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ASSESSMENT OF UNCERTAINTIES RELATED TO SEISMIC HAZARD USING FUZZY ANALYSIS
N. Jorjiashvili*, T. Yokoi**, Z. Javakhishvili*
Abstract

Seismic hazard analysis in the last few decades has become a very important issue. Recently, new technologies and available data have been improved that have helped many scientists to understand where and why earthquakes happen, the physics of earthquakes, etc. Scientists have begun to understand the role of uncertainty in seismic hazard analysis. However, how to handle existing uncertainty is still a significant problem. The same lack of information causes difficulties in quantifying uncertainty accurately. 

Usually attenuation curves are obtained in a statistical manner: regression analysis. Statistical and probabilistic analysis show overlapping results for the site coefficients. This overlapping takes place not only at the border between two neighboring classes, but also among more than three classes. Although the analysis starts from classifying sites using geological terms, these site coefficients are not classified at all. In the present study, this problem is solved using fuzzy set theory. Using membership functions, the ambiguities at the border between neighboring classes can be avoided. Fuzzy set theory is performed for southern California in the conventional way. In this study, standard deviations that show variations between each site class obtained by fuzzy set theory and the classical manner are compared. Results of this analysis show that when we have insufficient data for hazard assessment, site classification based on fuzzy set theory shows values of standard deviations less than those obtained use the classical way, which is direct proof of less uncertainty.

Keywords: Seismic Hazard, Uncertainty, Fuzzy Analysis, Attenuation Relation.
Introduction

An estimation of expected ground motion is fundamental for earthquake hazard assessment. Generally, ground motion and damage are influenced by the magnitude of the earthquake, the distance from the seismic source to the site, the local ground conditions and the characteristics of buildings (Atkinson, 2004). Empirical attenuation relation, a practical way to estimate ground motion parameters, gives information about how these parameters depend on the above mentioned source, path and site effects (Field, 2000). This, namely ground condition, must be considered, because the same earthquake recorded at the same distance may cause different damage according to ground conditions (Irikura et al. 2004). 
In conventional approaches, grouping or classification is done for strong motion observation sites based on a priori given information expressed by geological terms (Wills, 2000). Then, regression analyses are applied to the ground motion parameters (peak ground acceleration (PGA), response spectra (SA), etc.) observed at each of these classes (Field 2000). Although amplification factors are assigned to all stations used in analyses, the majority of the sites in that seismic hazard are assessed; but, any ground motion recorded which is no available, does not have this assigned value. Therefore, the mean value of each class has to be used for them in order to make a seismic hazard assessment. 
The usage of the mean value, however, brings an uncertainty for site amplification into the obtained seismic hazard. Its cause is a widely scattered amplification factor, even in the same site class. Molas and Yamazaki (Molas and Yamazaki 1995), e.g., show the list of site factors for PGA. Significant overlap of widely scattered distribution is observed among different classes. It can be interpreted that the classification in geological terms done prior to the regression analysis may be incorrect, i.e., the data scattered far from the mean value should be reclassified into another, because the borders between classes are essentially ambiguous, e.g., due to weathering etc. This can also cause one to misjudge the site classification when attenuation relation is applied to sites that do not have any ground motion record. The reliability of judging varies site to site, depending on the available information, i.e., fresh cut along a road in a site and ground covered by newly filled sand in another site. It is possible to imagine that there exists a level of uncertainty, depending on available information at each site. 
In the present study, fuzzy set theory is applied in order to handle the uncertainty caused by the site classification based on geological terms and its level of uncertainty. 
METHOD OF ANALYSIS: FUZZY SET THEORY

Basics of Fuzzy Set Theory 

Fuzzy set theory is an extension of conventional (crisp) set theory. It handles the concept of partial truth (truth values between 1 (completely true) and 0 (completely false)). It was introduced by Prof. Lotfi A. Zadeh of UC Berkeley in 1965 as a means to model vagueness and ambiguity in complex systems (Zadeh 1965).

The Membership Function

For the universal 
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 quantifies the grade of membership of the elements x to the fundamental set. The value 0 means that the member is not included in the given set; 1 describes a fully included member. The values between 0 and 1 characterize fuzzy members (De Campos and
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Some operations and arithmetic on fuzzy sets and numbers

Let 
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 respectively. Then following operations on sets can be defined    (Schmucker 1984).
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                            Union:  
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The support of a fuzzy set 
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 is the ordinary subset of 
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(Dubois and Prade, 1988):
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When we want to exhibit an element 
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 that typically belongs to a fuzzy set 
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, we may demand its membership value to be a greater than some threshold
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The membership function of a fuzzy set 
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 can be expressed in terms of the characteristic functions of its 
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-cuts according to the formula (Dubois et al. 1988):
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where 
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means the supremum, i.e. the least upper bound. 
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A fuzzy subset 
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 of a classical set 
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 is called normal if there exists 
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where 
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 (the smallest set which is closed with respect to some operations in set theory as it is known in classical set theory). A fuzzy set 
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A fuzzy number A is a convex, normalized fuzzy set whose membership function is at least segmentally continuous and has the functional value 
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For the fuzzy number 
[image: image49.wmf]A

 the interval of confidence for the level of presumption 
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Let  
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 and 
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and subtraction can be written as follows:
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Suppose we have 
[image: image61.wmf]n

 fuzzy numbers as 
[image: image62.wmf],

,...,

3

,

2

,

1

,

n

i

U

A

i

=

Î

 then

                                                         
[image: image63.wmf](

)

(

)

[

]

[

]

1

,

0

,

,

,

2

,

1

,

Î

=

a

a

a

a

i

i

i

a

a

A

,                                                               (12)

for the interval of confidence at the level 
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 of  
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the mean interval of confidence at the level of 
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 of the mean fuzzy number 
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(15) and is called the fuzzy expected average (Kaufmann et al. 1985).

If 
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The fuzzy arithmetic operations, summation, multiplication and division, which are used in equation (16) are defined as follows (Schmucker 1984):

If
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where 
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The fuzzy summation is a repeated process of the fuzzy addition. 

The fuzzy multiplication is defined as follows:
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and the fuzzy division is defined as:
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Ranking method

The ranking method implemented in this study is based on a scoring function that measures a TFN’s (trapezoidal fuzzy number) center of gravity (centroid) along the 
[image: image87.wmf]x

-axis (Fig 1). 

For fuzzy numbers with a non-zero area, the score is calculated as follows:

                                
[image: image88.wmf](

)

(

)

2

2

2

2

2

1

1

2

,

,

,

2

2

b

a

a

b

b

a

+

+

-

÷

÷

ø

ö

ç

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

+

-

+

=

=

a

b

a

b

a

b

a

TPZ

R

R

,                              (22)

where 
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 are the left and right bandwidth respectively.
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Fig 1 trapezoidal fuzzy number (TFN) and its centroid.

Expected value and Standard Deviation for trapezoidal fuzzy number

Let 
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 be a fuzzy number with 
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i.e. 
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 is nothing but the level-weighted average of the arithmetic means of all 
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-level sets. 

The variance (possibilistic) of 
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 is defined as follows (24):
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i.e. the possibilistic variance of 
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 is defined as the expected value of the squared deviations between the arithmetic mean and the endpoints of its level sets.

In case of 
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and 
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where 
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 corresponds to 
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-level in equation (23) and (24). Standard deviation is obtained as follows:
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Uncertainty Scaling for Reliability of Classification

In the linguistic approach to decision analysis, the use of linguistic labels implies a level of uncertainty.  The quantitative uncertainty is created by uncertainty in measurement or estimation of the source variable on which the label is placed, which also directly impacts the decision process (Debruin and Bregt 2001). In the case of environmental value for example, the estimate provided is usually based on incomplete information, due to our limited understanding of the complex nature of natural systems (Christensen 1996). The question arises: how to include quantitative uncertainty into the analysis process? The operation can be described as follows:
                                    
[image: image108.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

-

¢

-

¢

+

¢

-

¢

-

¢

+

¢

-

¢

-

¢

-

¢

-

¢

-

¢

-

¢

=

b

n

b

n

b

n

b

n

u

u

a

d

d

u

u

b

c

c

u

u

b

c

b

u

u

a

d

a

U

c

c

c

c

,

,

,                                      (28)   

where 
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 are shown in Fig 1. Schematically, uncertainty scaling operation is shown in Fig 2.
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Fig 2 Graphical representation of uncertainty scaling.
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Data used in the present study

Data used here were downloaded via the Internet from the COSMOS VIRTUAL DATA CENTER (http://db.cosmos-eq.org/scripts/adv_search.plx, hereafter written CVDC) for California (latitude range between 32N and 36N), for 281 stations in southern California and 28 earthquakes with magnitudes larger than 5.0 determined between 32N and 36N. In this database, the 1994 Northridge earthquake is also included (M=6.7) (Steidl and Lee 2000). There, stations are classified by their surface geology as summarized in Table 2. In the present study, BC class (Wills et al. 2000) is recognized in the possible range (left bandwidth) of B class here. At the same time it is recognized in the possible range (right bandwidth) of C class. The same treatment is done for CD and DE classes.
Table 1: Summary of the data used ,downloaded from COSMOS VIRTUAL DATA CENTER (http://db.cosmos-eq.org/scripts/adv_search.plx) with the parameters metioned above. The legend of site classes with geological terms (Wills et al. 2000).
	Site Class CVDC
	Number of stations
	Number of stations with Vs
	Mean Value

(m/sec)
	Standard Deviation
(m/sec)

	A
	8
	8
	1857.6
	256

	B
	17
	17
	871.4
	238

	BC
	47
	47
	728
	209.2

	C
	132
	132
	470.8
	139

	CD
	180
	180
	368
	96

	D
	120
	120
	286
	68

	DE
	45
	45
	226
	36

	E
	4
	4
	157
	45


Table 2: Site classes are used here in relation with others. The mean values and the standard deviations are calculated newly for the site classes of the present study. 
	Present Study
	(Wills et al. 2000)
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Field (Field 2000) obtained attenuation relations for PGA and SA at the period equal to 0.3, 1.0 and 3.0 sec as follows.
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where 
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 is the predicted natural logarithm of the ground motion parameter (e.g., 
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 the closest distance to the vertical projection of rupture (in km), and 
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 the average 30-meter shear-wave velocity at the site (m/sec), the values of which are listed in Table 2 . 
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[image: image138.wmf]h

 a fictitious depth needed to prevent zero distance.  The other parameters (
[image: image139.wmf]v

b

h

b

b

b

b

,

,

,

,

,

5

3

2

1

 and 
[image: image140.wmf]a

V

) are solved by regression analysis from empirical data (Field 2000). 
Aplication of fuzzy set theory

Designing of membership function

In the present study, non-symmetrical linear trapezoidal membership functions are used for simplicity in order to capture the vagueness in geological classification. A standard linear trapezoidal fuzzy number (TFN) can be represented completely by a quadruplet 
[image: image141.wmf](

)

b

a

,

,

,

b

a

Tpz

 as shown in Fig 1. It is also useful that crisp numbers 
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 can be represented in trapezoidal form (Bailey 2003).

In the CVDC database, average shear-wave velocity to 30m (
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) is assigned to site classes as an indicator of site response (Table 1). The legend in geological terms of the site classes is found in the paper of Wills et al. (Wills et al. 2000). Then, 
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 is selected as the variable parameter for membership functions.

First, the distribution function against 
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Then, the membership function 
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 is given as follows.
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where 
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Fig 3: Schematic figure for the process to obtain membership function based on the normalized distribution function.

Giovinazzi and Lagomarsino (Giovinazzi and Lagomarsino 2004) express the four corners of TFN using 
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are called the lower and the upper bounds of the uncertainty range. The most probable value 
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is obtained as the mean value of the trapezoidal membership function as shown in equation (25). Table 3 shows these five parameters for the five classes used in the present study.  

Table 3: Parameters of TFN for five site classes
	Site Class
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	A
	1100
	2000
	2025
	2050
	2100

	B
	480
	770
	935
	1100
	1500

	C
	350
	370
	425
	480
	770

	D
	175
	270
	310
	350
	370

	E
	100
	160
	167.5
	175
	270


The obtained membership function for each site class looks as shown in Fig 4.


First, for site class indexes again centroids of trapezoidal membership functions are used shown in equation (22).
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Fig 3: Site classification considering shear-wave velocity values.

Table 3: Site class index and standard deviation for all site classes for classical and                                                         fuzzy case for T=1.0sec.
	Site Class
	values
	classical
	by centroid of trapezoidal function

	A Class
	Site class index (m/sec)
	1857.6
	1799.8

	
	stand.deviat. (m/sec)
	256
	214.8

	B Class
	Site class index (m/sec)
	1066
	966.5

	
	stand.deviat. (m/sec)
	391
	291

	C Class
	Site class index (m/sec)
	471
	490.1

	
	stand.deviat. (m/sec)
	219
	132.7

	D Class
	Site class index (m/sec)
	285
	273.4

	
	stand.deviat. (m/sec)
	76
	53

	E Class
	Site class index (m/sec)
	157
	159.9

	
	stand.deviat. (m/sec)
	45
	36


Uncertainty Scaling 

Once we obtain trapezoidal membership function for each site class, then we can use the uncertainty scaling operation for reliability of classification. Using such scaling operation we can obtain different membership functions which correspond to each level of uncertainty as shown in Fig 4. Then station coefficients can be obtained by several ways, depend on our purpose, which are shown later based on some examples.

Our purpose is to handle uncertainty. For this purpose we use the uncertainty scaling. We choose a different level of uncertainty, such as ‘very uncertain’, ‘uncertain’, ‘moderately certain’, ‘certain’ and ‘very certain’, and give them some weights due to treatment of uncertainty. Then we can choose a specific level of uncertainty and perform fuzzy analysis for this level; or, we can consider some levels of uncertainty, neglect others, or otherwise leave only a certain level. We have many options depending on our purpose. 

Then fuzzy analyses were applied for second type classification. 
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Fig 4 Uncertainty Scaling.

Then we define uncertainty semantically, as shown in Fig 4. Then we use scaling operation shown in equations (28) and (29). In those equations instead of 
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 function. For example, for B site class we can get uncertainty scaling as follows:
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For ‘certain’ case (weight: 
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For ‘moderately certain’ case (weight: 
[image: image206.wmf]n

u

=0.5) 

                                                         
[image: image207.wmf](

)

(

)

1500

,

1100

,

770

,

486

=

n

u

U

,                                               (37)

and as an interval:

                                                  
[image: image208.wmf](

)

[

]

1500

400

;

82

.

486

12

.

294

5

.

0

+

-

+

=

a

a

a

A

,                                  (38)

For ‘uncertain’ case (weight: 
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and for ‘very uncertain’ case (weight: 
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where 
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 is a level of confidence and 
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Fig 5 shows uncertainty scaling for B site class. The blue line shows the membership function obtained by the second type of fuzzy classification. Again, as with other cases, ‘moderately certain’ corresponds to this classification itself.
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Fig 5 Uncertainty Scaling for B site class. 


Site class indexes for the other two cases are performed two different ways. One of them is a combined approach, considering only from ‘very certain’ up to ‘moderately certain’ levels of uncertainty. Fuzzy intervals of each level of confidence from 0 up to 1 are also used here. Then expected and maximum values are calculated (Table 4). We use both of these values for the calculation of the site class index (Kaufmann 1988).

Table 4 Expected values for each term and all site classes for SA for California

	
	Site Classes
	membership
	very certain
	Certain
	mod. certain

	Expected Values
	A Cass
	1799.8
	1695.8
	1721
	1799

	
	B Class
	966.9
	960.4
	963.9
	966.9

	
	C Class
	490.1
	493.8
	492
	489.7

	
	D Class
	273.4
	265.8
	269.6
	272.8

	
	E Class
	159.9
	165.1
	163.4
	161



Table 5 shows site class indexes and standard deviations obtained for B site class for all classical and fuzzy cases for period 1.0 sec. These standard deviations are related to the variation of the station coefficients in site class (
[image: image218.wmf]s

s

) for classical and fuzzy cases for B site class and for fuzzy cases obtained using equations (26), (27).

Table 5 Site class indexes and standard deviations for all site classes for classical and  all fuzzy cases                for T=1.0sec.

	 
	classical
	second type fuzzy classification

	
	
	by centroid of trapezoidal function
	combined
	very certain
	mertain
	moderately certain
	uncertain
	very uncertain

	A class
	Site class index (m/sec)
	1857.6
	1799.8
	1798
	1695.8
	1721
	1799
	1802
	1813.5

	
	Stand.deviat. (m/sec)
	256
	214.8
	216
	168
	189
	213
	228
	258

	B class
	Site class index (m/sec)
	1066
	966.5
	966.8
	963.7
	965.4
	966.9
	967.9
	968.7

	
	Stand.deviat. (m/sec)
	391
	291
	293
	188.7
	239
	291
	345
	399

	C class
	Site class index (m/sec)
	471
	490.1
	491
	493.8
	492
	489.7
	486.6
	482.2

	
	Stand.deviat. (m/sec)
	219
	132.7
	134
	109
	121
	132
	165
	218

	D class
	Site class index (m/sec)
	285
	273.4
	274.3
	265.8
	269.6
	272.8
	276.7
	283.5

	
	Stand.deviat. (m/sec)
	76
	53
	53.5
	43
	48
	54
	65
	77

	E class
	Site class index (m/sec)
	157
	159.9
	160.2
	165.1
	163.4
	161
	158.3
	156.7

	
	Stand.deviat. (m/sec)
	45
	36
	35
	29
	33
	35.5
	38
	46


RESULTS of Analysis

Data from the paper (Field 2000) is used as an example for SA. The fuzzy analysis gives smaller values of the standard deviations than those of the classical case for SA. 
First, the membership functions for SA are designed by considering existing information about shear wave velocity values. Field (Field 2000) provides the information about site characteristics, i.e., shear wave velocity at the surface. If there is no measurement or any existing information then membership function can be obtained as a linguistic term using a symmetric (quadruplet) membership function but if there is a possibility to obtain some information, then, such information can be used for the design of the membership function as it is done in the present work. Thus, membership functions are obtained more precisely; the site class indexes and the standard deviations are calculated quantitatively. In the fuzzy case, standard deviations are significantly reduced as compared to the classical case (Table 3). 
As shown above, the membership functions for SA are obtained in an appropriate manner. Thus, the uncertainty scaling is applied to SA.
DISCUSSION AND CONCLUSION

There are many causes of uncertainty throughout the seismic hazard analysis process. The attenuation relation of ground motion that plays a main role brings many uncertainties into the analysis. The present study focused on the uncertainty related with the site classification for the acceleration response spectra (SA). 


In this study, standard deviations that show variations between each site class obtained by fuzzy set theory and the classical means are compared. Results on this analysis show that even when we have very insufficient data for hazard assessment, site classification based on fuzzy set theory shows values of standard deviations less than those obtained in the classical manner, which is direct proof of less uncertainty. The 
example performed in this work shows that variances based on station coefficients significantly reduce in the fuzzy case in comparison with the classical case. As shown here, designing membership function is very important. If we design appropriate membership function we can reduce uncertainty. 


Given membership functions allow the application of various methods of fuzzy set theory. In the present study, the uncertainty scaling is selected among them. This method can handle the difference of uncertainty level or reliability of judgment for site classification. For example, if we have to classify site conditions only based on geological information or some other non-numerical information, we use membership function for the ‘very uncertain’ level. If we have some geotechnical measurement or some more precise information, we can select a lower uncertainty level (toward ‘very certain’). Also, not only the standard deviations, but also the site class indexes, can be changed by the uncertainty scaling. This shows a new aspect of the empirical attenuation relation.

All the discussions mentioned above prove the advantage and usefulness of fuzzy set theory, not only for attenuation relation of ground motion, but also in many cases where some primary data are insufficient or ambiguous. Especially for seismic hazard assessment, it is necessary to handle uncertainty, and, fuzzy set theory allows for this. Fuzzy set theory may be useful not only for seismic hazard, but also for all kinds of natural hazards; however, there are many terms which are not understood very well quantitatively which should be considered in hazard assessment.
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