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Abstract Seismic hazard analysis in the last few decades has become a very important

issue. Recently, new technologies and available data have been improved that have helped

many scientists to understand where and why earthquakes happen, the physics of earth-

quakes, etc. Scientists have begun to understand the role of uncertainty in seismic hazard

analysis. However, how to handle existing uncertainty is still a significant problem. The

same lack of information causes difficulties in quantifying uncertainty accurately. Usually,

attenuation curves are obtained in a statistical manner: regression analysis. Statistical and

probabilistic analyses show overlapping results for the site coefficients. This overlapping

takes place not only at the border between two neighboring classes but also among more

than three classes. Although the analysis starts from classifying sites using geological

terms, these site coefficients are not classified at all. In the present study, this problem is

solved using fuzzy set theory. Using membership functions, the ambiguities at the border

between neighboring classes can be avoided. Fuzzy set theory is performed for southern

California in the conventional way. In this study, standard deviations that show variations

between each site class obtained by fuzzy set theory and the classical manner are com-

pared. Results of this analysis show that when we have insufficient data for hazard

assessment, site classification based on fuzzy set theory shows values of standard devia-

tions less than those obtained using the classical way, which is direct proof of less

uncertainty.
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1 Introduction

An estimation of expected ground motion is fundamental for earthquake hazard assessment.

Generally, ground motion and damage are influenced by the magnitude of the earthquake,

the distance from the seismic source to the site, the local ground conditions, and the char-

acteristics of buildings (Atkinson 2004). Empirical attenuation relation, a practical way to

estimate ground motion parameters, gives information about how these parameters depend

on the above-mentioned source, path, and site effects (Field 2000). This, namely ground

condition, must be considered, because the same earthquake recorded at the same distance

may cause different damage according to ground conditions (Irikura et al. 2004).

In conventional approaches, grouping or classification is done for strong motion

observation sites based on a priori given information expressed by geological terms (Wills

et al. 2000). Then, regression analyses are applied to the ground motion parameters (peak

ground acceleration (PGA), response spectra (SA), etc.) observed at each of these classes

(Field 2000). Although amplification factors are assigned to all stations used in analyses,

the majority of the sites in that seismic hazard are assessed; but, any ground motion

recorded, which is not available, does not have this assigned value. Therefore, the mean

value of each class has to be used for them in order to make a seismic hazard assessment.

The usage of the mean value, however, brings an uncertainty for site amplification into

the obtained seismic hazard. Its cause is a widely scattered amplification factor, even in the

same site class. Molas and Yamazaki (1995), for example, show the list of site factors for

PGA. Significant overlap of widely scattered distribution is observed among different

classes. It can be interpreted that the classification in geological terms done prior to the

regression analysis may be incorrect, that is, the data scattered far from the mean value

should be reclassified into another, because the borders between classes are essentially

ambiguous, for example, due to weathering, etc. This can also cause one to misjudge the

site classification when attenuation relation is applied to sites that do not have any ground

motion record. The reliability of judging varies site to site, depending on the available

information, that is, fresh cut along a road in a site and ground covered by newly filled sand

in another site. It is possible to imagine that there exists a level of uncertainty, depending

on available information at each site.

In the present study, fuzzy set theory is applied in order to handle the uncertainty caused

by the site classification based on geological terms and its level of uncertainty.

2 Method of analysis: fuzzy set theory

2.1 Basics of fuzzy set theory

Fuzzy set theory is an extension of conventional (crisp) set theory. It handles the concept of

partial truth (truth values between 1 (completely true) and 0 (completely false)). It was

introduced by Prof. Lotfi A. Zadeh of UC Berkeley in 1965 as a means to model vagueness

and ambiguity in complex systems (Zadeh 1965).

2.1.1 The membership function

For the universal X and given the membership degree function l ? [0, 1], the fuzzy set A

is defined as ~A ¼ x; lA xð Þ½ � j x 2 Xf g. The membership function lA xð Þ quantifies the grade
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of membership of the elements x to the fundamental set. The value 0 means that the

member is not included in the given set; 1 describes a fully included member. The values

between 0 and 1 characterize fuzzy members (De Campos and Bolaños 1989).

2.1.2 Some operations and arithmetic on fuzzy sets and numbers

Let A and B be two fuzzy subsets of universal set X and a(x) and b(x) corresponding degree

of membership of x in A and B, respectively. Then following operations on sets can be

defined (Schmucker 1984).

Intersection: A \ B ¼ min a xð Þ; b xð Þ½ � = x j x is an element of Xf g; ð1Þ

Union: A [ B ¼ max a xð Þ; b xð Þ½ � = x j x is an element of Xf g: ð2Þ
The support of a fuzzy set A is the ordinary subset of X (Dubois and Prade 1988):

supp A ¼ x 2 X; lA xð Þ[ 0f g; ð3Þ
When we want to exhibit an element x 2 X that typically belongs to a fuzzy set A, we

may demand its membership value to be a greater than some threshold a 2 0; 1½ �. The

ordinary set of such elements is the a-cut Aa of A

Aa ¼ x 2 X; lA xð Þ� af g; ð4Þ
The membership function of a fuzzy set A can be expressed in terms of the characteristic

functions of its a-cuts according to the formula (Dubois and Prade 1988):

lA xð Þ ¼ sup
a2 0;1½ �

min a; lAa
xð Þ

� �
; ð5Þ

where sup means the supremum, that is, the least upper bound.

lAa
xð Þ ¼ 1 if x 2 Aa;

0 otherwise:

�
ð6Þ

A fuzzy subset A of a classical set X is called normal if there exists x 2 X such that

lA xð Þ ¼ 1. Otherwise A is subnormal. An a-level set of a fuzzy set A of X is a non-fuzzy set

denoted by A½ �a and is defined by

A½ �a¼
t 2 X j A tð Þ� af g if a [ 0;

cl supp Að Þ if a ¼ 0;

(

ð7Þ

where cl supp Að Þ denotes the closure of the support of A (the smallest set which is closed

with respect to some operations in set theory as it is known in classical set theory). A fuzzy

set A of X is called convex if A½ �a is a convex subset of X, 8a 2 0; 1½ � (Carlsson Ch and

Fullér 2000).

A fuzzy number A is a convex, normalized fuzzy set whose membership function is at

least segmentally continuous and has the functional value lA xð Þ ¼ 1 at precisely one

element.

For the fuzzy number A, the interval of confidence for the level of presumption a
a 2 0; 1½ � can be defined as follows:

Aa ¼ x j lA xð Þ� a; a 2 0; 1½ �f g; ð8Þ
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Let A and B be two fuzzy numbers and Aa and Ba their intervals of confidence for the

level of presumption a a 2 0; 1½ �. Then the addition can be defined as follows:

Aa þð ÞBa ¼ a
að Þ

1 ; a
að Þ

2

h i
þð Þ b

að Þ
1 ; b

að Þ
2

h i
¼ a

að Þ
1 þ b

að Þ
1 ; a

að Þ
2 þ b

að Þ
2

h i
; ð9Þ

and subtraction can be written as follows:

Aa �ð ÞBa ¼ a
að Þ

1 ; a
að Þ

2

h i
�ð Þ b

að Þ
1 ; b

að Þ
2

h i
¼ a

að Þ
1 � b

að Þ
1 ; a

að Þ
2 � b

að Þ
2

h i
: ð10Þ

Suppose we have n fuzzy numbers as Ai 2 U; i ¼ 1; 2; 3; . . .; n; then

Ai;a ¼ a
að Þ

1;i ; a
að Þ

2;i

h i
; a 2 0; 1½ �; ð11Þ

for the interval of confidence at the level a of Ai. Then, defining the mean as

a
m að Þ
1 ¼ 1=nð Þ

Xn

i¼1

a
að Þ

1; i ð12Þ

a
m að Þ
2 ¼ 1=nð Þ

Xn

i¼1

a
að Þ

2; i ð13Þ

the mean interval of confidence at the level of a of the mean fuzzy number Am is described

as

Am
a ¼ a

m að Þ
1 ; a

m að Þ
2

h i
: ð14Þ

(14) and is called the fuzzy expected average (Kaufmann and Gupta 1985).

If Ri and Wi are a sequence of fuzzy sets, then the fuzzy weighted average of the Ri’s

using Wi’s as weights is defined as follows:

R ¼
Pn

i¼1 Ri �Wið Þ
Pn

i¼1 Wi
: ð15Þ

The fuzzy arithmetic operations, summation, multiplication, and division that are used

in Eq. 15 are defined as follows (Schmucker 1984):

If

X ¼ x ið Þ=i; 1� i� nf g; ð16Þ

Y ¼ y ið Þ=i; 1� i� nf g; ð17Þ

where i, j, and n are integers; x(i) and y(i) are membership functions that characterize the

fuzzy sets X and Y, respectively, then the fuzzy addition is defined as follows:

X þ Y ¼ min x ið Þ; y ið Þð Þ= iþ jð Þ; 1� i; j� nf g; ð18Þ
The fuzzy summation is a repeated process of the fuzzy addition.

The fuzzy multiplication is defined as follows:

X � Y ¼ min x ið Þ; y ið Þ½ �= i � jð Þ; 1� i; j� nf g; ð19Þ

and the fuzzy division is defined as:

X=Y ¼ min x ið Þ; y ið Þ½ �= i=jð Þ; 1� i; j� nf g: ð20Þ
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2.1.3 Ranking method

The ranking method implemented in this study is based on a scoring function that measures

a TFN’s (trapezoidal fuzzy number) center of gravity (centroid) along the x-axis (Fig. 1).

For fuzzy numbers with a non-zero area, the score is calculated as follows:

R ¼ R TPZ a; b; a; bð Þð Þ ¼ aþ b� a

2
þ

1� 1ffiffi
2
p

� �
b2

2
� a2

2

� �

b� aþ a
2
þ b

2

; ð21Þ

where (a, b) is the core and a and b are the left and right bandwidth, respectively.

2.1.4 Expected value and standard deviation for trapezoidal fuzzy number

Let A be a fuzzy number with A½ �a¼ a1 að Þ; a2 að Þ½ �; a 2 0; 1½ �. The possibilistic (crisp)

mean (or expected) value of A is defined as follows Eq. 22:

E Að Þ ¼
Z1

0

a a1 að Þ þ a2 að Þ½ � da ¼
R 1

0
a � a1 að Þþa2 að Þ

2
da

R 1

0
a da

; ð22Þ

i. e., E(A) is nothing but the level-weighted average of the arithmetic means of all a-level sets.

The variance (possibilistic) of A is defined as follows (23):

r2 Að Þ ¼
Z1

0

a
a1 að Þ þ a2 að Þ

2
� a1 að Þ

� 	2

þ a1 að Þ þ a2 að Þ
2

� a2 að Þ
� 	2

 !

da

¼ 1

2

Z1

0

a a2 að Þ � a1 að Þ½ �2da: ð23Þ

i. e., the possibilistic variance of A is defined as the expected value of the squared devi-

ations between the arithmetic mean and the endpoints of its level sets.In case of A = (a, b,

a, b) trapezoidal fuzzy number

E Að Þ ¼
Z1

0

c a� 1� cð Þaþ bþ 1� cð Þb½ �d c ¼ aþ b

2
þ b� a

6
ð24Þ
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Fig. 1 Trapezoidal fuzzy number (TFN) and its centroid
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r2 Að Þ ¼ b� að Þ2

4
þ b� að Þ aþ bð Þ

6
þ aþ bð Þ2

24
: ð25Þ

where c corresponds to a-level in Eqs. 22 and 23. Standard deviation is obtained as

follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 Að Þ

p
: ð26Þ

2.1.5 Uncertainty scaling for reliability of classification

In the linguistic approach to decision analysis, the use of linguistic labels implies a level of

uncertainty. The quantitative uncertainty is created by uncertainty in measurement or

estimation of the source variable on which the label is placed, which also directly impacts

the decision process (Debruin and Bregt 2001). In the case of environmental value, for

example, the estimate provided is usually based on incomplete information, due to our

limited understanding of the complex nature of natural systems (Christensen et al. 1996).

The question arises how to include quantitative uncertainty into the analysis process .The

operation can be described as follows:

U ¼
v a0 � d0 � a0ð Þ un � ubð Þð Þ; v b0 � c0 � b0ð Þ un � ubð Þð Þ
v c0 þ c0 � b0ð Þ un � ubð Þð Þ; v d0 þ d0 � a0ð Þ un � ubð Þð Þ

 !

; ð27Þ

where a0 ¼ a� a; b0 ¼ a� a; c0 ¼ b; d0 ¼ bþ b, a, b, a, b are shown in Fig. 1. Sche-

matically, uncertainty scaling operation is shown in Fig. 2.

U is the uncertainty scaling operation; un is the uncertainty term used in the scaling

operation; ub is the base uncertainty term (the term which represents the inherent quan-

titative uncertainty in the un-scaled term). In this study, we chose ub = 0.5,

v xð Þ ¼
1 if x� 1

0 if x� 0

x otherwise

8
<

:
: ð28Þ

3 Data used in the present study

Data used here were downloaded via the Internet from the COSMOS VIRTUAL DATA

CENTER (http://db.cosmos-eq.org/scripts/adv_search.plx, hereafter written CVDC) for
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Fig. 2 Graphical representation of uncertainty scaling
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California (latitude range between 32 N and 36 N), for 281 stations in southern California

and 28 earthquakes with magnitudes larger than 5.0 determined between 32 N and 36 N. In

this database, the 1994 Northridge earthquake is also included (M = 6.7) (Steidl and Lee

2000). There, stations are classified by their surface geology as summarized in Table 2. In

the present study, BC class (Wills et al. 2000) is recognized in the possible range (left

bandwidth) of B class here. At the same time, it is recognized in the possible range (right

bandwidth) of C class. The same treatment is done for CD and DE classes.

Field (2000) obtained attenuation relations for PGA and SA at the period equal to 0.3,

1.0, and 3.0 s as follows.

l M; rjb;Vs


 �
¼ b1 þ b2 M � 6ð Þ þ b3 M � 6ð Þ2þb5 ln r2

jb þ h2
� �0:5
� 


þ bv ln Vs=Vað Þ;

ð29Þ

where l is the predicted natural logarithm of the ground motion parameter (e.g., ln SAð Þ),
M the moment magnitude, rjb the closest distance to the vertical projection of rupture (in km),

and Vs the average 30-meter shear wave velocity at the site (m/s), the values of which are listed

in Table 2. Va is an arbitrary reference site velocity; here it is taken as 760 m/s in all cases, and

h is a fictitious depth needed to prevent zero distance. The other parameters (b1, b2, b3, b5, h,

bv, and Va) are solved by regression analysis from empirical data (Field 2000).

4 Application of fuzzy set theory

4.1 Designing of membership function

In the present study, non-symmetric linear trapezoidal membership functions are used for

simplicity in order to capture the vagueness in geological classification. A standard linear

trapezoidal fuzzy number (TFN) can be represented completely by a quadruplet Tpz(a, b, a,

b) as shown in Fig. 1. It is also useful that crisp numbers (a = b, a = b) can be repre-

sented in trapezoidal form (Bailey 2003).

In the CVDC database, average shear wave velocity to 30 m (VS) is assigned to site

classes as an indicator of site response (Table 1). The legend in geological terms of the site

classes is found in the paper of Wills et al. (2000). Then, VS is selected as the variable

parameter for membership functions.

First, the distribution function against VS is made for each site class of the present study,

and the mean values l and the standard deviations r in statistical (classical) meaning and

f xð Þ the distribution function normalized by its value at l are calculated.

Then, the membership function q(Vs) is given as follows.

q Vsð Þ ¼ 1:0 for
l� Vs�

l� Vs min

\0:1;
Vsþ � l

Vs max � l
\0:1; ð30Þ

where Vs- denotes shear wave velocity values on the left side of the mean value, Vs?

denotes shear wave velocity values on the right side of the mean value, Vs min means the

minimum value of shear wave velocity obtained in the certain site class, and Vs max the

maximum value for the same site class. From Eq. 30 , the uncertainty range can be

determined (Sc�
I , Scþ

I ).
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q Vsð Þ ¼
0:9 x� Sc�

I


 �

Sc�
I � f�1 0:1ð Þ�

þ 1 for f�1 0:1ð Þ�\x\Sc�
I ;

q Vsð Þ ¼
�0:9 x� Scþ

Ið Þ
f�1 0:1ð Þþ�Scþ

I

þ 1 for Scþ
I \x\f�1 0:1ð Þþ;

q Vsð Þ ¼ 0:0 otherwise:

ð31Þ

where f�1 0:1ð Þ� and f�1 0:1ð Þþ denote the values of x at the left and right sides of l, both

of them that give 0.1 for the normalized distribution functionf xð Þ. The data of which VS is

located between Sc�
I and Scþ

I are recognized ‘‘true’’, whereas those outside of the range

limited by f�1 0:1ð Þ� and f�1 0:1ð Þþare ‘‘false’’. Those in the ranges between f�1 0:1ð Þ� and

Sc�
I , and between Scþ

I and f�1 0:1ð Þþ are ‘‘partially true–partially false.’’ The linear trend

line is added on the left side from the Sc�
I and on the right side from the Scþ

I in order to

obtain trapezoidal membership function.

Table 1 Summary of the data used were downloaded from COSMOS VIRTUAL DATA CENTER
(http://db.cosmos-eq.org/scripts/adv_search.plx) with the parameters mentioned above

Site class CVDC Number of
stations

Number of
stations with Vs

Mean value
(m/s)

Standard deviation
(m/s)

A 8 8 1,857.6 256

B 17 17 871.4 238

BC 47 47 728 209.2

C 132 132 470.8 139

CD 180 180 368 96

D 120 120 286 68

DE 45 45 226 36

E 4 4 157 45

The legend of site classes with geological terms (Wills et al. 2000)

Table 2 Site classes are used here in relation with others. The mean values and the standard deviations are
calculated newly for the site classes of the present study

Present study (Wills et al. 2000) Vs (m/s)
NEHRP

Vs

(m/s)
used
by
Field
(2000)

Site
class

Mean
value
(m/s)

Standard
deviation
(m/s)

Site
class

Vs (m/s)

Expected value Mean
value

Standard
deviation

A 1,857.6 256 A N/A N/A N/A 1,500 \ Vs N/A

B 1,066 391 B 760 \ Vs 686 275 760 \ Vs \ 1,500 1,000

BC 555 \ Vs \ 1,000 724 368 N/A 760

C 471 219 C 360 \ Vs \ 760 464 147 360 \ Vs \ 760 560

CD 270 \ Vs \ 555 372 98 N/A 360

D 285 76 D 180 \ Vs \ 360 301 104 180 \ Vs \ 360 270

DE 90 \ Vs \ 270 298 225 N/A 180

E 157 45 E Vs \ 180 163 31 Vs \ 180 N/A
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Giovinazzi and Lagomarsino (Giovinazzi and Lagomarsino 2004) express the four

corners of TFN using Sc
Imin, Sc�

I , Scþ
I , Sc

Imax that correspond a - a, a, b, b ? b in Fig. 1,

respectively. Sc
Imin and Sc

Imaxare called the lower and the upper bounds of the possible range.

Sc�
I and Scþ

I are called the lower and the upper bounds of the uncertainty range. The most

probable value Sc�
I is obtained as the mean value of the trapezoidal membership function as

shown in Eq. 24. Tables 3 and 4 shows these five parameters for the five classes used in the

present study.

The obtained membership function (Figs. 3, 4) for each site class looks as shown in

Fig. 5.

First, for site class indexes, again centroids of trapezoidal membership functions are

used shown in Eq. 21.

4.2 Uncertainty scaling

Once we obtain trapezoidal membership function for each site class, then we can use the

uncertainty scaling operation for reliability of classification. Using such scaling operation,

we can obtain different membership functions that correspond to each level of uncertainty

as shown in Fig. 5. Then station coefficients can be obtained by several ways, depending

on our purpose, which are shown later based on some examples.

Our purpose is to handle uncertainty. For this purpose, we use the uncertainty scaling.

We choose a different level of uncertainty, such as ‘‘very uncertain,’’ ‘‘uncertain,’’

Table 3 Parameters of TFN for five site classes

Site class Sc
Imin Sc�

I Sc�
I Scþ

I Sc
Imax

A 1,100 2,000 2,025 2,050 2,100

B 480 770 935 1,100 1,500

C 350 370 425 480 770

D 175 270 310 350 370

E 100 160 167.5 175 270

Table 4 Site class index and standard deviation for all site classes for classical and fuzzy case for
T = 1.0 s

Site class Values Classical By centroid of
trapezoidal function

A class Site class index (m/s) 1,857.6 1,799.8

Stand. deviat. (m/s) 256 214.8

B class Site class index (m/s) 1,066 966.5

Stand. deviat. (m/s) 391 291

C class Site class index (m/s) 471 490.1

Stand. deviat. (m/s) 219 132.7

D class Site class index (m/s) 285 273.4

Stand. deviat. (m/s) 76 53

E class Site class index (m/s) 157 159.9

Stand. deviat. (m/s) 45 36
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‘‘moderately certain,’’ ‘‘certain,’’ and ‘‘very certain,’’ and give them some weights due to

treatment of uncertainty. Then we can choose a specific level of uncertainty and perform

fuzzy analysis for this level; or, we can consider some levels of uncertainty, neglect others,

or otherwise leave only a certain level. We have many options depending on our purpose.

Then fuzzy analyses were applied for second type classification.

Then we define uncertainty semantically, as shown in Fig. 5. Then we use scaling

operation shown in Eqs. 27 and 28. In those equations, instead of a0; b0; c0; d0, values of the

membership function are used as an argument of v function; for example, for B site class,

we can get uncertainty scaling as follows:

For ‘‘very certain’’ case (weight: un = 0.1)

U unð Þ ¼ ð888; 902; 968; 1092Þ; ð32Þ

and as an interval:

A0:1 að Þ ¼ 14:001aþ 888:36;�123:46aþ 1087:22½ �; ð33Þ

For ‘‘certain’’ case (weight: un = 0.3)

U unð Þ ¼ ð684; 836; 1034; 1296Þ; ð34Þ

and as an interval:

A0:3 að Þ ¼ 151:52aþ 681:82;�263:158aþ 1301:74½ �; ð35Þ

For ‘‘moderately certain’’ case (weight: un = 0.5)

U unð Þ ¼ ð486; 770; 1100; 1500Þ; ð36Þ

and as an interval:

A0:5 að Þ ¼ 294:12aþ 486:82;�400aþ 1500½ �; ð37Þ

For ‘‘uncertain’’ case (weight: un = 0.7)

U unð Þ ¼ ð276; 704; 1166; 1704Þ; ð38Þ

and as an interval:

A0:7 að Þ ¼ 434:78aþ 280:39;�526:32aþ 1667½ �; ð39Þ

and for ‘‘very uncertain’’ case (weight: un = 0.9)

U unð Þ ¼ ð72; 638; 1232; 1908Þ; ð40Þ

and as an interval:

A0:9 að Þ ¼ 555:56aþ 70:67;�666:67aþ 1881:67½ �; ð41Þ

where a is a level of confidence and v xð Þ ¼
1 if x� 1

0 if x� 0

x otherwise

8
<

:
.

Figure 6 shows uncertainty scaling for B site class. The blue line shows the membership

function obtained by the second type of fuzzy classification. Again, as with other cases,

‘‘moderately certain’’ corresponds to this classification itself.

Site class indexes for the other two cases are performed in two different ways. One of

them is a combined approach, considering only from ‘‘very certain’’ up to ‘‘moderately
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certain’’ levels of uncertainty. Fuzzy intervals of each level of confidence from 0 up to 1

are also used here. Then expected and maximum values are calculated (Table 5). We use

both of these values for the calculation of the site class index (Kaufmann 1988).

Table 6 shows site class indexes and standard deviations obtained for B site class for all

classical and fuzzy cases for period 1.0 s. These standard deviations are related to the

variation of the station coefficients in site class (rs) for classical and fuzzy cases for B site

class and for fuzzy cases obtained using Eqs. 25 and 26.

5 Results of analysis

Data from the paper (Field 2000) is used as an example for SA. The fuzzy analysis gives

smaller values of the standard deviations than those of the classical case for SA.

First, the membership functions for SA are designed by considering existing informa-

tion about shear wave velocity values. Field (2000) provides the information about site

characteristics, that is, shear wave velocity at the surface. If there is no measurement or any

Fig. 6 Uncertainty scaling for B site class

Table 5 Expected values for each term and all site classes for SA for California

Site classes Membership Very certain Certain Mod. certain

Expected values A class 1,799.8 1,695.8 1,721 1,799

B class 966.9 960.4 963.9 966.9

C class 490.1 493.8 492 489.7

D class 273.4 265.8 269.6 272.8

E class 159.9 165.1 163.4 161
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existing information, then membership function can be obtained as a linguistic term using a

symmetric (quadruplet) membership function, but if there is a possibility to obtain some

information, then such information can be used for the design of the membership function

as it is done in the present work. Thus, membership functions are obtained more precisely;

the site class indexes and the standard deviations are calculated quantitatively. In the fuzzy

case, standard deviations are significantly reduced as compared to the classical case

(Table 3 and 4).

As shown above, the membership functions for SA are obtained in an appropriate

manner. Thus, the uncertainty scaling is applied to SA.

6 Discussion and conclusion

There are many causes of uncertainty throughout the seismic hazard analysis process. The

attenuation relation of ground motion that plays a main role brings many uncertainties into

the analysis. The present study focused on the uncertainty related with the site classifi-

cation for the acceleration response spectra (SA).

In this study, standard deviations that show variations between each site class obtained

by fuzzy set theory and the classical means are compared. Results on this analysis show

that even when we have very insufficient data for hazard assessment, site classification

based on fuzzy set theory shows values of standard deviations less than those obtained in

the classical manner, which is direct proof of less uncertainty. The example performed in

this work shows that variances based on station coefficients significantly reduce in the

fuzzy case in comparison with the classical case. As shown here, designing membership

function is very important. If we design appropriate membership function, then we can

reduce uncertainty.

Given, membership functions allow the application of various methods of fuzzy set

theory. In the present study, the uncertainty scaling is selected among them. This method

can handle the difference of uncertainty level or reliability of judgment for site classifi-

cation; for example, if we have to classify site conditions only based on geological

information or some other non-numerical information, then we use membership function

for the ‘‘very uncertain’’ level. If we have some geotechnical measurement or some more

precise information, then we can select a lower uncertainty level (toward ‘‘very certain’’).

Also, not only the standard deviations but also the site class indexes can be changed by the

uncertainty scaling. This shows a new aspect of the empirical attenuation relation.

All the discussions mentioned above prove the advantage and usefulness of fuzzy set

theory, not only for attenuation relation of ground motion but also in many cases where

some primary data are insufficient or ambiguous. Especially for seismic hazard assessment,

it is necessary to handle uncertainty, and fuzzy set theory allows for this. Fuzzy set theory

may be useful not only for seismic hazard but also for all kinds of natural hazards;

however, there are many terms that are not understood very well quantitatively, which

should be considered in hazard assessment.
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