
February 10, 2009 18:38 00550

International Journal of Nanoscience
Vol. 7, No. 6 (2008) 333–338
c© World Scientific Publishing Company

QUANTUM STATE DEPRESSION
IN A SEMICONDUCTOR QUANTUM WELL

AVTO TAVKHELIDZE∗ and VASIKO SVANIDZE
Tbilisi State University, Chavchavadze Avenue 13

0179 Tbilisi, Georgia
∗avtotav@geo.net.ge

Revised 15 October 2008

In this study, the quantum state depression (QSD) in a semiconductor quantum well (QW) is
investigated. The QSD emerges from the ridged geometry of the QW boundary. Ridges impose
additional boundary conditions on the electron wave function, and some quantum states become
forbidden. State density is reduced in all energy bands, including the conduction band (CB).
Hence, electrons, rejected from the filled bands, must occupy quantum states in the empty bands
due to the Pauli exclusion principle. Both the electron concentration in the CB and the Fermi
energy increased, as in the case of donor doping. Since quantum state density is reduced, the
ridged quantum well (RQW) exhibits quantum properties at widths approaching 200 nm. A
wide RQW can be used to improve photon confinement in QW-based optoelectronic devices.
Reduction in the state density increases the carrier mobility and makes the ballistic transport
regime more pronounced in the semiconductor QW devices. Furthermore, the QSD doping does
not introduce scattering centers and can be used for power electronics.
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1. Introduction

Quantum well (QW) lasers, solar cells, and tran-
sistors are fabricated based on semiconductor het-
erostructure technologies.1 The typical thickness
of the QW layer is 10–20 nm. A lower thick-
ness is essential for reducing the density of the
quantum states and realizing the quantum prop-
erties of the well. However, thin layers do not
confine the photons (needed for optoelectronics)
and do not carry high currents (needed for power
electronics). Recently, quantum state depression
(QSD) was investigated both theoretically2 and
experimentally.3 QSD allows reduction of quantum
state density and realization of quantum properties
of the thick layer. It is based on the ridged geometry
of the layer boundary. Periodic ridges impose addi-
tional boundary conditions on the electron wave
function. Supplementary boundary conditions for-
bid some quantum states for free electrons, and

the state density in k space ρ(k) is reduced. Due
to the Pauli exclusion principle, electrons rejected
from the forbidden quantum states have to occupy
the states with higher k. Thus, Fermi vector kF

and Fermi energy EF increase. In semiconductors,
QSD reduces ρ(E) in all energy bands, including
the conduction band (CB). Electrons, rejected from
the filled bands, occupy the quantum states in the
empty bands, and the electron concentration in the
CB increases. This corresponds to donor doping.
QSD depends on electron confinement and, there-
fore, is most pronounced in QW structures.

The objective of this work is to calculate the
parameters of the semiconductor ridged quantum
well (RQW) and discuss the possible applications.
Initially, the basic features of QSD in semiconduc-
tors are described. Subsequently, the density of the
quantum states in k space ρ(k) and energy ρ(E)
for the RQW are evaluated and compared with
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those of the conventional QW. The number of QSD-
generated electrons is determined and the formu-
las for electron concentration and EF are obtained.
Furthermore, the charge transport in the RQW is
analyzed and the formulas for carrier mobility and
electrical conductivity are obtained. Finally, the
advantages of using the RQW for optoelectronic
devices and ballistic transport devices are discussed.

2. Semiconductor RQW

The cross-section of an RQW layer is shown in
Fig. 1(a). There are periodic ridges having width w
and height a on the surface of a conventional QW
layer. Potential energy changes instantly, by value
D, at the surface of all walls. Figure 1(b) shows
a schematic representation of the corresponding
potential well. The dashed line depicts the double
right side boundary. In addition, the metal RQW
was investigated in an earlier study.2 Let us now
find the distinctive features of the semiconductor
RQW. Like in metals, the QSD forbids some quan-
tum states. However, before going into their details,
the distinctions and similarities between the QSD-
forbidden state and a hole should be elucidated. The
QSD-forbidden state is forbidden by the boundary
conditions and cannot be occupied. However, it is
not forbidden in an irrevocable way. If the bound-
ary conditions change (e.g. due to charge depletion),
then the QSD-forbidden state can recombine with
the electron. As the QSD-forbidden state is confined
to the boundary conditions (macroscopic geome-
try), it is not localized in the lattice and cannot
move like a hole.

(a) (b)

Fig. 1. (a) 3D view of the RQW; (b) schematic representa-
tion of the RQW.

The QSD transfers electrons to higher energy
levels. If initially the semiconductor is of the p type,
then the QSD will change it to an undoped or even
to the n type. The QSD is comparable with a con-
ventional donor doping, from the point of increase
in EF . However, there are no donor atoms in the
case of QSD doping, which makes it akin to mod-
ulation doping. Unlike modulation doping, there is
no space charge, as the QSD does not redistribute
the charge and just transfers the electrons from the
filled energy bands to the empty ones. Moreover,
the material remains uniformly neutral.

It is convenient to make a comparison between
the RQW and the QW. Furthermore, the main
parameters — such as ρ(k), ρ(E), and EF — of
the RQW can be expressed in terms of the same
parameters of the conventional QW (a = 0). It can
be assumed that both the wells are made from the
undoped material and are deep enough (to allow the
limit of an infinitely deep well). ρ(k) is inversely pro-
portional to the volume of the k space elementary
cell. The cell volume for the RQW can be found2

on the basis of the volume perturbation method
of solving the time-independent Schrödinger equa-
tion (Helmholtz equation).4,5 However, this method
can be used only when a � Lx. The RQW vol-
ume is divided into two parts: main volume (MV)
and additional volume (AV). It is presumed that
MV � AV and it defines the form of the solu-
tions for the whole RQW volume. Subsequently,
the solutions of the RQW volume are searched in
the form of solutions of the MV. The method is
especially effective in the case where the MV has a
simple geometry, e.g. rectangular geometry, allow-
ing separation of the variables. In this study, the
volume of the ridge was regarded as the AV hav-
ing dimensions a, w, Lz. The MV had the dimen-
sions Lx, Ly, Lz. Solutions were plane de Broglie
waves with a discrete k spectrum. Further, the elec-
tron wave function and its derivative were matched
from the two sides on the border of the MV and
AV. The result obtained was the reduction of ρ(k)
and the increase of EF in the RQW (a detailed
description can be found in Ref. 2). Analysis was
made within the limit of the quantum model of free
electrons. Here, we extrapolate the results to Bloch
waves with the assumption that the electron energy
is E(k) = �

2k2/2m∗ and m∗ is energy-independent,
where � is the Planck constant and m∗ is an electron
effective mass.

The k space elementary cell volumes for the
RQW and QW are (2π)3/awLz and (2π)3/LxLyLz,
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respectively (as found in Ref. 2). Here, Lx, Ly, and
Lz are the well dimensions. Thus, the corresponding
(not normalized) state densities, P (k), are

PRQW(k) =
2awLz

(2π)3
, PQW(k) =

2LxLyLz

(2π)3
. (1)

Factor 2 accounts for the spin. Thus, the normalized
state densities are

ρRQW(k) =
2

(2π)3
aw

Ly(Lx + a/2)
,

ρQW(k) =
2

(2π)3
.

(2)

In Eq. (2), the real space volumes of the RQW and
QW are considered, and we have introduced the
geometry factor

G =
Ly(Lx + a/2)

aw
. (3)

Thus, the comparison in Eq. (2) gives ρRQW(k) =
ρQW(k)/G. The state density in k is reduced by
factor G. The periodic lattice potential does not
depend on QSD, and hence m∗ and the dispersion
relation E(k) are identical for the RQW and QW.
The state density in energy ρ(E) = (dE/dk)−1 ρ(k)
is reduced by the same factor G, i.e.

ρRQW(E) =
ρQW(E)

G
. (4)

Subsequently, the concentration of the QSD-
generated electrons nQSD was determined. The
quantum well layer was typically grown on a sub-
strate of diverse band structures. A general case
shown in Fig. 2 demonstrates that the band gaps
of the substrate material are wider. The QSD
takes place within the electron confinement inter-
vals ∆Ej, where j = 1, . . . , 4. Each ∆Ej has the
characteristic dispersion relation Ej(k) = �

2k2/2m∗
j

and density of states ρ(j)(E). Here, m∗
j is the elec-

tron effective mass within the jth interval. Inside
each ∆Ej , there exist QSD-forbidden states, whose
densities are

ρ
(j)
FOR(E) = ρ

(j)
QW(E) − ρ

(j)
RQW(E)

= ρ
(j)
QW(E)(1 − G−1) , (5)

and Eq. (4) was used in Eq. (5). The total density
of the forbidden states is the sum of the densities of
the forbidden states from all intervals ∆Ej , i.e.

ρFOR =
∑

j

ρ
(j)
FOR(E)

= (1 − G−1)
∑

j

ρ
(j)
QW(E) . (6)

Fig. 2. Energy diagram of a semiconductor RQW grown on
a wide band gap substrate.

The sum
∑

j ρ
(j)
QW(E) depends on the band struc-

tures of both the substrate and the RQW mate-
rial, and can be calculated for a particular pair.
Apparently, the sum does not depend on the
QSD. Thus, the expression nCON ≡ ∑

j ρ
(j)
QW(E)

is introduced, and the index shows that it is the
electron-confinement-defined number. nCON does
not depend on the energy, since the summation
by energy was already carried out. Thus, accord-
ing to Eq. (6), the total number of forbidden quan-
tum states (per unit volume) or the concentration
of QSD-generated electrons can be rewritten as

nQSD = ρFOR = nCON(1 − G−1) . (7)

Equation (7) gives the QSD doping. To calculate
other RQW parameters, we used the condition of
electrical neutrality,6

nRQW = pRQW+nQSD = pRQW+nCON(1−G−1) ,
(8)

where nRQW and pRQW are the electron and hole
concentrations in the RQW. They can be found
using the semiconductor equation for the nondegen-
erate limit, as follows:

nRQWpRQW

=
NC

G

NV

G
exp

(
− Eg

KBT

)
=

n2
QW

G2
= n2

i . (9)

Here, NC and NV are the effective state densities
in the CB and VB of the QW, Eg = Ec −Ev is the
band gap width, KB is Boltzmann’s constant, T is
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the absolute temperature, nQW is the electron con-
centration in the QW, and ni is the initial (to
QSD doping) electron concentration in the RQW.
To obtain Eq. (9), we divided the state densities
by a factor G according to Eq. (4), and used the
semiconductor equation for the conventional QW,
n2

QW = NCNV exp(−Eg/KBT ). The combination
of Eq. (8) and Eq. (9) gives

nRQW =
1

2G

〈
nCON(G − 1)

+
[
n2

CON(G − 1)2 + 4n2
QW

]1/2〉
, (10)

where nRQW is similar to nQW in the limits of QSD
absence. The first limit is G = 1 (no state density
reduction). Equation (10) shows that for G = 1,
nRQW = nQW. Another limit is nCON = 0 (no con-
finement), in which Eq. (10) gives nRQW = nQW/G,
where the latter is not similar to nQW for any value
of G. Divergence is apparent, since G can have only
one value of G = 1 in the case of zero confinement.
Actually, nCON = 0 corresponds to no boundaries
and no RQW geometry. pRQW can be obtained from
Eqs. (10) and (9).

Subsequently, we determined the increase in EF

due to QSD doping ∆EF . We used the formula
∆EF = kBT ln(nRQW/ni) for the nondegenerate
limit.6 By inserting nRQW from Eq. (10) and ni from
Eq. (9), we get

∆EF = kBT ln

〈
nCON(G − 1)

2nQW

+

[
n2

CON(G − 1)2

4n2
QW

+ 1

]1/2〉
. (11)

Figure 3 demonstrates the ∆EF dependence on
nCON for some values of G according to Eq. (11).
∆EF is most sensitive to changes in G for a low
G values (G ≈ 1). For G > 3, the dependence
is less sensitive to changes in G and is linear
in the logarithmic scale. Such behavior is natu-
ral, as for G somewhat exceeding unity, the state
density remains high and a small increase in the
value of G generates a large number of QSD-
rejected electrons. On the contrary, for G > 3,
the state density is reduced dramatically, and fur-
ther increase in G does not generate that many
rejected electrons. In addition, ∆EF will fur-
ther increase for (nCON/nQW) > 105. However,
we do not extend the curves, since Eq. (11) is
true only within the nondegenerate limit. In the
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Fig. 3. Fermi energy increase as the function of QSD doping
for some values of G.

case of higher nCON/nQW, when the semiconduc-
tor becomes degenerated, Fermi integrals should be
used to calculate nRQW and ∆EF . However, this
could be done only within the limited energy range
near the bottom of the CB, since the above anal-
ysis is true only in the approximation that m∗ is
energy-independent.

Charge carrier scattering rates are proportional
to ρ(E) according to Fermi’s golden rule and are
reduced in the RQW. If τ is the carrier trans-
port lifetime, then according to Eq. (4) we have
τRQW = GτQW. Consequently, for mobility µ =
eτ/m∗, we get

µQW = GµQW . (12)

The mobility of charge carriers increases G times
in the RQW. In the case of heavy QSD doping
(nRQW � pRWQ), the hole current can be neglected
and the electrical conductivity using Eq. (12) in
Eq. (13) is given as

σRQW = eµRQWnRQW = σQWG(nRQW/nQW) .
(13)

Furthermore, by inserting Eq. (10) in Eq. (13),
we get

σRQW = σQW

〈
nCON(G − 1)

2nQW

+

[
n2

CON(G − 1)2

4n2
QW

+ 1

]1/2〉
. (14)

Equation (14) indicates that the conductivity of
the RQW increases with respect to the QW.
Figure 4 shows the conductivity dependence on
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Fig. 4. Conductivity dependence on QSD doping for some
values of G.

QSD-generated electron concentration for some val-
ues of G. In the general case, the hole current con-
tributes to the mechanism and should be included
in Eq. (13), and can be calculated in a similar way
using pRQW determined from Eqs. (10) and (9).

3. Geometry Factor Calculation

The conventional QW (a = 0) has quasi-2D struc-
ture Ly, Lz � Lx, and no quantum features are
considered in the Y and Z directions. Nonnormal-
ized state density is P (E) = ρ(E)LxS, where S
is a layer surface and P (E) is proportional to the
product ρ(E)Lx. As ρ(E) in the RQW is reduced G
times, Lx can be similarly increased with respect
to G times without the loss of quantum proper-
ties. Let us find G for the arbitrary geometry. There
are no analytical solutions to the time-independent
Schrödinger equation in the ridged well (the solu-
tion contains infinite sums). However, there are
fairly accurate mathematical and numerical meth-
ods. Mathematically, there is no difference between
QSD and electromagnetic mode depression, and
the Helmholtz equation and the same boundary
conditions are used in both the cases. Helmholtz
spectrum calculation can be found in the liter-
ature related to Casimir effect. Casimir energy
exhibits strong dependence on the photon spectrum
and, consequently, on the geometry of the vacuum
gap.7 A number of geometries, including double-
side ridged geometry8 and double-side corrugated
geometry,9 were analyzed. A new, optical approach
for arbitrary geometry was also developed.10 In
addition, a software program designed for wave

mode calculation in ridged waveguides has been
developed,11,12 and can be used to determine G
numerically.

In practice, w � a, which allows the assump-
tion that the k spectrum is quasi-continuous in the
Y direction. Thus, in the first approximation, G can
be rewritten in a simpler form:

G =
Lx + a/2

a
≈ Lx

a
. (15)

In Eq. (15), we consider that a � 2Lx, which
is satisfied automatically within the perturbation
method limit [Eq. (3) is obtained using the per-
turbation method]. We presume that this method
is precise enough in the range of 5 < (Lx/a) < 10,
and Eq. (15) can be used for that range (the method
cannot be used for a → 0, since diffraction leads to
ignoring the ridges by wave). Therefore, we used
the values of G = 5–10 for further estimations.
In practice, a 20-nm-wide conventional QW can be
replaced by a 100–200-nm-wide RQW.

4. Possible Applications

For optoelectronics and power electronics, it
is important to have suitable wide band gap
materials.13 Semiconductors with Eg > 1.5 eV are
difficult to employ, as their electrical conductiv-
ity is low. Hence, donor doping is typically used
to increase the conductivity. However, conventional
doping introduces impurity centers and increases
electron scattering, and thus the QSD doping can
be used to solve these problems. It increases the
electron concentration in the CB without introduc-
ing scattering centers. Besides, the QSD increases
the carrier mobility in both the CB and the VB.

The QW embedded in the p–i–n junction is
frequently used for solar cells,14,15 semiconductor
lasers,16 and infrared detectors.17 A typical QW
layer is only 10–20-nm thick, and thus there exists
the problem of light confinement. To overcome
this, complicated multiple QW heterostructures are
fabricated. The QSD can contribute in difficulty
solving. The RQW layer has the same quantum
properties at G times more thickness, and increases
the light confinement. Hence, a reduced number of
RQW layers will be required. In addition, the com-
bination of the QW and RQW can be used for solar
cells.

Ballistic MOSFETs are widely discussed in the
literature.18–20 The ballistic regime is difficult to
realize in practice, because of the low mean free
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path (5–10 nm) of charge carriers. Using the RQW
in the transistor channel reduces the scattering
rates, and consequently increases the mean free
path to G times, for both electrons and holes.

Molecular beam epitaxy (MBE) is typically
used to grow QW layers. RQW growth does not dif-
fer from conventional QW growth, except that the
RQW layer has more thickness. Thus, it becomes
simpler to fabricate from the point of thickness
accuracy. Since the RQW is hundreds of nanome-
ters thick, different fabrication methods can also
be used; for example, silicon-on-insulator (SOI)
technology can be utilized to cleave and bond
layers of that thickness.21 SOI allows mechani-
cal attachment of the RQW layer to the sub-
strate, instead of growing it using complicated MBE
technology.

5. Conclusions

The QSD in a semiconductor RQW was inves-
tigated. This study demonstrated that the QSD
reduces the density of quantum states by geometry
factor G, and the electrons from the filled energy
bands are transferred to the empty ones. The elec-
tron concentration in the CB increases and corre-
sponds to the donor doping. The QSD doping does
not introduce impurities, but increases the carrier
mobility to G times.

Formulas for carrier concentrations and EF

were obtained in the nondegenerate limit. It was
observed that the methods developed for Casimir
energy calculation in complicated geometries can be
utilized to obtain the precise value of G.

The RQW exhibited quantum properties at G
times more width with respect to the conventional
QW. This can be used in various applications in
optoelectronics, the RWQ can increase the light
confinement and reduce the number of layers; and
in MOS transistors, the RQW can improve the bal-
listic properties.
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