution of equation (7), Ω is closed 1-differential form

Ω = (ψ∂zψ1 − ψ1∂zψ)dz − (ψ∂zψ1 − ψ1∂zψ)dz.

Here covariant properties means, that ψ[1] satisfies the following equation

∂z∂zψ[1] + h[1]ψ[1] = 0.

From the equality dΩ = 0 follows, that the function θ(ψ1, ψ) in (8) doest not
depend on the path of integration.
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2 Main result

Theorem 1 Let w = w1 + iw2 is the solution of the main Vekua equation

wz =
ψ1z

ψ1

w. (10)

Then w1 = ψ1 and w2 = −1
2
ψ[1], where ψ1 is the real positive solution of the

equation
−∆ψ + hψ = 0 (11)

h = 4ψ1

ψ1
and ψ[1] its Darboux transformation defined by (8), (9).

Conversely, if ψ1 is the real positive solution of the equation (11) and ψ[1]
its Darboux transformation, then the solution of main Vekua equation (10)
equal to w = ψ1 − 1

2
ψ[1].

First part of the theorem follows from (6), (1). Here we prove the second
part of theorem. Let ψ is real solution of (11), then in this case the Darboux
transformation (8),(9) has the form

h[1] = h− 2∆lnψ1 and ψ[1] = 2iψ−1
1 Im

∫
(ψψ1z − ψzψ1)dz.

We seek the solution of the equation (10) in the form w = ψ + iw2. Then

ψ1z + iw2z =
ψ1z

ψ1

ψ − i
ψ1z

ψ1

w2,

from this the solution of the corresponding homogenous equation is w2 = C(z)
ψ1

,

where C(z) arbitrary holomorphic function. Let an w2 = C(z,z
ψ1

) solution of
above equation. Then

ψz + i
Cz

ψ1

− i
ψ1z

(ψ1)2
C(z, z) =

ψ1z

ψ1

ψ − i
ψ1z

(ψ1)2
C(z, z) ⇒

⇒ Cz = −i(ψψ1z − ψzψ1) ⇒ C(z, z) = −i

∫
(ψψ1z − ψzψ1)dz + C̃(z).

From this we obtain that

w2 = ψ−1
1 (b(z)− i

∫
(ψψ1z − ψzψ1)dz).
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We choose b(z) in last expression such, that w2 is real. Then w2 = ψ−1
1 Im

∫
(ψψ1z−

ψzψ1)dz, from this follows, that −2iw2 = ψ[1], therefore w = ψ1 − 1
2
ψ[1] is

the solution of (11).
Here we give new formulation and proof of theorem 1.

Theorem 2 1)Let W = W1+iW2 is the solution of the equation Wz = fz

f
W,

then W1 and W2 related to by Darboux transformation W2 = iW1[1] and
W1 = −iW1[1].

2) If W1 is a solution the equation (4− 4f
f

)ψ = 0, then W1 −W1[1] is

the solution of the equation Wz = fz

f
W.

3) If W2 is the solution of the equation (4 + 4f
f
− 2(∇f

f
)2)ψ = 0, then

−iW2[1] + iW2 is a solution of the equation Wz = fz

f
W.

From the theorem 33 [4] follows, that W1 + iW2 = W is the solution of the
equation Wz = fz

f
W, then

W2 = f−1A[if 2∂z(f
−1W1)] and W1 = −fA[if

2
∂z(fW2)],

where A[φ] = 2Re
∫

φdz = 2Im
∫

iφdz. Therefore,

W2 = −f−12Im

∫
f 2∂z(f

−1W1)dz and W1 = f2Im

∫
f−2∂z(fW2)dz.

Consider the equation (4−4f
f

)ψ = 0 and take the function f as particular

solution of this equation, then by theorem 33 [4] the function W1 is the
solution of this equation. Consider the Darboux transformation W1 :

W1 → W1[1] = f−1

∫
Ω(W1, f),

Ω(W1, f) = (W1fz −W1zf)dz − (W1fz −W1zf)dz = 2iIm[f 2∂z(f
−1W1)],

W1[1] = f−12iIm

∫
f 2∂z(f

−1W1)dz.

Therefore W2 = iW1[1].
New, consider the function 1

f
as particular solution of the equation (4−

4f
f

)ψ = 0, then from theorem 33 [4] follows, that W2 is a solution of this
equation. Consider the Darboux transformation of W2:

W2 → W2[1] = (
1

f
)−1

∫
Ω(W2, f

−1) = f

∫
Ω(W2, f

−1),
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Ω(W2, f
−1) = (W2∂z(

1

f
)−W2z

1

f
)dz − (W2∂z(

1

f
)−W2z

1

f
)dz =

= (−W2
fz

f 2
−W2z

1

f
)dz +

1

f 2
(W2fz + W2zf)dz = 2iIm[f−2∂z(fW2)].

Therefore, W1 = −iW2[1].
Remark. In [5] the authors studied intertwining relations, supersymme-

try and Darboux transformations for time-dependent generalized Schrodinger
equations and obtained intertwiners in an explicit form, it means that it is
possible to construct arbitrary-order Darboux transformations for some class
of equations. The authors developed a corresponding supersymmetric for-
mulation and proved equivalence of the Darboux transformations with the
supersymmetry formalism. In our opinion the method given in this paper it
is possible to use in this direction also.
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Some properties of the space of
generalized analytic functions∗

G.Giorgadze

Tbilisi State University

Abstract

In this paper we investigate the relationship between the holomor-
phic and conformal structures and the spaces of generalized analytic
functions induced from conformal structures.

1 Introduction

Let s1, ..., sm ∈ CP1 be some points, with no ∞ among them, % : π1(CP1 \
{s1, ..., sm} , z0) → GLn(C) be a representation. The Riemann-Hilbert mon-
odromy problem consists in the following: for the representation %, find such

a Fuchsian system df =
(∑m

j=1
Aj

z−sj
dz

)
f, whose monodromy representation

coincides with %, where Aj are constant matrices satisfying the condition∑m
j=1 Aj = 0 [4], [5].
The configuration of the points depends on the solving Riemann-Hilbert

monodromy problem [4] and it is important problem point of view inverse
problem of mathematical physics. In this direction obtained important re-
sults: first, it is proved that monodromy representation for which Riemann-
Hilbert monodromy problem have positive solutions are dense in the space of
all representation of the fundamental group of CP 1\{s1, ..., sm}, and second,
it is known the Shlesinger theorem on the isomonodromic deformation of the
singular point of the Fuchsian system. In our opinion is important connect

∗The work was supported by the Shota Rustaveli National Science Foundation, Grant
N 1-3/85
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dependently of configuration of singular points of positive (or negative) solv-
ing of the Riemann-Hilbert monodromy problem by Beltrami equation and
by deformation complex structures. Here we give some preliminary results
of this direction.

The class of general first order elliptic system of partial differential equa-
tions

∂w(z)

∂z̄
− µ1(z)

∂w(z)

∂z
− µ2(z)

∂w

∂z
= A(z)w(z) + B(z)w(z) + C(z), (1)

on the complex plane with natural restrictions on the functions µ1, µ2, A, B,
contains many well-known equations: Cauchy-Riemann, Beltrami, Carleman-
Bers-Vekua, holomorphic disc and other equations, which are obtained from
(1) by appropriate choice of the coefficients (see [7], [2], [3]). All these equa-
tions are ”deformations” of the Cauchy-Riemann equation and the properties
of the solution spaces of the corresponding equations are close to the prop-
erties of the spaces of analytic functions.

Let X is a smooth oriented surface. A conformal structure on X is given
by a smooth Riemann metric on X given up to multiplication by a positive
smooth function on X. It is known, that for every Riemann metric on a
neighborhood of z ∈ X we can find local coordinates at z such that the
metric takes the form a(x, y)(dx2+dy2). This reduction connected to Beltrami
equation and deformation of complex structures of the Riemann surfaces.

The results given in this paper on the deformation of complex struc-
tures one can use to study deformation of complex structures of Riemann
surfaces and deformation of the complex structures for holomorphic vector
bundles on the Riemann surfaces. Deformation of complex structures defines
by the Beltrami differential and the deformation of complex structures of
the holomorphic vector bundles defines connection. Thus the spaces of the
connections with the logarithmic singularities and the space of the Fuchsian
systems are identifies.

The general construction of the deformation of the spaces by the cocycles
is possible to apply for the construction the family of the connections, thus
for construction of the isomonodromic deformation of the Fuchsian system
for Riemann sphere. It is clear, that by isomonodromic deformation of the
singular points of the Fuchsian system topological characteristics induced
from monodromy representation do not changed.

Below we consider the relationship between solution spaces of the follow-
ing equations induced from complex structure:
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a) The Carleman-Bers-Vekua equation [7]

∂w(z)

∂z̄
= A(z)w(z) + B(z)w(z);

b) The Beltrami equation [2]

∂w(z)

∂z̄
= µ1(z)

∂w(z)

∂z
;

c) The holomorphic disc equation [6]

∂w(z)

∂z̄
= µ1(z)

∂w(z)

∂z
.

These equations are invariant with respect to conformal transformations
and therefore are correctly defined on Riemann surfaces. The functions
A,B define the pair of complex functions (F,G), satisfying the inequal-
ity Im(FG) > 0 and (F,G)-pseudo-analytic functions are solutions of the
Carleman-Bers-Vekua equation and vice versa [1].

2 Almost complex structure

Let X be a two-dimensional connected smooth manifold. By definition two
complex atlases U and V are equivalent if their union is a complex atlas.
A complex structure on X is an equivalence class of complex atlases. A
Riemann surface is a connected surface with a complex structure. A differ-
ential 1-form on X with respect to a local coordinate z can be represented
in the form ω = αdz + βdz. Thus, ω has bidegree (1,1) and is a sum of
the forms ω1,0 = αdz and ω0,1 = βdz of bidegree (1,0) and (0,1)respectively.
The change of local coordinate z → iz induces on the differential forms the
mapping given by ω → i(αdz − βdz) = iω1,0 − iω0,1. Denote by J the oper-
ator defined on 1-forms by the rule Jω = iω1,0 − iω0,1. This operator does
not depend on the change of the local coordinate z and J2 = −1, where
1 denotes the identity operator. Therefore, the splitting Λ1 = Λ1,0 + Λ0,1

is the decomposition of the space of differential 1-forms into eigenspaces of
J : T ∗(X)C → T ∗(X)C. On the tangent space TX the operator J acts via
ω(Jv) = (Jω)(v), for every vector field v ∈ TX. If z = x + iy and taking
v = ∂

∂x
, one has

dz(Jv) = idz(
∂

∂x
) = i = dz(

∂

∂y
) ⇒ J

∂

∂x
=

∂

∂y
, J

∂

∂y
= − ∂

∂x
.
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It means that on the basis ( ∂
∂x

, ∂
∂y

) of TX the operator J is given by

(
0 −1
1 0

)
.

Therefore, by the complex structure defined from local coordinates defines
the operator J : T ∗(X)C → T ∗(X)C, with the property J2 = −1. This
operator is called an almost complex structure.

Conversely, let X be a smooth surface and let J : Tx(X) → Tx(X), x ∈ X,
be such an operator, i. e. J2 = −1. The pair (X, J) is called a pseudoanalytic
surface. As above, by duality it is possible to define J on 1-forms on X.
The space of 1-forms Λ1 decomposes into eigenspaces corresponding to the
eigenvalues ±i of J and Λ1 = Λ1,0

J + Λ0,1
J . In particular, JΛ1,0

J = iΛ1,0
J and

JΛ0,1
J = −iΛ0,1

J .
Let f be a smooth function, then df ∈ Λ1 and decomposes by bidegree

as df = ∂Jf + ∂Jf, where ∂Jf := (df)1,0
J and ∂Jf := (df)1,0

J . By definition, f
is J-holomorphic, if it satisfies the Cauchy-Riemann equation ∂Jf.

Let (X, J) be a pseudoanalytic surface. In the neighborhood of every
point x ∈ X it is possible to chouse the local coordinate in such a way
that dz will be of (1, 0)J -type. Then the decomposition of dz by bidegree is
dz = ω + δ, where ω, δ are forms of bidegree (1, 0)J . Because the fibre of
T 1,0

J X is a one-dimensional complex space, we have δ = µω, where µ is some
smooth function µ(0) = 0. From this it follows, that

dz = ω + µω and dz = ω + µω. (2)

Therefore, for every smooth function f in the neighborhood of x ∈ X we
have

df = (∂f + µ∂f)ω + (∂f + µ∂f)ω = ∂Jf + ∂Jf.

From this it follows, that f is J-holomorphic iff ∂Jf = 0, i.e.

∂f + µ∂f = 0. (3)

The equation (3) is called the Beltrami equation. Thus a smooth function
defined on a pseudoanalytic surface (X, J) is J-holomorphic iff it satisfies the
Beltrami equation (3).

Suppose f is J-holomorphic and let f = ϕ + iψ, where ϕ and ψ are real-
valued functions. Consider the complex-valued function w defined by the
identity w = ϕF + ψG, where F, G are complex-valued Hölder continuous
functions satisfying the condition Im(FG) > 0.

Theorem 2.1 The function w = ϕF + ψG is (F,G)-pseudo-analytic.
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Proof. Indeed, w = ϕF + ψG = iG−F
2

f + −iG−F
2

f, from which it follows,
that f is a solution of the Beltrami equation

(iG− F )∂f − (iG + F )∂f = 0

iff w is a solution of the Carleman-Bers-Vekua equation

∂w +
F∂G− ∂FG

FG− FG
w +

F∂G− ∂FG

FG− FG
w = 0.

In D ⊂ C every metric has the form λ|dz + µdz|, where λ > 0 and
the complex function µ satisfies |µ| < 1, from which it follows, that J is
defined in a unique way by the 1-form ω = dz + µdz on D with properties
Jω = iω, Jω = −iω. The forms of this type are forms of bidegree (1,0)
with respect to J (the space of such forms has been denoted above by Λ1,0

J ).
If δ ∈ Λ1,0

J , then δ = αω + βω and it is proportional to ω. Therefore J is
determined uniquely up to a constant multiplier by (1, 0)J -holomorphic form
ω. Functions holomorphic with respect to J have differentials proportional to
ω. Indeed, if df + iJ(df) = 0, then J(df) = idf and from the representation
df = αω + βω we obtain, that βω = 0. Because df = αω + βω, in D ⊂ C the
Cauchy-Riemann equation with respect to J with base form ω = dz + µdz
can be represented as the Beltrami equation ∂f = µ∂f. This equation has
a solution f such that it is a biholomorphic map from (D, J) to (f(D), Jst),
where Jst is the standard conformal complex on C.

Therefore we have proved the following proposition.

Proposition 2.1 On simply connected areas there exists only one complex
structure and conformal structures are in one-to-one correspondence with
complex functions µ with |µ| < 1.

From this proposition and theorem 2.1 follows the proposition

Proposition 2.2 There exists a one-to-one correspondence between the space
of conformal structures and the space of generalized analytic functions on
each simply connected open area of the complex plane.

3 The equaton of holomorphic discs

Let D be the unit disc in the complex plane C with the standard complex
structure Jst and the coordinate function ζ. Jst is uniquely determined by

60



the form dζ ∈ Λ1,0
Jst

. The map φ : D → X of class C1 is holomorphic iff

ψ∗Λ1,0
J (X) ⊂ Λ1,0(D). Let z be another coordinate function on D. We study

a local problem, therefore, without loss of generality, it is possible to consider
φ as a mapping from (D, Jst) to (Cz, J), where the complex structure J is
defined by dz = ω + µω, ω ∈ Λ1,0

J . Therefore we have

ζ → z = z(ζ), z(0) = 0.

From (2) we obtain that

ω =
dz − µdz

1− |µ|2 .

The form ω is J-holomorphic, which means that the form

z∗(dz − µdz) = (∂ζz − µ∂ζz)dζ + (∂ζz − µ∂ζz)dζ

has bidegree (1, 0) on D, therefore

∂ζz − µ∂ζz = 0.

From this after using the identity ∂ζz = ∂ζz we obtain, that

∂ζz = µ(z)∂ζz. (4)

The obtained expression is called the equation of holomorphic disc. It is
known that f satisfies this equation iff f−1 satisfies the corresponding Bel-
trami equation (see [6]).

Proposition 3.1 If ω = u + iv satisfies the equation ∂w(z)
∂z̄

+ µ(z)∂w(z)
∂z

= 0,
|µ| < 1 and a and b are holomorphic functions such that µ = a−b

a+b
, then

W = au + ibv is holomorphic.

Proof. Indeed,

∂

∂z̄
(a

ω + ω

2
+ ib

ω − ω

2
) =

a

2
(ωz + ωz) +

b

2
(ωz −ωz) = ωz(

a + b

2
) + ωz(

a− b

2
),

therefore if ω is a solution of the equation ωz̄ + a−b
a+b

ωz = 0, then ∂z̄W = 0.
From this proposition it follows in particular, that W is (a, ib)-pseudo-

analytic.
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On the boundary value problem of
linear conjugation with a piecewise
continuous coefficient on Carleson

curves∗

E. Gordadze

A. Razmadze Mathematical Institute

Let Γ is Jordan closed rectifiable curve. Denote by D+
Γ and D−

Γ domains
dividing the extended plane by this curve (we assume that ∞ ∈ D−

Γ ).
We say that Γ ∈ R, or Γ is Karleson curve, if singular integral

Sϕ ≡
∫

Γ

ϕ(t)

t− τ
dt

is bounded operator in Lp(Γ), p > 1.
As usual Cauchy type integral is called

Φ(z) ≡ 1

2πi

∫

Γ

ϕ(t)

t− z
dt ≡ (Kϕ)(z), ϕ ∈ L1(Γ). (1)

We say that Φ(z) ∈ Kp(D
+
Γ ) or Φ(z) ∈ Kp(D

−
Γ ) if representation (1) has

a since in D+
Γ , or correspondingly in D−

Γ and ϕ(t) ∈ Lp(Γ), p ≥ 1 and we

say, that Φ(z) ∈ K̃p(D
−
Γ ), if Φ(z) = Φ0(z) + P (z), where P (z) is polynomial,

Φ0(z) ∈ KΓ(D−
Γ ).

We consider the boundary value problem of linear conjugation: find the
function Φ(z) ∈ Kp(D

±
Γ ) satisfying condition

Φ+(z) = G(t)Φ−(z) + g(t), t ∈ Γ, (2)

∗The work was supported by the Shota Rustaveli National Science Foundation, Grant
N 1-3/85
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G and g are given functions, g(t) ∈ Lp(Γ), G(t) is piecewise continuous
function, Γ ∈ R.

Let’s assume {tk}n
k=1, tk ∈ Γ, tn = t1 are the discontinuous points of

function G(t). Let’s take as a positive direction on Γ direction, which leaves
D+

Γ domain on the left side. For open arc with the ends a and b we use
the notation Γab. We consider direction from a to b as positive. In notation
t → t±k we mean that tending is inside the arc Γtktk+1

, i.e. t ∈ Γtktk+1
. Also,

tk → t−k , is t ∈ Γtk−1tk .
Denote G(tk + 0) ≡ lim

t→t+k

G(t) and G(tk − 0) ≡ lim
t→t−k

G(t). Arc Γtktk+1

sometimes denote by Γk, but χ(Γk) is characteristic function for Γk.
To solve the boundary value problem 2 in above mentioned conditions

usually was assumed that the curve will have at least one sided tangents in
the points tk.

It follows from the Seifullaev theorem that, if Γ ∈ R, tk ∈ Γ, then limits

lim
t→t+k

arg(t−tk)

| ln |t−tk|| , lim
t→t−k

arg(t−tk)

| ln |t−tk|| , lim
t→t−k

arg(t−tk)

| ln |t−tk|| , lim
t→t−k

arg(t−tk)

| ln |t−tk||

are finite.
We assume that

lim
t→t+k

arg(t− tk)

| ln |t− tk|| and lim
t→t−k

arg(t− tk)

| ln |t− tk|| (3)

exist. Under arg(t − tk) we mean any continuous branch.Our condition (3)
is more weak than the usual one and admits infinite number of turns of the
curve in tk points (see for example [3, p. 12]).

For solving problem (2) we represent G(t) as a product of two functions.
Denote by

ω(1)(t) ≡ ln G(t)− ω(2)(t),

ω(2)(t) ≡
n∑

k=1

[
ln |G(tk + 0)|+

+
ln G(tk+1−0)−ln G(tk + 0)

tk+1−tk
(t−tk)

]
χ(Γtktk+1

), t1 = tn.

It’s simple to verity, that

ω(2)(tk + 0) = ln G(tk + 0), ω(2)(tk − 0) = ln G(tk − 0).

64



Under ln G(t) we mean continuous branch for which 0 ≤ arg G(tk + 0) < 2π.
Consider G(t) = G1(t)·G2(t), where G1(t) = exp ω(1)(t), G2(t) = exp ω(2)(t).

From the well-known results [4], [5] it follows, that

X1(z) ≡ exp(KΓ ln G1)(z) ∈ Ep(D
±
Γ ), ∀ p > 1. (4)

Recall that Φ(z) ∈ Ep(D), p > 0, D is D+ or D−, if Φ(z) is analytic of D and
if there exists the sequence of rectifiable curves {Γn}∞n=1 such that Γn ⊂ D,
Γn → Γ and sup

n

∫
Γn

|Φ(z)|p dz < ∞, Φ(∞) = 0.

Besides X+
1 ∈ Wp(Γ), ∀ p > 1, this means, that

∥∥(X+
1 )−1SX+

1 ϕ
∥∥

Lp
≤ Mp‖ϕ‖Lp . (5)

To investigate the function exp(K ln G2)(z),we needs the following

Lemma. If Γ is closed Jordan curve Γ ∈ R, a ∈ Γ, A is complex number
A = A1 + iA2, then ∃ δ > 0 such that

(z − a)A ∈ Wδ(D
+)

(we mean the continuous branch).

Theorem 1. If Γ ∈ R is Jordan closed curve, then ∃ δ > 0 such that

X2(z) ∈ Eδ(D
+
Γ ).

Note, that in the neighborhood of tk points

exp(Kω2)(z) = Φk(z)|z − tk|mk(z), (6)

where

mk(z) ≡
(

ln |G(tk − 0)| − ln |G(tk + 0)|
)
∆k + εk(z)+

+
arg G(tk + 0)− arg G(tk − 0)

2π
,

but Φk(z) < M , εk(z) is a small number depending on the measure of the
neighborhood of the points tk. We can make it arbitrarily small. Consider
the numbers κk and αk as follows

−1

p
< αk <

1

q
, (7)
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κk are integer and mk(z)− εk(z) = κk + αk, i.e.

ln |G(tk − 0)| − ln |G(tk + 0)|∆k +
arg G(tk + 0)− arg G(tk − 0)

2π
=

= κk + αk. (8)

It’s clear, for each p we can take −1
p
≤ αk < 1

q
. We select such p, in order to

fulfill (7). From (6) and (7) it’s clear, that

X+
2 (t) =

n∏

k=1

(t− tk)
−κk exp K ln G2 ∈ Lp(Γ),

(X−1)+(t) ∈ Lp(Γ),

from which we have

Theorem 2.

X2(z) ≡ exp(K ln G2)(z) ∈ Ep(D
+
Γ ).

Therefore we obtain

Theorem 3.
n∏

k=1

(
z − tk
z − z0

)−κk

exp(K ln G2)(z) ∈ Ep(D
−
Γ ) + 1.

Theorem 2 and Theorem 3 give us

Theorem 4. X2(z) is factor-function of G2(t), but

X(z) ≡ X1(z) ·X2(z) = exp(K ln G)(z)

is factor-function of G(t) in Lp with the index κ , κ =
n∑

k=1

κk.

In classical case factor-function we usually write by means of two equali-
ties, however one can find the same notations (for example in [6])

From abovementioned theorems it follows, that for the problem (2) the
classical results are valid, we have the same representation for the solution as
well as the solvability conditions. Difference is only in index formula. In our

case the index is κ =
n∑

k=1

κk, where κk is from formula (8). Hence the index

depends on ln |G(tk ± 0)| and from the behavior of the curve in tk points.
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Dirichlet problem for holomorphic
functions in spaces described by

modulus of continuity

Alexander S. Ilchukov

Syktyvkar State University

1 Introduction

The following result is used in the study of boundary value problems associ-
ated with generalized analytic functions ([1], [2, p. 131]):

Theorem 1 If a function g is defined on ∂G = {z ∈ C : |z| = 1} and is
Hölder continuous with an exponent λ (0 < λ < 1), then there exists a unique
holomorphic function f in G = {z ∈ C : |z| < 1} that is continuous in a
closed disk and satisfies the conditions

<f |∂G = g(z), =f |z=z0
= c,

where z0 ∈ ∂G is a fixed point. Moreover, f is Hölder continuous with same
exponent λ.

There is an interesting question is whether or not analogue of this theorem
holds for classes of functions that are more general than Hölder spaces.

It is well known (see e.g. [2]),that the limiting values of the real and imag-
inary parts of a holomorphic function are expressed by the Hilbert transform
formulas





v(eiγ0) = − 1

2π

∫ 2π

0

u(eiγ) cot
γ − γ0

2
dγ + v0, v0 = v(0, 0),

u(eiγ0) =
1

2π

∫ 2π

0

v(eiγ) cot
γ − γ0

2
dγ + u0, u0 = u(0, 0).
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The singular Hilbert integral on the right-hand side is closely related to the
Cauchy improper integral along the unit circle centered at the origin (see e.g.
[3]).

Thus, this problem is related to the characterization of spaces that are
invariant under the Hilbert and Cauchy integral operators. It is well known
that Hölder spaces with exponents λ ∈ (0, 1) and spaces Lp, 1 < p < ∞, are
invariant under these operators.

2 Φ space of moduli of continuity

A function µ : (0, l] → R is said to belong to Φ if it satisfies the following
conditions:

1◦. lim
t→+0

µ(t) = 0;

2◦. µ(t) is almost increasing, that is there exists such a constant c = cµ

that for any t1, t2 ∈ (0, l0] : t1 ≤ t2 implies µ(t1) ≤ cµ(t2);

3◦. sup
t>0

1
µ(t)

∫ t

0

µ(t)

t
dt = Aµ < ∞;

4◦. sup
t>0

t
µ(t)

∫ l0

t

µ(t)

t2
dt = Bµ < ∞.

Here are examples of functions from space Φ :

1. µ(t) = tα, 0 < α < 1;

2. µ(t) = tα · (ln 1
t

)p
, 0 < α < 1, 0 < p, t ∈ (0, 1

2
].

There are also functions that do not belong to Φ, for example, µ(t) = 1
ln 1

t

.

The solution of the formulated problem is given by the following theorem
([4]).

Theorem 2 Suppose that g is given on ∂G = {z ∈ C : |z| = 1} and satisfies
the condition

|g(eiθ1)− g(eiθ2)| ≤ Cµ(|eiθ1 − eiθ2|),
where µ ∈ Φ. Then there exists a unique holomorphic function f in G = {z ∈
C : |z| < 1} that is continuous in a closed disk and satisfies the conditions

<f |∂G = g(z), =f |z=z0
= c,
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where z0 ∈ ∂G is a fixed point. Moreover, f satisfies

|f(z1)− f(z2)| ≤ Aµ(|z1 − z2|)
for any z1, z2 ∈ G.

3 Some generalizations of space Φ.

Let us consider a positive continuous almost decreasing function ρ : (0, l] →
R and integer n ≥ 0. Let us also consider a positive continuous function
µ : (0, l] → R with the property that is µ

t
is almost decreasing. The function

µ is said to belong to Φρ
An

if it satisfies the following conditions:

1n. lim
t→+0

µ(t)ρn(t) = 0;

2n. µ(t)ρn+1(t) is almost increasing;

3An . ∃Aµ > 0 : ∀ x ∈ (0; l0]

∫ x

0

µ(t)

t
ρn(t) dt ≤ Aµµ(x)ρn+1(x);

4An . ∃Bµ > 0 : ∀ x ∈ (0; l0]

∫ l0

x

µ(t)

t2
dt ≤ Bµ

µ(x)

x
.

Similarly, The function µ is said to belong to Φρ
Bn

if it satisfies 1n, 2n and

3Bn . ∃Aµ > 0 : ∀ x ∈ (0; l0]

∫ x

0

µ(t)

t
ρn+1(t) dt ≤ Aµµ(x)ρn+1(x);

4Bn . ∃Bµ > 0 : ∀ x ∈ (0; l0]

∫ l0

x

µ(t)

t2
dt ≤ Bµ

µ(x)

x
ρ(x).

Spaces Φρ
An

, Φρ
Bn

share some properties with space Φ, moreover, for any
majorized ρ and any integer n ≥ 0 implies that Φρ

An
= Φρ

Bn
= Φ.

For spaces Φρ
An

, Φρ
Bn

analogue of result for space Φ can be proved.

Theorem 3 Suppose that g is given on ∂G = {z ∈ C : |z| = 1} and satisfies
the condition

|g(eiθ1)− g(eiθ2)| ≤ Cµ(|θ1 − θ2|)ρn(|θ1 − θ2|),
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where n ∈ Z, n ≥ 0, µ ∈ Φρ
An

⋃
Φρ

Bn
. Then there exists a unique holomorphic

function f in G = {z ∈ C : |z| < 1} that is continuous in a closed disk and
satisfies the conditions

<f |∂G = g(z), =f |z=z0
= c,

where z0 ∈ ∂G is a fixed point. Moreover, f satisfies

|f(z1)− f(z2)| ≤ Cµ(|z1 − z2|)ρn+2(|z1 − z2|)

for any z1, z2 ∈ G.
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Dolbeaut’s lemma for the functions of
the class Lloc

p (C), p > 2

V. Jikia∗

I.Vekua Institute of Applied Mathematics

Abstract

In this paper the existence of
∂

∂z
-primitive of the function of the

class Lloc
p (C), p > 2 is proved.

It is well-known that for the every function a ∈ Lp,2(C), p > 2, by means
of the integral

A(z) = − 1

π

∫∫

C

a(ζ)

ζ − z
dξ dη, ζ = ξ + iη (1)

∂

∂z
primitive [3] with respect of the generalized derivative

∂

∂z
in Sobolev on

the whole plane is constructed[1], i.e.

∂A

∂z
= a. (2)

The present work deals with Carleman-Vekua equations with irregular
coefficients, therefore it is necessary to investigate the problem of existence

of
∂

∂z
primitives of the functions, not belonging to the class Lp,2(C), p > 2.

The following theorem is valid:

∗The work was supported by the Shota Rustaveli National Science Foundation, Grant
N 1-3/85
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Theorem 1. Every function a(z) of the class Lloc
p (C), p > 2, has

∂

∂z
prim-

itive function Q(z) on the whole complex plane, satisfying the Holder con-

dition with the exponent
p− 2

p
on each compact subset of the complex plane

E; moreover if q(z) is one
∂

∂z
primitives of the function a(z) then all

∂

∂z
primitives of this function are given by formula

Q(z) = q(z) + Φ(z), (3)

where Φ(z) is an arbitrary entire function.

Proof. Let a arbitrary function Lloc
p (C), p > 2.

Consider two sequences of positive numbers Rn and R′
n, n = 1, 2, 3, . . . ,

satisfying the conditions:

R′
1 < R1; Rn−1 < R′

n < Rn, n = 2, 3, . . . (4)

lim
n→∞

Rn = +∞. (5)

Consider also the following sequences of the domains of complex planes:

G1 =
{
z : |z| < R1

}
, Gn =

{
z : Rn−1 < |z| < Rn

}
, n = 2, 3, . . . ,

G′
n =

{
z : |z| < R′

n

}
, n = 1, 2, 3, . . . , D1 = G1,

Dn =
{
z : |z| < Rn

}
, n = 2, 3, . . .

and the boundaries of Gn

γn =
{
z : |z| = Rn

}
, n = 1, 2, 3, . . .

Construct the sequences of the functions:

gn(t) = − 1

π

∫∫

Gn+1

a(ζ)

ζ − t
dξ dη +

1

π

∫∫

Gn

a(ζ)

ζ − t
dξ dη, (6)

ζ = ξ + iη, t ∈ γn, n = 1, 2, 3, . . .

Fk(z) =
1

2πi

∫

γk

gk(t)

t− z
dt, (7)

z ∈ E \ γk, k = 1, 2, 3 . . .
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It is clear that gn(t) =
(
TGn+1a

)
(t) − (

TGna
)
(t). Since a ∈ Lloc

p (C), p >
2, then by virtue of the theorem 1.19 from [1] we have TGna, TGn+1a ∈
C p−2

p
(γn), n = 1, 2, 3, . . . Hence it is evident, that every function

gn(t) ∈ C p−2
p

(γn) (8)

and every function Fk(z) is holomorphic for each z ∈ C \ γk, as they are
Cauchy type integrals. Since the function Fk(z) is holomorphic on the circle
Dk, it can be expanded in Taylor series on Dk.

Assume it has the following form:

Fk(z) =
∞∑

j=0

C
(k)
j zj, |z| < Rk, (9)

and consider the sequence of positive numbers εk, k = 1, 2, 3, . . . ,for which
the series

∑∞
k=1 εk converges.

Since the Taylor-series (9) uniformly converges on the closed circle G′
k ⊂

Dk, then there exist the natural numbers Nk such that for every natural
n > Nk-the following inequality

∣∣∣∣Fk(z)−
n∑

j=0

C
(k)
j zj

∣∣∣∣ < εk, z ∈ G′
k. (10)

is completely defined. In particular, if we assume that n = Nk + 1, then for
complete defined polynomials

fk(z) =

Nk+1∑
j=0

C
(k)
j zj, k = 1, 2, 3, . . . (11)

the following inequality:

∣∣Fk(z)− fk(z)
∣∣ < εk, z ∈ G′

k, k = 1, 2, 3, . . . (12)

holds.
Consider the function

Φ(z) =
∞∑

k=1

(
Fk(z)− fk(z)

)
, z ∈ C \

∞⋃
k=1

γk. (13)
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Let us fix arbitrary natural number n and let as prove that the function Φ(z)
is a holomorphic function in the domain Gn. Represent the function Φ(z) as
follows

Φ(z) =
n∑

k=1

(
Fk(z)− fk(z)

)
+

∞∑

k=n+1

(
Fk(z)− fk(z)

)
, z ∈ Gn. (14)

Using the inequalities (13), we have
∣∣Fn+1(z)− fn+1(z)

∣∣ < εn+1, z ∈ G′
n+1∣∣Fn+2(z)− fn+2(z)

∣∣ < εn+2, z ∈ G′
n+2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·∣∣Fn+l(z)− fn+l(z)
∣∣ < εn+l, z ∈ G′

n+l

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(15)

(4) implies that the following inclusion

Gn ⊂ G′
n+1 ⊂ G′

n+2 ⊂ . . . ⊂ G′
n+l ⊂ . . . (16)

take place, thus from (15) we have
∣∣Fn+j(z)− fn+j(z)

∣∣ < εn+j, z ∈ Gn, j = 1, 2, 3, . . . (17)

Every function Fk(z), k = 1, 2, 3, . . . , is holomorphic on the Dk, when k ≥
n+1, Gn ⊂ Dk. Hence the function Fk(z) is holomorphic on Gn. The function
fk(z) is holomorphic on the whole plane, as it is polynomial. Consequently,
Fk(z)− fk(z) is holomorphic on the domain Gn.

From the inequalities (17) we get that the series
∞∑

k=n+1

(Fk(z) − fk(z)) is

uniformly convergent on Gn. By virtue of Weierstrass first theorem the series
∞∑

k=n+1

(Fk(z)− fk(z)) is holomorphic function on the domain Gn.

Since the function Fk(z), k = 1, 2, 3, . . . are holomorphic functions in
every point z expect the points of the curve γk, then the first summand on

the right-hand side of the inequality (14)
n∑

k=1

(Fk(z)−fk(z)) is a holomorphic

function on the domain Gn. From here the function Φ(z) is holomorphic on
the domain Gn. Since

∞⋃
n=1

Gn = C \
∞⋃

k=1

γk, (18)
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Then Φ(z) is a holomorphic function in every point z, where z ∈ C \
∞⋃

k=1

γk.

Consider along with the function Φ(z) one more function which is defined

on the set
∞⋃

n=1

Gn by the following form:

Let z be a arbitrary point from the set
∞⋃

n=1

Gn, then there exists the unique

natural number n, such that z ∈ Gn. Denote by

H(z) = − 1

π

∫∫

Gn

a(ζ)

ζ − z
dξ dη, z ∈ Gn, ζ = ξ + iη. (19)

By means of the the functions Φ(z) and H(z) construct the function

Q(z) = Φ(z) + H(z), z ∈ C \⋃
γn. (20)

Q(z) is a continuous function in every point of the set
∞⋃

n=1

Gn. Indeed, let

z ∈ Gn, then H(z) =
(
TGna

)
(z) ∈ C p−2

p
(C).

The function Φ(z) is a continuous on the domain Gn.
Let us prove, that the function Q(z) is continuously extentable on the

whole complex plane C. In fact, let us fix an arbitrary natural number n and
consider the left hand Q+(t0) and right hand Q−(t0) limits of the function
Q(z) in an arbitrary point t0 ∈ γn.

Taking into account, that the interior domain of the contour γn contains
the domain Gn and the exterior domain contains the domain Gn+1, let us
represent the above mentioned limits by the following form:

Q+(t0) = lim
z→t0
z∈Gn

Q(z), (21)

Q−(t0) = lim
z→t0
z∈Gn+1

Q(z). (22)

In order to calculate the limits (21)-(22) let us represent the function Q(z)
by the following form:

Q(z) =
n−1∑

k=1

(
Fk(z)− fk(z)

)
+

(
Fn(z)− fn(z)

)
+

+
∞∑

k=n+1

(
Fk(z)− fk(z)

)− 1

π

∫∫

Gn

a(ζ)

ζ − z
dξ dη, z ∈ Gn, (23)
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Q(z) =
n−1∑

k=1

(
Fk(z)− fk(z)

)
+

(
Fn(z)− fn(z)

)
+

+
∞∑

k=n+1

(
Fk(z)− fk(z)

)− 1

π

∫∫

Gn+1

a(ζ)

ζ − z
dξ dη, z ∈ Gn+1. (24)

Each function Fk(z), where k 6= n, is continuous on the curve γn, as the

Couchy -type integral. Therefore the sum
n−1∑
k=1

(
Fk(z) − fk(z)

)
is continuous

on the curve γn. In case k ≥ n + 1, the function Fk(z) is holomorphic in the
domain G′

n+1. i.e. the function Fk(z) − fk(z) is holomorphic on G′
n+1. The

series
∞∑

k=n+1

(
Fk(z)− fk(z)

)
is uniformly convergent on the domain G′

n+1. By

virtue of Weirstrass first theorem about the holomorphic functions, the sum
∞∑

k=n+1

(
Fk(z) − fk(z)

)
is holomorphic on the domain G′

n+1. Hence, the sum

∞∑
k=n+1

(
Fk(z)− fk(z)

)
is continuous on the curve γn.

It follows from the formula (6), that gn(t) =
(
TGn+1a

)
(t) − (

TGna
)
(t).

Since a ∈ Lloc
p (C), p > 2,by virtue of theorem 1.19 from ([1]) we have

(
TGna

)
(t),

(
TGn+1a

)
(t) ∈ C p−2

p
(C), t ∈ C.

Therefore gn(t) ∈ C p−2
p

(C).

As far as Fn(z) =
1

2πi

∫

γn

gn(t)

t− z
dt, using the Sokhotsky-Plemely formulas,

we get

F+
n (t0) =

1

2
gn(t0) +

1

2πi

∫

γn

gn(t)

t− t0
dt,

F−
n (t0) = −1

2
gn(t0) +

1

2πi

∫

γn

gn(t)

t− t0
dt.

(25)

From the formulas (21)-(25) and from the above stated, we get

Q+(t0) =
n−1∑

k=1

(
Fk(t0)− fk(t0)

)
+

1

2
gn(t0)+

+
1

2πi

∫

γn

gn(t)

t− t0
dt− fn(t0)+
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+
∞∑

k=n+1

(
Fk(t0)− fk(t0)

)− 1

π

∫∫

Gn

a(ζ)

ζ − t0
dξ dη, (26)

Q−(t0) =
n−1∑

k=1

(
Fk(t0)− fk(t0)

)− 1

2
gn(t0)+

+
1

2πi

∫

γn

gn(t)

t− t0
dt− fn(t0)+

+
∞∑

k=n+1

(
Fk(t0)− fk(t0)

)− 1

π

∫∫

Gn+1

a(ζ)

ζ − t0
dξ dη. (27)

Applying the formulas (26) and (27)we have

Q+(t0)−Q−(t0) = gn(t0)− 1

π

∫∫

Gn

a(ζ)

ζ − t0
dξ dη+

+
1

π

∫∫

Gn+1

a(ζ)

ζ − t0
dξ dη = 0.

Consequently, the function Q(z) is continuously extendable on whole com-
plex plane. We denote by Q(z) the continuously extended function.

Let us prove, that the function Q(z) is
∂

∂z
primitive of the function a(z).

Consider arbitrary domain Gn, n = 1, 2, 3, . . . . On this domain the func-
tion Q(z)is representable by the following form:

Q(z) = Φ(z)− 1

π

∫∫

Gn

a(ζ)

ζ − z
dξ dη = Φ(z) +

(
TGna

)
(z), z ∈ Gn. (28)

It is evident, that Gn on
∂Φ

∂z
= 0.

Since a ∈ Lp(Gn), p > 2, therefore by virtue of the theorem 1.13 from [1]
we have ∂

∂z

(
TGna

)
(z) = a(z), z ∈ Gn. Using the equality (28) we get the

following equality on the domain Gn:

∂Q

∂z
= a(z), z ∈ Gn. (29)

The function Q(z) is a continuous function on the whole complex plane. It

is clear that C =
( ∞⋃

n=1

Gn

) ⋃ ( ∞⋃
n=1

γn

)
.

78



From the equality (29) and the stated above we have, that the following
equality holds on the whole plane:

∂Q

∂z
= a(z), z ∈ C. (30)

We obtain, that the constructed function Q(z) is
∂

∂z
primitive of the

function a(z) on the whole plane.
Let as prove, that the function Q(z) satisfies the Holder -condition with

the exponent
p− 2

p
on each compact.

Consider arbitrary compact D ⊂ C. Consider also the bounded domain
G, which contains D. It is easy to see, that ∂Q

∂z
= a(z), z ∈ G.

Since a ∈ Lp(G), p > 2, by virtue of the theorem 1.16 from [1] the
following equality

Q(z) = K(z) +
(
TG a

)
(z), z ∈ G, (31)

is valid, where K(z) is holomorphic function on G.
Using the theorem 1.19 [1] , we have

(
TG a

)
(z) ∈ C p−2

p
(C) as far as the

function K(z) is a holomorphic on the domain G, therefore K(z) ∈ C p−2
p

(D).

It follows from the equality (31), that Q(z) ∈ C p−2
p

(D).

Let q(z) be one of
∂

∂z
primitives of the function a(z) and let Φ(z) be an

arbitrary entire function. Consider the function Q(z) = q(z) + Φ(z). Then
the following equality ∂Q

∂z
= ∂q

∂z
+ ∂Φ

∂z
= ∂q

∂z
= a(z), z ∈ C, is valid, since

∂Φ

∂z
= 0.

Let Q(z) be an arbitrary
∂

∂z
primitive of the function a(z). i.e.the equality

∂Q

∂z
= a(z), z ∈ C is fulfilled. Because

∂q

∂z
= a(z), z ∈ C,therefore the

following equality ∂(Q(z)−q(z))
∂z

= ∂Q
∂z
− ∂q

∂z
= a(z) − a(z) = 0, z ∈ C, is

fulfilled. From here the function Φ(z) = Q(z)−q(z) by virtue of the theorem
1.5 from [1] holomorphic on the whole plane, i.e. Φ(z) is entire function. The
theorem is complete proved.
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Some properties of the generalized
power functions∗

N.Kaldani

I.Vekua Institute of Applied Mathematics

Consider the generalized power functions

U2k(z, z0) = RA,B
z0

((z − z0)
k), U2k+1(z, z0) = RA,B

z0
(i(z − z0)

k), (1)

V2k(z, z0) = RA,B
∞ ((z − z0)

k), V2k+1(z, z0) = RA,B
∞ (i(z − z0)

k), (2)

of the Carleman-Bers-Vekua equation

∂zw + Aw + Bw = 0, A, B ∈ Lp,2, p > 2, (3)

where z0 6= ∞, k = 0,±1,±2, ..., RA,B
z0

is the operator (see [1], chapter 3,§3)

associating to every analytic function ϕ and the point z0 ∈ C the solution w
of the equation (3) satisfying the following conditions:

1)the function w̃(z, z0) = w(z,z0)
ϕ

is continuous in the domain, where ϕ is

analytic and continuously extendable on C, moreover w̃ ∈ Cα(C), α = p−2
p

;

2)w̃(z, z0) 6= 0 on C;
3)w̃(z0, z0) = 1.
The function ϕ is called an analytic divisor (with respect to the point z0)

of the function w = RA,B
z0

(ϕ); the point z0 we call the point of the coordina-
tion ϕ and w. When z0 = ∞, the function ϕ is called the normal analytic
divisor of the function w.

These functions are representable in the following form:

Uk(z, z0) = (z − z0)
[ k
2
]Ũk(z, z0), Vk(z, z0) = (z − z0)

[ k
2
]Ṽk(z, z0), (4)

∗The work was supported by the Shota Rustaveli National Science Foundation, Grant
N 1-3/85
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where Ũ2k, Ũ2k+1, Ṽ2k and Ṽ2k+1 are the generalized constants (see [1], chapter

3, §4) of the class A(A,B), Bk(z) = B(z) (z−z0)k

(z−z0)k , satisfying the conditions

Ũ2k(z0, z0) = Ṽ2k(∞, z0) = limz→∞Ṽ2k(z, z0) = 1 (5)

Ũ2k+1(z0, z0) = Ṽ2k+1(∞, z0) = limz→∞Ṽ2k+1(z, z0) = i. (6)

Besides Ũk(∗, z0), Ṽk(∗, z0) belong to the class C p−2
p

(C) and are satisfying

inequality

M−1 ≤ |Ũk(z, z0)| ≤ M, M−1 ≤ |Ṽk(z, z0)| ≤ M, (7)

z ∈ C, k = 0,±1,±2, ...,

where M = exp{Mp|||A| + |B|||p,2, Mp is constant depending only on p (see
[1], chapter 3, §4).

The generalized power functions Uk and Vk are differing from each other
only by coordinated points with their analytic divisors.

It is easy to see that the following equalities hold:

U2k(z, z0) = c2k,0V2k(z, z0) + c2k,1V2k+1(z, z0) (8)

U2k+1(z, z0) = c2k+1,0V2k(z, z0) + c2k+1,1V2k+1(z, z0) (9)

where c2k,α, c2k+1,α, α = 1, 2 are real constants (z0 is fixed point), repre-
sentable by the formulas:

c2k,0 + ic2k,1 = Ũ2k(∞, z0) = −ImṼ2k+1(z0, z0)− iImṼ2k(z0, z0)

Im[Ṽ2k(z0, z0)Ṽ2k+1(z0, z0)]
(10)

c2k+1,0 + ic2k+1,1 = Ũ2k+1(∞, z0) =
ReṼ2k+1(z0, z0)− iReṼ2k(z0, z0)

Im[Ṽ2k(z0, z0)Ṽ2k+1(z0, z0)]
(11)

Note, that the denominator in right-hand sides of the equalities (10) and
(11) is not equal to zero. Indeed, assuming contrary we have

Ṽ2k(z0, z0) = cṼ2k+1(z0, z0)

where c is a real constant. But the last equality is inposible as the functions
Ũ2k(∗, z0) and cŨ2k+1(∗, z0) are the generalized constants of one and the same
class A(A, Bk) satisfying the conditions

Ṽ2k(∞, z0) = 1, cṼ2k+1(∞, z0) = ic
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and hence they couldn’t have same meanings in any point of the plane.
The equations (10) and (11) are obviously equivalent to the following

equations
V2k(z, z0) = ĉ2k,0U2k(z, z0) + ĉ2k,1U2k+1(z, z0), (12)

V2k+1(z, z0) = ĉ2k+1,0U2k(z, z0) + ĉ2k+1,1U2k+1(z, z0), (13)

where

ĉ2k,0 =
1

∆k

c2k+1,0, ĉ2k,1 = − 1

∆k

c2k,1, ĉ2k+1,0 = − 1

∆k

c2k+1,0, (14)

ĉ2k+1,1 =
1

∆k

c2k,0,

∆k ≡ c2k,0c2k+1,1 − c2k,1c2k+1,0 = [Im(Ṽ2k+1(z, z0)Ṽ2k(z, z0)]
−1.

The last equality follows directly from the formulas (10),(11).
The generalized power functions of the conjugate equation of the equation

(3)
∂zw

′ − Aw′ −Bw′ = 0, A, B ∈ Lp,2, p > 2, (15)

of the lass A(−A,−B) denote by U ′
k and V ′

k , k = 0,±1,±2, ....
It is evident, that all relations established above for the functions Uk and

Vk take place for U ′
k and V ′

k too.
Let as prove the following theorem.

Theorem 1 Let Γ be a piecewise-smooth simple closed curve surrounding
the point z0 6= ∞. Then the following identities hold

Re
1

2πi

∫

Γ

Uk(z, z0)U
′
m(z, z0)dz = Ik,m, (16)

Re
1

2πi

∫

Γ

Vk(z, z0)V
′
m(z, z0)dz = Ik,m, (17)

where Ik,m = 1(Ik,m = −1), if k and m even (odd) numbers and [k
2
] + [m

2
] =

−1; if all remaining cases Ik,m = 0.

Proof. Denote by Ik,m(U, Γ) and Ik,m(V, Γ) the left-hand sides of the identi-
ties (16) and (17). From the Green identity (see [1], chapter 3, §9) it follows
that for every R > 0

Ik,m(U, Γ) = Ik,m(U, ΓR), Ik,m(V, Γ) = Ik,m(V, ΓR), (18)
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where ΓR is circle with the radius R and the origin in the point z0. By virtue
of the equalities (4) we have

Ik,m(U, ΓR) = Re
1

2πi

∫

ΓR

χ
(U)
k,m(z, z0)(z − z0)

αdz, (19)

Ik,m(V, ΓR) = Re
1

2πi

∫

ΓR

χ
(V )
k,m(z, z0)(z − z0)

αdz, (20)

where
χ

(U)
k,m(z, z0) = Ũk(z, z0)Ũ

′
m(z, z0), (21)

χ
(V )
k,m(z, z0) = Ṽk(z, z0)Ṽ

′
m(z, z0), (22)

α = [
k

2
] + [

m

2
].

The functions χ
(U)
k,m(∗, z0) are χ

(V )
k,m(∗, z0) the Hölder continuous and are bounded

on the whole complex plane.
When α > −1 and α′ < −1 it follows from identities (19), (20), that

limR→0Ik,m(U, ΓR) = limR→0Ik,m(V, ΓR) = 0

and
limR→∞Ik,m(U, ΓR) = limR→∞Ik,m(V, ΓR) = 0

respectively.
Therefore, by virtue of (18) we get

Ik,m(U, Γ) = Ik,m(U, Γ) = 0.

Let now α = −1. Consider three different cases separately.
a) k and m are even numbers. Then from (21),(22),(5), (6) we have:

χ
(U)
k,m(z0, z0) = limz→∞χ

(V )
k,m(z, z0) = 1.

Taking into account these equations, from (19), (20) we obtain

limR→0Ik,m(U, ΓR) = limR→∞Ik,m(V, ΓR) = 1.

Hence, in considered case the following identity

Ik,m(U, Γ) = Ik,m(V, Γ) = 1
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hold.
b) k and m are odd numbers. Then from (4)

χ
(U)
k,m(z0, z0) = limz→∞χ

(V )
k,m(z0, z0) = −1

and as in above case

Ik,m(U, Γ) = Ik,m(V, Γ) = −1;

c) k and m are numbers with different purity. In this case

χ
(U)
k,m(z0, z0) = limz→∞χ

(V )
k,m(z0, z0) = i

and therefore

limR→0Ik,m(U, ΓR) = limR→oIk,m(V, Γ) = 0.

Hence, by virtue of (19) we have

Ik,m(U, Γ) = Ik,m(V, Γ) = 0.

The theorem is proved.
In particular case, when B = 0 in (2) we have

U2k(z, z0) = (z − z0)
keω(z)−ω(z0), U2k+1(z, z0) = iU2k(z, z0);

V2k(z, z0) = (z − z0)
keω(z), V2k+1(z, z0) = iV2k(z, z0);

U ′
2k(z, z0) = (z − z0)

keω(z0)−ω(z), U ′
2k+1(z, z0) = iU ′

2k(z, z0);

V ′
2k(z, z0) = e−ω(z), V ′

2k+1(z, z0) = iV ′
2k(z, z0),

where ω = 1
p

∫∫
C

A(ξ
ξ−z

dσξ. From above identities follows the following formula:

1

2πi

∫

γ

(z − z0)
α =

{
1, if α = −1

0, if α 6= −1.
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The Cauchy transform and certain
non-linear boundary value problem

on non-rectifiable arc

Boris A. Kats

Kazan State University

As known, the Riemann–Hilbert boundary value problem is the problem
on evaluation of holomorphic in C \ Γ function Φ(z) satisfying equality

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ,

where Γ is given curve on the complex plane C, Φ±(t) stand for limit values
of Φ at point t ∈ Γ from the left and from the right correspondingly, and
functions G(t), g(t) are defined on Γ.

The classical results on this problem concern the case of piecewise–smooth
curve Γ, and the classical technique of its solution bases on the properties of
the Cauchy type integral

Φ(z) =
1

2πi

∫

Γ

f(t)dt

t− z
.

The Riemann problem makes sense for non-rectifiable Jordan curves, too.
But the curvilinear integral

∫
Γ
· dt is not defined for non-rectifiable Γ. This

is a reason why the author of the present report solved the Riemann–Hilbert
boundary value problem on non-rectifiable curves at the early 80s without
using of the Cauchy type integral.

In the present work we describe another way for solution of that problems.
We replace the Cauchy type integral by the Cauchy transform of certain
distributions with supports on non-rectifiable curve Γ. As a result, we obtain
a new instrument for solution of the whole family of problems connected with
the Riemann-Hilbert boundary value problem. In the final part of report we
apply this technique for solution of a non-linear boundary value problem on
non-rectifiable arc.
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1 The Cauchy transform

Let φ be a distribution with compact support S on the complex plane, i.e., a
continuous in customary sense functional on the space C∞(C). Then function

Cau φ(z) =
1

2πi
〈φ,

1

t− z
〉

is called Cauchy transform of φ. It is holomorphic in C \ S, and vanishes at
infinity point.

Let Γ be a Jordan curve (closed or open) on the complex plane. Generally
speaking, it is not rectifiable. We consider a holomorphic in C \ Γ function
F (z). If it is locally integrable in C, then we identify it with distribution

〈F, ω〉 :=

∫∫

C
F (z)ω(z)dz ∧ dz, ω ∈ C∞

0 (C).

Its distributional derivative
〈

∂F

∂z
, ω

〉
:= −

∫∫

C
F (z)

∂ω

∂z
dz ∧ dz

has compact support Γ.
Let Hν(A) stand for the Hölder space on the set A ⊂ C, i.e., it consists

of defined on A functions f satisfying inequality

hν(f ; A) := sup

{ |f(t′)− f(t′′)|
|t′ − t′′|ν : t′, t′′ ∈ A, t′ 6= t′′

}
< ∞.

Its norm is ‖f‖Hν(A) := hν(f ; A)+ ‖f‖C(A). If the set A is compact, then any
function f ∈ Hν(A) is extendable up to a function fw ∈ Hν(C), and this
extension is isometric: ‖fw‖Hν(C) = ‖f‖Hν(A) (the Whitney theorem). We
put

H∗
ν (A) :=

⋂

ν′>ν

Hν′(A).

In what follows we need characteristics of dimensional type for non-
rectifiable curve Γ. The simplest one is the upper metric dimension (it is
called also fractal dimension, Minkowskii dimension and so on). The upper
metric dimension Dm A of compact set A ⊂ C equals to

Dm A := lim sup
ε→0

log N(A, ε)

− log ε
,
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where N(A, ε) is the least number of disks of radius ε covering A. As known,
1 ≤ Dm Γ ≤ 2 for any curve Γ ⊂ C, and Dm Γ = 1 if Γ is rectifiable.

Theorem 1 Let Dm Γ = d < 2, F ∈ Lp
loc(C), p > 1. Then

∣∣∣∣
〈

∂F

∂z
, ω

〉∣∣∣∣ ≤ C‖ω‖Hν(D)

for

ν > 1− 2− d

p′
,

1

p′
+

1

p
= 1, (1)

where D is any finite domain containing Γ, and the constant C does not
depend on ω.

In other words, under restriction (1) the distribution ∂F
∂z

is extendable up to

bounded functional on the closure of C∞(C) in Hν(D). This closure contains
the space H∗

ν (D).
If f ∈ Hν(D), then it belongs to this closure under assumption (1). The

product fω also belongs it for any ω ∈ C∞(C). Consequently, there is defined
distribution 〈

∂F

∂z
f, ω

〉
:=

〈
∂F

∂z
, fω

〉

with support on Γ. If f ∈ Hν(Γ), then we apply this definition to its Whitney
extension fw. The main subject of this section is the Cauchy transform

Φ(z) = Cau
∂F

∂z
f(z). (2)

Theorem 2 Let function F (z) have limit values F+(t) and F−(t) from the
left and from the right correspondingly at any point t ∈ Γ \E, where E ⊂ Γ.
If F is integrable with exponent p > 2 in a neighborhood of E, f ∈ Hν , and

ν >
1

2
Dm Γ, (3)

then the function Φ(z) also has limit values Φ+(t) and Φ−(t) from the left
and from the right correspondingly at any point t ∈ Γ◦, it is integrable with
exceeding two exponent in a neighborhood of E, and

Φ+(t)− Φ−(t) = (F+(t)− F−(t))f(t), t ∈ Γ \ E. (4)

Thus, the function Cau ∂F
∂z

f(z) keeps the main properties of the Cauchy type
integral with density (F+(t)− F−(t))f(t).
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2 The Szegö functions

We apply this result for solution of the following non-linear boundary value
problem.

Let Γ be a Jordan arc beginning at point −1 and ending at point +1. We
seek a holomorphic in C \ Γ function S(z) such that

S+(t)S−(t) = ρ(t), t ∈ Γ \ {−1, +1}, (5)

where ρ(t) is defined on Γ function, and

C−1 < |S(z)| < C, z ∈ C \ Γ, C = C(S) > 0. (6)

The solution of this problem for smooth arcs is known. In recent works
concerning Padé approximations of Markov type functions its solutions are
called the Szegö functions. The Cauchy transform with

F (z) =
1√

z2 − 1

enables us to obtain the following result.

Theorem 3 Let ρ(t) 6= 0, ρ ∈ Hν(Γ), and ν > 1
2
Dm Γ. Then the functions

S(z) = ± exp

(
1

2
F−1(z)Cau

(
∂F

∂z
log ρ

)
(z)

)
(7)

are solutions of the boundary value problem (5), (6).

Under certain additional restrictions the problem has not another solutions.
The result of this section is obtained by David B. Kats. We hope that it

will be useful for estimations of the rational approximations of holomorphic
in C \ Γ functions.

Note 1 We can replace here the upper metric dimension by new metric di-
mensions introduced by the author. As a result, the results will be sharper.

Author’s address:
Kazan State University
Kazan, Rossia
E-mail: katsboris877@gmail.com
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Complex geometry of quadrilateral
linkages∗

G. Khimshiashvili

Ilia State University

Abstract
We present a number of observations on the complex geometry

of quadrilateral linkages. In particular, we show that, for each con-
figuration of a planar quadrilateral linkage Q(a, b, c, d) with pairwise
distinct side-lengths (a, b, c, d), the cross-ratio of its vertices belongs
to the circle of radius ac/bd centered at point 1 ∈ C.

Moreover, we establish an analog of Poncelet porism for the dis-
crete dynamical system on the planar moduli space of 4-bar linkage
defined by the product of diagonal involutions, and discuss some re-
lated issues suggested by a beautiful link to the theory of discrete
integrable systems discovered by J.Duistermaat.

Finally, we establish a connection between certain extremal prob-
lems for configurations of 4-bar linkage and tetrahedra obtained from
its configurations using the famous Minkowski theorem on polyhedra
with prescribed areas of faces.

1 Introduction

The simplest and prototypical mechanical linkages, 4-bar mechanisms, were
an object of active investigation from various points of view for a long time

∗The work on this paper was started during the author’s visit to The Abdus Salam
International Centre for Theoretical Physics in March of 2011 and the paper was finished
during the author’s visit in June of 2011. The author acknowledges the financial support
and excellent working conditions provided by the Centre during author’s visits in the
capacity of a Senior Associate of the Centre, which was very helpful for achieving progress
on the topics presented in this paper.
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[6], [9], [11] (nowadays they are also called quadrilateral linkages [5], [11]).
Comprehensive results on the geometry of planar 4-bar mechanisms, includ-
ing some classical ones from [6], are presented in [9]. Complex geometry
provide a natural language for investigation of planar quadrilateral linkages
and this topic is known to be related to several deep results of algebraic ge-
ometry and function theory, in particular, to Poncelet theorem [8] and theory
of elliptic functions [6].

The aim of this paper is to complement the results of [9] and [13] by
presenting several new results on the complex geometry of 4-bar linkages
which emerged along the lines of [13], [14], [16]. In this context it is natural
to consider a polygonal linkage as a purely mathematical object defined by
a collection of positive numbers [5].

We begin with recalling the topological structure of MN(L) for all N ≥ 2
(Propositions 2.1, 2.2, 2.3). We also introduce the complexified planar moduli
space and define bending flows on M3(Q) [11] and diagonal involutions on
M2(Q). One of peculiar features of a planar 4-vertex linkage Q (no matter
closed or open) is that there is a naturally defined cross-ratio map CrQ from
its planar moduli space into the complex plane. We describe the image of
cross-ratio map in the case 4-bar linkage (Proposition 3.1) and briefly discuss
related problems for 3-arm.

The next section is concerned with certain natural mappings on planar
and spatial moduli spaces of closed 4-vertex linkages (4-bar mechanisms). We
recall some results of [12] concerned with the bending flows on the spatial
moduli space of 4-bar mechanism and discuss their analogs in the case of
planar moduli space suggest several interesting and rather hard problems
which we discuss in some detail in the rest of the section. It should be noted
that progress in these topics became possible using the link to the theory of
discrete integrable systems discovered by J.Duistermaat and described in his
last book [7].

In the last section we briefly describe an interesting and apparently un-
explored connection between configurations of spatial linkage and convex
polyhedra obtained from its configurations based on the Minkowski 1897 the-
orem, and illustrate it by a simple result concerned with three-dimensional
configurations of quadrilateral linkages.
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2 Moduli spaces of quadrilateral linkages

We freely use some definitions and constructions from the mathematical the-
ory of linkages, in particular, the concept of N-th moduli space of a polygonal
linkage for which we refer to [5]. Recall that a quadrilateral (4-bar) linkage
Q = Q(l) is defined by a quadruple of positive numbers l = (a, b, c, d) ∈ R4

+

called the side-length vector of Q. Analogously, (robot) 3-arm is analogously
defined by a triple of positive numbers l ∈ R3

+. For any polygonal linkage L,
its Nth configuration space MN(L) is defined as the set of its configurations
(realizations) in RN taken modulo the group of orientation preserving isome-
tries of RN [5]. For generic side-length vector l, MN(L) is a smooth compact
manifold. For completeness we recall the topological structure of all moduli
spaces for 4-bar linkages and 3-arms which is known for a long time (see,
e.g., [11]).

Proposition 2.1. For any l, the moduli space M3(A3(l)) is homeomorphic
to three-sphere S3. For any natural N ≥ 4, the moduli space MN(A(l)) is
homeomorphic to the closed 3-dimensional ball B3.

Proposition 2.2. The complete list of homeomorphy types of planar moduli
spaces of a 4-bar linkages is as follows: circle, disjoint union of two circles,
bouquet of two circles, two circles with two common points, three circles with
pairwise intersections equal to one point.

Taking into account the stabilization phenomenon [17] one can describe
the topology of all moduli spaces as well.

Proposition 2.3. ([17]) For each Q, M3(Q) is homeomorphic to a two-
sphere S2. For all N ≥ 4, MN(Q) is homeomorphic to a disc (two-dimensional)
ball B2.

In order to introduce certain self-mappings of the planar and spatial mod-
uli spaces of a 4-bar linkage, in the rest of this section we always assume that
side-lengths lj are pairwise non-equal. Then Q(l) does not have configu-
rations with coinciding vertices so, for each configuration V of Q(l), both
diagonals are non-zero and define two different lines in the ambient space.

Consider first the spatial moduli space. For each configuration V one can
rotate it by an angle α ∈ [0, 2π] about either of diagonals which defines two
families of homeomorphisms of M3(Q(l)) called bending flows [12] which give
and action of the plane R2 on M3(Q(l)). As is shown in [12], this action is
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transitive on M3(Q(l)), in other words, any configuration can be transformed
into another one by a sequence of bendings.

Analogous mappings can be considered for planar moduli spaces. Since
side-lengths li are pairwise non-equal then, for each planar configuration V
of such a Q(l), one can construct its reflections in the diagonals v1v3 and
v2v4 respectively. This obviously defines two diagonal involutions i1 and i2
on M2(Q) which are the same as bendings by angle π called π-bendings in
[12]. If we introduce unit vectors ui along the sides of V then it is easy to
verify that diagonal involutions act by formulas:

i1 : (u1, u2, u3, u4) 7→ (u1, u2, u
−1
3

l1 + l2u2

l1 + l2u
−1
2

, u−1
4

l1 + l2u2

l1 + l2u
−1
2

);

i2 : (u1, u2, u3, u4) 7→ (u1, u
−1
2

l1 + l2u2

l1 + l2u
−1
2

, u−1
3

l1 + l2u2

l1 + l2u
−1
2

, u4).

These formulas enable one to investigate many concrete issues related to
diagonal involutions. In particular, they do not commute and it is easy to
describe how they act on various functions on the moduli space such as the
cross-ratio considered in the next section. As usual, for non-commuting invo-
lutions it is reasonable to consider their composition τ = i1 ◦ i2 which in this
case is called the Darboux transformation of Q(l) [7]. The above formulas
show, in particular, that τ has no fixed-points on M2(Q(l)). However τ may
have periodic points and their investigation leads to interesting problems
which can be better understood by considering the action of τ on complex-
ification MC

2 (Q(L)) of the planar moduli space which can be introduced as
follows [12].

Both above maps are birational transformations of C4. The reduced pla-
nar moduli space M̃2 ≈ S1 can be defined as the quotient of the curve

E = {(u1, u2, u3, u4) ∈ C4 : u1 = 1, |uj| = 1, j = 1, 2, 3,
∑

ljuJ = 0}

by action of the involution θ : (u1, u2, u3, u4) 7→ (u1, u2, u3, u4).
The complexified planar moduli space MC

2 (Q(L)) is defined as the com-
plexification EC of E.

Proposition 2.4. ([6], [9]) For each generic Q, M
C

2 (Q) is a nonsingular
connected elliptic curve (Riemann surface of genus one) and τ extends to an
automorphism τC of EC which has no fixed-points.
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In particular, M
C

2 (Q) is always homeomorphic to the two-torus T 2 which
leads to interesting connections with function theory and Poncelet theorem
[8].

3 Cross-ratio map of planar quadrilateral link-

age

We need some elementary properties of cross-ratio which can be found in
[3]. Consider first a 4-bar linkage Q = Q(a, b, c, d) with smooth M2(Q) (i.e.,
without aligned configurations) and assume moreover that side-lengths are
pairwise different so that Q has no configurations with coinciding vertices.
Then, for each planar configuration V = (v1, v2, v3, v4) ∈ C4 of Q, put

Cr(V ) = Cr((v1, v2, v3, v4)) =
v3 − v1

v3 − v2

:
v4 − v1

v4 − v2

.

This obviously defines a continuous (actually, real-analytic) mapping CrQ :
M(Q) → C and our first aim is to describe its image ΓQ = Im CrQ which
is obviously a continuous curve in C. Taking into account some well-known
properties of cross-ratio and moduli space, we were able to establish some
qualitative geometric properties of ΓQ. In the process of discussing observa-
tions with Elias Wegert of Bergakademie (Freiberg) in January 2011 we came
up with a quite explicit description of Im CrQ, which should be considered
as our joint result.

Theorem 3.1. For a quadrilateral linkage Q as above, Im CrQ is a subset of
the circle C(1, ac/bd) of radius ac/bd centered at the point 1 ∈ C. The image
is always an arc symmetric about the real axis and contains the point 1 + ac

bd

corresponding to the convex cyclic configuration of Q.

Proof. After having found this result its proof was immediate by using
well-known properties of cross-ratio. First notice that, for each quadruple of
points vj ∈ C, we have:

Cr(v1, v2; v3, v4) = 1− Cr(v1, v3; v2, v4).

Now,

Cr(v1, v3; v2, v4) =
v3 − v1

v3 − v2

:
v4 − v1

v4 − v2

,

94



hence

|Cr(v1, v3; v2, v4)| = |v2 − v1|
|v2 − v3| :

|v4 − v1|
|v4 − v3| .

Since the moduli in the r.h.s. are equal to distances between the points
vi which form a configuration of Q(a, b, c, d) we finally get

|1− Cr(v1, v2; v3, v4)| = ac

bd
,

as was claimed. The remaining statements follow easily from the above
remarks.

Since the argument of Cr(v1, v3; v2, v4) can be expressed in terms of the
angles between the sides of configuration one can now express the length of
Im CrQ in terms of side-length vector l = (a, b, c, d) and characterize those l
for which Im CrQ = C(1, ac/bd).

These results suggest further use of complex geometry as follows. For
a given configuration of a planar linkage, consider certain geometrically or
physically meaningful point defined by the configuration. For example, one
can place certain masses or charges at the vertices of configuration and con-
sider the center of mass or the point of stable electrostatic equilibrium of
those charges. In both cases one obtains a mapping into C (complex-valued
function) and may study its image and singular points. Notice that such
maps make sense for all moduli spaces of polygonal linkage with arbitrary
number of sides so they definitely deserve a closer look.

4 Poncelet porism for planar quadrilateral link-

ages

Now we wish to show how the complex geometry enables one to obtain inter-
esting results about the geometry of mapping τ = i1 i2 : M2(Q) → M2(Q).
One can also obtain quite comprehensive results about the behaviour of the
discrete dynamical system τn generated by τ . This follows from a beautiful
link with the theory of so-called QRT maps discovered by J.Duistermaat and
developed in [7].

The first result in this direction is a direct analog of Poncelet porism [8].
As is mentioned on the page 512 of [7], this result and related conjectures were
discussed in a colloquium talk of the present author in Utrecht on 9.02.2006,
which gave an impetus for the study initiated by J.Duistermaat. Later on,
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it turned out that this version of Poncelet porism has already been known
for G.Darboux [6], for which reason J.Duistermaat suggested to call τ the
Darboux transformation of a 4-bar linkage Q = Q(l).

It is known that the moduli space M2(Q) and its complex projectivization
MC

2 (Q) are smooth if and only if the side-lengths satisfy a certain generic-
ity condition [9]. This condition, traditionally called the Grashof condition,
actually means that Q(l) does not have aligned configurations [9], or equiva-
lently: there do not exist numbers ei = ±1 such that

∑4
i=1 ei li = 0.

Theorem 4.1. ([6], [7]) For a 4-bar linkage Q with positive side-lengths sat-
isfying the Grashof condition, one has the following dichotomy: either each
configuration is periodic with the same period or the orbit of each configura-
tion is infinite.

The ”raison d’ètre” of this result is rather simple and elegant: it turns
out that τ can be realized as an automorphism of the complexified planar
moduli space MC

2 (Q) acting as a translation, which makes the statement
evident. For completeness we give an outline of the proof.

Outline of proof. Let us use a rigid motion to place the first two
vertices of Q = Q(a, b, c, d) at points v1 = (0, 0), v2 = (a, 0) and consider an
angular parametrization of M2(Q) by putting v3 = (a + b cos φ, b sin φ), v4 =
(d cos ψ, d sin ψ). Then the remaining distance condition d(v3, v4) = c is easily
seen to be equivalent to

c2 = a2 + b2 + d2 + 2a(b cos φ− d cos ψ)− 2bd(cos φ cos ψ + sin φ sin ψ).

Finally, using now the rational parameterizations

cos φ =
u2 − 1

u2 + 1
, sin φ =

2u

u2 + 1
, cos ψ =

−v2 + 1

u2 + 1
, sin ψ =

−2v

u2 + 1

we rewrite the distance equation in the form

((a + b + d)2 − c2)u2v2 + ((a + b− d)2 − c2))u2 + ((a− b + d)2 − c2)v2+

+(−a + b + d)2 − c2 = 0.

The above curve in the (u, v)-plane is biquadratic and, as explained in
[7], if it is smooth as a curve in the Cartesian square of the complex projec-
tive line, then it is an elliptic curve. Since we assume that Q(l) satisfies the
Grashof condition, this curve is smooth in P1 × P1 and MC

2 (Q) is an elliptic
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curve. It is now easy to directly verify that the Darboux transformation
corresponds to the horizontal switch (u, v) 7→ (u′, v) followed by the vertical
switch (u′, v) 7→ (u′, v′) in the (u, v)-plane. Therefore the Darboux transfor-
mation on M2(Q) coincides with to the so-called QRT transformation of the
biquadratic curve above [7]. Then, as is shown in [7], the Darboux transfor-
mation acts on it as translation [7], which makes the result obvious.

Details of the proof can be found in Section 11.3 of [7]. For us especially
inspiring is that this relation to Poncelet porism established in [7] indicates
a clear way to solving several natural problems formulated in the aforemen-
tioned 2006 talk of the author (see [7]).

5 Tetrahedra and spatial quadrilateral link-

ages

In this section, we describe an apparently unconventional aspect of polygonal
linkages emerging from the Minkowski 1897 theorem (see, e.g., [1]). Given
a polygonal linkage L = L(l1, . . . , ln), for each of its configurations P in
RN , Minkowski 1897 theorem yields a unique (up to isometry) convex N -
dimensional polyhedron µ(P ) with (N −1)-dimensional faces Fi, i = 1, . . . , n
such that Fi is orthogonal to the side pipi+1 of P and the (N−1)-dimensional
volume of Fi is equal to li. In this situation we say that the corresponding
polyhedron is a Minkowski N-polyhedron (or a face calibrated polyhedron)
with face gauge l (one could also speak of Minkowski face control).

If we include into consideration also degenerate polyhedra having all ver-
tices in the same hyperplane of RN , and identify congruent configurations, we
obtain a certain compact space ΩN(l) which can be called the moduli space
of Minkowski N-polyhedra with face gauge l. As is easy to show, Minkowski
theorem in fact implies that ΩN(l) can be naturally identified with N -th
moduli space MN(l) of linkage L(l) which immediately yields the topological
structure of ΩN(l) from the known results on MN(l). Moreover, this obser-
vation suggests a plenty of natural geometric problems of the same type as
the one described below. Here we only consider the case when N = 3 and
n = 4. In other words, we discuss relations between spatial configurations
quadrilateral Q(l) and Minkowski tetrahedra with face gauge l. More general
situations will be considered elsewhere.

In line with [14], [15], we wish to compare the critical points of the two
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functions Vo, V
c on moduli spaces Ω3(l) and M3(l). The first one is defined on

Ω3(l) as the usual oriented volume of tetrahedron, while, for a configuration
P of a 4-bar linkage L, we put V c(P ) = Vo(Conv P ), where Conv P is the
convex hull of P , i.e. also a tetrahedron, maybe degenerate. The following
formula gives the crucial relation between oriented volume of the convex hull
of a spatial configuration P of Q(l) and the oriented volume of its Minkowski
transform µ(P ). Its proof follows easily from the determinantal formula for
the volume of tetrahedron.

Proposition 5.1. With the notation as above one has 3V c = 4V 2
o .

This formula enables one to describe the maxima of Vo(Conv P ) on M3(Q)
and Vo on Q(l). For a positive number d, let Xd denote the set of all config-
urations P of L such that the length of the diagonal p1p3 is equal to d. It is
then obvious that the maximum of Vc on Xd is attained at configuration for
which the dihedral angle between the two faces containing p1p3 is equal to
π/2. By the same reasoning, for the Vc-maximal configuration, the dihedral
angle by the second diagonal should also be π/2. It is easy to verify that
there always exists a configuration P ∗ with both dihedral angles by diagonals
equal to π/2 and so the (global) maximum of Vo(Conv P ) is attained at P ∗.

Now, Proposition 5.1 obviously implies that the maximum of V o on Q(l)
is attained on the Minkowski transform of the V c-maximal configuration
identified above. From the definition of Minkowski transform follows that
each pair of the opposite sides of the Vo-maximal tetrahedron should be
orthogonal (perpendicular). As is well known this condition is equivalent to
the orthocentricity of tetrahedron in question. In other words, all of its four
heights have a common point (called orthocenter). Thus we arrive to the
following pleasant result.

Theorem 5.2. The maximum of V o on Q(l) is attained on an orthocentric
tetrahedron.

It is possible to show that the Vo-maximal face gauged tetrahedron unique.
an analogous result holds for f -gauged tetrahedra in all dimensions. Similar
considerations are applicable in the case of the normalized determinant of
configuration considered by M.Atiyah [2]. These and other generalizations
of Theorem 5.2 will be considered elsewhere. In general, the connection de-
scribed above suggests many open problems and plausible conjectures which
will be addressed in the further research of the author. We conclude by
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adding that most of considerations in this paper make sense for spherical
linkages on SN (cf. [10] for the case of two-dimensional sphere) and it would
be interesting to find out what results in the spirit of this paper can be
obtained for spherical linkages.
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Riemann-Hilbert boundary value
problem for generalized analytic

functions in Smirnov classes

S. B. Klimentov

Southern Federal University

Riemann-Hilbert problem for complex holomorphic functions in the clas-
sic Smirnov classes was studied in the works: [1] for the Lyapunov boundaries
and [2] for domains with Radon boundaries.

Let G is bounded simply connected domain in complex z-plane, z =
x+ iy, , i2 = −1, with rectifiable boundary Γ = ∂G; G = G∪Γ; A(z), B(z) ∈
Ls(G) s > 21, are given complex functions. Without limiting the generality,
we assume that the point z = 0 is located inside G.

Further we assume Γ Lyapunov curve or Radon curve without cusp points.
We consider in G canonical elliptic system in the complex entry

∂z̄w + A(z)w + B(z)w = 0, (1)

where w = w(z) = u(z) + iv(z) is unknown complex function, u and v are
its real and imaginary parts, ∂z̄ = 1/2(∂/∂x + i∂/∂y) is derivative in the
Sobolev sense.

In this work we investigate Riemann-Hilbert (Hilbert) problem in the next
posing: to find in the domain G solution w = w(z) of the equation (1),
w(z) ∈ Ep(A,B), p > 1, [4], [5], whose non-tangent limiting values on Γ
satisfies almost everywhere boundary condition

Re
{

λ(t)w(t)
}

= g(t), (2)

where t = t(s), s ∈ [0, S], is the affix of the point on Γ, λ = λ(t) is complex
measurable function defined on Γ and satisfies conditions 0 < k0 ≤ |λ(t)| ≤

1We use the notations from the book [3].
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k1 < ∞, k0, k1 are real constants, g(t) = g(t(s)) ≡ g(s) ∈ Lp(Γ) ≡ Lp[0, S]
is real function, defined on Γ.

Following [3, p. 179], we say that the equation

∂z̄w
∗ − A(z)w∗(z)−B(z)w∗(z) = 0, z ∈ G, (3)

is adjoint to the equation (1).
Generalizing [3, p. 301] we call the adjoint (homogeneous) problem to

(2) the problem of finding in G the solution of (3) w∗(z) ∈ Ep′(−A,−B),
1/p + 1/p′ = 1, which non-tangent limit values on Γ almost everywhere on Γ
satisfy boundary condition

Re {λ(t)t′(s)w∗(t)} = 0. (4)

Following [6, p. 190] (and [1], [2]) we assume that we can choose at least
one starting point s = 0 on Γ so that the function ω(t) = arg λ(t) satisfies
the next condition:

ω(s) = ω̃0(s) + ω̃1(s) + ω2(s), (5)

where ω̃0(s) is continuous function on [0, S] (at the ends we mean the one-
side continuity); ω̃1(s) is the function of finite variation on [0, S]; ω2(s) is
measurable function on [0, S] satisfying the next conditions:

|ω2(s)| ≤ νπ, 0 < ν <
1

2p
, 0 < ν <

1

2p′
,

1

p
+

1

p′
= 1. (6)

Without the loss of generality we assume [6, p. 190] that ω(0) = ω(S) and
ω̃1(s) is right-side continuous at the point s = 0. After these assumptions we
can rewrite (5) in the next form [6, p. 190]:

ω(s) = ω0(s) + ω1(s) + ω2(s), (7)

where ω2(s) is former; ω1(s) is the jump function of ω̃1(s), {sk} is no more
than countable set of discontinuity points of ω̃1(s):

ω1(0) = 0, ω1(s) =
∑

0<sk<s

hk + [ω̃1(s)− ω̃1(s− 0)], 0 < s ≤ S,

hk = ω̃1(sk + 0)− ω̃1(sk − 0). The continuous on [0, S] function ω0(s) equals
to the sum ω̃0(s) + [ω̃1(s)− ω1(s)].

The indexes κ and
(p)
κ of the boundary value problem (1), (2) was defined

in [1], [2].
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Theorem 1 If in (7) ω1(s) ≡ 0 and Γ is Lyapunov curve, then at κ ≥ 0 ho-
mogenous problem (1), (2) (at g(t) ≡ 0) has exactly 2κ+1 linear independent
in the real sense solutions in the class Ep(A,B), p > 1. Non-homogenous
problem is solvable in Ep(A,B) at arbitrary right side g(t) ∈ Lp(Γ) of the
boundary condition.

If κ < 0 then the homogenous problem (1), (2) has not in Ep(A,B) non-
zero solution and non-homogenous problem has unique solution in Ep(A,B)
if and only if −2κ−1 (real) conditions on the right side g(t) of the boundary
condition (2) are held:

∫

Γ

g(s)eiω(s)w∗
k(t)t

′(s)ds = 0. (8)

Here w∗
k(t) ∈ Ep′+ε(−A,−B), Ep+ε(−A,−B), k = 1, . . . ,−2κ− 1, is the full

system linear independent in the real sense solutions of the adjoint to (1),
(2) boundary value problem (3), (4) with index κ∗ = −κ − 1 ≥ 0, ε > 0 is
little.

Theorem 2 If in (7) ω2(s) ≡ 0, and Γ is Lyapunov curve or Radon curve

without cusp points, then at
(p)
κ ≥ 0 homogenous problem (1), (2) (at g(t) ≡

0) has exactly
(p)
κ + 1 linear independent in the real sense solutions in the

class Ep(A,B), p > 1. Non-homogenous problem is solvable in Ep(A,B) at
arbitrary right side g(t) ∈ Lp(Γ) of the boundary condition.

If
(p)
κ < 0, homogenous problem (1), (2) has not non-zero solution in

Ep(A,B), p > 1, and non-homogenous problem has unique solution if and

only if −(p)
κ − 1 (real) conditions on the right side g(t) of the boundary con-

dition (2) are held:

∫

Γ

eiω(s)w∗
k(t(s))t

′(s)g(s)ds = 0, k = 1, 2, . . . ,−(p)
κ − 1. (9)

Here {w∗
k(z)} ∈ Ep′(−A,−B) is the full system linear independent in the real

sense solutions of the adjoint to (1), (2) boundary value problem (3), (4).

It should be noted then if
(p)
κ = −1, we get k = 0. It means uniquely

unconditionally solvability of the non-homogenous problem.
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The main difficulty is the impossibility in the case of the non-smooth
border to reduce the problem by conformal mapping to one in Hardy class
of generalized analytic functions.

To solve the problem in this work the special representation for general-
ized analytic functions of Smirnov classes is built. This representation has
independent interest.

Definition 1 We say that for the boundary value problem (2) ( (2)) the con-
dition D is hold if:

1) when Γ is Lyapunov curve, in (7) or ω1(s) ≡ 0, or ω2(s) ≡ 0;
2) when Γ is Radon curve without cusp points, in (7) ω2(s) ≡ 0.

Theorem 3 Let the condition D is held and or index κ of the boundary

value problem (2) is non-negative, or index
(p)
κ ≥ −1.

If w(z) ∈ Ep(A,B), p > 1, the next representation takes place:

w(z) + Pλw(z) = Φ(z), (10)

where Φ(z) ∈ Ep and almost everywhere on Γ

Re{λ(t)w(t)} = Re{λ(t)Φ(t)}, t ∈ Γ. (11)

If Φ(z) ∈ Ep, then the relation (10) uniquely defines the function w(z) ∈
Ep(A,B), satisfying almost everywhere on Γ condition (11). Formula (10)
establishes (real) liniar isomorphism between Banach spaces Ep(A,B) Ep,
and also the operator Pλ : Ep(A,B) → Lp(Γ) is completely continuous.

Remark 1 If G is the unit disk, λ(t) = tn, n ≥ 0 — non-negative integer,
then the operator Pλw coincides with the operator Pn(Aw+Bw), constructed
by I.N. Vekua in [3, p. 293–296].

The full text of the work will be published in [7].
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Hypergeometric isomonodromic
deformations of Fuchsian systems

V. P. Leksin

Kolomna Pedagogical Institute

Schlesinger families of Fuchsian systems

Let us consider a Fuchsian system of p equations

d y(z)

d z
=

(
n∑

i=1

Bi

z − a0
i

)
y(z). (1)

on Riemann sphere C̄ with n + 1 singular points a0
‘ , . . . , a0

n, a0
n+1 = ∞ and

constant matrices Bi of the size p × p. The Schlesinger family of Fuchsian
systems for system (1) is following family

d y(z, a)

d z
=

(
n∑

i=1

Bi(a)

z − ai

)
y(z, a). (2)

with initial conditions Bi(a
0) = Bi, i = 1, 2, . . . n, where

a0 = (a0
1, a0

2, . . . , a0
n) ∈ Cn

∗ ,

Cn
∗ = {(a1, a2, . . . , an)| ai 6= aj, i 6= j, i, j = 1, 2, . . . , n}.

Isomonodromic Schlesinger families

The Schlesinger family (2) is an isomonodromic family for system (1) if for
points a from enough small polydisk neighborhood U(a0) ⊂ Cn

∗ of the point
a0 = (a0

1, a0
2, . . . , a

0
n) there exist family of fundamental matrices of solutions

Y (z, a) such that their monodromy matrices Gi, i = 1, . . . , n corresponding
”small loops” going around singular points a1, . . . , an does not depend from
a.
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Schlesinger systems

In small neighborhood U(a0) ⊂ Cn
∗ of the point a0 = (a0

1, a0
2, . . . , a0

n) the
sufficient isomonodromic condition on the family (2) is the system of the
Schlesinger equations on matrices Bi(a), i = 1, 2, . . . n

d Bi(a) = −
n∑

j=1, j 6=i

[Bi(a), Bj(a)]
d(ai − aj)

ai − aj

. (3)

Here [Bi, Bj] = BiBj −BjBi denote the commutator of matrices.

Some properties of the Schlesinger systems

• Non-linear Pfaff system (3) is integrable in Frobenius sense [2,4] and
consequently in sufficient small neighborhood of the a0 there exist
the local solution B(a) = (B1(a), B2(a), . . . , Bn(a)) of the Pfaff sys-
tem (3) with every initial value B(a0) = (B1(a

0) = B1, B2(a
0) =

B2, . . . , Bn(a0) = Bn).

• As well-known [2] that all eigenvalues of all matrices Bi(a) are con-
stants, that is, don’t depend on a.

• The sum
n∑

i=1

Bi(a) = −B∞

is constant matrix.

• Malgrange has proved [5] that the local solution B(a) has meromorphic

continuation on whole universal covering C̃n
∗ .

• In general, polar divisor Θ (theta-divisor Malgrange) of the solution

B(a) on C̃n
∗ is non-empty and it depends on initial data B(a0).

• The Malgrange theta-divisor is defined by zeros of the Miwa tau-function
τ(a), which is a solution of the equation

d log τ(a) = κ

n∑

i 6=j, i,j=1

tr(Bi(a)Bj(a))
d(ai − aj)

ai − aj

. (4)
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Upper-triangular Schlesinger systems

We suppose that all matrices Bi(a), i = 1, . . . , n from the Schlesinger family
(2) are upper-triangular matrices Bi(a) = Λi +U1

i (a)+ · · ·+Up−1
i (a). Here Λi

are constant diagonal matrices. U1
i (a) have non-zero entries only in first off-

diagonal, respectively, U2
i (a) have non-zero entries in second off-diagonal and

so on. Then corresponding Schlesinger system (3) has the following special
form

dΛi = 0,

dU1
i = −

n∑

j=1, j 6=i

([Λi, U1
j ] + [U1

i , Λj])
d(ai − aj)

ai − aj

, (3′)

dUk+1
i = −

n∑

j=1, j 6=i

([Λi, Uk
j ] + [Uk

i , Λj] +
∑

r+s=k+1

[U r
i , U s

j ])
d(ai − aj)

ai − aj

,

k = 2, . . . , p− 1.

As example we consider upper-triangular Schlesinger systems for p=2.
For matrices the size 2× 2

Bi =

(
λi

1 bi(a)
0 λi

2

)
, i = 1, . . . , n.

the Schlesinger system (3’) has the form

dbi(a) = −
∑

j 6=i

(λi
12b

j(z))− (λj
12b

i
(z)))

d(zi − zj)

zi − zj

, (3′′)

where λi
12 = λi

1 − λi
2, i = 1, . . . , n.

Jordan-Pochhammer systems

We will consider the class of Fuchsian systems on multidimensional linear
complex spaces Cn

d y(z) =

( ∑
1≤i<j≤n

Jij(λ)
d(zi − zj)

zi − zj

)
y(z). (5)
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Here y(z) is a vector-column with n component yi(z), i = 1, . . . , n and
Jij(λ) are the following matrices of the size n× n :

Jij(λ) =




0 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . λj . . . −λi . . . 0
...

...
. . .

...
...

0 . . . −λj . . . λi . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 0




i
...
j

Another form of the equation (5) is the equation

d yi(z) =

(
n∑

j 6=i, j=1

(λjyi − λiyj)
d(zi − zj)

zi − zj

)
. (6)

The symbol λ in Jij(λ) denotes an ordered collection of complex numbers
λ = (λ1, λ2, . . . , λn). The matrices Jij(λ) satisfy the relations

[Jij(λ), Jik(λ) + Jjk(λ)] = 0, 1 ≤ i < j < k ≤ n; (∗)

[Jij(λ), Jkl(λ)] = 0, {i, j} ∩ {k, l} = ∅. (∗∗).
The relations (*) and (**) are equivalent to the Frobenius condition of the
integrability of system (5) (that is, the system (5) is integrable).

Then any fundamental matrix of solutions Y (z) (coordinates of basis
solution y(z) state in a column) of the (5) has a holomorphic continuation on
the universal covering and deck transformations corresponding to elements
g ∈ π1(Cn

∗ , a0) act on Y (z) by the rule Y (g∗z) = Y (z)M(g). The constant
matrix M(g) is called the monodromy matrix for g ∈ π1(Cn

∗ , a0).
The entries yij of the fundamental matrix Y z) of solutions of the system

(5) have the following hypergeometric integral representations [4], [6]

yij(a1, . . . , an) = λi

∫

γj

(t− a1)
λ1 · · · (t− an)λn

d t

t− ai

, (7)

where γj, j = 1, . . . , n is a basis in homology group

H1(CP 1 \ {a1, . . . , an,∞}, Lχ)
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with local coefficients Lχ. The local system Lχ is defined by a representation
χ : π1(CP 1 \ {a1, . . . , an,∞}, t0) = Fn → C∗ of the fundamental group
π1(CP 1 \ {a1, . . . , an,∞}, t0) = Fn, that maps generators x1, . . . , xn of this
free group Fn to non-zero complex numbers q1 = e−2πiλ1 , . . . , qn = e−2πiλn .

Hypergeometric solutions

heorem 1. For upper-triangular matrices Bi(a) the size 2×2, the Schlesinger
system (3”) coincides with the Jordan-Pochhammer system in the form (6)
under suitable choice parameters λi, i = 1, . . . n. Hence upper-triangular so-
lutions of the Schlesinger system (3) are only hypergeometric type solutions
and among of entries such solutions does not a new transcendent.

Corollary 1. Under conditions of the theorem 1 Malgrange divisor of Schle-
singer system (3) is the empty set.

The statement of corollary is the consequence of linearity and integrabil-
ity of Jordan-Pochhammer system and properties of their solutions pointed
above.

Corollary 2. In fixed singular points a ∈ H = ∪1≤i<j≤nHij the solutions of
Schlesinger system have moderate growth.

R.R. Gontsov [2] found sufficient conditions on initial Fuchsian systems
two order on the Riemann sphere that have only upper-triangular Schlesinger
deformations up to the conjugation on constant a matrix. For formulation
this result we suppose that coefficients of the system (1) have traces equal to
zero (that is, Bi ∈ sl2(C), i = 1, . . . , n) then Bi(a) ∈ sl2(C), i = 1, . . . , n.
Denote λi, i = 1, . . . , n eigenvalues of matrices Bi and λ∞ eigenvalue of
matrix B∞ = −∑n

i=1 Bi. We suppose also that B∞ is a diagonal matrix.

heorem 2 (R. Gontsov). Let the monodromy representation of Fuchsian
system (1) be reducible. If for some choice of signs

εi = ±1, i ∈ {1, 2, . . . , n, ∞}

the sum of eigenvalues
∑m

i=1 εiλi + ε∞λ∞ is equal to zero then after conjuga-
tion CBi(a)C−1 by a constant matrix C of any solution Bi(a), i = 1, 2, . . . , n
the Schlesinger system (3) it is reduced to upper-triangular form
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About some quasilinear and nonlinear
equations of Cauchy-Riemann and

Beltrami types

G.A. Magomedov

In this paper the problems of existence and representation of solutions of
some quasilinear and nonlinear equations of Cauchy-Riemann and Beltrami
types are considered.

1. Let’s consider the following quasilinear equation

∂w

∂z̄
= f(z, w), z = x + iy,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
, (1)

Where the function f(z, w) is defined in domain Ω = {z ∈ G, w ∈ E, |w| < ∞},
G is bounded domain of the complex plane E and satisfies the condition:

|f(z, w)| 6 A(z)|w|α, 0 6 A(z) ∈ Lp(Ḡ), p > 2, α =
m

n
6= 1, z ∈ Q

(2)
The solution of the equations here and below is understood in a general-

ized sense I.N. Vekua [1].
Theorem 1. Let function w(z) 6≡ 0 is the solution of the equation (1),

where f [z, w] satisfies the condition (2). Then the function

Φ(z) =

[
wα +

1

α
ω(z)

] 1
α

(3)

belongs to the class U∗
0 (G), where ω(z) = 1

π

∫∫
G

f(ξ, w)
wα

dξdη
ξ−η

, ξ = ξ + iη.

By virtue of (2) ∂Φ
∂z̄

= 0. Therefore, our statement is valid.
Theorem 2. If the equation (1) satisfying the condition (2) in domain

G has the generalized solution w(z) then we have the representation of I. N.
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Vekua of the first type:

w(z) = [(1− α) (Φ(z) + ω(z))]
1

1−α , (5)

where Φ(z) is arbitrary analytic in G function, ω(z) is defined by the formula
(4).

Opposite to the case of natural α in considered case the solution hasn’t
always the property of a discretization of zero. For example, for the equation

∂w

∂z̄
= 2

√
w

the conditions of the theorem 2 hold. The function w(z) = (z + z̄)2 is a
solution, but for the domain containing segment of conjugate axis, the zero
fill out all this segment.

Let f(z, w) satisfies the additional condition

∫∫

G

∣∣∣∣
f(ξ, u1)

uα
1

− f(ξ, u2)

uα
2

∣∣∣∣ dξdη 6 A0

∫∫

G

|u1 − u2|p dξdη. (6)

The operator:

Hu =
1

(α− 1)
1

α−1

[
Φ(z) +

1

π

∫∫

G

f(ξ, u)

uα

dξdη

ξ − z

] 1
1−α

(7)

is continuously maps Lp(Ḡ) in itself. Then the solutions of the equation (2)
one can find applying the method of iteration.

2. We shall consider now nonlinear equation

∂w

∂z̄
= F

(
z,

∂w

∂z

)
, (8)

where function

F1(z) ≡ F (z, h(z)) ∈ Lp(Ḡ) and |F (z, h2)− F (z, h1)| 6 AF |h2 − h1|.
(9)

The equation (8) is equivalent to the equation

w(z) = − 1

π

∫∫

G

F
(
ξ, ∂w

∂ξ

)

ξ − z
dξdη + Φ(z) ≡ TGF1 + Φ(z), (10)
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where Φ(z) is arbitrary analytic function in Ḡ.
Let’s use the following notation:

SGF

(
z,

∂w

∂z

)
= SGF1(z) = − 1

π

∫∫

G

F1(ξ)

(ξ − z)2
dξdη,

∂w

∂z̄
= w∗(z).

We obtain nonlinear two-dimensional singular integral equation

w∗(z) = Φ′ + SGF (z, w∗(z)). (11)

It is not easy to show, that the operator S∗G is an operator of compression in
Lp, p > 2. Therefore equation (10) has a unique solution w∗

0.
Then solving the equation ∂w

∂z
= w∗

0, we have

w(z) = − 1

π

∫∫

G

w∗(ξ)
ξ̄ − z̄

dξdη + Φ1(z)

where Φ1(z) is arbitrary antiholomorphic function in G.
Remark. The equation of a type (8) with a right-hand side F

(
z, w, ∂w

∂z

)
by was investigated by Wolfgang Tutschke in a different way [4].
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Some properties of the irregular
Elliptic Systems on the Plane∗

G. Makatsaria

Georgian University of St.Andrews

Abstract

In this paper we proved, that the solutions of some singular elliptic
systems have principally nonanalytic behavior in the neighborhood of
fixed singular points.

The solutions of the regular equations [1]

∂w

∂z
+ Aw + B w = 0. (1)

can’t have the singularities of the pole type of “infinite order” and nontrivial
solutions of such equations can’t have nonisolated zero and zero of “infinite
order” in the points of regularity. The solutions of the irregular equations of
the wide class aren’t subjected to such exclusions.

The above mentioned general properties of the irregular equations of the
form (1) make clear the complexity of investigations. These equations were
the subject of investigation of various authors. Among them there are basic
works of Vekua I. (see [2],[3]). In this direction of generalized analytic func-
tions the most important results were obtained by Mikhailov L., Vinogradov
V., Usmanov Z., Bliev N., Shmidt V., Saks R., Tungatarov A., Najhmidinov
Kh., Akhmedov R., Begehr H., DaiD. Q., Reissig M., Timofeev A. The ref-
erences according to this subject are presented in [4] and the present paper
we use the notations from the same work.

∗The work was supported by the Shota Rustaveli National Science Foundation, Grant
N 1-3/85
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To illustrate the possible structures of the solutions of quasiregular equa-
tion (1) consider the following simplest one

∂w

∂z
+

λ · exp(i ϕ)

r2
w = 0, (2)

where the complex number λ 6= 0, r, ϕ - are polar coordinates of the variable
z, z = r exp(iϕ) and the main thing is, that the domain G contains the origin
z = 0. It is clear, that (2) is irregular equation. Checking directly we get,
that the function w is contained in the class

Sλ ≡ A∗
(

λ · exp(i ϕ)

r2
, 0, G

)
(3)

if and only if w has the form

w(z) = Φ(z) · exp

{
2λ

r

}
, (4)

where the function Φ ∈ A∗
0(G). It follows from (4), that the classes Sλ aren’t

similar. In order to explain what has been said note, that in case Re λ = 0
the module of every function of the class Sλ coincides with the module of
analytic function in the domain G. When Re λ > 0 in the class Sλ there are
neither nontrivial bounded in the neighborhood of the point z = 0 functions
nor the functions with power growth; i.e. the functions admitting estimate

w(z) = O

(
1

|z|σ
)

, z → 0, (5)

for some real number σ > 0. When Re λ < 0 in Sλ there exists extensive
subclass, every function of which more rapidly tends to zero then arbitrary
positive power of |z|, while z → 0.

When Re λ > 0, there aren’t nontrivial regular solutions of the equation
(2) in the point z = 0. Indeed, if the function w satisfies the equation (2)
in z = 0, then it has the form (4), where Φ is analytic function in some
neighborhood Vρ(0) = {z : |z| < ρ}, ρ > 0, of the point z = 0. It is clear,
that the function ((4)) can’t satisfy the following condition

∫∫

Vρ(0)

|w(z)| dx dy < +∞
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for every number ρ > 0 and for nontrivial analytic function Φ. When Re λ ≤
0 the equation (2) has extensive class of regular solutions in z = 0. When
Re λ < 0 the formula (4) gives the regular in z = 0 solution not only when
the function Φ has the pole of arbitrary power but even in the case when
Φ has the essential singular point in z = 0, but hasn’t rapidly exponential
growth in its neighborhood. This growth measure is limited by the multiplier
exp

{
2λ
r

}
. When Re λ < 0 the regular (of sufficiently wide class) solutions of

the equation (2) have zero of infinite order, i.e. these solutions w satisfy the
condition

lim
z→0

w(z)

(z − z0)k
= 0, k = 0, 1, 2, . . .

In these cases Re λ < 0 the equation (2) also has regular solutions w (their
class is sufficiently wide) also such that z = 0 is limit point of their zeroes.

The equation (2) is the particular case of the equation (4) with the coef-
ficients

A(z) =
λ · exp(i ϕ)

rν
+

A0(z)

rν1
+ h(z),

B(z) =
B0(z)

rµ
,

(6)

where the real numbers ν, ν1, µ satisfy the condition

µ ≥ 0, ν ≥ max
{
[µ] + 2, [ν1] + 2

}
, (7)

and the functions

h ∈ A∗
0(G), A0, B0 ∈ Lp(G), p > 2 (8)

(G is a bounded domain containing the origin).
Most statements formulated above for the model equation (1 can be

proved for the equation (1) with the coefficients (6) also.
Picture, described above for the class A∗(A,B, G), sharply changes, if we

carry the apparently insignificant change in the coefficient A(z) from (6),
namely we get a very interesting picture if we consider the coefficients

A(z) =
λ · exp(im ϕ)

|z|ν +
A0(z)

|z|ν1
+ h(z),

B(z) =
B0(z)

|z|µ ,

(9)
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where m is a natural number and with respect to other parameters of the
functions A,B the above assumptions (7) and (1) are fulfilled.

It is clear, that the equation (1) with the coefficients (9) is quasiregular.
Using the relation (see [4])

Φ = w · exp{−Θ} (10)

for this equation first and then applying a modification of the well known
principle of Phragmen-Lindelof from function theory we get the following
theorem

Theorem 1 Let the generating pair of the class A∗(A,B,G) be of the
form (9), the conditions (7) and (8) be fulfilled and

λ 6= 0, m > 1, m 6= ν, (11)

then every solution w ∈ A∗(A,B,G) satisfying the condition

w(z) = O
(
Ψ(z)

)
, z → 0, (12)

for some function Ψ ∈ A∗
0(G) is identically zero.

The essential extension of the Theorem 1 is proved; the existence of the
real number δ0 > 0, such that every solution w of A∗(A,B,G), (the gen-
erating pair should satisfy the conditions of the Theorem 1) satisfying the
following condition

w(z) = O

(
Ψ(z) · exp

{
δ

|z|ν−1

})
, z → 0, (13)

for some δ < δ0, Ψ ∈ A∗
0(G) is identically zero is also proved.

From Theorem 1 (taking as the analytic function Ψ ≡ 1) we get im-
mediately the triviality of solution of the class A∗(A,B, G) bounded in the
neighborhood of the singular for the equation point z = 0. Further, let the
solution w ∈ A∗(A,B, G)) has the power of the growth (5) for some σ > 0.
Taking as Ψ(z) the function

Ψ(z) =
1

z[σ]+1

we conclude that w ≡ 0.
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As the next application of the Theorem 1 consider arbitrary solution
w ∈ A∗(A,B,G) (the generating pair should satisfy the conditions of the
Theorem 1) and let the analytic function Ψ ∈ A∗

0(G) satisfy the condition

Ψ(z) = O
(
w(z)

)
, z → 0. (14)

Applying the functions w, Ψ we construct the function

W =
Ψ

w
,

which is bounded in the neighborhood of z = 0.
Direct checking gives, that

∂W

∂z
− AW − B Ψ

Ψ

(
W

W

)2

W = 0, (15)

i.e. W is a quasiregular solution of the quasiregular equation (15). It is
evident, that for the coefficients of this equation all conditions of the Theorem
1 are fulfilled and therefore the solution W ≡ 0, i.e. Ψ ≡ 0.

Summarizing all said we conclude that the following theorem is valid.

Theorem 2 Let the generating pair of the class A∗(A,B,G) be of the
form (9) and let the conditions (7), (8), (11) be fulfilled. Then every function
Ψ ∈ A∗

0(G) satisfying the condition (14) for some solution w ∈ A∗(A, B, G)
is identically zero.

It follows from the Theorems 1,2 that the quasiregular solutions of the
equation (1) of sufficiently wide class in the neighborhood of singular point
of the equation doesn’t admit the estimation (neither from above nor from
below) by the module of the analytic function and therefore the behavior of
the solution is non-analytic. But these solutions have one common property -
remanding the behavior of the analytic functions in the neighborhood of the
essentially singular point. Namely, these solutions have no limit in singular
(for the equation) point. Indeed, the unboundedness of every nontrivial
function w ∈ A∗(A,B, G) imply that no finite limit exists in the point z = 0.

Let as prove the impossibility of the equality

lim
z→0

w(z) = ∞. (16)
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In fact, if it takes place the equality (16) then there exists a real number
ρ > 0 such, that

|w(z)| ≥ 1, 0 < |z| < ρ,

however, this is impossible by virtue of the Theorem 2. Summarizing what
has been said we conclude that the following theorem is valid.

Theorem 3 Let the generating pair of the class A∗(A,B, G) be of the form
(9) and let the conditions (7), (8), (11) be fulfilled. Then every nontrivial
function w ∈ A∗(A,B, G) has no limit (neither finite nor infinite) in singular
for the equation point z = 0.
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R–linear and Riemann–Hilbert
problems for multiply connected

domains

Vladimir V. Mityushev

Krakow Pedagogical University

1 Introduction

Various boundary value problems are reduced to singular integral equations
[3, 12, 16]. Only some of them can be solved in closed form. In the present
talk, we follow the lines of [8, 9, 10] and describe solution to the R–linear
problem which in a particular case yields the Riemann–Hilbert problem.

These problems can be considered as a generalization of the classical
Dirichlet and Neumann problems for harmonic functions. They include as
a partial case the mixed boundary value problem. One knows the famous
Poisson formula which solves the Dirichlet problem for a disk. The exact
solution of the Dirichlet problem for a circular annulus is also known due to
Villat–Dini. Formulae from [8, 9, 10] can be considered as a generalization of
the Poisson and Villat–Dini formulae to arbitrary circular multiply connected
domains. In order to deduce our formulae we first reduce the boundary
value problem to the R–linear problem and solve the later one by use of
functional equations. By functional equations we mean iterative functional
equations with shift into domain. Hence, we do not use traditional integral
equations and infinite systems of linear algebraic equations. The solution is
given explicitly in terms of the known functions or constants and geometric
parameters of the domain.

First, we discuss functional equations and prove the convergence of the
method of successive approximations for these equations. Application of the
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method of successive approximations yields the solution in the form of the θ2–
Poincaré series [9]. As a sequence we obtain the almost uniform convergence
of the Poincaré series for any multiply connected domain.

2 Riemann–Hilbert problem

Let D be a multiply connected domain on the complex plane whose boundary
∂D consists of n simple closed Lyapunov curves. The positive orientation on
∂D leaves D to the left. The scalar linear Riemann–Hilbert problem for D
is stated as follows. Given Hölder continuous functions λ(t) 6= 0 and f(t) on
∂D. To find a function φ(z) analytic in D, continuous in the closure of D
with the boundary condition

Re λ(t)φ(t) = f(t), t ∈ ∂D. (2.1)

The problem (2.1) had been completely solved for simply connected do-
mains (n = 1). Its solution and general theory of boundary value problems is
presented in the classic books by Gakhov [3], Muskhelishvili [12] and Vekua
[16]. In 1975 Bancuri [1] had solved the Riemann–Hilbert problem for circular
annulus (n = 2).

First results concerning the Riemann–Hilbert problem for general multi-
ply connected domains were obtained by Kveselava [5] in 1945. He reduced
the problem to an integral equation. From 1952 I.N. Vekua and later Bojarski
begun to extensively study this problem. Their results are presented in the
book [16]. This Georgian attack to the problem supported by young Polish
mathematician were successful. Due to Kveselava, Vekua and Bojarski, we
have a theory of solvability of the problem (2.1) based on integral equations
and estimations of its defect numbers, lκ, the number of linearly independent
solutions and pκ, the number of linearly independent conditions of solvability
on f(t), depending on the index (winding number) κ = wind∂Dλ.

Any multiply connected domain D can be conformally mapped onto a cir-
cular multiply connected domain. Hence, it is sufficient to solve the problem
(2.1) for a circular domain and after to write the solvability conditions and
solution using the conformal mapping. The complete solution to the prob-
lem (2.1) for arbitrary circular multiply connected domain had been given in
[8, 9, 10].
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3 R–linear problem

The R–linear problem is stated as follows. Given Hölder continuous functions
a(t) 6= 0 , b(t) and f(t) on ∂D. To find a function φ(z) analytic in ∪n

k=1Dk∪D,
continuous in Dk ∪ ∂Dk and in D ∪ ∂D with the conjugation condition

φ+(t) = a(t)φ−(t) + b(t)φ−(t) + f(t), t ∈ ∂D. (3.1)

Here φ+(t) is the limit value of φ(z) when z ∈ D tends to t ∈ ∂D, φ−(t) is the
limit value of φ(z) when z ∈ Dk tends to t ∈ ∂D. In the case |a(t)| ≡ |b(t)|
the R–linear problem is reduced to the Riemann–Hilbert problem (2.1) [7].

In the case of the smooth boundary ∂D, the problem with constant coef-
ficients

φ+(t) = aφ−(t) + bφ−(t) + f(t), t ∈ ∂D. (3.2)

is equivalent to the transmission problem from the theory of harmonic func-
tions

u+(t) = u−(t), λ+∂u+

∂n
(t) = λ−

∂u−

∂n
(t), t ∈ ∂D. (3.3)

Here the real function u(z) is harmonic in D and continuously differentiable in
Dk∪∂Dk and in D∪∂D, ∂

∂n
is the normal derivative to ∂D. The conjugation

conditions express the perfect contact between materials with different con-
ductivities λ+ and λ−. The functions φ(z) and u(z) are related by the equal-
ities u(z) = Re φ(z), z ∈ D, u(z) = λ−+λ+

2λ+ Re φ(z), z ∈ Dk (k = 1, 2, . . . , n).
The coefficients are related by formulae (for details see [10], Sec. 2.12.)
a = 1, b = λ−−λ+

λ−+λ+ .
In 1932, having used the theory of potentials Muskhelishvili [11] (see also

[13], p.522) reduced the problem (3.3) to a Fredholm integral equation and
proved that it has a unique solution in the case λ± > 0, the most interesting
in applications. In 1933, I. N. Vekua and Ruhadze [14], [15] constructed a
solution of (3.3) in closed form for annulus and ellipse (see also papers by
Ruhadze quoted in [13]). Hence, the paper [11] published in 1932 is the first
result on solvability of the R–linear problem, [14] and [15] published in 1933
are the first papers devoted to exact solution to the the R–linear problem
for annulus and ellipse. A little bit later Golusin [4] considered the R–linear
problem in the form (3.3) by use of the functional equations for analytic
functions. Therefore, Golusin’s paper [4] published in 1935 is the first paper
which concerns constructive solution to the the R–linear problem for special
circular multiply connected domains. In the further works these first results
were not associated to the R–linear problem even by their authors.
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In 1946 Markushevich [6] had stated the R–linear problem in the form
(3.1) and studied it in the case a(t) = 0, b(t) = 1, f(t) = 0. Later Muskhel-
ishvili [12] (p. 455) did not determined whether (3.1) was his problem (3.3)
discussed in 1932 in terms of harmonic functions.

In 1960 Bojarski [2] shown that in the case |b(t)| < |a(t)| with a(t),
b(t) belonging to the Hölder class H1−ε with sufficiently small ε, the R–
linear problem (3.1) qualitatively is similar to the C–linear problem φ+(t) =
a(t)φ−(t) + f(t), t ∈ ∂D. Later Mikhajlov [7] developed this result to con-
tinuous coefficients a(t) and b(t); f(t) ∈ Lp(∂D).

References

[1] R.D. Bancuri: On the Riemann–Hilbert problem for doubly connected do-
mains, Soobsch. AN GruzSSR 80 (1975), n. 4, 549-552.

[2] B. Bojarski: On generalized Hilbert boundary value problem, Soobsch. AN
GruzSSR 25 (1960), n. 4, 385-390.

[3] F.D. Gakhov: Boundary Value Problems. Nauka, Moscow, 1977.

[4] G.M. Golusin: Solution of plane heat conduction problem for multiply con-
nected domains enclosed by circles in the case of isolated layer. Math. zb.
42:2 (1935), 191-198.

[5] D.A. Kveselava: Riemann–Hilbert problem for multiply connected domain,
Soobsch. AN GruzSSR 6 (1945), n. 8, 581-590.

[6] A.I. Markushevich: On a boundary value problem of analytic function theory.
Uch. zapiski MGU 1 (1946), vyp. 100, 20-30.

[7] L.G. Mikhailov: New Class of Singular Integral Equations and its Applica-
tions to Differential Equations with Singular Coefficients. AN TadzhSSR,
Dushanbe, 1963.

[8] V.V. Mityushev: Solution of the Hilbert boundary value problem for a mul-
tiply connected domain. Slupskie Prace Mat.-Przyr. 9a (1994), 37-69.

[9] V.V. Mityushev: Convergence of the Poincaré series for classical Schottky
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On isomonodromic deformations and
integrability concerning linear

systems of differential equations

V.A. Poberezhny∗

Institute for Theoretical and Experimental Physics

Abstract

We review the modern theory of isomonodromic deformations, con-
sidering linear systems of differential equations. On that background
we illustrate the natural relations between such phenomena as inte-
grability, isomonodromy and Painlevé property. The recent advances
in the theory of isomonodromic deformations we present show perfect
agreement to that approach.

1 Introduction

Using Fuchsian systems and their isomonodromic deformations as a kind
of ”toy model” we want to illustrate the idea of some deep natural rela-
tions existing between the integrability, the isomonodromy and the Painlevé
property. Briefly, it claims that the integrability and the isomonodromy
are supposed to be somehow equivalent when the Painlevé property usually
serves as a sign of some underlying hidden integrability. This concept is valid
for a number of classical integrable systems and differential equations. The
isomonodromic equivalents are established for such famous models as the
KP -KdV equations, the associativity or WDWW system, the Yang-Mills,

∗The work was supported by the Rosatom National contract H.4e.45.90.11, Rosnauka
national contract 02.740.11.5194, the grant in support to leading scientific schools N.Sh.-
8508.2010.1 and to young scientists M.K-4270.2011.1, and the RFBR grant 10-01-00836
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Painlevé-VI and for a lot of others. One can find some elucidation in reviews
[1] and [4]. The Painlevé test, in the theory of integrable systems says, that if
the equation is integrable then there should exist some reduction procedure
transforming it to an equation possessing the Painlevé property. Such reduc-
tions are known for all classical integrable systems mentioned above. The
Painlevé property is the property for the equation not to have the movable
singular points other than simple poles. Historically it was Kowalewskaya
who first used the Painlevé property in her researches. Investigating the
problem of integrability of the top she had arrived to the idea to find all sets
of the parameters for which the equation of motion possesses the Painlevé
property and then to try to solve the equation for those cases. She had found
that there are three such possibilities for parameters, two were known as the
Euler and the Lagrange tops, and for the third one she had found a solution
known now as the Kowalewskaya top. This story is a nice illustration of
the desirable relation between the integrability , the isomonodromy and the
Painlevé property.

Considering Fuchsian systems and looking at the progress at the theory
of their deformations we see that first, when only Schlesinger deformation
was known this correlated perfectly with the integrability-isomonodromy-
Painlevé property picture. The isomonodromy of a Schlesinger deformation
was equivalent to a complete integrability of the Schlesinger form distribution
and the resulting family possessed the Painlevé property. Later, when non-
Schlesinger deformations were found the relations to the Painlevé property
seemed to be broken. But recently, after establishing a full classification of
the Fuchsian system isomonodromic deformations, this relation was restored
by the appearance of new degrees of freedom with a free dynamics. This is a
feature of the so called resonant case. Detaching this new degrees of freedom,
(which is always possible because of independence of their dynamics from the
dynamics of other variables), one can come back to the agreement with the
integrability-isomonodromy-Painlevé property concept we formulated above.
Recently this results were generalized to the case of the integrable deforma-
tions of meromorphic linear systems with the poles of greater orders.

2 Fuchsian systems

Fuchsian systems are the linear systems of differential equations with mero-
morphic coefficients having no singular points other than first order poles.
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They are equivalent to the logarithmic connections on the trivial vector bun-
dle over Riemann sphere.

∇y = dy − ωy = dy −
(

n∑
i=1

Bi

z − ai

dz

)
y = 0

Being the simplest possible linear systems Fuchsian systems are however
a source of a number of classical problems. The main characteristics of the
linear differential equation are its singular points, assymptotics and mon-
odromy. For generic Fuchsian system that data set appears to be complete.
By monodromy here we mean the branching of the system’s fundamental ma-
trix under analytical continuation along the loops encircling singular points
([6] for details). The monodromy map has a number of very interesting and
useful properties revealing the geometry and symplectic nature of isomon-
odromic deformations [2].

Considering Fuchsian system dy = ωy construction of isomonodromic
deformation consist in establishing a family of ω(a, t) such that ω(a0, t0) = ω
for some initial point (a0, t0) and for any fixed a = a∗, t = t∗ the monodromy
of Fuchsian system ω(a∗, t∗) is the same as of the system ω (again [6] for
precise definitions). The questions of construction of the isomonodromic
family for given initial system and establishing whether a given family is
isomonodromic naturally arise.

Theorem 2.1 ([7]) ω(a, t) is isomonodromic iff ∃ 1-form Ω such that:

• dΩ = Ω ∧ Ω

• Ω|(a,t)=(a∗,t∗) = ω(a∗, t∗) for any fixed (a∗, t∗)

Geometrically it means that continuous isomonodromic deformations are in
fact deformations of an embedding, one just move the sphere in the space
where the global form Ω is defined and take the restriction of Ω to that sphere
as ω. Also it gives a nice example of the integrability-isomonodromy relation:
the family ω is isomonodromic if and only if some distribution dy = Ωy is
completely integrable.

Now one can ask for some classification or any additional information
about forms Ω. Historically the first and the very important result here is
the following ansatz proposed by Schlesinger in the beginning of the XX
century.
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Theorem 2.2 For any given Fuchsian system dy = ω(a0)y there exists 1-
form Ωs of the following type:

Ωs =
n∑

i=1

Bi(a)

z − ai

d(z − ai)

satisfying the theorem2.1 conditions such that Ωs(a
0) = ω(a0).

In other words, the problem of construction of isomonodromic family is al-
ways solvable by Schlesinger type forms. Written in coordinates equation
dΩs = Ωs ∧ Ωs is known as Schlesinger equation, it possesses a number of
nice properties, Painlevé property among others, and became a subject of
intensive study a long ago. The next statement concerns the universality of
Schlesinger deformation.

Theorem 2.3 ω is non-resonant ⇒ Ω = Ωs

The resonance here means the non-simplicity of the spectrum of one of the
residue matrices of the system. If there exist such i, j, k that for some βj

i , β
k
i

in spectrum of Bi there holds βj
i − βk

i ∈ N, then the point ai and the entire
system are called resonant. Being formulated in analytical terms resonances
however have natural geometric interpretation these are special points or
even special components of the Fuchsian systems moduli space lattice.

Theorem 2.4 If the only parameters of deformation are the positions of
singular points (if ω = ω(a)) then Ω = Ωs + Ωres, where

Ωres =
n∑

i=1

ri∑
j=1

n∑

k=1

βijk

(z − ai)j
dak

ri here is the maximal i-resonance of the system (the greatest possible natural
difference between the elements of the spectrum of Bi(a)), and n is the number
of singular points (a1, ..., an)

This result is due to Andrey Bolibrukh [3]. He also showed that for deforma-
tions of that type the Painlevé property is usually broken. Regardless that
the isomonodromy property of the Fuchsian family is still equivalent to a
complete integrability of some special distribution the general integrability-
isomonodromy-Painlevé property picture meet here some problems. The
recent advances in the theory we are going to present eliminates this incon-
venience and restore the full agreement to concept we discuss.
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3 Recent advances

Theorem 3.1 ([6, 5]) For any (appropriately defined, see [6]) integrable de-
formation (E,∇) the solutions {Bil(t)} of integrability equations continue
holomorphically to T \ Θ and meromorphically to θ. Here T is the defor-
mation space and Θ ⊂ T is the theta-divisor – an analytical subset of the
deformation space of codimension one.

In accordance to general concept we mentioned before, the statement
above claims that integrable deformations of linear meromorphic connec-
tions on trivial vector bundles do possess the Painlevé property not only for
Fuchsian systems but for the systems of greater pole orders as well. That is
a generalization of famous Malgrange theorem on the Painlevé property of
Schlesinger equation, the equation that encodes isomonodromic deformation
of logarithmic connections or Fuchsian systems.

The proof is based on vector bundles and connections technique and in-
volves Fredholm operators theory.

Theorem 3.2 ([8, 5]) The differential 1-form Ω defining the isomonodromic
deformation of Fuchsian system dy = ωy is always constructed as Ω = Ωs +
Ωres + Ωadd where

Ωres =
n∑

i=1

∑
j=1ri

s∑

k=1

βijk

(z − ai)j
dtk (1)

Here ri is the maximal i-resonance of the system and s is the dimension of
the continuous component of Fuchsian system’s moduli space.

The coefficients of the form Ω are meromorphic functions of (a, t). Any
other 1-form Ω̃ encoding the isomonodromic deformation of the same Fuch-
sian system is a reduction under t = t(a) condition Ω̃ = Ω |t=t(a), where t(a)
are some single-valued function on the deformation space.

This statement elucidate the gape in the in the integrability-isomonodromy-
Painlevé property conception concerning the deformations of resonant Fuch-
sian families. It appears that Painlevé property is broken due to the freedom
in choosing reducing functions t = t(a) encoding the evolution of Levelt’s
filtration, the only necessary condition they should satisfy is being single-
valued. So choosing the functions of faster then polynomial growth leads to
the obeying Painlevé condition.
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Proving that result we deal again with vector bundles and especially their
gauge transformations. The technique of gauges affecting the splitting type
of the bundle and changing its particular indices while the monodromy is
preserved was established.
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On the Fuchsian systems free from
accessory parameters

Rusishvili M.

Tbilisi State University

Abstract

We consider a system of Fuchsian linear differential equations free
from accessory parameters with 3 singular points and study mon-
odromy groups of such systems.

It is well known that for any homomorphism

χ : π1(CP 1 −D, z0) → GL(p, C) (1)

of the fundamental group of the complement of a set D = {a1, ..., an} of points
of the Riemann sphere CP 1 into the group of complex-valued nondegenerate
matrices of order p one can construct a Fuchsian equation

y(p) + q1(z)y(p−1) + ... + qp(z)y = 0 (2)

with given monodromy (1), whose set D′ of singular points coincides with
the set D ∪ {b1, ..., bm}. The additional singular points {b1, ..., bn} do not
contribute to the monodromy and are called false singular points. From (1),
by a standard method we construct a vector bundle F ′ over CP 1 −D with
structure group GL(p; C). Let F be Yu. Manins continuation of this bundle
to all of CP 1. Then according to the Birkhoff-Grothendieck theorem we have

F ∼= O(−k1)⊕O(−k2)⊕ ...⊕ (−kp),

where k1 ≥ ... ≥ kp, and O(−r) is the rth power of the Hopf bundle O(−1)
on CP 1. Denote by l the number of the first numbers k1, ..., kp, (k1 = ... = kl)
that are equal to each other.
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It is known, that for any irreducible representation (1) a Fuchsian equa-
tion (2) exists with given monodromy (1), the number m of additional false
singular points of which satisfies the inequality

m ≤ [(n− 2)p(p− 1)]/2−
p∑

i=1

(k1 − ki) + 1− l.

Theorem 1[4]. For any Fuchsian equation on the Riemann sphere it is
possible to construct a Fuchsian system

df = (

p∑
i=1

Bi

z − ai

dz)f (3)

with the same singular points and the same monodromy.
While an arbitrary equivalence class of irreducible representations

π1(C − {0, 1}) → GL(2, C) (4)

is induced by a certain hypergeometric differential equation

x(1− x)y′′ + (c− (a + b + 1)x)y′ − aby(x) = 0, (5)

and vice versa, there are some classes of reducible representations which are
not induced by (5). In [2] the author sets up the canonical bases with respect
to which the twenty reducible classes induced by (5) are realized in a simple
form. This includes the necessary connection formulas in the degenerate
cases (in which a or b or c− a or c− b is an integer).

Example. Let generators of the representation (4) are

G1 =

(
1 s1

0 1

)
, G2 =

(
1 s2

0 1

)
, G3 =

(
1 −s1 − s2

0 1

)
,

where s1s2(s1 + s2) 6= 0, then does not exists Fuchsian differential equation
whit 3 singular points and with representation generated by G1, G2, G3.

Proposition 1. For any representation in two dimensional case, whose
generators are different from G1, G2, G3 realisably as monodromy represen-
tation of hypergeometric equations.

Proposition 2[4] 1) For n = 3 any irreducible representation (1) of
dimension p = 2 can be realized as the monodromy of the Gauss equation,
i.e., a second-order Fuchsian equation with three singular points.

133



2) If the representation (1) is realized as the representation of the mon-
odromy of the Fuchsian equation (2) without additional apparent singular
points, then it is also realized as the representation of a monodromy of a
certain Fuchsian system with the same singular points.

3) Let the representation (1) (n > 2) be reducible and let each of the
matrices Gi of the monodromy, corresponding to a circuit of the point ai

along a small loop, reduce to a Jordan cell. Then the Fuchsian equation (2)
does not exist without additional false singular points, whose monodromy
coincides with (1).

Proposition 3. For any three points on the Riemann sphere and for
any irreducible representation (1) of dimension p = 4 there exists a Fuchsian
system on CP 1 with given monodromy (1), whose singular points coincide
with three given points. [4]

Example. The Fuchsian system constructed from Gauss equation

y′′ +
γ − (α + β + 1)z

z(1− z)
y′ − αβ

z(1− z)
y = 0 (6)

has the form

df =

((
0 0

−αβ −γ

)
dz

z
+

(
0 1
0 γ − (α + β)

)
dz

z − 1

)
f.

Fuchsian systems of differential equations on CP 1, which are free from
accessory parameters, have the following important property: their mon-
odromies can be calculated explicitly from their coefficients (for an arbitrary
system there is no way to calculate its monodromy in general) [1].

Consider the system of differental equations of the form

(xIn − T )
dY

dx
= AY (7)

on CP 1 of rank n, which called Okubo normal form, where T = t1In1 ⊕
... ⊕ tpInp ,ti ∈ C(1 ≤ i ≤ p),ti 6= tj(i 6= j), n1 + ... + np = n, A is a
diagonalizable and A ∈ End(n, C). The matrix A is decomposed into blocks
of submatrices and the system is viewed as Fuchsian over CP 1 with regular
singular points at x = t1, ..., tp,∞. By special gauge transformation, Y =
PZ, it is possible to determine all systems which are irreducible and free
from accessory parameters, therefore there exists a new class of extensions
of the Gauss hypergeometric function.
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Let

(tI −B)
dx

dt
= Ax (8)

is (7) type system. The following conditions for the coefficients of the system
we assume:

(i) the matrix B is diagonal with eigenvalues λ1, ..., λp that have multi-
plicities n1, ..., np satisfying the inequalities n1 ≥ ... ≥ np;

(ii) each diagonal block Aii (in the same partition of A as B) is a diagonal
matrix with distinct eigenvalues;

(iii) the matrix A is diagonalizable and it has eigenvalues ρ1, ..., ρq that
have multiplicities m1, ..., mq satisfying the relations m1 ≥ ... ≥ mq.

It is known, that the condition n1 + m1 ≤ d (d is the rank of the system)
is necessary for the system to be irreducible (a system is called irreducible if
there is no transformation P (t) ∈ GL(d, C(t)) reducing the system to a sys-
tem with a block triangular coefficient matrix). A classification of the above
systems which are free of accessory parameters and satisfy the inequality
n1 + m1 ≤ d is presented [6].

Consider particular case of the system (8), where B = diag(λ1, λ2, λ3, λ4),
A is diagonalizable and has nonresonant nonnegative eigenvalues ρ1 = ρ2, ρ3, ρ4.
Moreover, A has a block form

A =

(
A11 A12

A21 A22

)
,

where A11, A22 are diagonalizable 2×2 matrices with nonresonant eigenvalues.
This equation is Fuchsian, has three singular points λ1, λ2,∞ and its expo-

nents at these points are as follows: (a11, a22, 0, 0), (0, 0, a33, a44), (ρ1, ρ2, ρ3, ρ4).
Proposition 4. The system (8) in assumptions above is accessory pa-

rameter free.
From this proposition follows, that it is possible to calculate its mon-

odromy group in terms of the exponents (up to diagonal transformations)and
obtain necessary and sufficient conditions of irreducibility for the monodromy
group in terms of the exponents.

Theorem 2.The d = 4 dimensional system

dF =

(
I ⊗

(
0 0

−αβ −γ

)
dz

z
+

(
0 1
0 γ − (α + β)

)
⊗ I

dz

z − 1

)
F.

is free from accessory parameters and have the form (8).
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Final remark. The notion of a local system on CP 1-{finite set of points}
was introduced by Riemann in order to study the classical Gauss hyper-
geometric function, which he did by studying rank two local systems on
CP 1-{three points}. His investigation was a stunning success, in large part
because any such local system is rigid. For example, in [10] proved that a
bundle of rank 2 is rigid (that is, dimH1(CP 1, End(E)) = 0) if and only if
it admits a connection which is holomorphic everywhere except at 3 points
with at most logarithmic singularities. From the theorem 2 follows, that the
notations of the paper [11] it is possible to extend in the four dimensional
case also.
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On G-compactness of the classes of
first and second order elliptic systems

M.M. Sirazhudinov, S. P. Dzhamaludinova

1 First order elliptic systems

1.1 G-convergence.

We denote by B(k0; Q) the set of elliptic systems of two first-order equations
expressed in the complex form as a single equation:

Au ≡ ∂z̄ u + µ ∂zu + ν ∂zu, (1)

where

2 ∂z̄ =
∂

∂x
+ i

∂

∂y
, 2 ∂z =

∂

∂x
− i

∂

∂y
;

v̄ is the complex conjugate function to v; µ and ν are measurable functions
in Q satisfying the following condition:

vrai sup
x∈Q

( |µ(x)|+ |ν(x)| ) 6 k0 < 1, (2)

where k0 is a positive quantity (the ellipticity constant); Q ⊂ R2 is a bounded
simply connected C1+α

ν1,...,νm
-domain (which means that its boundary ∂Q is a

piecewise smooth closed curve consisting of finitely many C1+α arcs, 0 <
α < 1; the interior angles at the corner points are ν1π, . . . , νmπ, 0 < νj 6 2,
j = 1, . . . , m).

We point out that each uniformly(homogeneous) elliptic system of two
equations with real coefficients in L∞(Q) can be represented in the form (1),
(2) (see [1, Ch. 2, § 7 and Ch. 3, § 17 ]). Equation (1) is a generalization of
Beltrami equation

A0u ≡ ∂z̄ u + µ ∂zu = f, ‖µ‖L∞(Q) 6 k0 < 1. (3)
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We denote by B0(k0; Q) the subclass of B(k0; Q) consisting of Beltrami equa-
tions (3).

It is obvious that A is linear over the field R, while A0 is linear over C.
Consider the Riemann-Hilbert (RH) boundary value problem

{
Au = f ∈ L2(Q; C),

u ∈ W0(Q; C).
(4)

where W0(Q;C) is the subspace of W 1
2 (Q;C) space whose elements satisfy

the following relations:

Re u ∈
◦

W 1
2 (Q),

∫

Q

Im u dx = 0;

W 1
2 (Q;C) is the Sobolev space of complex-valued functions over the field of

real numbers R.
We have the following result.

Theorem 1 The RH problem (4) is uniquely solvable for each right-hand
side f ∈ L2(Q; C). Moreover, the following a priori estimates hold:

ν0 ‖∂z̄ u‖L2(Q1;C) 6 ‖Au‖L2(Q1;C), (5)

ν0 ‖ ∂z̄ u ‖2
L2(Q1;C) 6 Re

∫

Q1

Au ∂z̄ u dx, (6)

Re

∫

Q1

Au ∂z̄ v dx 6 ν1

(
Re

∫

Q1

Au ∂z̄ u dx
) 1

2‖∂z̄ v‖L2(Q1;C), (7)

for all u, v ∈ W0(Q1; C),

where ν0 = 1 − k0, ν1 =
√

(1 + k0)(1− k0)−1 and Q1 ⊆ Q is an arbitrary
simply connected subdomain (of class C1+α

ν1,...,νm
).

The estimates (5) – (7) hold also for multiply connected domains.
We point out that the quantity

‖u‖W0(Q;C) = ‖∂z̄ u ‖L2(Q;C)

(
= ‖∂z u ‖L2(Q;C)

)

defines a norm in the subspace W0(Q;C) ⊂ W 1
2 (Q;C), which is equivalent

to the norm of the space W 1
2 (Q;C).
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Definition 1 We say that a sequence {Ak} ∈ B(k0; Q) G-converges in the

domain Q to an elliptic system A ∈ B(k0; Q) (and we write Ak
G−→ A, G–

lim Ak = A) if the sequence {A−1
k } converges weakly to {A−1

k }, where Ak and
A are the operators of the RH boundary value problems Akuk = f ∈ L2(Q;C),
Au = f ∈ L2(Q;C), uk, u ∈ W0(Q; C).

In other words, G–lim Ak = A in the domain Q if for each f ∈ L2(Q;C) the
sequence {uk} of solutions of the RH problem converges weakly in W0(Q; C)
to the corresponding solution of the G-limiting problem.

The G-limit is defined in the naturally. The following result holds.

Theorem 2 (i) The class B(k0; Q) of generalized Beltrami operators is
G-compact. In other words, each sequence {Ak} ⊂ B(k0; Q) contains a
subsequence that is G-convergent in the sense of Definition 1.

(ii) The class B0(k0; Q) of Beltrami operators is G-compact.

(iii) Assume that Ak
G−→ A in the domain Q and let Q1 ⊆ Q. Then Ak

G−→
A also in domain Q1.

(iv) Let Akuk = fk, fk → f in L2(Q; C), uk → u weakly in W 1
2 (Q; C) and

let G–lim Ak = A. Then Au = f .

1.2 Homogenization.

Assume that the coefficients µ and ν are almost-periodic (a.-p.) functions (in
Bohr sense) satisfying condition (2) in R2. Consider the family of operators
{Aε}0<ε61 acting from W0(Q;C) into L2(Q;C) and defined by the formula

Aεu ≡ ∂z̄u + µε∂zu + νε∂zu, u ∈ W0(Q;C), (8)

where 0 < ε 6 1, µε = µ(ε−1x), νε = ν(ε−1x). For each ε, 0 < ε 6 1, the
operator Aε clearly belongs to the class B(k0; Q).

Definition 2 We say that homogenization occurs for the family {Aε}0<ε61

if there exists an operator A0 ∈ B(k0; Q) such that Aε
G−→ A0 in the domain

Q as ε → 0. In this case A0 is called the homogenized operator (and the
corresponding equation is called the homogenized equation).
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Let Trig (R2) be set of trigonometric polynomials (i.e. finite sums of the form
u(x) =

∑
eiλ·x, λ, x ∈ R2) and B2 is the Bezikovich space of a.-p. functions.

We say that the element p ∈ B2 satisfies the equation A∗p = 0 if the equation
Re

〈
p̄(∂z̄ u + µ ∂zu + ν ∂zu)

〉
= 0 holds for any element u ∈ Trig (R2), where

〈f〉 is mean value of the element f ∈ B2. We have the following result.

Theorem 3 The kernel of the operator A∗ in B2 is a two-dimensional sub-
space. And there exists a basis {p1, p2} in this kernel that satisfies the fol-
lowing conditions: 〈p1〉 = 1, 〈p2〉 = i.

Moreover, in the case of a Beltrami operator the basis vectors can be
selected so as to satisfy p2 = ip1.

We now state a result on homogenization.

Theorem 4 Homogenization occurs for the family (8) , and the homogenized
operator

A0u ≡ ∂z̄u + µ0 ∂zu + ν0 ∂zu, u ∈ W0(Q;C),

has the constant coefficients defined by the equalities

µ0 = 〈µQ+ ν P 〉 , ν0 = 〈µP + νQ〉 ,

where
P = 2−1(p1 + ip2), Q = 2−1(p1 + i p2),

and p1, p2 are the basis vectors from Theorem 3.

We point out that in the case of the Beltrami operator the homogenized
operator is Beltrami operator too.

2 Second order elliptic systems

We denote by B2(k0; Q) the set of elliptic systems of two second-order equa-
tions expressed in the complex form as a single equation:

Au ≡ ∂ 2
zz̄ u + µ ∂ 2

zzu + ν ∂ 2
z̄z̄ ū,

where µ and ν are measurable functions in Q, C1+α
ν1,...,νm

, satisfying the condi-
tion (2).
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Consider the Poincare boundary value problem

{
Au = f ∈ L2(Q; C),

u ∈ W0(Q; C).
(9)

where W0(Q;C) is the subspace of W 2
2 (Q;C) space whose elements satisfy

the following relations:

Re u
∣∣
∂Q

= 0, Re ∂zu
∣∣
∂Q

= 0,

∫

Q

Im u dx = 0,

∫

Q

Im ∂zu dx = 0.

We have the following result.

Theorem 5 The Poincare problem (9) is uniquely solvable for each right-
hand side f ∈ L2(Q; C). Moreover, a priori estimates (5)–(7), where instead
of the Cauchy – Riemann operator ∂z̄ we have the Laplacian ∂ 2

zz̄, hold.

On the basis of the theorem 5 one can receive precisely the same results of
G-convergence and homogenization as well as in case of first order systems.
They are formulated similar to the theorems 2 – 4.
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Dirichlet problem for generalized
Cauchy–Riemann systems with a

singular point

Alexei Yu. Timofeev ∗

Syktyvkar State University

Let G be a given domain in the z-plane and A(z), B(z)— two given func-
tions defined on G. A complex-valued function w = w(z) is called generalized
analytic function if it satisfies the equation

∂z̄w + A(z)w + B(z)w = 0, (1)

where ∂z̄w = 1
2
(wx+i·wy), z ∈ G. Remark that the derivative ∂z̄w may be un-

derstood in Sobolev’s sense. The book ([1]) of I. N. Vekua contains a general
theory of the differential equation (1) under assumption that the coefficients
A(z), B(z) belong to Lp(G), p > 2. The Vekua theory is closely related to
the theory of holomorphic functions by so-called similarity principle.

It is known (see e.g. [2]–[4]), that the Vekua theory for the equation
(1) breaks down if coefficients A(z), B(z) do not belong to the space Lp(G),
p > 2. Therefore, it is necessary to make a separate investigation for equations
with such coefficients as A(z) = 1

z
, B(z) = 1

z̄
and others. A large variety of

results for such equations (1) with singular coefficients and boundary value
problems is obtained in the works [2]-[9]. In this direction of generalized
analytic functions the most important results were obtained by Mikhailov
L., Vinogradov V., Usmanov Z., Bliev N., Tungatarov A., Begehr H., D, Q.
Dai, Reissig M., Saks R., Makatsaria G., Meziani A. and others.

∗This paper is the last publication of Alexei Timofeev, who tragically possed when this
volume was in press of preparation.
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1 Dirichlet problem for model Cauchy-Riemann

systems

In [5] the following boundary value problem

∂z̄v − λ + δ|z|s
2z̄

v(z) = 0, z ∈ G \ {0} = {z : 0 < |z| < 1}, (2)

<v(z)|Γ = f(t), |t| = 1, f ∈ C(Γ), (3)

was studied, where λ, δ ∈ C \ {0}, s ∈ N. R. Saks proved the following

Theorem 1 Let λ > 0, δ > 0, s ∈ N, f ∈ C1,α(Γ), 0 ≤ α ≤ 1. Then the
solution v(z) of the problem (2)–(3) is uniquely determined. This solution
belongs to the class C(G)

⋂
C1(G \ {0}).

By using scheme of [5] and Rouche’s theorem we can prove the following

Theorem 2 Let s ∈ N, f ∈ C1,α(Γ), 0 ≤ α ≤ 1. Then for every λ 6=
0, arg λ 6= π, there exists positive constant R = R(λ) such that for any
δ ∈ UR \ {0} with given fixed λ there exists a uniquely determined solution
v(z) ∈ C(G)

⋂
C1(G \ {0}) of the problem (2)–(3).

2 Dirichlet problem for generalized Cauchy–

Riemann systems in spaces described by

modulus continuity

A function p(t) is said to belong to P ([7]) if

1. p(t) is a positive function on the interval (0, tp];

2. p(t) is an increasing function on the interval (0, tp];

3. there exists right-sided limit lim
t→+0

p(t) = 0;

4. the integral

∫ tp

0

dt

p(t)
is finite.
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We can continue p(t) onto [tp, 1] by p(tp) for t ∈ [tp, 1]. In what follows we
will call such the functions weights.

Examples of weights:

1. p(t) = tα, 0 < α < 1;

2. p(t) = t · lnβ 1
t
, β > 1;

3. p(t) = t · ln 1
t
· ln ln 1

t
· . . . · (ln · · · ln︸ ︷︷ ︸

m

1
t
)β, β > 1.

Let G = {z : |z| < 1}. For every p(t) ∈ P we can define the following
spaces of functions

sp(G) =

{
B(z) ∈ L∞,loc(G \ {0}) : sup

G\{0}
(|B(z)| · p(|z|)) < ∞

}
,

Sp(G) =
⋃
p∈P

sp(G).

The linear space Sp(G) is contained in L2(G). In [7] the following is proved.

Theorem 3 Let us consider the Dirichlet problem

∂z̄w(z) + b(z)w(z) = 0, z ∈ G = {z ∈ C : |z| < 1}, (4)

<w|∂G = g(z), =w|z0=1 = h, (5)

where b ∈ Sp(G), g ∈ Cλ0(∂G), λ0 ∈ (0, 1) and h ∈ R. Then there exists a
uniquely determined solution w = w(z) which belongs to C(G)

⋂
Cλ0(G\{0}).

Recall that a modulus of continuity is a function µ(t), defined on the
interval (0, δ) and satisfying the following conditions:

1. µ(t) ≥ 0, t > 0;

2. lim
t→+0

µ(t) = 0;

3. µ(t) does not decrease for t > 0;

4. for any t1, t2 ∈ (0, δ) µ(t1 + t2) ≤ µ(t1) + µ(t2).
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The condition 4 is known to hold if we assume that µ(t)
t

does not increase for

t > 0. Let µ1,0(t) := t, µ1,k(t) := t · (ln 1
t

)k
, 0 < t < 1

e
, k ≥ 1. With a given

closed bounded subset K ⊂ C and modulus of continuity µ(t) we can denote
the class of continuous functions Cµ(K) obeying the condition

||f ||µ := max

{
sup
z∈K

|f(z)|, sup
z1 6=z2

|f(z1)− f(z2)|
µ(|z1 − z2|)

}
< ∞.

Using the results of boundary behaviour of holomorphic functions ([10]–
[11]) and the scheme of [7] it can be proved the following

Theorem 4 Let us consider the Dirichlet problem (4)–(5) where b ∈ Sp(G),
g ∈ Cµ1,0(∂G), z0 ∈ ∂G is a fixed point. Then there exists a uniquely deter-

mined solution w = w(z) which belongs to C(G)
⋂

Cµ1,5(G \ {0}).
Remark. It is interesting to prove the analogue of theorem 4 for general
case of modulus of continuity.
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The solution of the Vekua generalized
boundary value problem of the
membrane theory of thin shells

E.V. Tyurikov

Southern Federal University

Introduction

In the view of membrane theory of convex shells [1] the problem of the
realization moment less intense balance of the elastic shell, median surface
S of which, is an interior part of the ovaloid S0 of strictly positive Gaussian
curvature regular of class W 3,p, p > 2, with piecewise-smooth boundary
L =

⋃n
j=1 Lj consisting with finitely many arcs Lj (j = 1, . . . , n) regular of

class C1,ε where 0 < ε < 1 is studied. It is assumed that at every point of
arc Lj the projection u(s) of the stress vector to the direction of the vector
r(s) = {α(s), β(s)}, belonging to the surface S, with tangential and normal
components α, β respectively is given, where s — is the natural parameter,
α2 + β2 = 1, Holder continuous α(s), β(s), u(s), on each of the arcs Lj, β(s)
is the function of fixed sign on L, a vector field r as a vector functions r(c)
of the boundary point c having discontinuities of the first kind at the corner
points cj (j = 1, . . . , n). Further, such vector field r we will call admissible.
A problem T for median surface S with smooth boundary under condition
of continuity on L of the vector field r is set by I. N. Vekua [1]. In the same
paper its simplest and special cases (α ≡ 0 or β ≡ 0 L) are studied.

1. A Reimann-Hilbert Problem

Further, a surface S is assumed connected surface. Let us introduce the
following notations: J is the mapping of the surface S to the complex plane
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ζ = u1 + iu2, defined by the choice of a conjugate isometric parametrization
(u1, u2) on the surface S, D = J(S) is a bounded domain in the plane ζ
with boundary Γ =

⋃n
j=1 J(Lj) containing the corner points ζj = J(cj).

According to [1], the problem T is accumulated to searching for (in the plane
D) a complex-valued solution w(ζ) of the equation

wζ̄ + B(ζ)w(ζ) = F (ζ), (1)

where i2 = −1, ∂ζ̄ = 1
2

(
∂

∂u1 + i ∂
∂u2

)
is the operator of complex differentiation,

w(ζ) is the complex stress function expressed with a contravariant of stress
tensor components and coefficients in the metric form on the surface, B(ζ) is
a given by the surface S function of class Lp(D), p > 2. F (ζ) is the complex
function of the shell external loadaccording to the defined boundary condition

Re {λ(ζ)w(ζ)} = g(σ,K, ks, τg, X), ζ ∈ Γ, (2)

in which

λ(ζ) =
[
s1(ζ) + is2(ζ)

][
β(ζ)

(
t1(ζ) + it2(ζ)

)− α(ζ)
(
s1(ζ) + is2(ζ)

)]
, (3)

si (i = 1, 2) are the coordinates of the tangent to Γ unitary vector, ti (i = 1, 2)
are the coordinates of unitary vector ~t of t direction on the surface, being
the J-image of τ direction on the surface S0 orthogonal to the curvature
L direction, where function values α(ζ), β(ζ) coincide with function values
α(c), β(c) in the point c = J−1(ζ), g is the determined function of self-
argument. K, ks, τg are the Gaussian curvature, the normal curvature and
geodesic torsion of the surface, respectively, of the surface in the direction
of the boundary c = J−1(ζ), X is the normal component of the surface and
volume forces per unit area. Let us mention that the right member of equality
(2) as the argument function ζ Holder continuous on each of the arcs Γj, and
undergoing discontinuities of the first kind at the points ζj (j = 1, . . . , n).
Let us call problem (1), (2) problem R and discontinuity points ζj of the
function λ — a node of boundary condition (2), (3).

2. Results

Let νjπ and γjπ (0 < νj < 2; j = 1, . . . , n) be the values of interior angle
at corner points ci of the boundary L and ζj = J(cj) respectively. We will
assume that the surface S and its boundary L are oriented so as while going
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around L the surface remains on the left and the direction of the tangent to
σ(c) in the point c of the vector coincides with the positive direction of the

curve traversal L. Let us introduce the following notations: σ
(1)
j and σ

(2)
j

(τ
(1)
j and τ

(2)
j , r

(1)
j and r

(2)
j ) are limit values of the vector field σ(c) (τ (c),

r(c)) in the point cj on the left and right respectively while going around

the curve L in the positive direction. Here the pair of vectors ν
(1)
j = −σ

(1)
j ,

ν
(2)
j = σ

(2)
j sets the interior angle in the point cj. The corner point cj together

with the ordered set of vectors (ν
(1)
j , ν

(2)
j , r

(1)
j , r

(2)
j ) we will call the node cj(R)

of the problem R. Let us indicate by θ
(k)
j the angle between vectors ν

(k)
j and

r
(k)
j (k = 1, 2; 0 6 θ

(k)
j 6 π).

Statement. The node ζi(R) corresponding to the node cj(R) is a singular
node (Muskhelishvilli) and is valid if and only if when there are such integrals
`, m and s (m = 1, 2) as

Ω(θ
(1)
i , θ

(2)
i , νi) ≡ (−1)m arccos ω

(
θ

(1)
i + θ

(2)
i , θ

(1)
i − θ

(2)
i

)
+

+ (−1)s arcsin
(√

K/(k
(1)
i k

(2)
i ) sin νiπ

)
+ π` = 0,

where ω(u, v) =
[

1
2
(T + S) cos u + 1

2
(T − S) cos v + 1

2
(M12 − M21) sin u+

+1
2
(M12−M21) sin v

][
(1−M11 sin(u+v))(1−M22 sin(u−v))

]−1/2
, T = t

(1)
i ·t(2)

i ,

S = s
(1)
i ·s(2)

i , M11 = s
(1)
i ·t(1)

i , M12 = s
(1)
i ·t(2)

i , M21 = s
(2)
i ·t(1)

i , M22 = s
(2)
i ·t(2)

i ,

k
(s)
i (s = 1, 2) are main curvatures in the point ci.

This statement results from the definition of nonsingular node [2], expres-
sion (3) and known properties [1] of mapping J.

Let us introduce the subsidiary classification of the corner points cj of
the boundary L: we will call corner point cj a point of type k (k = 1, . . . , 4),
if k−1

2
π < γi 6 k

2
π in the corresponding point ζj. The point cj of type k and

the set of admissible pairs of vectors r
(1)
j , r

(2)
j (α2 + β2 = 1, β > 0) set many

nodes cj(R) of the problem R. Then each k set of nonsingular nodes cj(R)

can be divided into three non-crossing classes T
(i)
k (i = 1, 2, 3; 1 6 k 6 4),

besides the belonging of the point cj(R) to one of the classes are defined with

the value `, m, s (−2 6 ` 6 2) the sign Ω(θ
(1)
j , θ

(2)
j , νj).

Let ci1(R), . . . , cim(R) be nonsingular nodes of the problem R. Following
[3], the solution of the problem is to be found in class h1,q

i1,...,im
, 2 < q < p. Let
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us denote by N
(i)
k the number of corner points of the problem R belonging to

the class T
(i)
k (1 6 k 6 4, 1 6 i 6 3,

4∑
k=1

3∑
i=1

N
(i)
k = n).

Theorem 1 is valid.

Theorem 1. Let S be the set above simply connected surface regular of
class W 3,p, p > p0 where p0 = max{1, ν1/π, . . . , νn/π} and ci1 ,. . . , cim are
arbitrary distinguished points from the nodes cj(R), ` is the number of all
singular points. If

N ≡
3∑

j=1

[ 4∑
k=1

(4− (j + k))N
(j)
k

]
> 3 + m + `− n,

then the problem R is uniquely solvable in class h1,q
i1,...,im

, 2 < q < 2p/(2 +
p(1− 1/p0)). If N < 3 + m + `− n, then the problem R is uniquely solvable
in the indicated class if and only if when the right member of equality (2)
meets the finite number of the integral type tractability conditions.

When proving the technic [3] of the boundary condition index evaluation
and the results of the paper [4] are used.

In the case when on each of the arcs Lj (1 6 j 6 n) the condition α·β = 0
is met the result obtained allows a clarification (see [3]) and provides the
solution of the mixed boundary value problem by Vekua [1]. We mention
that in the case with the smooth boundary L and the continuity if the vector
field r the undoubted problem T solution is possible only for the manifold
surfaces [1].

Now let cj be the arbitrary distinguished points of the surface S0, (ν
(1)
j ,ν

(2)
j )

are the pairs of different directions on the surface at the point cj (j =
1, . . . , n). We denote by Sν , ν = (ν1, . . . , νn) the class of all simply con-
nected surfaces with the piecewise smooth boundary that is a part of ovaloid
S0 and which met the following conditions: any corner point of the boundary
is the point from the number of points cj (j = 1, . . . , n); νjπ is the value if
the interior angle at the corner point of the class surface Sν (0 < νj < 2);
directions which meet at the point cj of the boundary arcs are the directions

(ν
(1)
j ,ν

(2)
j ). Let us mention that the set of points cj and the set of pairs

(ν
(1)
j ,ν

(2)
j ) are setting the finite number of classes Sν .

Theorem 2. Let ν
(1)
j be the arbitrary distinguished directions at the points

cj (j = 1, . . . , n) respectively, m is the arbitrary fixed integral 0 6 m 6
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3n − 3. Then at each point cj we can show the direction ν
(2)
j and the class

Sν of the surfaces corresponding to the set of pairs (ν
(1)
j ,ν

(2)
j ) for which the

problem R is unconditionally solvable in the class of unlimited solutions with
any continuous admissible field ~r and its solution definitely depends on m
real parameters.

Remark. In the statement of the theorem the direction ν
(2)
j can be substi-

tuted by some connected class of directions ν
(2)
j (ε), continuously depending

on the real parameter ε and including the direction ν
(2)
j .

For some special cases of the surface S boundaries and admissible fields
~r the exact results in the form of geometric criterion of unconditional solv-
ability.
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reziume 

meoce saukunis ormocdaaTian wlebSi i.vekuam da l. bersma 

SeniSnes, rom analizur funqciaTa ZiriTadi Teorebi SesaZlebelia 

gavrcelebuli iqnas funqciaTa ufro farTo klasze, vidre analizur 

funqciaTa sivrcea. vekuasa da bersis sagnisadmi gansxavebulma da 

originalurma xedvam mogvca axali, saukeTeso Tvisebebis mqone 

funqcionaluri sivrce, romlis elementebi dRes ganzogadebuli 

analizuri funqciebis (И.Векуа, Обобщеные аналитические функции. 
Москва, 1959)  anu fsevdoanalizuri funqciebis (L.Bers, Theory of 
Pseudo-Analytic Functions, New York, 1953)  saxeliTaa cnobili. 

i.vekuas midgoma, romelic kompleqsur sibrtyeze pirveli 

rigis wrfivi elifsuri sistemebis Teorias emyareba, nayofieri 

gamodga ara marto funqciaTa TeoriisaTvis, aramed mecnierebis 

momijnave dargebSi gamoyenebis TvalsazrisiTac. vekuaseulma 

elifsuri sistemebis kompleqsuri formiT Caweram da amonaxsnis 

analizuri saxiT warmodgenam gaafarTova funqciaTa Teoriis 

sasazRvro amocanebis gamoyenebis areali, naTeli gaxada Teoriis 

gavrcelebis SesaZlebloba veqtorul funqciebze, moxerxda, agreTve, 

ganzogadebuli analizuri funqciebis meTodebiT beltramis 

gantolebis sruli analizi, romelic Tavis mxriv organzomilebiani 

analizuri mravalsaxeobebis klasifikafiis, maTematikuri fizikis 

klasikuri da Tanamedrove dargebis: garsTa Teoriis, velis 

konformuli da topologiuri Teoriebis, iang-milsis Teoriis 

mniSvnelovani instrumentia.  

 ganzogadebuli analizuri funqciebis Teoriis da misi 

meTodebis damuSaveba da gaRrmaveba, agreTve misi gamoyenebiT 

maTematikuri fizikis amocanebis kvleva, amJamad msoflios mraval 

wamyvan maTematikur centrSi mimdinareobs. maT Sorisaa Tbilisis 

saxelmwifo universitetis i.vekuas gamoyenebiTi maTematikis institu-

ti, sadac sxvadasxva periodSi dRemde Sesrulda mniSvnelovani 

gamokvlevebi Tavad i.vekuas mier daarsebul “kompleqsuri analizisa 

da misi gamoyenebebis” ganyofilebaSi, romelsac Semdgom g.manjaviZe 

xelmZRvanelobda. amJamad, i.vekuas gamoyenebiTi maTematikis institu-

tis kompleqsuri analizis jgufis (g.axalaia, g.giorgaZe, e.gordaZe, 

n.manjaviZe, g.maqacaria, n.qaldani, v.jiqia) interesis sferoa ire-

gularuli elifsuri sistemebi rimanis zedapirebze da riman-



154 
 

hilbertis sasazRvro amocana aseTi sistemebisaTvis. kerZod, 

araregularuli elifsuri diferencialur gantolebaTa sistemebis 

Tvisobrivi kvleva; singularuli elifsuri sistemebis amonaxsnTa 

(fsevdoanalizuri, polianalizuri) sivrcis gamokvleva gansakuTrebu-

li wertilis midamoSi, maT Soris im SemTxvevaSic, rodesac 

gantolebis singularuli wertili amonaxsnis ganStoebis wertilia; 

elifsuri sistemebis klasifikacia gansakuTrebuli wertilebis 

mixedviT; riman-hurvicis formulis analogis miReba kompaqturi 

rimanis zedapirisaTvis da sxva. 

Cveulebriv diferencialur gantolebaTa TeoriaSi kargad 

cnobili fuqsis sistemebis SemTxvevaSi gantolebaTa sistemisagan 

inducirebuli meromorful bmulobiani holomorfuli fibraciis 

invariantebi (sruli Cernis ricxvi, gaxleCvis tipi) bunebrivad 

ukavSirdeba riman-hilbertis sasazRvro amocanis ricxviT (indeqsi, 

kerZo indeqsebi) invariantebs. am konteqstSi saintereso amocanaa 

pirveli rigis polusebis mqone elifsuri sistemebis gamokvleva 

uban-uban mudmivi matriculi funqciis faqtorizaciasTan erTad 

sxvadasxva saxis wonian sivrceebSi. agreTve, wrfivi SeuRlebis 

sasazRvro amocana zogad gaxsnil wirebze cvladmaCveneblian lebegis 

sivrceSi. aqve aRvniSnoT, rom koSis tipis integralis sasazRvro 

mniSvneloba SeiZleba wiris gansxvavebul ubnebSi sxvadasxva bunebis 

iyos, rasac cvladi maCvenebeli ukeT afiqsirebs, vidre mudmivi. 

dRemde ar Seswavlila Q-holomorfuli veqtor-funqciebisaTvis 

SeuRlebis wrfivi amocana, kerZod is SemTxveva, rodesac Q matrica 
akmayofilebs e.w. komutaciurobis pirobas. saintereso da perspeqti-

uli amocanaa misgan inducirebuli holomorfuli fibraciis kveTebis 

sivrcis, rogorc wrfivi SeuRlebis amocanis amonaxsnTa sivrcis 

gamokvleva konaTa Teoriis aparatis gamoyenebiT. 

kargad cnobilia, rom matricul riman-hilbertis sasazRvro 

(wrfivi SeuRlebis) amocanasTan bunebrivadaa dakavSirebuli matric-

funqciis faqtorizaciis problema. es ukanaskneli gvaZlevs geomet-

riul obieqts - veqtorul fibracias rimanis sferoze. sasazRvro 

amocanis amonaxsnTa sivrce holomorfuli fibraciis kveTebis 

sivrcesTan igivdeba. matric-funqciis kerZo indeqsebi da amocanis 

indeqsi, Sesabamisad, veqtoruli fibraciis gaxleCvis tips da srul 

Cernis ricxvs warmoadgens. aseTi midgoma saSualebas iZleva riman-
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hilbertis amocana daisvas da amoixsnas kompaqtur rimanis zedapireb-

ze, matric-funqcia Seicvalos maryuJiT, holomorfuli fibraciis 

deformaciis invariantebis saSualebiT gamoisaxos kerZo indeqsebi or 

da sam ganzomilebian SemTxvevebSi.  

riman-hilbertis monodromiuli amocana (hilbertis 21-e 

problema), romelic gulisxmobs sibrtyeze moniSnuli wertilebisa 

da maTze miwerili gadaugvarebeli matricebis saSualebiT aigos 

fuqsis sistema, romlisTvisac moniSnuli wertilebi iqneba 

gansakuTrebuli wertilebi, xolo monodromiis matricebi ki ukve 

mocemul matricebs daemTxveva, dasmuli iyo rimanis mier erT-erT 

ukanasknel naSromSi da hilbertis mier amoxsnili iqna erT-erT 

kerZo SemTxvevaSi. zogadi amocana man Tavis cnobil problemaTa 

nusxaSi Seitana. me-20 saukunis 90-ian wlebamde iTvleboda, rom 

hilbertis 21-e problema plemelim amoxsna. miuxedavad ramdenime 

avtoris miTiTebisa, rom plemelis damtkiceba Secdomas Seicavda, 

iTvleboda, rom plemelis es uzustoba gamosworebadia da saboloo 

Sedegi marTebulia. a. bolibruxma aago kontrmagaliTi da aCvena, rom 

es ase ar aris da hilbertis 21-e problemis amoxsnadobis sakiTxi 

mkacradaa damokidebuli monodromiis warmodgenaze da agreTve, 

gansakuTrebuli wertilebis ganlagebaze, anu wertilebis konfigura-

ciaze rimanis sferoze.Ees Tavis mxriv niSnavs, rom problemis 

amoxsnadoba damokidebulia moniSnuli wertilebis mqone rimanis 

zedapiris kompleqsur/konformul struqturaze. rimanis zedapiris 

kompleqsuri struqtura ki ganisazRvreba beltramis gantolebiT. 

amasTan dakavSirebiT saintereso amocanad migvaCnia riman-hilbertis 

monodromiuli amocanis amoxsnadobis kriteriumis miReba beltramis 

diferencialis terminebSi.  

rogorc kargadaa cnobili, kompleqsuri funqciebi moniSnul 

rimanis sferoze SesaZlebelia aRiweron mravalsaxsruli meqanizmis 

modulebis sivrcis terminebSi. warmoqmnili kavSiri riman-hilbertis 

monodromiul amocanasa da saxsrulebis modulebis sivrces Soris 

saintereso da perspeqtiul amocanad gvesaxeba. 

riman-hilbertis sasazRvro amocana rimanma igive naSromSi 

dasva rogorc monodromiis amocanis amoxsnis erT-erTi xerxi. 

plemeli swored am gzas gahyva. amocana uban-uban mudmivi sasazRvro 

matriciT man miiyvana amocanaze uwyveti sasazRvro matric-funqciiT, 
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romlis amoxsnis Semdeg saZiebeli diferencialuri forma aago. 

plemelis Secdoma savaraudoa gamowveuli iyo diferencialuri da 

integraluri gantolebis matriculi Canaweris da maTze manipulire-

bis arasakmarisi teqnikiT. mogvianebiT aseTi teqnika hilbertis 21-e 

problemisaTvis ganaviTara i.lapo-danilevskim, xolo wrfivi SeuRle-

bis amocanisaTvis ki n.musxeliSvilma da n. vekuam erTobliv naSrom-

Si. amis Semdeg es ori amocana Seiswavleboda damoukideblad. 

miuxedavad aseTi organuli (Sinaarsobrivi) kavSirisa am or 

amocanas Soris da miuxedavad imisa, rom wrfivi SeuRlebis amocana 

Seswavlilia ganzogadebuli analizuri funqciebisaTvis da veqtore-

bisaTvis, singularuli elifsuri sistemebis SeswavlaSi miRweulia 

garkveuli progresi, kavSiri mis Sesabamis gansakuTrebuli 

wertilebis mqone (araregularul) elifsur sistemebTan aqamde miTi-

Tebuli ar aris. rac Cveni azriT ganzogadebuli analizuri 

funqciaTa Teoriis erT-erTi mniSvnelovani problemaa.  

rogorc cnobilia, riman-hilbertis monodromiuli amocana 

warmoqmnis holomorful fibracias meromorfuli bmulobiT. es 

ukanakneli ki iZleva hilbertis 21-e problemis amoxsnadobis 

aucilebel da sakmaris pirobas. odnav Sesustebuli saxiT analogiu-

ri Sedegi vrceldeba rimanis zedapirebze da funqciebze mniSvnelobe-

biT kompleqsur lis jgufebSi. monodromiuli amocanis dasma da 

Seswavla zogadi elifsuri sistemebisaTvis an romelime qveklasisaT-

vis, Cveni azriT, erT-erTi aqtualuri da mniSvnelovani amocanaa ara 

marto elifsuri sistemebis amonaxsnTa sivrcis Sesaswavlad, aramed 

-klasis bmulobebis asagebad da modulebis sivrcis gamosakvlevad. 

miRebuli Sedegebi saSualebas mogvcems gavafarTovoT elifsuri 

sistemebis gamoyenebis areali maTematikur fizikasa da teqnikaSi: 

drekadobis TeoriaSi, konformuli, yaliburi da topologiuri 

velis TeoriebSi, kvantur gamoTvlebSi. 

zemoT dasmuli problebis gansjis mizniT i.vekuas gamoyenebiTi 

maTematikis institutis kompleqsuri analizis jgufis mier organi-

zebul saerTaSoriso konferenciaSi monawileobis misaRebad mowveul-

ni iqnen am dargis msoflioSi wamyvani mecnierebi. es wigni srulad 

faravs konferenciis Tematikas. aRsaniSnavia, rom aq warmodegenilia 

oTxi Taobis avtorebi, maT Soris Tbilisis saxelmwifo universite-

tis studentebi. krebuli dasabeWdad mzaddeboda, rodesac gavigeT 
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Cveni megobrisa da kolegis, a.timofeevis tragikulad daRupvis amba-

vi. krebulSi Setanilia a.timofeevis ukanaskneli naSromi misi xsov-

nis ukdavsayofad.  

gansakuTrebiT gvinda aRvniSnoT ganzogadebul analizur 

funqciaTa TeoriaSi klasikuri Sromebis  avtoris, prof. b.boiarskis 

wvlili konferenciis mxardaWerasa da stimulirebaSi. wignSi Setani-

lia misi naSromi, romelic mtkicebulebaTa gamWvirvalobis, droSi 

mecnieruli azris dinebis istoriis da didaqtikis erT-erTi 

saukeTeso nimuSia.  

madloba gvinda gadavuxadoT dargis cnobil specialistebs, 

gamorCeuli naSromebis avtorebs v.adukovs, h.begers, v.kravCenkos, 

s.kruSkals, v.palamodovs, s.plaksas, s.rogozins, r.saqs, v.tuCkes, 

z.usmanovs yuradRebisa da moraluri mxardaWerisaTvis. 
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