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Chapter 1

QUANTUM STATE DEPRESSION IN
A QUANTUM WELL OF SPECIAL GEOMETRY

Avto Tavkhelidze®, Vasiko Svanidze and Irakli Noselidze
Thilisi State University,
Chavchavadze Avenue 13, 0179 Thilisi, Georgia

ABSTRACT

Changes in the quantum well properties caused by periodic ridges in
the surface were studied within the limit of quantum theory of free
electrons. The authors show that due to destructive interference of de
Broglie waves, some quantum states become quantum mechanically
forbidden for free electrons. Wave-vector density in k space is reduced
dramatically.

At the same time the number of free electrons does not change
considerably, as the metal remains electrically neutral. Because of the
Pauli exclusion principle, some free electrons must occupy quantum
states with higher wave numbers. The Fermi vector and Fermi energy of
quantum well increase, and consequently, the work function decreases.
Resent experiments are in qualitative agreement with the presented
theory.

This effect could exist in any quantum system comprising fermions
inside a potential-energy box of special geometry.
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1. INTRODUCTION

Recent developments of nanoelectronics enable the fabrication of
structures with dimensions comparable to the de Broglie wavelength of a free
electron inside a solid. This new technical capability makes it possible to
fabricate some microelectronic devices such as resonant tunneling diodes and
transistors, superlattices, quantum wells (QW), and others [1] based on the
wave properties of the electrons. In this article, we discuss what happens when
regular ridges, which cause interference of de Broglie waves, are fabricated on
the surface of a QW layer. We will study the free electrons inside a rectangular
potential-energy box with ridged wall and compare the results to the case of
electrons in a box with plane walls. We have shown that modifying the wall of
a rectangular potential-energy box leads to an increase of the Fermi energy
level. Results obtained for the potential-energy box were extrapolated to the
case of QW layers.

2. ELECTRONS IN A POTENTIAL-ENERGY BOX
WITH A RIDGED WALL

We begin with the general case of electrons inside a potential-energy box.
Assume a rectangular potential-energy box with one of the walls modified as
shown in Figure 1. Let the potential energy of the electron inside the box
volume be equal to zero, and that outside the box volume be equal to infinity.
The ridges on the wall have the shape of strips having depth a and width w.
Let us name the box shown on Figure 1 as ridge potential-energy box RPEB to
distinguish it from the ordinary potential-energy box PEB having plane walls.
The time independent Schridinger equation for electron wave function inside
the PEB has the form

VY +(2m/hHE¥Y =0 (1)

Here, ¥ is the wave function of the electron, m is the mass of the
electron, and E is the energy of the electron. Let us rewrite Eq. (1) in the form
of the Helmholtz equation,

(V+kH)¥ =0 )
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where k is wave vector, k =+/2mE /h. Once the ridge depth a in our
particular case is supposed to be much less than the thickness of the metallic
film a << L_, we can use the volume perturbation method to solve the

Helmholtz equation [2].

The idea is as follows: The whole volume is divided in two parts, the main
volume MV and the additional volume AV. The MV is supposed to be much
larger than the AV, and it defines the form of solutions for the whole
composite volume. Next, solutions of the composite volume are searched in
the form of solutions of the MV. The method is especially effective in the case
where the MV has a simple geometry, for example, a rectangular geometry,
allowing separation of the variables. In our case, the whole volume in Figure 1
can be divided in two, as shown in Figure 2. We regard the big rectangular box
as the MV and the total volume of strips as the AV. The MV has dimensions

L.,L,, and L, . The solutions of Eq. (2) for such a volume are well known.

Because of the rectangular shape, solutions are found by using the method of
separation of variables. The solutions are plane waves having a discrete
spectrum,

Ky =xn/L, X7 =nj/L, k" =7ilL, 3)

Here, k™, k™ and k™ are the x, y, and z components of wave vectors

of the MV and n,m, i=1,2,3,... In the same manner the spectrum of the single
strip of the AV is the following:

kY =npla, k =nq/w, kI =7i/L, 4

k*, k? and k% are components of wave vectors of one strip of AV,

p,g=1,2,3,..., and a and w are dimensions of the strip, as shown on Figure 2.
Analysis conducted in [3] shows that wave vector spectrum of RPEB is

K* =npla, kK’ = rg/w, k" ;=ni/L, 5)

and is equal to the spectrum of a single strip Eq. (4). In the Eq. (5), we skip
some working indices used in this section to simplify the presentation.
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Figure 1. 3D view of ridged potential-energy box.

L,

—— - —

Figure 2. Potential-energy box with ridged wall divided into two volumes.

Equation 5 is obtained using the volume perturbation method for solving
of the Helmholtz equation. This method assumes that the AV is much less than
the MV (a/2L,)<<1. Special attention should be paid to the limit of very low a
and w. The case a, w—0 has the following physical interpretation. Standing
waves in the MV ignore the AV because of wave diffraction on it. If we
assume that the wave ignores nonregularities with dimensions less than its
wavelength, we must make the following corrections in Eq. (5). It is valid for
K" >2n/a and K’ >2n/w for p, g=2, 3, 4.... For the range 0<k™ <2n/a and 0<k’
<2m/w, Eq. (3) should be used for RPEB instead of Eq. (5). In practice,
dimensions a, w are such that only the first few k should be added to Eq. (5).

For the case of large a/2L,, other methods were used. The general solution
of Eq. (2) in such a complicated geometry exhibits several problems. A
complicated surface shape does not allow to find an orthogonal coordinate
system that will allow to separate the variables. Therefore, boundary
conditions may be written only in the form of piecewise regular functions. A
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¥ general solution of Eq. (2) usually contains infinite sums. However, there are

~ methods [2] that allow one to obtain a dispersion equation and to calculate the
wave vector. The Helmholtz equation is frequently used for calculating the
electromagnetic field in electromagnetic resonator cavities, waveguides, and
delay lines. We found the following similarities between the electron wave-
function inside the RPEB and electromagnetic field inside electromagnetic
delay lines. First, our geometry matches the geometry of a corrugated
waveguide delay line [4] . Second, the same Eq. (2) is used to describe both
cases. Third, the boundary condition for the electromagnetic wave inside the
corrugated waveguide €=0 (here, € is the electric component of the
electromagnetic wave) for walls of a conductive waveguide exactly matches
the boundary condition for electrons, ¥=0 outside the metal. Fourth, any wave
can be presented as the sum of plane waves in both cases. We also found that
similar analogies are described in the literature [5]. Therefore, for the case of
high a, we used the method of solving the Helmholtz equation inside the
corrugated waveguides. This method is based on solving a transcendental
equation. We found numerical solutions for the transcendental equation for
high a/2L, and obtained the same result, namely, the reduction of the spectrum
density for RPEB relative to PEB.

For very thin layers L,>> L, w, it is expected that our structure will not
exhibit quantum features in the Z direction. Therefore, it is reasonable to
consider a model of the electron motion in a two-dimensional (2D) region
delimited by the line X=0 from one side, and a periodic curve on the opposite
side. In that case, we can consider the 2D Helmholtz equation and use special
methods to solve. Specifically, we used the Boundary Integral Method (BIM),
which is especially effective for the low-energetic part of the spectrum and has
been widely employed for studying 2D nano systems [6].

The BIM method implies consideration of an appropriate integral equation
instead of the Helmholtz equation. We have applied the corresponding
numerical algorithm [7] to a finite number of periods and calculated the lowest
few ten energy levels. We note that computation of higher energy levels with
reasonable accuracy demands rapidly increasing machine-time. The obtained
spectrum of transverse wave vectors also shows a reduction in spectral density.

At the end of this section, it is worth to note that the above-discussed
effect of the energy-spectrum reduction is closely related to the so-called
Quantum Billiard Problem. The 2D system studied represents a modification
of the quantum billiard problem. Unlike the circle and rectangular billiards, the
corrugated boundary makes the system under consideration non-integrable.
This means that the number of degrees of freedom exceeds the number of
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constants of motion. Such billiards constitute chaotic systems. The distinction
between the spectra of chaotic and non-chaotic (regular) systems is exhibited
by an energy level spacing distribution [7, 8]. Namely, consecutive energy
levels are likely to attract each other in the case of an integrable system,
whereas they repel each other in the case of a chaotic system.

Figure 3. Section of Fermi sphere is k space for PEB (left) and RPEB (right). Points
denote quantum states for free electron.

3. FREE ELECTRONS IN METAL LAYER
WITH RIDGED SURFACE

To investigate how periodic ridges change quantum states inside the thin
metal layer, we will use a quantum model of free electrons. Free electrons
inside the metal form a Fermi gas. Cyclic boundary conditions of Born-
Carman,

K* = 2mn/L,, K’ ;=2mj/L,, K* ;=2mi/L,, (6)

are used instead of Eq. (3). Here, n, j, i=0, £1, +2, +3... The result of the theory

is a Fermi sphere in k space. All possible quantum states are occupied below
kr at T=0. However, for T>0, there are two types of free electrons inside the
Fermi gas. Electrons with kak interact with their environment and define the
transport properties of metals such as charge and heat transport. Electrons with
k<< kg do not interact with the environment because all quantum states nearby
are already occupied by other electrons (it becomes forbidden to exchange
small amounts of energy with the environment).
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Such electrons are ballistic and have formally infinite mean free path. This
- feature allows us to regard them as planar waves, traveling between the walls
of the metal (if the distance between walls is not too great). Further, we will
concentrate on such ballistic electrons.

Once we work with electrons with infinite (or very long) mean free paths,
we can regard the metal layer as a potential-energy box and extrapolate
calculations of the previous section to it.

We start by comparing the volume of an elementary cell in k space for
thin metal films with and without periodic ridges. From Eq. (5) and Eq. (6), we
have:

dVi=87*/(LsLy L,) and dV,;=87"/(awL,) (7)

Here, dVy is the volume of an elementary cell in k space for a plain film,
and dV, is the volume of an elementary cell in k space for an ridged film.
Further, we find maximum wave vector and Fermi energy as in reference [3]

Ku= kg [Ly(Ly +a/2)/(aw)]"”. @®)
Ew=Ex[L,(L, +a/2)/(aw)] ™’ ©)

If we assume a<<L,, Eq. (9) can be rewritten in the following simple
form:

Ew=Ex(L,L, law)™” . (10)

The dimensional quantum effects in ultra-thin metal films, using a
rectangular potential-box model and quantum model of free electrons, were
studied in Ref. [9]. Quantum state depression in metal films was investigated
experimentally in Ref. [10]. Quantum state depression in semiconductor
ridged quantum well was investigated theoretically in Ref. [11].

CONCLUSIONS

To investigate a new quantum interference effect in metal layers, we
studied the behavior of free electrons in the potential-energy box of special
geometry. It was shown that when periodic ridges are introduced in the plain
wall of a rectangular potential-energy box, the spectrum density of possible
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solutions of the Schrddinger equation is reduced dramatically. Once the
number of possible quantum states decreases, electrons must occupy higher
energy levels because of the Pauli exclusion principle. Results obtained for
electrons in the modified potential-energy box were extrapolated to the case of
the free ballistic electrons inside the metal film. The electron distribution
function changes. Fermi energy increases, and consequently, work function
decreases. Recent experiments demonstrate quantitative agreement with the
theory. Increase in the Fermi level and the corresponding decrease of the work
function of the thin films will have practical use for devices working on the
basis of electron emission and electron tunneling. In addition, such layers will
be useful in the semiconductor industry, particularly for the structures in which
contact potential difference between two layers plays an important role.
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