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Introduction 

The first order system of partial differential equations 

au au 
n- + A(x,y)n- + B(x,y)u = 0, 
ux uy 

(1) 

where u = (u1 , 7t2, . . . , u 2n) is 2n-component desired vector, A, B are given real 
2n x 2n-matriees depending on two real variables x, y is called elliptic in some 
domain G c R2

( ) , if ,""C,y 

det(A - >.I) -1 0, (2) 

for every real ).. and (x, y) E G; I is an identity matrix. In other words the system 
(1) iti elliptic: if the matrix A has no real characteristic: numbers in G . 

The investigation of such system has a great history. Various particular cases 
of Lhc system (1) were the object of investigation of Picard, Beltrami, Carlernan, 
13ers, Velma, Douglis, Bojarski, Rile, 13egehr, D. Q. Dai and many other authors . 

In the first part of our work we study the problem of validity of the maximum 
modulus theorem. To this end let us mention some auxiliary explanations. Under 
the solution of the system (1) we mean the classical solution of the class C1 (G) n 
C(G). 

Denote by 

A(A,B) (3) 

the class of all possible solutions of the system (1); the matrices A and Bare called 
the generating pair of the class (3). 
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Introduce 
1 

P-u(x , y) = [2:u~(x,y)r , (x,y) EG 

for every u of the class (3). And now raise a question (cf. Bojarski [1]). 
It:> the inequality 

P-u( xo, Yo) ::::: max Pu(x , y) 
(x, y) Er 

(4) 

(5) 

valid for arbitrary u from (3) and (x0 , y0 ) E G. r is a boundary of the domain G. 
Of course, in case n = 1 and 

A = (0 -1) 1 0 , B = (~ ~) 
the condition (5) if fulfilled. 

Consider now G = {x2 +y2 < 1}, n = 1, A is the same matrix, B = (~~ ~) 
and n = colunm(e- '"

2
- Y

2
, 0) E A(A,B). 

H is evident , that p,.(O, 0) = 1 and Pu(x , y) = ~, i.e. the condition (5) is not 
fulfilled. In this example the matrix B is not constant matrix. This example shows, 
that the rnaxirnmn modulus theorem for minimal dimensional elliptic system is not 
always true. It is easy to construct the example of higher dimensional system when 
the coudition (5) is disturbed in case A and B are constant. In fact, consider G is 
the same domain G = { x2 + y2 < 1}, 

(

0 -1 0 
1 0 0 
0 0 0 
0 0 1 -~)' A = 

(

-2 

B= -g 
0 

-2 
0 

- 6 

0 0) 0 0 
-2 0 

0 - 2 

and u = colurnn(u1 , u 2 , u3 , u4 ) E A(A,B) , where 

u 1 = e" (xcosy+ysiny), 

u 3 = 3(x 2 + y2
- 1)e" cos x, 

It is clear , that 

Pu(O , 0) = 3, 

u2 = ex(y cosy - x sin y), 

U4 = - 3(x2 + y2
- 1)ex siny. 

max Pu(x , y) = e 
(x,y) Er 

allCl tl~erefore the condition (5) is not fulfilled. 
In case the dimension of the system(1)- (3) is minimal, i.e. when n = 1 and 

moreover, when 

(0 -1) 
A = 1 0 ' B = (bu 

b2l 
bl2) , 
b22 

bkq E Lp(G), p > 2. 

We have with the great effort of very famous mathematicians, in some sense com­
plete t heory which is in very close connection with the theory of analytic functions 
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of complex variable. In particular, it is well-known the following fact, that there 
exists the number M ;::;.: 1 (depending only on the matrix B) such, that 

p,.(xo, Yo) :'::: M max Pu(x, y) 
(x,y)Er 

£(x every ll E A(A, B) and (xo, Yo) E G. 

(6) 

The inequality (6) is weaker than (5), but it is also very interesting problem as 
was noted by Bojarski in this work "General properties of the solutions of elliptic 
systems on the plane" in 1960. 

Now we describe the sufficiently wide class of the elliptic systems (1)- (3), for 
whic:h the inequality (6) as well as more strong inequality (5) holds. Consider the 
case of constant coefficients . 

Theorem 1. Lei for- the matrices A and B ther-e exists the or·thogonal matr-ix D 
s·tu:h, that 

0 - 1 0 0 . .. 0 0 
1 0 0 0 ... 0 0 

v -1AD = I o o o -1 . . . o o 
(7) 

• ••• ••••••••• 0 . 0 ••• ••••• 0 • •••• 

0 0 0 0 .. . 0 -1 
0 0 0 0 ... - 1 0 

du -hu dl2 -hl2 . . . dln -hln 
hu du hl2 dl2 ... h1n d1n 
d21 -h21 d22 -h22 . .. d2n -h2n 

n ·- l BD = I h21 d21 h22 d22 ... h2n - d2n (8) 
• • • • • • • • • • • • • • 0 0 •• •••• 0 ••••• •• •••••••••• 0 0 

dnl -hnl . .. . .. . .. dnn -hnn 
hn1 -dnl .. . . .. . . . hnn -dnn 

wher-e dkp, hkp, 1 :'::: k :'::: n, 1 :'::: p :'::: n ar-e ar-bitmr-y r-eal number-s and the con­
slT'uclcd complex rnatTix 

Bo = 
(

du + ihn d12 + ih12 · · · d1n + ih1n) 

::: : :::: . ::: : :::: ..•••.. :: : ::: (9) 

is a normal matr-ix, i.e. BoB6' = IJ'{; B 0 . Then the inequality (5) holds for any 
11. E L(A,B), (:crJ.Yo) E G. Moreover·, if the equality holds in some inner point 
of the domain G then the function Pu (but not necessar-ily vector-function u) is 
con.~tant. 

In above mentioned example, for the case n = 2, the conditions (7), (8) 
are fulfilled, but the constructed complex B0 is not normal and therefore (5) is 
violated. 
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The second part of our work is devoted to the system (1) which has the following 
complex form 

Wz= Qwz , (10) 

where Q is given n x n complex matrix of the class w;(c), p > 2 and Q(z) = 
0 outside of some circle. In this case under the solution of the system (10) we 
understand the so-called regular solution [4], i.e. w(z) E L(G), whose generalized 
derivatives Wz, Wz belong to Lr(G'), r > 2, G' c G is an arbitrary closed subset. 
(10) is to be satisfied almost everywhere in D . 

Bojarski [2] assumed, that the variable matrix Q in (10) is quasi-diagonal 
matrix of the special form having the eigenvalues less than 1. Hile noted that 
what appears to be essential property of the elliptic systems of the form (10) for 
which one ca.n obtain a useful extension of the analytic function theory is the 
self-commuting property of the matrix Q, which is 

Q(zi) Q(z2) = Q(z2) Q(zi) (11) 

J<w any two points z1 , z2. Following Hile if Q is self-commuting and if Q( z) has the 
eigeuva.lues less Llw.n 1 then the system (10) is called generalized Beltrami system. 
The solutions of such system is called Q-holomorphic vectors. 

The matrix valued function <I>(z) is a generating solution of the system (10) 
if it satisfies the following properties ([2]) : 

(i) <I>(z) is a C 1-solution of (10) in G; 
(ii) <I>(z) is a self-commuting and commutes with Q in G; 
(iii) <I>(t) - <I>(z) is invertible for all z, tin G, z -=f. t ; 

(iv) 8z<I>(z) is invertible for all zinG. 
The matrix V(t, z) = Ot<I>(t)[<I>(t)- <I>(z)]- 1 we call the generalized Cauchy 

kernel for the system(10). 
Let !lOW r be a union of simple closed non-intersecting Liapunov-smooth 

curves bounding finite or infinite domain; if r is one closed curve then G denotes 
the finite domain; if r consists of several curves then by c+ denote the connected 
domain with the boundary r . On these curves the positive direction is chosen 
such, that when passing along r, c+ remains left; the complement of the open set 
c+ u r till the whole plane denote by c-. 

Assume the vector cp( t) E L(f) is given and consider the following integral 

<I>(z) = ~ 1 V(t, z) dQt cp(t), 
21r2 r 

(12) 

where dQt = I dt + Q dt, I is an identity matrix. It is evident, that <I>(z) is Q­
holornorphic vector everywhere outside of r, <I>(oo) = 0. 

We call the vector <I>( z) the generalized Cauchy-Lebesgue type integral for 
the system (10) with the jump line r. 

The boundary values of <I>(z) on r are given by the formulas 

<I> ±(t) = ± - cp(t) + - . V(T, t) dQT J.l(T), 1 1 1 
2 21r2 r 

(13) 
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These formulas are to be fulfilled almost everywhere on r, provided that 
<P ±(t) are angular boundary values of the vector <P(z) and the integral in (13) is 
to be understood in the sense of Cauchy principal value. 

For the vector <P(z) to be representable by the Cauchy-Lebesque type integral 
(12) with the jump line r, it is necessary and sufficient the fulfillment of the 
equality 

~ { V(t, t 0 ) dqt[<P+(t) - <1> - (t)] = q>+(to) + <P-(to) 
1rz lr 

almost everywhere on r. 

(14) 

We call the generali:.~ed Cauchy-Lebesgue type integral (12) the generali:.~ed 
Cauchy-Lebesgue integral in the domain c + (G- ), if q>+(t) = cp(t) (<P - (t) = 
-cp(i;)) almost everywhere on r . 
Theorem 2. Let <P(z) be a Q-holomorphic vector representable by the generalized 
Cav.chy-Lebesgue type integr-al inc+ and let q>+(t) E L(r) . Then <P(z) is r·epr·e­
sentable by the genem.lized Cauchy-Lebesgue integral with respect to its boundary 
values. The analogous conclusion for the infinite domain c - in case <P( oo) = 0 is 
also valid. 

Introduce some classes of Q-holomorphic vectors. We say, that Q-holomorphic 
vector <ll( z) belongs to the class Ep(G+, Q) [E;(c +, Q)], p > 1, if <P(z) is repre­
sentable by the generalized Cauchy-Lebesgue type integral with the density from 
t.!Je class Lp(r) . It follows easily from the Theorem 2 that every Q-holomorphic 
vector from Ep( c ±, Q) is representable by the generali:.~ed Cauchy-Lebesgue inte­
gral with respect to its angular boundary values. 

Theorem 3. Let <P(z) be a Q-holomorphic vector representable by the generalized 
Cauchy-Lebesgue type integral inc+ (G- ) with the summable density. If the an­
gular bo·undar7; val·ues q>+ (<I>- ) belong to the class Lp(r) , p > 1 then <P(z) belongs 
to the class t,i;(G+,Q) [E;(c- ,Q)]. 

Theorem 4. Let <P(z) be a Q -holomorphic vector representable by the generalized 
Cauchy-Lebesgue type integml in simple connected domain G (G may be infinite). If 
Re[<P(t) ] = 0 almost everywhere on the boundary of the domain G then <P(z) = iC, 
when~ C ·is a real constant vector. (In case G is infinite C = 0) . 

Here we select some useful properties of above mentioned classes which are the 
natural classes in order to correctly pose and complete analy:.~e the discontinuous 
boundary value problems for pseudo-holomorphic vectors. 
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